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Abstract: By using theory of bounded linear operators on Hilbert spaces, the Shermen-
Morrison-Woodbury (SMW) formula’s Moore-Penrose inverse was presented. The formula
obtained can be used to compute certain perturbation of AT and the Moore-Penrose inverses
of some operator matrices.
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0 Introduction

Let A be a nonsingular m X m matrix and X, Y be two m x n matrices. It is known
that A — XY * is nonsingular iff I, — Y* A~ X is nonsingular, and in that case the well-known

Shermen—Morrison-Woodbury formula (SMW) can be expressed as
(A-XY" ) '=A1'4+A4"'X(I,- YA 'X)'yra " (0.1)

This formula and some related formula have a lot of applications in statistics, networks,

optimization and partial differential equations. Please see [1-3] for details. Clearly, Eq. (0.1)
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fails when A or A — XY* is singular. Steerneman and Kleij in [4] proved that when A is

singular and I,, — Y* A" X is nonsingular, then
(A-XY" )" =AT+ AT X (I, -Y*ATX)"'y*A*
under conditions that

A
rank(A, X) =rank A, rank (Y*) =rank A.

He also showed that if A is nonsingular and Y*A~'X = I,,, then
(A- XYY" = (I, - X1 XHA (I, - YY), (0.2)

where X7 = A1 X, Y] = (A~1)*Y (cf. [4, Theorem 3)).

Let H, K be Hilbert spaces and let L(H, K) denote the set of all bounded linear operators
from H to K. Recently Chen, Hu and Xu studied the Moore-Penrose inverse of A — XY *
when A € L(H) £ L(H,H) and X,Y € L(K, H) in [5]. They prove that if A is invertible and
A - XY* X, Y have closed ranges, then

(A-XY")" = (I- X, XA (I -YViY})

iff YPXY* =Y, XY*X = X, where X; = A~ !X, Y; = (A~1)*Y. This result generalizes
Theorem 3 of [4].

In this paper we assume that A € L(H) and X,Y € L(K, H) with R(A) closed and
R(X)C R(A),R(Y) C R(A*). We prove that

(A—XY*)" = (I - (AT XY")(ATXY*)")AT(I - (XY*AT)F(XY*AT))
if XY*ATXY* = XY*; and
(A-XY")" =T - (ATX)(ATX)")AT(I - (Y"AT)"(Y"AT))

if XY*ATX = X and Y*ATXY* = Y*. These expressions generalize corresponding expres-
sions of (A — XY ™*)" given in [4,5].
1 Preliminaries

Let T € L(K,H), denote by R(T) (resp. N(T)) the range (resp. kernel) of 7. Let
A € L(H). Recall from [6] that B € L(H) is the Moore-Penrose inverse of A, if B satisfies the

following equations:
ABA=A, BAB=B, (AB)" = AB, (BA)" = BA.

In this case B is denote by that AT. It is well-known that A has the Moore-Penrose inverse iff
R(A)isclosed in H. When A" exists, R(A"T) = R(A*), N(AT) = N(A*) and (A1)* = (A*)™.
Lemma 1.1 Let A € L(H) with R(A) closed and X,Y € L(K, H).
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(1) R(IX)C R(A)iff AATX =X, R(Y)
(2) Suppose that R(X) C R(A) and R(Y)

R(A*) if Y*ATA = Y™,

<
C R(A*) then

(A- XY At (A-XY*)=A— XY*

iff XY*ATXY*=XY"*.

Proof (1) Since R(A) = R(AA™) and R(A*) = R(A1 A), the assertion follows.

(2) Using (1), we can check directly that (A — XY*)AT(A - XY*)=A - XY* if and
only if XY*ATXY* = XY*.

In order to compute (A — XY *)T, we need the following two lemmas which come
from [7].

Lemma 1.2 Let S € L(H) be an idempotent operator. Denote by O(S) the orthogonal
projection of H onto R(S). Then I —S —S* is invertible in L(H) and O(S) = —S(I—S—5*)"L.

Lemma 1.3 Let T, B € L(H) with TBT =T, Then T = (I — O(I — BT))BO(TB).

Lemma 1.4 Let S € L(H) be an idempotent operator. Then O(S) = SS* and O(I —
S)=1-S8%S.

Proof S? = S implies that R(S) is closed and R(I — S) = N(S) = R(S*)*. Thus S+
exists and O(S) = SS*T, O(I —S)=1—-S57TS.

2 Main results

In this section, we will generalize Eq (0.1) and Eq (0.2). Firstly, we have
Proposition 2.1 Let A € L(H) with R(A) closed and X,Y € L(K, H) with R(X) C
R(A) and R(Y) C R(A*). Assume that I-Y*A*X is invertible in L(H). Then (A—XY™*)*
exists and
(A- XY )" =AT+ATX(T-Y*ATX)'Y*A*. (2.1)
Proof Put B= A"+ AT X(I - Y*A*X)"'Y*A". Simple computation shows that
(A-—XY*)B=AA" and B(A— XY*)= A" A by Lemma 1.1 (1). Thus,

(A—- XY )B(A-XY*")=A-XY*, B(A-XY")B =B,
(A-XY")B)"=(A-XY")B, (B(A-XY")"=B(A-XY"),
that is, (A — XY*)" = B.
Now we consider the case that I — Y* A1 X is not invertible, we have
Theorem 2.2 Let A € L(H) with R(A) closed and X,Y € L(K,H) with R(X) C
R(A) and R(Y) C R(A*).
(1) If XY*ATXY* = XY™, then (A— XY*)" exists and
(A-XY" )T =T - (ATXY")(ATXY*")")AT(I - (XY*AT)T(XY*A™)). (2.2)
Especially, if XY*ATX = X and Y*ATXY* =Y*, then

(A— XY*)t = (I - (AT X)(ATX)HATT — (Y*AH)H(Y"AY)). (2.3)
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(2) Assume that R(A—XY*), R(LATXY*) and R(XY*A™") are closed in H. Then Eq.
(2.2) implies that XY*ATXY* = XY*.
(3) Assume that R(A — XY*), R(ATX) and R(Y*A™) are closed. Then Eq. (2.3)
indicates that XY*ATX = X and Y*ATXY* =Y™*.
Proof (1) In this case, (A— XY*)AT(A— XY*)=A— XY*. Thus R(A— XY") is
closed, i.e., (A — XY™*)T exists and hence
(A-XY")T=IT-0I—-AT(A-XY")ATO((A—- XY*)A™)
by Lemma 1.1 (2). Since (I —2ATA)2 =1, (I —2ATA)AT = —-AT,
ATXY* + (AT XY")* = (AT XY* + (ATXY*)")(24T A — I),
(I-ATA)I - A*XY* — (ATXY*)) =1 ATA.
It follows that
OI-AT(A-XY")=0IT-ATA+ATXY"™)
= (I-ATA+ATXY")(2ATA - T - ATXY" — (ATXY")")"!
=(I-ATA+ATXY*)(I -2ATA) (I - ATXY* — (ATXY™")")!
=I-ATA+O(ATXY™).
Similarly, we also have
O((A-XY"AT)=—(A- XY*)AT(I - (AAT - XY*A") - (AAT - XY*AT)")~!
=(—AAT + XY*AT)(I - 2AAT + XY*AT + (XY *AT)")7!
= (AAT - XY*AT)(I - XY*AT — (XY AT)*)!
=AAT-T+0(I-XY*A").
Therefore, we have
(A- XY ) T=IT-0I—-A"(A-XY")ATO((A—- XY*)A™)
— (A*A— O(A*XY*))A*O(I - XY*A")
=1 - O(A*XY*)ATOI — XY*A").
From XY*ATXY* = XY*, we get that ATXY™* and XY*A™T are all idempotent
operators. It follow from Lemma 1.4 that
O(ATXY™) = (A*XY*)(A*XY*)", O(I - XY*A")=1— (XY*AH)H(XY"A").
Therefore, we have
(A-XY*) T =T - (ATXY")(ATXY*) AT - (XY*A")T(XY*AT)).
When XY*ATX = X and Y*ATXY* = Y*, we have R(ATXY*) = R(A"X) and
R(I — XY*A*) = N(Y*A*) so that

O(A*XY*) = (A*X)(ATX)*, O(I - XY*AY)=T1— (Y*AT)*H(Y*A").
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and consequently, we get (2.3).
(2) In this case,

R(XY"AT)") = R(XY"A")") C N((A- XY")") = N((A - XY™)"),

that is, [N(XY*A1)]* C [R(A-XY*)]*. So RLA—XY*) C N(XY*A") and consequently,
XY*ATXY*=XY"*.
(3) When Eq (2.3) holds,

R((Y*A")") = R(Y*A")") C N((A— XY")") = N((A— XY")"),
R((A— XY*)") = R((A— XY*)*) C N((A*X)*) = N((A*X)").

Then R(A — XY*) C N(Y*A*) and R(ATX) C N(A— XY*). So
Y*ATXY* = Y*, XY*A*X = X.
Suppose H=C™ and K =C". Let A€ L(H) and X,Y € L(K, H). Since
rank(A, X) =rank A & R(X) C R(A),
rank (;*) =rank A < R(Y) C R(A"),

we can express Theorem 2.2 (1) as follows.

Corollary 2.3 Let A be an m x m matriz and X, Y be two m X n matrices. Suppose

A
that rank(A, X) = rank A and rank <Y*> =rank A. Then

(A— XY*)t = (I - (ATXY") (AT XY ) AT (I — (XY AH)H (XY A1)
if XY*A*XY* = XY* and
(A—XY*) = (I - (AT X)(ATX)")AT(I - (Y"AT)H(Y" A1)

when XY*ATX = X and Y*ATXY* =Y"*.

Before ending this note, we give an example as follows.

1 1 11 1 1 0 0 0 O
0 01 1 1 0 0 0 0 O
Example 2.4 Put A= , X = , Y = . Then

0 01 1 1 0 0 1 0 0
0 0 0 1 1 0 0 1 01

i -1 -1 0 0011

1 1 1

U R B Xy _ |0 011
o L+ L 001 1[’
0 0 0 1 0 0 1 1

(FHE55 48 D)
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(L5 37 )
0 0 0 O 0 0 0 O
1 1 1 1
(A+XY*)+: 0000 (XY*A+)+: 4 4 1 1
o0 o0 1|’ i1 1 1
2 4 4 4 4
000 2 00 0 0
It is easy to verify that R(X) C R(A), R(Y) C R(A*) and XY*ATXY* = XY*. So
1
? 0 0 O
by Corollary 2.3, (A — XY*)* = | 2 000
0 0 0 -1
0 0 0 O
[References]

HSNDERSON H V, SEARL S R. On deriving the inverse of a sum of matrices [J]. Siam Review, 1981, 23(1):
53-60.

KURT S, RIEDEL A. A Shermen-Morrison-Woodbury identity for rank augmenting matrices with application
to centering [J]. Siam J Math Anal, 1991, 12(1): 80-95.

HAGER W W. Updating the inverse of a matrix [J]. Siam Review, 1989, 31: 221-239.

STEERNEMAN T, KLELJ F P. Properties of the matrix A — XY™ [J]. Linear Algebra Appl, 2005, 410: 70-86.
CHEN Y, HU X, XU Q. The Moore-Penrose inverse of A — XY * [J]. Journal of Shanghai Normal University,
2009, 38: 15-19

BEN-ISRAEL A, GREVILLE T N E. Generalized Inverse: Theory and Applications [M]. New York: Wiley,
1974.

CHEN G, XUE Y. The expression of generalized inverse of the perturbed operators under type I perturbation
in Hilbert spaces [J]. Linear Algebra Appl, 1998, 285: 1-6.



	09--杜法鹏.pdf
	Acr2D3.tmp

