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0 Introduction

It is well known that minimax problems play important roles in various fields of mathe-

matics. For example, the minimax problems of real functions have been discussed, such as in

[1–3].

Vector optimization theory has been widely developed in recent years, and the minimax

problems for vector-valued fuctions attracted a lot considerable attention. By introducing rea-

sonable definition for the minimal and maximal point of the vector valued function in an ordered

vector space, a number of papers established minimax inequalities under suitable hypotheses of

compactness, convexity, and continuity. In [4], Nieuwenhuis obtained a minimax theorem of the
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vector valued function satisfying f(x, y) = x + y, but no general result is given. In [5], Tanaka

proved the minimax theorem of a separated vector valued fuction. In [6], Tanaka gave some

existence theorem for the weak saddle point and established another type of minimax theorem.

In [7], Ferro proved a general minimax theorem when the minimal set of a fuction is a single

point. In [8], Li et al. obtained some minimax inequalities for set valued mappings by using a

section theorem and a linear scalarization function. Recently, in [9,10], Zhang and Li proved a

general minimax theorem for set valued mappings.

Motivated by the work of Ferro, the aim of this paper is to study minimax theorems for

vector-valued mapping with the weak convex assumption. First, we introduce the natural quasi

cone convexity and we obtain the minimax inequality

Max
⋃

x∈X0

Minwf(x, Y0) ⊂ Min
{

co(
⋃

y∈Y0

Maxwf(X0, y))
}

+ C

by using a linear scalarization fuction and Sion’s minimax theorem. Then we show that

Min
{

co
(

⋃

y∈Y0

Maxwf(X0, y)
)}

+ C is equal to Min
(

⋃

y∈Y0

Maxwf(X0, y)
)

+ C under suitable

assumption. Our result is a generalization of Ferro’s minimax theorem.

The organization of the rest is as follow. In Section 1, some preliminary results are

stated, mostly about convexity properties, and existence of minimal point and maximal point.

In Section 2, we obtain some minimax inequalities by using sepration theorem and minimax

equality in scalar case.

1 Preliminaries

In all that follows, let V be Rn and X and Y be two real Hausdorff topological vector

spaces. Assume that C is a pointed closed convex cone in V with nonempty interior int C. Let

V ∗ be the topological dual space of V and C∗ := {f ∈ V ∗|f(v) > 0, ∀v ∈ C} be the dual cone

of C. We define the binary ralation:

x 6C y ⇔ x ∈ y − C, ∀x, y ∈ V

Definition 1.1[6] Let X0 be a convex subset of X . A vector valued function f : X0 → V

is said to be

(i) properly quasi C-convex on X0 if for every x1, x2 ∈ X0 and λ ∈ [0, 1]

either f(λx1 + (1 − λ)x2) 6C f(x1) or f(λx1 + (1 − λ)x2) 6C f(x2);

(ii) natural quasi C-convex on X0 if for every x1, x2 ∈ X0 and λ ∈ [0, 1] , there exists

µ ∈ [0, 1] such that

f(λx1 + (1 − λ)x2) 6C µf(x1) + (1 − µ)f(x2);

(iii) C-convexlike on X0 if for every x1, x2 ∈ X0 and λ ∈ [0, 1], there exist x ∈ X0

f(x) 6C λf(x1) + (1 − λ)f(x2).

It is clear that f is C-convexlike on X0 if and only if f(X0) + C is convex.
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Lemma 1.1[6] Let X0 be a convex subset of X . Then the following statements hold:

(i) every properly quasi C-convex function is natural quasi C-convex;

(ii) every natural quasi C-convex is C-convex like when f is continuous.

A C-convex function is not always properly quasi C-convex, and vice versa.

Definition 1.2[11] Let F : X → 2V be a set-valued mapping.

(i) F is said to be upper semicontinuous (u.s.c.) at x0 ∈ X if, for any neighborhood

N(F (x0)), there exists a neighborhood N(x0) of x0 such that F (x) ⊂ N(F (x0)), ∀x ∈ N(x0).

(ii) F is said to be lower semicontinuous (l.s.c.) at x0 ∈ X if, for any sequence {xn} ⊂ X ,

xn → x0, v0 ∈ F (x0) implies that there exists a sequence vn ∈ F (xn), ∀n ∈ N , such that

vn → v0.

(iii) F is said to be continuous at x0 ∈ X if F is both u.s.c. and l.s.c. at x0.

Definition 1.3 Let A ⊂ V be a nonempty subset.

(i) A point z ∈ A is called a (weakly) minimal point of A if A∩(z−C) = {z}(A∩(z−intC) =

∅); we denote the set of all (weakly) minimal points of A by MinA(MinwA);

(ii) A point z ∈ A is called a (weakly) maximal point of A if A ∩ (z + C) = {z}(A ∩ (z +

intC) = ∅); we denote the set of all (weakly) maximal points of A by MaxA(MaxwA);

Lemma 1.2[7] Let A ⊂ V be a nonempty compact subset. Then (i) MinA 6= ∅ ,

MinwA 6= ∅; (ii) A ⊂ MinA + C , A ⊂ MinwA + C; (iii) MaxA 6= ∅ , MaxwA 6= ∅; (iv)

A ⊂ MaxA − C , A ⊂ MaxwA − C.

Lemma 1.3[7] Let X0 and Y0 be compact subset of X and Y respectively. Let f :

X0 × Y0 → V be a continuous vector-valued mapping, then set-valued mapping

Γ(x) = Minwf(x, Y0) and L(y) = Maxwf(X0, y)

are compact valued and u.s.c on X0 and Y0, respectively.

Lemma 1.4[11] Let X0 be a subset of X and F : X0 → 2V be a set valued mapping. If

X0 is compact and F is u.s.c. with compact values, then F (X0) is compact.

Lemma 1.5[3] Let X0 and Y0 be compact convex subsets of topological vector spaces X

and Y , respectively. And let f : X0 × Y0 → R be a real function such that

(i) for each x ∈ X0 , f(x, ·) is l.s.c. and quasiconvex on Y0;

(ii) for each y ∈ Y0 , f(·, y) is u.s.c. and quasiconcave on X0;

Then min
y∈Y0

max
x∈X0

f(x, y) = max
x∈X0

min
y∈Y0

f(x, y).

Lemma 1.6 Let X0 be convex subset of X , for any linear function k ∈ C∗,f : X0 → V

(i) if f is natural quasi C-convex on X0, then k ◦ f : X0 → R is quasi convex on X0;

(ii) if −f is natural quasi C-convex on X0, then k ◦ f : X0 → R is quasi concave on X0.

Proof We only prove the first assertion. For any r ∈ R, consider the level set lev6r =

{x ∈ X0 | k ◦ f(x) 6 r}. Suppose x1, x2 ∈ lev6r, t ∈ [0, 1]. Then, tx1 + (1 − t)x2 ∈ X0 and by

the natural quasi C-convexity of f , there exist µ ∈ [0, 1] and c ∈ C such that f(tx1+(1−t)x2) =
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µf(x1) + (1 − µ)f(x2) − c. We have

k ◦ f(tx1 + (1 − t)x2) = k(µf(x1) + (1 − µ)f(x2) − c)

= µkf(x1) + (1 − µ)kf(x2) − k(c)

6 µr + (1 − µ)r − k(c)

6 r.

Hence tx1 + (1 − t)x2 ∈ lev6r. This completes the proof.

2 Minimax theorem

In this section, we present some types of minimax theorems for vector-valued functions.

Theorem 2.1 Let X0, Y0 be compact convex sets of X , Y , respectively. If f : X0×Y0 →

V is a continuous function satisfying

(i) f(x, ·) is natural quasi C-convex for every x ∈ X0,

(ii) −f(·, y) is natural quasi C-convex for every y ∈ Y0, then

Minw

{

co
(

⋃

y∈Y0

Maxwf(X0, y)
)}

⊂ Max
⋃

x∈X0

Minwf(x, Y0) + V \int C.

Proof By Lemma 1.3, Minwf(x, Y0) is compact valued and u.s.c. on X0. Then by

Lemma 1.4,
⋃

x∈X0

Minwf(x, Y0) is compact, so

Max
⋃

x∈X0

Minwf(x, Y0) 6= ∅.

Similarly,
⋃

y∈Y0

Maxwf(X0, y)) is compact, and then co(
⋃

y∈Y0
Maxwf(X0, y)) is also compact(In

finite space, the convex hull of compact set is also compact). So

Minw

{

co
(

⋃

y∈Y0

Maxwf(X0, y)
)}

6= ∅.

Let L(y) = Maxwf(X0, y), y ∈ Y0. For arbitrary α ∈ Minw{co(
⋃

y∈Y0

L(y))}, we have

(α − intC)
⋂

co(L(y)) = ∅.

By separation theorem, there exist δ ∈ R, k ∈ V ∗ such that

k(α − c1) 6 δ 6 k(z), ∀z ∈ co
(

⋃

y∈Y0

L(y)
)

, ∀c1 ∈ C

k(α − c2) < δ, ∀c2 ∈ int C.

It is clearly that k ∈ C∗. Consider the continuous function g = k ◦f : X0×Y0 → R. By Lemma

1.6, all the conditions of Lemma 1.5 are satisfied. It follows that

min
y∈Y0

max
x∈X0

g(x, y) = max
x∈X0

min
y∈Y0

g(x, y).
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Since for every y0 ∈ Y0, there exist x0 ∈ X0 such that

f(x0, y0) ∈ Maxwf(X0, y0) ⊆ co
(

⋃

y∈Y0

L(y)
)

,

which implies that k ◦ f(x0, y0) > δ. Thus we have

max
x∈X0

k ◦ f(x, y0)) > δ, ∀y0 ∈ Y0,

that is, min
y∈Y0

max
x∈X0

k ◦ f(x, y) > δ. By the minimax equality in the scalar case, we obtain that

max
x∈X0

min
y∈Y0

k ◦ f(x, y) > δ.

So there exists xα ∈ X0 such that min
y∈Y0

k ◦ f(xα, y) > δ, that is

k ◦ f(xα, y) > δ > k(α), ∀y ∈ Y0,

which means that α /∈ f(xα, y) + intC, ∀y ∈ Y0; i.e.

α ∈ f(xα, y) + V \intC, ∀y ∈ Y0.

So, by Lemma 1.2

Minw

{

co
(

⋃

y∈Y0

L(y)
)}

⊂
⋃

x∈X0

Minwf(x, Y0) + V \intC

⊂ Max
⋃

x∈X0

Minwf(x, Y0) − C + V \intC

= Max
⋃

x∈X0

Minwf(x, Y0) + V \intC.

Remark 2.1 In scalar case, we always have

Minw

{

co
(

⋃

y∈Y0

Maxwf(X0, y)
)}

= Minw

⋃

y∈Y0

Maxwf(X0, y)

Theorem 2.2 Let X0, Y0 be compact convex sets in X , Y , respectively. Suppose f :

X0 × Y0 → V is a continuous function such that

(i) f(x, ·) is natural quasi C-convex for every x ∈ X0;

(ii) −f(·, y) is natural quasi C-convex for every y ∈ Y0;

(iii) Max
⋃

x∈X0

Minwf(x, Y0) ⊂ Minwf(x, Y0) + C, for every x ∈ X0.

Then,

Max
⋃

x∈X0

Minwf(x, Y0) ⊂ Min
{

co
(

⋃

y∈Y0

Maxwf(X0, y)
)}

+ C

Proof Let L(y) = Maxwf(X0, y), y ∈ Y0. Since co(
⋃

y∈Y0

L(y)) is compact, co(
⋃

y∈Y0

L(y))+

C is closed and convex. Let α ∈ V and suppose that α /∈ co(
⋃

y∈Y0

L(y))+C. Then, by separation

theorems, there exists δ, ǫ ∈ R, k ∈ V ∗ such that

k(α) 6 δ − ǫ < δ 6 k(z + c), ∀z ∈ co
(

⋃

y∈Y0

L(y)
)

, ∀c ∈ C.
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It is clearly that k ∈ C∗. let c = 0 ∈ C, and we have

k(α) 6 δ − ǫ < δ 6 k(z), ∀z ∈ co
(

⋃

y∈Y0

L(y)
)

.

Consider the continuous function g = k ◦ f : X0 × Y0 → R. By Lemma 1.6, all the conditions

of Lemma 1.5 are satisfied. It follows that

min
y∈Y0

max
x∈X0

g(x, y) = max
x∈X0

min
y∈Y0

g(x, y).

For every y ∈ Y0, there exists xy ∈ X0 such that

f(xy, y) = zy ∈ L(y) ⊂ co
(

⋃

y∈Y0

L(y)
)

.

Hence, for every y ∈ Y0

max
x∈X0

g(x, y) > g(xy , y) = k ◦ f(xy, y) > δ > δ − ǫ > k(α).

That is, min
y∈Y0

max
x∈X0

g(x, y) > k(α). By the minimax equality of scalar value,

max
x∈X0

min
y∈Y0

g(x, y) > k(α).

So there exist xα ∈ X0, such that min
y∈Y0

g(xα, y) > k(α). That is, for every y ∈ Y0

g(xα, y) = k ◦ f(xα, y) > k(α).

Hence, k(f(xα, y) − α) > 0. This means f(xα, y) − α /∈ −C, for every y ∈ Y0; i.e., α /∈

f(xα, y) + C. So we have

α /∈ f(xα, Y0) + C = Minwf(xα, Y0) + C.

Thus, Minwf(xα, Y0) + C ⊂ Min{co(
⋃

y∈Y0

Maxwf(X0, y))} + C. Clearly, if (iii) holds, then

Max
⋃

x∈X0

Minwf(x, Y0) ⊂ Min
{

co
(

⋃

y∈Y0

Maxwf(X0, y)
)}

+ C.

Remark 2.2 Assumption(iii) is raised by Ferro in [7]. This condition always holds in

scalar case.

Theorem 2.3 Let X0, Y0 be compact convex sets in X , Y , respectively. Suppose f :

X0 × Y0 → V is a continuous vector-valued function such that

(i) f(x, ·) is natural quasi C-convex for every x ∈ X0;

(ii) −f(·, y) is properly quasi C-convex for every y ∈ Y0;

(iii) Max
⋃

x∈X0

Minwf(x, Y0) ⊂ Minwf(x, Y0) + C, for every x ∈ X0.

Then, Max
⋃

x∈X0

Minwf(x, Y0) ⊂ Min
⋃

y∈Y0

Maxwf(X0, y) + C.
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Proof By Lemma 2.3 in [7], L(y) = Maxwf(X0, y) is continuous and single valued. Now

let x ∈ X0 be arbitrary and y1, y2 ∈ Y0. By the natural quasi convexity of f(x, ·), there exist

µ ∈ [0, 1] such that

f(x, λy1 + (1 − λ)y2) 6C µf(x, y1) + (1 − µ)f(x, y2).

Since L(y) = Maxwf(X0, y) is single valued, by Lemma 1.2

f(x, λy1 + (1 − λ)y2) 6C µf(x, y1) + (1 − µ)f(x, y2)

6C µMaxwf(X0, y1) + (1 − µ)Maxwf(X0, y2)

Since x ∈ X0 is arbitrary, then

Maxwf(X0, λy1 + (1 − λ)y2) 6C µMaxwf(X0, y1) + (1 − µ)Maxwf(X0, y2).

So L(y) = Maxwf(X0, y) is natural quasi convex on Y0 and continuous. Then by lemma 1.1,

L(y) = Maxwf(X0, y) is convexlike on Y0. Hence,

Min
⋃

y∈Y0

Maxwf(X0, y) + C =
⋃

y∈Y0

Maxwf(X0, y) + C

= co
{

⋃

y∈Y0

Maxwf(X0, y) + C
}

= co
(

⋃

y∈Y0

Maxwf(X0, y)
)

+ C

= Min
{

co
(

⋃

y∈Y0

Maxwf(X0, y)
)}

+ C

The conclusion holds by Theorem 2.3.

Remark 2.3 In [7], the same result is proved when condition (i) is replaced by f(x, ·)

is C-convex for every x ∈ X0. Since every C-convex function is natural quasi C-convex, the

Theorem 3.1 in [7] is a special case of Theorem 2.3. The following example explains the case.

Example 2.1 Let X0 = Y0 = [0, 1], V = R2, C = R2
+ = {(v1, v2) ∈ R2|v1 > 0, v2 > 0}

defined a function f : X0 × Y0 → V by f(x, y) = (y2x, (1 − y2)x). Then, f(x, ·) is natural

quasi C-convex for every x ∈ X0 and −f(·, y) is properly quasi C-convex for every y ∈ Y0.

Since f(x, ·) is neither C-convex or properly quasi C-convex, we cannot claim the conclusion

by Theorem 3.1 in [7]. However, for every x ∈ X0

Minwf(x, Y0) = f(x, Y0) = {(y2x, (1 − y2)x) | y ∈ [0, 1]};

Max
⋃

x∈X0

Minwf(x, Y0) = {(y2, 1 − y2) | y ∈ [0, 1]}.

Hence the assumption (iii) in Theorem 2.3 holds, then

Max
⋃

x∈X0

Minwf(x, Y0) ⊂ Min
⋃

y∈Y0

Maxwf(X0, y) + C.
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In fact, Maxwf(X0, y) = (y2, 1 − y2); Min
⋃

y∈Y0

Maxwf(X0, y) = {(y2, 1 − y2) | y ∈ [0, 1]}.
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