Article ID: 1000-5641(2010)05-0033-05

Expression of the Moore-Penrose inverse of $A - XY^*$

DU Fa-peng^{1,2}, XUE Yi-feng¹

- $(1.\ Department\ of\ Mathematics,\ East\ China\ Normal\ University,\ Shanghai\quad 200241,\ China;$
 - 2. College of Mathematics and Physical Sciences, Xuzhou Institute of Technology,

Xuzhou Jiangsu 221008, China)

Abstract: By using theory of bounded linear operators on Hilbert spaces, the Shermen-Morrison-Woodbury (SMW) formula's Moore-Penrose inverse was presented. The formula obtained can be used to compute certain perturbation of A^+ and the Moore-Penrose inverses of some operator matrices.

Key words: Hilbert space; Moore-Penrose inverse; idempotent operator

CLC number: O151.21 Document code: A

$A - XY^*$ 的 Moore-Penrose 逆的表示

杜法鹏1,2、 薛以锋1

(1. 华东师范大学 数学系, 上海 200241; 2. 徐州工程学院 数理学院, 江苏 徐州 221008)

摘要: 在 Hilbert 空间上有界线性算子的条件下,进一步推广了 Shermen-Morrison-Woodbury (SMW) 公式的 Moor-Penrose 逆的表示. 这个公式可以用来计算 A^+ 的某些扰动和某些算子矩阵的 Moore-Penrose 逆.

关键词: Hilbert 空间; Moore-Penrose 逆; 幂等算子

0 Introduction

Let A be a nonsingular $m \times m$ matrix and X, Y be two $m \times n$ matrices. It is known that $A - XY^*$ is nonsingular iff $I_n - Y^*A^{-1}X$ is nonsingular, and in that case the well-known Shermen–Morrison–Woodbury formula (SMW) can be expressed as

$$(A - XY^*)^{-1} = A^{-1} + A^{-1}X(I_n - Y^*A^{-1}X)^{-1}Y^*A^{-1}.$$
 (0.1)

This formula and some related formula have a lot of applications in statistics, networks, optimization and partial differential equations. Please see [1-3] for details. Clearly, Eq. (0.1)

收稿日期: 2010-01

基金项目: 国家自然科学基金(10771069); 上海市重点学科建设项目(B407)

第一作者: 杜法鹏, 男, 讲师, 博士研究生, 研究方向为应用泛函分析, 算子代数.

E-mail: jsdfp@163.com.

fails when A or $A - XY^*$ is singular. Steerneman and Kleij in [4] proved that when A is singular and $I_n - Y^*A^+X$ is nonsingular, then

$$(A - XY^*)^+ = A^+ + A^+ X (I_n - Y^*A^+X)^{-1}Y^*A^+$$

under conditions that

$$\operatorname{rank}(\boldsymbol{A}, \boldsymbol{X}) = \operatorname{rank} \boldsymbol{A}, \quad \operatorname{rank} \begin{pmatrix} \boldsymbol{A} \\ \boldsymbol{Y}^* \end{pmatrix} = \operatorname{rank} \boldsymbol{A}.$$

He also showed that if A is nonsingular and $Y^*A^{-1}X = I_n$, then

$$(\mathbf{A} - \mathbf{X}\mathbf{Y}^*)^+ = (I_m - \mathbf{X}_1\mathbf{X}_1^+)\mathbf{A}^{-1}(I_m - \mathbf{Y}_1\mathbf{Y}_1^+), \tag{0.2}$$

where $X_1 = A^{-1}X$, $Y_1 = (A^{-1})^*Y$ (cf. [4, Theorem 3]).

Let H, K be Hilbert spaces and let L(H,K) denote the set of all bounded linear operators from H to K. Recently Chen, Hu and Xu studied the Moore-Penrose inverse of $\mathbf{A} - \mathbf{X}\mathbf{Y}^*$ when $\mathbf{A} \in L(H) \triangleq L(H,H)$ and $\mathbf{X},\mathbf{Y} \in L(K,H)$ in [5]. They prove that if \mathbf{A} is invertible and $\mathbf{A} - \mathbf{X}\mathbf{Y}^*$, \mathbf{X} , \mathbf{Y} have closed ranges, then

$$(A - XY^*)^+ = (I - X_1X_1^+)A^{-1}(I - Y_1Y_1^+)$$

iff $Y_1^*XY_1^* = Y_1^*$, $XY_1^*X = X$, where $X_1 = A^{-1}X$, $Y_1 = (A^{-1})^*Y$. This result generalizes Theorem 3 of [4].

In this paper we assume that $A \in L(H)$ and $X, Y \in L(K, H)$ with R(A) closed and $R(X) \subseteq R(A), R(Y) \subseteq R(A^*)$. We prove that

$$(A - XY^*)^+ = (I - (A^+XY^*)(A^+XY^*)^+)A^+(I - (XY^*A^+)^+(XY^*A^+))$$

if $XY^*A^+XY^* = XY^*$; and

$$(A - XY^*)^+ = (I - (A^+X)(A^+X)^+)A^+(I - (Y^*A^+)^+(Y^*A^+))$$

if $XY^*A^+X = X$ and $Y^*A^+XY^* = Y^*$. These expressions generalize corresponding expressions of $(A - XY^*)^+$ given in [4,5].

1 Preliminaries

Let $T \in L(K, H)$, denote by R(T) (resp. N(T)) the range (resp. kernel) of T. Let $A \in L(H)$. Recall from [6] that $B \in L(H)$ is the Moore-Penrose inverse of A, if B satisfies the following equations:

$$ABA = A, BAB = B, (AB)^* = AB, (BA)^* = BA.$$

In this case \boldsymbol{B} is denote by that \boldsymbol{A}^+ . It is well-known that \boldsymbol{A} has the Moore-Penrose inverse iff $R(\boldsymbol{A})$ is closed in H. When \boldsymbol{A}^+ exists, $R(\boldsymbol{A}^+) = R(\boldsymbol{A}^*)$, $N(\boldsymbol{A}^+) = N(\boldsymbol{A}^*)$ and $(\boldsymbol{A}^+)^* = (\boldsymbol{A}^*)^+$. Lemma 1.1 Let $\boldsymbol{A} \in L(H)$ with $R(\boldsymbol{A})$ closed and $\boldsymbol{X}, \boldsymbol{Y} \in L(K, H)$.

- (1) $R(X) \subseteq R(A)$ iff $AA^+X = X$, $R(Y) \subseteq R(A^*)$ iff $Y^*A^+A = Y^*$.
- (2) Suppose that $R(\mathbf{X}) \subseteq R(\mathbf{A})$ and $R(\mathbf{Y}) \subseteq R(\mathbf{A}^*)$ then

$$(A - XY^*)A^+(A - XY^*) = A - XY^*$$

iff $XY^*A^+XY^* = XY^*$.

Proof (1) Since $R(\mathbf{A}) = R(\mathbf{A}\mathbf{A}^+)$ and $R(\mathbf{A}^*) = R(\mathbf{A}^+\mathbf{A})$, the assertion follows.

(2) Using (1), we can check directly that $(A - XY^*)A^+(A - XY^*) = A - XY^*$ if and only if $XY^*A^+XY^* = XY^*$.

In order to compute $(A - XY^*)^+$, we need the following two lemmas which come from [7].

Lemma 1.2 Let $S \in L(H)$ be an idempotent operator. Denote by O(S) the orthogonal projection of H onto R(S). Then $I - S - S^*$ is invertible in L(H) and $O(S) = -S(I - S - S^*)^{-1}$.

Lemma 1.3 Let $T, B \in L(H)$ with TBT = T, Then $T^+ = (I - O(I - BT))BO(TB)$.

Lemma 1.4 Let $S \in L(H)$ be an idempotent operator. Then $O(S) = SS^+$ and $O(I - S) = I - S^+S$.

Proof $S^2 = S$ implies that R(S) is closed and $R(I - S) = N(S) = R(S^*)^{\perp}$. Thus S^+ exists and $O(S) = SS^+$, $O(I - S) = I - S^+S$.

2 Main results

In this section, we will generalize Eq (0.1) and Eq (0.2). Firstly, we have

Proposition 2.1 Let $A \in L(H)$ with R(A) closed and $X, Y \in L(K, H)$ with $R(X) \subseteq R(A)$ and $R(Y) \subseteq R(A^*)$. Assume that $I - Y^*A^+X$ is invertible in L(H). Then $(A - XY^*)^+$ exists and

$$(A - XY^*)^+ = A^+ + A^+ X (I - Y^*A^+ X)^{-1} Y^*A^+.$$
 (2.1)

Proof Put $B = A^+ + A^+X(I - Y^*A^+X)^{-1}Y^*A^+$. Simple computation shows that $(A - XY^*)B = AA^+$ and $B(A - XY^*) = A^+A$ by Lemma 1.1 (1). Thus,

$$(A - XY^*)B(A - XY^*) = A - XY^*, \quad B(A - XY^*)B = B,$$

 $((A - XY^*)B)^* = (A - XY^*)B, \quad (B(A - XY^*))^* = B(A - XY^*),$

that is, $(A - XY^*)^+ = B$.

Now we consider the case that $I - Y^*A^+X$ is not invertible, we have

Theorem 2.2 Let $A \in L(H)$ with R(A) closed and $X, Y \in L(K, H)$ with $R(X) \subseteq R(A)$ and $R(Y) \subseteq R(A^*)$.

(1) If $XY^*A^+XY^* = XY^*$, then $(A - XY^*)^+$ exists and

$$(A - XY^*)^+ = (I - (A^+XY^*)(A^+XY^*)^+)A^+(I - (XY^*A^+)^+(XY^*A^+)).$$
(2.2)

Especially, if $XY^*A^+X = X$ and $Y^*A^+XY^* = Y^*$, then

$$(A - XY^*)^+ = (I - (A^+X)(A^+X)^+)A^+(I - (Y^*A^+)^+(Y^*A^+)). \tag{2.3}$$

- (2) Assume that $R(\mathbf{A} \mathbf{X}\mathbf{Y}^*)$, $R(\mathbf{A}^+\mathbf{X}\mathbf{Y}^*)$ and $R(\mathbf{X}\mathbf{Y}^*\mathbf{A}^+)$ are closed in H. Then Eq. (2.2) implies that $\mathbf{X}\mathbf{Y}^*\mathbf{A}^+\mathbf{X}\mathbf{Y}^* = \mathbf{X}\mathbf{Y}^*$.
- (3) Assume that $R(A XY^*)$, $R(A^+X)$ and $R(Y^*A^+)$ are closed. Then Eq. (2.3) indicates that $XY^*A^+X = X$ and $Y^*A^+XY^* = Y^*$.

Proof (1) In this case, $(A - XY^*)A^+(A - XY^*) = A - XY^*$. Thus $R(A - XY^*)$ is closed, i.e., $(A - XY^*)^+$ exists and hence

$$(A - XY^*)^+ = (I - O(I - A^+(A - XY^*)))A^+O((A - XY^*)A^+)$$

by Lemma 1.1 (2). Since $(I - 2A^{+}A)^{2} = I$, $(I - 2A^{+}A)A^{+} = -A^{+}$,

$$A^{+}XY^{*} + (A^{+}XY^{*})^{*} = (A^{+}XY^{*} + (A^{+}XY^{*})^{*})(2A^{+}A - I),$$
$$(I - A^{+}A)(I - A^{+}XY^{*} - (A^{+}XY^{*})^{*}) = I - A^{+}A.$$

It follows that

$$\begin{split} O(\boldsymbol{I} - \boldsymbol{A}^{+}(\boldsymbol{A} - \boldsymbol{X}\boldsymbol{Y}^{*})) &= O(\boldsymbol{I} - \boldsymbol{A}^{+}\boldsymbol{A} + \boldsymbol{A}^{+}\boldsymbol{X}\boldsymbol{Y}^{*}) \\ &= -(\boldsymbol{I} - \boldsymbol{A}^{+}\boldsymbol{A} + \boldsymbol{A}^{+}\boldsymbol{X}\boldsymbol{Y}^{*})(2\boldsymbol{A}^{+}\boldsymbol{A} - \boldsymbol{I} - \boldsymbol{A}^{+}\boldsymbol{X}\boldsymbol{Y}^{*} - (\boldsymbol{A}^{+}\boldsymbol{X}\boldsymbol{Y}^{*})^{*})^{-1} \\ &= (\boldsymbol{I} - \boldsymbol{A}^{+}\boldsymbol{A} + \boldsymbol{A}^{+}\boldsymbol{X}\boldsymbol{Y}^{*})(\boldsymbol{I} - 2\boldsymbol{A}^{+}\boldsymbol{A})(\boldsymbol{I} - \boldsymbol{A}^{+}\boldsymbol{X}\boldsymbol{Y}^{*} - (\boldsymbol{A}^{+}\boldsymbol{X}\boldsymbol{Y}^{*})^{*})^{-1} \\ &= \boldsymbol{I} - \boldsymbol{A}^{+}\boldsymbol{A} + O(\boldsymbol{A}^{+}\boldsymbol{X}\boldsymbol{Y}^{*}). \end{split}$$

Similarly, we also have

$$\begin{split} O((A-XY^*)A^+) &= -(A-XY^*)A^+(I-(AA^+-XY^*A^+)-(AA^+-XY^*A^+)^*)^{-1} \\ &= (-AA^++XY^*A^+)(I-2AA^++XY^*A^++(XY^*A^+)^*)^{-1} \\ &= (AA^+-XY^*A^+)(I-XY^*A^+-(XY^*A^+)^*)^{-1} \\ &= AA^+-I+O(I-XY^*A^+). \end{split}$$

Therefore, we have

$$(A - XY^*)^+ = (I - O(I - A^+(A - XY^*)))A^+O((A - XY^*)A^+)$$

= $(A^+A - O(A^+XY^*))A^+O(I - XY^*A^+)$
= $I - O(A^+XY^*))A^+O(I - XY^*A^+).$

From $XY^*A^+XY^* = XY^*$, we get that A^+XY^* and XY^*A^+ are all idempotent operators. It follow from Lemma 1.4 that

$$O(A^{+}XY^{*}) = (A^{+}XY^{*})(A^{+}XY^{*})^{+}, \quad O(I - XY^{*}A^{+}) = I - (XY^{*}A^{+})^{+}(XY^{*}A^{+}).$$

Therefore, we have

$$(A - XY^*)^+ = (I - (A^+XY^*)(A^+XY^*)^+)A^+(I - (XY^*A^+)^+(XY^*A^+)).$$

When $XY^*A^+X=X$ and $Y^*A^+XY^*=Y^*$, we have $R(A^+XY^*)=R(A^+X)$ and $R(I-XY^*A^+)=N(Y^*A^+)$ so that

$$O(A^{+}XY^{*}) = (A^{+}X)(A^{+}X)^{+}, O(I - XY^{*}A^{+}) = I - (Y^{*}A^{+})^{+}(Y^{*}A^{+}).$$

and consequently, we get (2.3).

(2) In this case,

$$R((XY^*A^+)^*) = R((XY^*A^+)^+) \subseteq N((A - XY^*)^+) = N((A - XY^*)^*),$$

that is, $[N(XY^*A^+)]^{\perp} \subseteq [R(A-XY^*)]^{\perp}$. So $R(A-XY^*) \subseteq N(XY^*A^+)$ and consequently, $XY^*A^+XY^* = XY^*$.

(3) When Eq (2.3) holds,

$$R((\mathbf{Y}^*\mathbf{A}^+)^*) = R((\mathbf{Y}^*\mathbf{A}^+)^+) \subseteq N((\mathbf{A} - \mathbf{X}\mathbf{Y}^*)^+) = N((\mathbf{A} - \mathbf{X}\mathbf{Y}^*)^*),$$

$$R((\mathbf{A} - \mathbf{X}\mathbf{Y}^*)^*) = R((\mathbf{A} - \mathbf{X}\mathbf{Y}^*)^+) \subseteq N((\mathbf{A}^+\mathbf{X})^+) = N((\mathbf{A}^+\mathbf{X})^*).$$

Then $R(A - XY^*) \subseteq N(Y^*A^+)$ and $R(A^+X) \subseteq N(A - XY^*)$. So

$$Y^*A^+XY^* = Y^*, \quad XY^*A^+X = X.$$

Suppose $H = \mathbb{C}^m$ and $K = \mathbb{C}^n$. Let $\mathbf{A} \in L(H)$ and $\mathbf{X}, \mathbf{Y} \in L(K, H)$. Since

$$rank(\boldsymbol{A}, \boldsymbol{X}) = rank \, \boldsymbol{A} \Leftrightarrow R(\boldsymbol{X}) \subseteq R(\boldsymbol{A}),$$

$$\operatorname{rank} \begin{pmatrix} \boldsymbol{A} \\ \boldsymbol{Y}^* \end{pmatrix} = \operatorname{rank} \boldsymbol{A} \Leftrightarrow R(\boldsymbol{Y}) \subseteq R(\boldsymbol{A}^*),$$

we can express Theorem 2.2 (1) as follows.

Corollary 2.3 Let A be an $m \times m$ matrix and X, Y be two $m \times n$ matrices. Suppose that $\operatorname{rank}(A, X) = \operatorname{rank} A$ and $\operatorname{rank}\begin{pmatrix} A \\ Y^* \end{pmatrix} = \operatorname{rank} A$. Then

$$(A - XY^*)^+ = (I - (A^+XY^*)(A^+XY^*)^+)A^+(I - (XY^*A^+)^+(XY^*A^+))$$

if $XY^*A^+XY^* = XY^*$ and

$$(A - XY^*)^+ = (I - (A^+X)(A^+X)^+)A^+(I - (Y^*A^+)^+(Y^*A^+))$$

when $XY^*A^+X = X$ and $Y^*A^+XY^* = Y^*$.

Before ending this note, we give an example as follows.

Example 2.4 Put
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
, $\mathbf{X} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, $\mathbf{Y} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$. Then

$$m{A}^+ = egin{pmatrix} rac{1}{2} & -rac{1}{4} & -rac{1}{4} & 0 \ rac{1}{2} & -rac{1}{4} & -rac{1}{4} & 0 \ 0 & rac{1}{2} & rac{1}{2} & -1 \ 0 & 0 & 0 & 1 \end{pmatrix}, \quad m{X}m{Y}^* = egin{pmatrix} 0 & 0 & 1 & 1 \ 0 & 0 & 1 & 1 \ 0 & 0 & 1 & 1 \ 0 & 0 & 1 & 1 \end{pmatrix},$$

(下转第48页)

- [4] ROBINSON M E, CROWDER M J. Bayesian methods for a growthcurve degradation model with repeated measures [J]. Lifetime Data Analysis, 2000(6): 357-374.
- [5] YACOUT A M, SALVATORES S, ORECHWA Y. Degradation analysis estimates of the time-to-failure distribution of irradiated fuel elements [J]. Nuclear Technology, 1996, 113: 177-189.
- [6] LU C J, MEEKER W Q, ESCOBAR L A. A comparison of degradation and failure-time analysis methods for estimating a time-to-failure distribution [J]. Statistica Sinica, 1996(6): 531-546.
- [7] SHIAU J J H, LIN H H. Analyzing accelerated degradation data by nonparametric regression [J]. IEEE Trans Reliab, 1999, 48: 149-158.
- [8] CHIAO C H, HAMADA M. Analyzing experiments with degradation data for improving reliability and for achieving robust reliability [J]. Qual Reliab Eng Int, 2001, 17: 333-344.
- [9] CHEN Z, ZHENG S. Lifetime distribution based degradation analysis [J]. IEEE Trans Reliab, 2005, 54: 3-10.
- [10] WAKEFIELD J C, SMITH A F M, RACINE-POON A, et al. Bayesian-analysis of linear and non-linear population models by using the Gibbs sampler [J]. Appl Statist, 1994, 44: 201-221.
- [11] LU C J, PARK J, YANG Q. Statistical inference of a time-to-failure distribution derived from linear degradation data [J]. Technometrics, 1997, 39: 391-400.
- [12] MEEKER W Q, LUVALLE M J. An accelerated life test model based on reliability kinetics [J]. Technometrics, 1995, 37: 133-146.
- [13] DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm [J]. J Roy Statist Soc Ser B, 1977, 39: 1-38.
- [14] GILKS W R, WILD P. Adaptive rejection sampling for Gibbs sampling [J]. Appl Statist, 1992, 41: 337-348.
- [15] GILKS W R, BEST N G, TAN K C. Adaptive rejection metropolis sampling within gibbs sampling [J]. Appl Statist, 1995, 44: 455-472.
- [16] BOOTH G J, HOBERT P J. Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm [J]. J Roy Statist Soc B, 1999, 61: 265-285.
- [17] LOUIS T A. Finding the observed information matrix when using the EM Algorithm [J]. J Roy Statist Soc Ser B, 1982, 44: 226-233.
- [18] ZHUANG D. Degradation failure model and its statistical analysis [D]. Shanghai: East China Normal University, 1994.

(上接第37页)

It is easy to verify that $R(X) \subseteq R(A)$, $R(Y) \subseteq R(A^*)$ and $XY^*A^+XY^* = XY^*$. So

by Corollary 2.3,
$$(\boldsymbol{A} - \boldsymbol{X}\boldsymbol{Y}^*)^+ = \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0\\ \frac{1}{2} & 0 & 0 & 0\\ 0 & 0 & 0 & -1\\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

[References]

- [1] HSNDERSON H V, SEARL S R. On deriving the inverse of a sum of matrices [J]. Siam Review, 1981, 23(1): 53-60.
- [2] KURT S, RIEDEL A. A Shermen-Morrison-Woodbury identity for rank augmenting matrices with application to centering [J]. Siam J Math Anal, 1991, 12(1): 80-95.
- [3] HAGER W W. Updating the inverse of a matrix [J]. Siam Review, 1989, 31: 221-239.
- 4 STEERNEMAN T, KLEIJ F P. Properties of the matrix $A XY^*$ [J]. Linear Algebra Appl, 2005, 410: 70-86.
- [5] CHEN Y, HU X, XU Q. The Moore-Penrose inverse of $A XY^*$ [J]. Journal of Shanghai Normal University, 2009, 38: 15-19
- [6] BEN-ISRAEL A, GREVILLE T N E. Generalized Inverse: Theory and Applications [M]. New York: Wiley, 1974.
- [7] CHEN G, XUE Y. The expression of generalized inverse of the perturbed operators under type I perturbation in Hilbert spaces [J]. Linear Algebra Appl, 1998, 285: 1-6.