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0 Introduction

In business such as motor insurance, tariffs have become very refined since the premiums
depend on many rating factors and co-variables. To calculate such tariffs a regular method
is using multidimensional credibility. Multidimensional credibility models were first proposed
in [1], and subsequently were applied to many other situations. The essential feature of mul-
tidimensional credibility is to consider the observations of different categories and to use this
information in a methodologically consistent way. More detail about multidimensional credi-
bility can be found in [2].

In multidimensional credibility models, we consider a claim sequence of p-dimension ran-
dom variable Xi1, Xi2, · · ·Xini over ni time periods for the ith contract, which can be char-
acterized by a random risk parameter Θi whose (prior) distribution is π(θ). Under certain
assumptions, the standard paradigms using empirical Bayes method can be applied to all the
historical data to estimate the prior distribution π(θ), and in turn to predict the future loss
of each Xi, i = 1, 2, · · · ,K, at the next period. In the multidimensional credibility, Jewell (in
[1]) assumed that the random vectors (Xi1, Xi2, · · ·Xini ,Θi), i = 1, 2, · · · ,K, are independent
across individuals (independence over risks) for each i.

Such independence assumptions may be appropriate in some practical situations. However,
it is far from being a universal structure. In fact, it has been recognized that there many
important insurance scenarios where these assumptions are violated. For example, there exist
many common factors which affect the claims of the insurance portfolios. Fortunately, in recent
years, more and more remarkable efforts are put in the existing actuarial literature to study
the impacts of dependent risks in various aspects; see e.g., [3-6], and the references therein.
In credibility theory, a special dependence induced by the common effect was proposed in [7],
and they derived the credibility estimators of risk premium in Normal-Normal case. Then this
models were subsequently investigated in [8] who generalized the results of [7] to distribution-
free credibility model.

In this paper, we aim at studying multidimensional credibility with a dependence struc-
ture characterized by a random common effect. The rest of the paper is arranged as follows.
In Section 1, models and assumptions are introduced and some preliminaries are prepared.
Section 2 derives the credibility formulae for the multidimensional credibility model with a
common effect and some remarks are presented. The homogeneous credibility estimators are
discussed in section 3. In Section 4, a numerical example is presented to show the calculation
of multidimensional credibility with a common effect and some conclusions are made.

1 Model formulations and preliminaries

Consider a portfolio of K insured individuals. Firstly, the risk quality of an individual
i is characterized by a risk parameter Θi and the common effect which is represented as a
random variable β. The available claim data is {Xij , i = 1, 2, · · ·K, j = 1, 2, · · · , ni}, where Xij

is a p-dimension random vector. In this paper, in order to simplify calculations, the balanced
credibility models are considered, i.e, n1 = n2 = · · · = nK = n. However, with some slightly
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revisions, it is easily to extend it to the unbalanced cases. Formally, the assumptions of the
models are stated as the following.

Assumption 1.1 The common effect random variable β has known expectation E(β) =
µβ and variance Var(β) = σ2

β .

Assumption 1.2 Given β, the random risk parameter vectors Θi, i = 1, · · · ,K, are
mutually independent and identically distributed, with the same structure distribution π(θ|β);

Assumption 1.3 For a fixed contract i, given the common effect β and the structure
parameter Θi, the claims random vector Xi1, Xi2, · · · , Xin are conditionally independent and
identically distributed with conditional expectation E(Xij |Θi, β) = µ (Θi, β) and conditional

variance Var(Xij |Θi, β) =
∑

(Θi, β), where Xij =


X

(1)
ij

...
X

(p)
ij

 is a p-dimensional random vector,

and
∑

(Θi, β) is a p × p covariance matrix. We also assume that

E [µ (Θi, β) |β] = µ1 (β) , Var [µ (Θi, β) |β] = S(β), E
[∑

(Θi, β) |β
]

=
∑

(β),

Var [µ1 (β)] = T0, E [µ1 (β)] = µ0, E(S(β)) = S0, E[
∑

(β)] =
∑

0
. (1.1)

Write Xi = 1
n

∑n
j=1 Xij for the average of the claim experience of individual i and

X = 1
K

∑K
i=1 Xi for the overall average claim experience of all individuals. Our goals are

to predict/estimate the future claim vector Xi,n+1 based on the linear combinations of the
overall sample {Xij , i = 1, 2, · · · ,K, j = 1, 2, · · · , n} in credibility theory. Firstly, we denote
inhomogeneous linear function classes of the samples as

L (X, 1) =
{

X̂i,n+1 = A
p×1

+
K∑

s=1

n∑
t=1

Bst
p×p

Xst,

where A,Bst are non-random vector or matrices
}

, (1.2)

and the homogeneous class as

Le(X) =

{
X̂i,n+1 =

K∑
s=1

n∑
t=1

Bst
p×p

Xst, with E
(
X̂i,n+1

)
= E(Xi,n+1)

}
(1.3)

respectively. Therefore, the estimators of Xi,n+1 which are optimal in the classes L (X, 1) and
Le(X) are called inhomogeneous and homogeneous credibility estimators which are denoted

by X̂i,n+1

∗
and X̂i,n+1

H
respectively. Here, “Optimal” means that the mean square error

matrix of the the estimator arrive at the minimal value in the matrix sense, i.e., for any other
inhomogeneous (or homogeneous) linear estimator X̂i,n+1, MSE(X̂i,n+1) − MSE(X̂i,n+1

∗
) (or

MSE(X̂i,n+1)−MSE(X̂i,n+1

H
)) is a non-negative definite matrix, where the mean square error

matrix of X̂ is defined as

MSE(X̂) = E
(
X̂ − X

)(
X̂ − X

)′
. (1.4)
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So, in order to find X̂i,n+1

∗
and X̂i,n+1, we must solve the following optimization problems

min
A,Bst

E

(
Xi,n+1 − A −

K∑
s=1

n∑
t=1

BstXst

)(
Xi,n+1 − A −

K∑
s=1

n∑
t=1

BstXst

)′ , (1.5)

and  min
A,Bst

E
[(

Xi,n+1 −
∑K

s=1

∑n
t=1 BstXst

)(
Xi,n+1 −

∑K
s=1

∑n
t=1 BstXst

)′]
with

∑K
s=1

∑n
t=1 BstE (Xst) = E(Xi,n+1)

(1.6)

respectively. For the convenience of calculation, we give the following lemma. Its proof can be
found in [8].

Lemma 1.1 Let

(
X

Y

)
be a random vector with expectation

(
µX

µY

)
and covariance

matrix

( ∑
XX

∑
XY∑

Y X

∑
Y Y

)
. Then

(1) E(Y − A − BX) (Y − A − BX)′ can be minimized by

A = µY −
∑
Y X

−1∑
XX

µX and B =
∑
Y X

−1∑
XX

;

(2) Under the constraint µY = BµX , E (Y − BX) (Y − BX)′ can be minimized by

B =

∑
Y X

+

(
µY −

∑
Y X

∑−1
XX µX

)
µ′

X

µ′
X

∑−1
XX µX

 −1∑
XX

.

Consequently, Y can be optimally predicted in the class of inhomogeneous linear functions of
X by

proj(Y |L(X, 1)) = µY +
∑
Y X

−1∑
XX

(X − µX), (1.7)

and in the class of homogeneous linear functions of X by

proj(Y |Le(X)) =

(∑
Y X

+

(
µY −

∑
Y X Σ−1

XXµX

)
µ′

X

µ′
X

∑−1
XX µX

) −1∑
XX

X, (1.8)

where proj(Y |M) represents the projection of Y on the space M . Expressions (1.7) and (1.8)
are referred to respectively as the inhomogeneous and homogeneous projections (estimators)
of Y onto X. For a degenerated random variable Y = µY , ΣY X = 0 and so (1.8) can be
simplified to

proj(µY |X) =
µY µ′

X

µ′
X

∑−1
XX µX

−1∑
XX

X. (1.9)
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Therefore, from the Lemma 1.1, the inhomogeneous credibility estimator can be found by the
following formula.

X̂i,n+1

∗
= proj (Xi,n+1 |L (X, 1))

= E [Xi,n+1] + Cov (Xi,n+1, X)Cov (X,X)−1 (X − E (X)) , (1.10)

where X = (X ′
1, · · · , X ′

K)′ and Xi = (X ′
i1, · · · , X ′

in)′ . For the projection operator ”proj”, we
have the following results.

Lemma 1.2 For the two closed subspace M ′ ⊂ M ⊂ L2 and Y ∈ L2, then

proj(X|M ′) = proj (proj (X|M) |M ′) , (1.11)

where L2 = {Y : Y is random vector with the covariance matrix Cov (Y, Y )} . The Eqn. (1.11)
are so-called the iterativity of projections. The proof can be found in [2].

Since Le (X) ⊆ L (X, 1) , from (1.11) the homogeneous credibility can be derived as

X̂i,n+1

H
= proj (Xi,n+1 |Le (X) )

= proj (proj (Xi,n+1 |L (X, 1)) |Le (X) )

= proj
(
X̂i,n+1

∗
|Le (X)

)
. (1.12)

The (1.12) is very useful to derive the homogeneous credibility estimators, which is discussed
in the next section. The following lemma gives a convenient calculation for matrix converse.
The proofs can be found in [9].

Lemma 1.3 If the A, B, C and D are matrices with adaptive orders, then the following
formula holds true,

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1. (1.13)

2 Multidimensional credibility model

In order to derive the credibility estimator of Xi,n+1, from (1.6), we should calculate the
covariance matrix Cov (Xi,n+1, X) and Cov (X,X) . The lemma below states some simple but
fundamental features of the dependence structure just specified.

Theorem 2.4 Under the assumptions of 1.1, 1.2, and 1.3, we get following conclusions:
(1) The means of Xi,n+1 and Xi are

E [Xi,n+1] = µ0, E (Xi) = 1n ⊗ µ0, i = 1, 2, · · · ,K, (2.14)

respectively, where 1n is an n-vector with 1 in all the n entries.
(2) The covariance of X is given by

∑
XX

∆= Cov (X,X) = IK ⊗

(
In ⊗

∑
0

+1n1′
n ⊗ S0

)
+ 1nK1′

nK ⊗ T0, (2.15)

where ⊗ indicates the Kronecker product of matrices.
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(3) The covariance between Xi,n+1 and X is∑
Xi,n+1,X

∆= Cov (Xi,n+1, X) = 1′
nK ⊗ T0 + (e′i ⊗ 1′

n) ⊗ S0, (2.16)

where ei is a vector with 1 in the ith entry and 0 in the other entries.
(4) The inverse of the variance matrix of X is given by

−1∑
XX

= IK ⊗ Φ −


Φ(1n ⊗ Ip)

...
Φ (1n ⊗ Ip)

 Ω−1
(

(1′
n ⊗ Ip)Φ · · · (1′

n ⊗ Ip)Φ
)

, (2.17)

where

Φ = In ⊗
−1∑
0

−

(
1n ⊗

−1∑
0

)(
n

−1∑
0

+S−1
0

)−1 (
1n ⊗

−1∑
0

)′

and

Ω = T−1
0 + nK

(∑
0

+nS0

)−1

. (2.18)

Proof (1) Write Θ = (Θ1,Θ2, · · · ,ΘK)′. From the dual conditional expectation theo-
rem, one can get

E [Xi,n+1] = E [E (Xi,n+1|Θ, β)] = E [E (µ (Θi, β) |β)] = E [µ1 (β)] = µ0,

and E (Xi) = E [E (Xi|Θi, β)] = 1n ⊗ µ0.

(2) Secondly, from the assumptions of 1.1, 1.2 and 1.3, we have

Cov(Xij , Xst) = Cov (µ (Θi, β) , µ (Θi, β)) + E [Cov (Xij , Xst|Θ, β)]

= Cov (µ1 (β) , µ1 (β)) + E [Cov(µ (Θi, β) , µ (Θi, β) |β)] + E [Cov(Xij , Xst|Θ, β)]

=

8

>

<

>

:

T0, i 6= s,

S0 + T0, i = s, j 6= t,

S0 + T0 +
P

0, i = s, j = t.

Then

Cov(Xi, Xs) =

{
1n1′

n ⊗ T0, i 6= s,

1n1′
n ⊗ (T0 + S0) + In ⊗

∑
0, i = s.

Therefore, the covariance matrix of X is given by∑
XX

= Cov (X,X) = IK ⊗

(
In ⊗

∑
0

+1n1′
n ⊗ S0

)
+ 1nK1′

nK ⊗ T0,

which gives (2.15).
(3) To check (2.16), notice that Cov (Xi,n+1, Xst|Θ, β) = 0, then

Cov (Xi,n+1, Xst) = Cov (µ (Θi, β) , µ (Θs, β)) =

{
T0 + S0, i = s,

T0, i 6= s,

Cov (Xi,n+1, Xs) =

{
1′

n ⊗ (T0 + S0) , i = s,

1′
n ⊗ T0, i 6= s.
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Thus
∑

Xi,n+1,X = 1′
nK ⊗ T0 + (e′i ⊗ 1′

n) ⊗ S0.

(4) Finally, from (1.13) and notice 1n1′
n ⊗ S0 =


Ip

...
Ip

 S0

(
Ip · · · Ip

)
, we have

(
In ⊗

∑
0

+1n1′
n ⊗ S0

)−1

= In ⊗
−1∑
0

−

(
1n ⊗

−1∑
0

)
(

n

−1∑
0

+S−1
0

)−1 (
1n ⊗

−1∑
0

)′

= Φ. (2.19)

Hence,

Φ (1n ⊗ Ip) =


∑−1

0
...∑−1
0

 −


∑−1

0
...∑−1
0


(

n

−1∑
0

+S−1
0

)−1

n

−1∑
0

, (2.20)

(1n ⊗ Ip)
′ Φ =

( ∑−1
0 · · ·

∑−1
0

)
−

( ∑−1
0 · · ·

∑−1
0

)
(

n

−1∑
0

+S−1
0

)−1

n

−1∑
0

, (2.21)

and

(1nK ⊗ Ip)
′ (1K ⊗ Φ) (1nK ⊗ Ip) = Kn

−1∑
0

(
n

−1∑
0

+S−1
0

)−1

S−1
0 = Kn

(∑
0

+nS0

)−1

.

Observe that 1nK = 1K ⊗ 1n. Then using(1.13) again, we have

−1∑
XX

=

[
IK ⊗

(
In ⊗

∑
0

+1n1′
n ⊗ S0

)
+ 1nK1′

nK ⊗ T0

]−1

= IK ⊗ Φ −


Φ(1n ⊗ Ip)

...
Φ (1n ⊗ Ip)

 Ω−1
(

(1′
n ⊗ Ip)Φ · · · (1′

n ⊗ Ip)Φ
)

,

which gives (2.17). The theorem is thus proved.
At this point, having revealed the structural features of the dependence in the models, we

can derive the inhomogeneous credibility estimator in the following theorem.
Theorem 2.5 Under the assumptions 1.1, 1.2, and 1.3, the optimal linear inhomoge-

neous unbiased estimator for Xi,n+1 by solving the optimization problem (1.5) is given by

X̂i,n+1

∗
= Z1Xi + Z2X + (Ip − Z1 − Z2) µ0, (2.22)

where the credibility factors are

Z1 = nS0

(∑
0

+nS0

)−1

, Z2 = nK
∑
0

(∑
0

+nS0

)−1

T0

(∑
0

+nS0 + nKT0

)−1

. (2.23)



1 6 Ï ÙÄ, �: äk�Ó�A�õ�&Ý�. 163

Proof From Lemma 1.1, we have X̂i,n+1

∗
= proj (Xi,n+1 |L (X, 1)) . We thus prove

the theorem by computing proj (Xi,n+1 |L (X, 1)) = E [Xi,n+1]+
∑

Xi,n+1,X

∑−1
XX (X − E (X)).

From the theorem 2.4, we have known that

E [Xi,n+1] = µ0, E (X) = 1nK ⊗ µ0,
∑

µ(Θi,β),X

= 1′
nK ⊗ T0 + (e′i ⊗ 1′

n) ⊗ S0,

and

−1∑
XX

= IK ⊗ Φ −


Φ(1n ⊗ Ip)

...
Φ (1n ⊗ Ip)

 Ω−1
(

(1′
n ⊗ Ip)Φ · · · (1′

n ⊗ Ip)Φ
)

.

Firstly, from some matrix computations, we can derive

(e′i ⊗ 1′
n) ⊗ S0

−1∑
XX

(X − EX)

= nS0

(∑
0

+nS0

)−1

(Xi −−→µ0) − n2KS0

(∑
0

+nS0

)−1

T0

(∑
0

+nS0 + nKT0

)−1 (
X −−→µ0

)

= nK

Ip − nS0

(∑
0

+nS0

)−1
T0

(∑
0

+nS0 + nKT0

)−1 (
X −−→µ0

)

= nK
∑
0

(∑
0

+nS0

)−1

T0

(∑
0

+nS0 + nKT0

)−1 (
X −−→µ0

)
.

Then

1′
nK ⊗ T0

−1∑
XX

(X − EX)

= nKT0

(∑
0

+nS0

)−1
T−1

0 + Kn

(∑
0

+nS0

)−1
−1

T−1
0

(
X −−→µ0

)

= nKT0

(∑
0

+nS0 + nKT0

)−1 (
X −−→µ0

)
.

Therefore, the theorem follows from the following computations.

proj (Xi,n+1 |L (X, 1))

= E [Xi,n+1] +
∑

Xi,n+1,X

−1∑
XX

(X − E (X))

= µ0 + (e′i ⊗ 1′
n) ⊗ S0

−1∑
XX

(X − EX) + 1′
nK ⊗ T0

−1∑
XX

(X − E (X))
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= µ0 + nS0

(∑
0

+nS0

)−1

(Xi − µ0) + nK
∑
0

(∑
0

+nS0

)−1

T0(∑
0

+nS0 + nKT0

)−1 (
X − µ0

)
= Z1Xi + Z2X + (Ip − Z1 − Z2) µ0.

which give the results of the theorem.

From Theorem 2.5, we can see that the credibility estimators of Xi,n+1 is the weighted
sums of individual sample mean Xi, the overall sample mean X and the collective mean µ0.

The Z1 and Z2 in the Theorem 2.5 are credibility factor matrices. In the univariate case, as we
known, the credibility factor must satisfy 0 6 Zi 6 1 (see [8]). In our models, we derived the
following proposition.

Proposition 2.6 Z1 > 0, Ip − Z1 > 0, Z2 > 0, Ip − Z2 > 0, Ip − Z1 − Z2 > 0, where
“> 0” means the matrix is non-negative definite.

Proof Obviously, the matrices S0,
∑

0, T0 are all non-positive definite since they are
covariance matries, then we have

Z1 = nS0

(∑
0

+nS0

)−1

> 0, Z2 = nK
∑
0

(∑
0

+nS0

)−1

T0

(∑
0

+nS0 + nKT0

)−1

> 0,

and Ip − Z1 =
∑

0 (
∑

0 +nS0)
−1 > 0.

We can easily see from some matrix calculations that

Ip − Z2 = Ip − nK
∑
0

(∑
0

+nS0

)−1

T0

(∑
0

+nS0 + nKT0

)−1

=

∑
0

+nS0 + nKT0 −
∑
0

(∑
0

+nS0

)−1

nKT0

(∑
0

+nS0 + nKT0

)−1

=

∑
0

+nS0 +

Ip −
∑
0

(∑
0

+nS0

)−1
 nKT0

(∑
0

+nS0 + nKT0

)−1

=

∑
0

+nS0 + nS0

(∑
0

+nS0

)−1

nKT0

(∑
0

+nS0 + nKT0

)−1

> 0,
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and

Ip − Z1 − Z2

= Ip − nS0

(∑
0

+nS0

)−1

− nK
∑
0

(∑
0

+nS0

)−1

T0

(∑
0

+nS0 + nKT0

)−1

=

∑
0

+nS0 + nS0

(∑
0

+nS0

)−1

nKT0

(∑
0

+nS0 + nKT0

)−1

− nS0

(∑
0

+nS0

)−1

=

(∑
0

+nS0

)(∑
0

+nS0 + nKT0

)−1

+ nS0

(∑
0

+nS0

)−1

nKT0

(∑
0

+nS0 + nKT0

)−1

− Ip


=

(∑
0

+nS0

)(∑
0

+nS0 + nKT0

)−1

− nS0

(∑
0

+nS0

)−1

(∑
0

+nS0

)(∑
0

+nS0 + nKT0

)−1

=

(∑
0

+nS0

)(∑
0

+nS0 + nKT0

)−1

− nS0

(∑
0

+nS0 + nKT0

)−1

=
∑
0

(∑
0

+nS0 + nKT0

)−1

> 0.

Remark 1 We note from Theorem 2.5 that

X̂i,n+1

∗
= X̂i,n+1

c
+ nK

∑
0

(∑
0

+nS0

)−1

T0

(∑
0

+nS0 + nKT0

)−1

(X − µ0), (2.24)

where

X̂i,n+1

c
= nS0

(∑
0

+nS0

)−1

Xi +
∑
0

(∑
0

+nS0

)−1

µ0 (2.25)

is the classical credibility premium (see [2]). The second term of (2.24) reflects the contribution
of the common effect to the credibility premium. Obviously, from (2.24), if T0 = 0, then

X̂i,n+1

∗ reduce to= X̂i,n+1

c
, (2.26)

i.e, the common effect does not exist, then the risks in different contracts are independent of
each other.

Remark 2 If the claims Xij are univariate random variable, under assumptions 1.1–1.3,
while some structure parameters are denoted by

∑
0 =

∑2
, S0 = τ2, T0 = a and µ0 = µ, then

the credibility estimator Xi,n+1 of (2.22) (denoted by X̂i,n+1

∗
too) becomes

X̂i,n+1

∗
=

nτ2

nτ2 +
∑2 Xi +

nKa
∑2

(nτ2 +
∑2)(nKa + nτ2 +

∑2)
X +

∑2(∑2 +nτ2 + nKa
)µ, (2.27)
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where

Xi =
1
n

n∑
j=1

Xij and X =
1
K

K∑
i=1

Xi. (2.28)

are individual sample mean and the overall sample mean respectively. The (2.27) is the uni-
variate credibility estimators with common effects considered in [7,8].

3 Homogeneous credibility estimator

When µ0 is unknown, we resort to the second part of Lemma 1.1 (or equivalently, equation
(1.8)) to establish the optimal unbiased homogeneous credibility estimator of Xi,n+1.

Theorem 3.7 Under assumptions 1.1–1.3, the optimal linear homogeneous unbiased
estimator of Xi,n+1 by solving (1.6) is

X̂i,n+1

H
= Z1Xi + Z2X + (Ip − Z1 − Z2)µ̃0, (3 .29)

where µ̃0 =
µ′

0(
P

0 +nS0+nKT0)−1
X

µ′
0(

P

0 +nS0+nKT0)−1
µ0

µ0, and Z1, Z2 are defined as in (2.23).

Proof From (1.12), we have known that

X̂i,n+1 = proj
(

X̂i,n+1

∗∣∣∣ Le(X)
)

. (3 .30)

Since
X̂i,n+1

∗
= Z1Xi + Z2X + (Ip − Z1 − Z2) µ0, (3 .31)

and Xi, X ∈ Le(X), then from (1.11) we have

X̂i,n+1 = Z1Xi + Z2X + (1 − Z1 − Z2)proj (µ0|Le(X)) .

In addition, the (1.9) gives that proj (µ0|Le(X)) = µ0µ′
X

P−1
XX X

µ′
X

P−1
XX µX

, and
∑−1

XX is given by (2.17).

So we should calculate the µ′
X

∑−1
XX X and µ′

X

∑−1
XX µX . By some matrix calculations, we have

µ′
X

−1∑
XX

µX = (1nK ⊗ µ0)
′
−1∑
XX

(1nK ⊗ µ0) = Knµ′
0

(∑
0

+nS0 + nKT0

)−1

µ0,

µ′
X

−1∑
XX

X = (1nK ⊗ µ0)
′
−1∑
XX

X = Knµ′
0

(∑
0

+nS0 + nKT0

)−1

X.

Then we can get

proj (µ0|Le(X)) =
µ′

0 (
∑

0 +nS0 + nKT0)
−1

X

µ′
0 (

∑
0 +nS0 + nKT0)

−1
µ0

µ0 = µ̃0. (3 .32)

This completes the proof of the theorem.

Remark 3 We observe that the homogeneous estimator X̂i,n+1

H
are not an estimator

in general, because the estimator µ̃0 =
µ′

0(
P

0 +nS0+nKT0)−1
X

µ′
0(

P

0 +nS0+nKT0)−1
µ0

µ0 still depends on µ0 which is

unknown in homogeneous estimator. However, it can be considered as a pseudo estimator. By
the iterative method, for instance,

µ̂0
(m+1) =

µ̂0
(m)′ (

∑
0 +nS0 + nKT0)

−1
X

µ̂0
(m)′ (

∑
0 +nS0 + nKT0)

−1
µ̂0

(m)
µ̂0

(m)
.
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We can derive the desired estimator of µ̂0. Generally, we expect that the
µ′

0(
P

0 +nS0+nKT0)−1
X

µ′
0(

P

0 +nS0+nKT0)−1
µ0

µ0 is independent of µ0. Fortunately, if µ0 = a1p, we have

µ̃0 =
1′

p (
∑

0 +nS0 + nKT0)
−1

X

1′
p (

∑
0 +nS0 + nKT0)

−1 1p

1p, (3 .33)

which is independent of µ0. Then

X̂i,n+1 = Z1Xi + Z2X + (Ip − Z1 − Z2)
1′

p (
∑

0 +nS0 + nKT0)
−1

X

1′
p (

∑
0 +nS0 + nKT0)

−1 1p

1p. (3 .34)

4 A numerical example

If the claim Xij is a p-dimensional random variable, and its distribution is dependent
risk parameter Θi and common effect which are also random variables, for i = 1, 2, · · · ,K, j =
1, 2, · · · , n. We assume that Xij

i.i.d∼ N (Θi + β,
∑

) , j = 1, 2, · · · , n + 1, Θi
i.i.d∼ N (0, S) , i =

1, 2, · · · ,K, and β ∼ N (µ, T ). Then according to the notations in Section 2, we get

µ (Θi, β) = Θi + β, and T0 = T, S0 = S,
∑
0

=
∑

, µ0 = µ.

Then the inhomogeneous credibility estimator of Xi,n+1 is given by

X̂i,n+1

∗
= Z1Xi + Z2X + (Ip − Z1 − Z2) µ0, (4 .35)

where credibility factors matrices are

Z1 = nS
(∑

+nS
)−1

, and Z2 = nK
∑ (∑

+nS
)−1

T
(∑

+nS + nKT
)−1

.

We further assume that
∑

=
∑2

Ip, S = τ2Ip T = γ2Ip and µ = a1p. Then

µ̃0 =
µ′ (

∑
+nS + nKT )−1

X

µ′ (
∑

+nS + nKT )−1
µ′

µ′

=
a1′

p

(∑2
Ip + nτ2Ip + nKγ2Ip

)−1

X

a1′
p

(∑2
Ip + nτ2Ip + nKγ2Ip

)−1

a1p

a1p

=

 1
nKp

K∑
i=1

n∑
j=1

p∑
t=1

X
(t)
ij

1p.

Thus the parameter a can be estimated by

â =
1

nKp

K∑
i=1

n∑
j=1

p∑
t=1

X
(t)
ij . (4 .36)

In this case, the homogeneous estimator of Xi,n+1 is

X̂i,n+1 = Z1Xi + Z2X + â(Ip − Z1 − Z2)1p, (4 .37)
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where â is given by (4.36).
In the multidimensional credibility model, the posterior predictor of Xi,n+1 is given by

X̃i,n+1 = E(Xi,n+1|X1, X2, · · · , XK) , (4 .38)

which are called Bayes premium of Xi,n+1. According to the Bayes theorem, X̃i,n+1 is the
optimal estimator in the all measurable function of the sample {X1, X2, · · · , XK} . However,
the calculation of Bayes premium is very difficult since X̃i,n+1 is dependent of the joint distri-
bution of (X1, X2, · · · , XK ,Θ) , which are generally unknown in practice. Since the credibility

estimators X̂i,n+1

∗
(or X̂i,n+1

H
) depend only on some moments, as is shown in Theorem 2.5

(or Theorem 2.6). Therefore, the credibility estimator can be directly used in practice.
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