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Abstract: By using theory of bounded linear operators on Hilbert spaces, the Shermen-

Morrison-Woodbury (SMW) formula’s Moore-Penrose inverse was presented. The formula

obtained can be used to compute certain perturbation of A+ and the Moore–Penrose inverses

of some operator matrices.
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0 Introduction

Let A be a nonsingular m × m matrix and X, Y be two m × n matrices. It is known
that A−XY ∗ is nonsingular iff In −Y ∗A−1X is nonsingular, and in that case the well-known
Shermen–Morrison–Woodbury formula (SMW) can be expressed as

(A − XY ∗)−1 = A−1 + A−1X(In − Y ∗A−1X)−1Y ∗A−1. (0.1)

This formula and some related formula have a lot of applications in statistics, networks,
optimization and partial differential equations. Please see [1–3] for details. Clearly, Eq. (0.1)
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fails when A or A − XY ∗ is singular. Steerneman and Kleij in [4] proved that when A is
singular and In − Y ∗A+X is nonsingular, then

(A − XY ∗)+ = A+ + A+X(In − Y ∗A+X)−1Y ∗A+

under conditions that

rank(A, X) = rank A, rank

(
A

Y ∗

)
= rankA.

He also showed that if A is nonsingular and Y ∗A−1X = In, then

(A − XY ∗)+ = (Im − X1X
+
1 )A−1(Im − Y1Y

+
1 ), (0.2)

where X1 = A−1X, Y1 = (A−1)∗Y (cf. [4, Theorem 3]).
Let H, K be Hilbert spaces and let L(H,K) denote the set of all bounded linear operators

from H to K. Recently Chen, Hu and Xu studied the Moore-Penrose inverse of A − XY ∗

when A ∈ L(H) , L(H,H) and X, Y ∈ L(K,H) in [5]. They prove that if A is invertible and
A − XY ∗, X, Y have closed ranges, then

(A − XY ∗)+ = (I − X1X
+
1 )A−1(I − Y1Y

+
1 )

iff Y ∗
1 XY ∗

1 = Y ∗
1 , XY ∗

1 X = X, where X1 = A−1X, Y1 = (A−1)∗Y . This result generalizes
Theorem 3 of [4].

In this paper we assume that A ∈ L(H) and X, Y ∈ L(K,H) with R(A) closed and
R(X) ⊆ R(A), R(Y ) ⊆ R(A∗). We prove that

(A − XY ∗)+ = (I − (A+XY ∗)(A+XY ∗)+)A+(I − (XY ∗A+)+(XY ∗A+))

if XY ∗A+XY ∗ = XY ∗; and

(A − XY ∗)+ = (I − (A+X)(A+X)+)A+(I − (Y ∗A+)+(Y ∗A+))

if XY ∗A+X = X and Y ∗A+XY ∗ = Y ∗. These expressions generalize corresponding expres-
sions of (A − XY ∗)+ given in [4,5].

1 Preliminaries

Let T ∈ L(K, H), denote by R(T ) (resp. N(T )) the range (resp. kernel) of T . Let
A ∈ L(H). Recall from [6] that B ∈ L(H) is the Moore-Penrose inverse of A, if B satisfies the
following equations:

ABA = A, BAB = B, (AB)∗ = AB, (BA)∗ = BA.

In this case B is denote by that A+. It is well-known that A has the Moore-Penrose inverse iff
R(A) is closed in H. When A+ exists, R(A+) = R(A∗), N(A+) = N(A∗) and (A+)∗ = (A∗)+.

Lemma 1.1 Let A ∈ L(H) with R(A) closed and X, Y ∈ L(K,H).
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(1) R(X) ⊆ R(A) iff AA+X = X, R(Y ) ⊆ R(A∗) iff Y ∗A+A = Y ∗.

(2) Suppose that R(X) ⊆ R(A) and R(Y ) ⊆ R(A∗) then

(A − XY ∗)A+(A − XY ∗) = A − XY ∗

iff XY ∗A+XY ∗ = XY ∗.

Proof (1) Since R(A) = R(AA+) and R(A∗) = R(A+A), the assertion follows.

(2) Using (1), we can check directly that (A − XY ∗)A+(A − XY ∗) = A − XY ∗ if and
only if XY ∗A+XY ∗ = XY ∗.

In order to compute (A − XY ∗)+, we need the following two lemmas which come
from [7].

Lemma 1.2 Let S ∈ L(H) be an idempotent operator. Denote by O(S) the orthogonal
projection of H onto R(S). Then I−S−S∗ is invertible in L(H) and O(S) = −S(I−S−S∗)−1.

Lemma 1.3 Let T, B ∈ L(H) with TBT = T , Then T+ = (I − O(I − BT ))BO(TB).

Lemma 1.4 Let S ∈ L(H) be an idempotent operator. Then O(S) = SS+ and O(I −
S) = I − S+S.

Proof S2 = S implies that R(S) is closed and R(I − S) = N(S) = R(S∗)⊥. Thus S+

exists and O(S) = SS+, O(I − S) = I − S+S.

2 Main results

In this section, we will generalize Eq (0.1) and Eq (0.2). Firstly, we have

Proposition 2.1 Let A ∈ L(H) with R(A) closed and X, Y ∈ L(K,H) with R(X) ⊆
R(A) and R(Y ) ⊆ R(A∗). Assume that I−Y ∗A+X is invertible in L(H). Then (A−XY ∗)+

exists and

(A − XY ∗)+ = A+ + A+X(I − Y ∗A+X)−1Y ∗A+. (2.1)

Proof Put B = A+ + A+X(I − Y ∗A+X)−1Y ∗A+. Simple computation shows that
(A − XY ∗)B = AA+ and B(A − XY ∗) = A+A by Lemma 1.1 (1). Thus,

(A − XY ∗)B(A − XY ∗) = A − XY ∗, B(A − XY ∗)B = B,

((A − XY ∗)B)∗ = (A − XY ∗)B, (B(A − XY ∗))∗ = B(A − XY ∗),

that is, (A − XY ∗)+ = B.

Now we consider the case that I − Y ∗A+X is not invertible, we have

Theorem 2.2 Let A ∈ L(H) with R(A) closed and X, Y ∈ L(K,H) with R(X) ⊆
R(A) and R(Y ) ⊆ R(A∗).

(1) If XY ∗A+XY ∗ = XY ∗, then (A − XY ∗)+ exists and

(A − XY ∗)+ = (I − (A+XY ∗)(A+XY ∗)+)A+(I − (XY ∗A+)+(XY ∗A+)). (2.2)

Especially, if XY ∗A+X = X and Y ∗A+XY ∗ = Y ∗, then

(A − XY ∗)+ = (I − (A+X)(A+X)+)A+(I − (Y ∗A+)+(Y ∗A+)). (2.3)
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(2) Assume that R(A−XY ∗), R(A+XY ∗) and R(XY ∗A+) are closed in H. Then Eq.
(2.2) implies that XY ∗A+XY ∗ = XY ∗.

(3) Assume that R(A − XY ∗), R(A+X) and R(Y ∗A+) are closed. Then Eq. (2.3)
indicates that XY ∗A+X = X and Y ∗A+XY ∗ = Y ∗.

Proof (1) In this case, (A−XY ∗)A+(A−XY ∗) = A−XY ∗. Thus R(A−XY ∗) is
closed, i.e., (A − XY ∗)+ exists and hence

(A − XY ∗)+ = (I − O(I − A+(A − XY ∗)))A+O((A − XY ∗)A+)

by Lemma 1.1 (2). Since (I − 2A+A)2 = I, (I − 2A+A)A+ = −A+,

A+XY ∗ + (A+XY ∗)∗ = (A+XY ∗ + (A+XY ∗)∗)(2A+A − I),

(I − A+A)(I − A+XY ∗ − (A+XY ∗)∗) = I − A+A.

It follows that

O(I − A+(A − XY ∗)) = O(I − A+A + A+XY ∗)

= −(I − A+A + A+XY ∗)(2A+A − I − A+XY ∗ − (A+XY ∗)∗)−1

= (I − A+A + A+XY ∗)(I − 2A+A)(I − A+XY ∗ − (A+XY ∗)∗)−1

= I − A+A + O(A+XY ∗).

Similarly, we also have

O((A − XY ∗)A+) = −(A − XY ∗)A+(I − (AA+ − XY ∗A+) − (AA+ − XY ∗A+)∗)−1

= (−AA+ + XY ∗A+)(I − 2AA+ + XY ∗A+ + (XY ∗A+)∗)−1

= (AA+ − XY ∗A+)(I − XY ∗A+ − (XY ∗A+)∗)−1

= AA+ − I + O(I − XY ∗A+).

Therefore, we have

(A − XY ∗)+ = (I − O(I − A+(A − XY ∗)))A+O((A − XY ∗)A+)

= (A+A − O(A+XY ∗))A+O(I − XY ∗A+)

= I − O(A+XY ∗))A+O(I − XY ∗A+).

From XY ∗A+XY ∗ = XY ∗, we get that A+XY ∗ and XY ∗A+ are all idempotent
operators. It follow from Lemma 1.4 that

O(A+XY ∗) = (A+XY ∗)(A+XY ∗)+, O(I − XY ∗A+) = I − (XY ∗A+)+(XY ∗A+).

Therefore, we have

(A − XY ∗)+ = (I − (A+XY ∗)(A+XY ∗)+)A+(I − (XY ∗A+)+(XY ∗A+)).

When XY ∗A+X = X and Y ∗A+XY ∗ = Y ∗, we have R(A+XY ∗) = R(A+X) and
R(I − XY ∗A+) = N(Y ∗A+) so that

O(A+XY ∗) = (A+X)(A+X)+, O(I − XY ∗A+) = I − (Y ∗A+)+(Y ∗A+).
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and consequently, we get (2.3).
(2) In this case,

R((XY ∗A+)∗) = R((XY ∗A+)+) ⊆ N((A − XY ∗)+) = N((A − XY ∗)∗),

that is, [N(XY ∗A+)]⊥ ⊆ [R(A−XY ∗)]⊥. So R(A−XY ∗) ⊆ N(XY ∗A+) and consequently,
XY ∗A+XY ∗ = XY ∗.

(3) When Eq (2.3) holds,

R((Y ∗A+)∗) = R((Y ∗A+)+) ⊆ N((A − XY ∗)+) = N((A − XY ∗)∗),

R((A − XY ∗)∗) = R((A − XY ∗)+) ⊆ N((A+X)+) = N((A+X)∗).

Then R(A − XY ∗) ⊆ N(Y ∗A+) and R(A+X) ⊆ N(A − XY ∗). So

Y ∗A+XY ∗ = Y ∗, XY ∗A+X = X.

Suppose H = Cm and K = Cn. Let A ∈ L(H) and X, Y ∈ L(K,H). Since

rank(A, X) = rank A ⇔ R(X) ⊆ R(A),

rank

(
A

Y ∗

)
= rankA ⇔ R(Y ) ⊆ R(A∗),

we can express Theorem 2.2 (1) as follows.
Corollary 2.3 Let A be an m × m matrix and X, Y be two m × n matrices. Suppose

that rank(A, X) = rank A and rank

(
A

Y ∗

)
= rankA. Then

(A − XY ∗)+ = (I − (A+XY ∗)(A+XY ∗)+)A+(I − (XY ∗A+)+(XY ∗A+))

if XY ∗A+XY ∗ = XY ∗ and

(A − XY ∗)+ = (I − (A+X)(A+X)+)A+(I − (Y ∗A+)+(Y ∗A+))

when XY ∗A+X = X and Y ∗A+XY ∗ = Y ∗.
Before ending this note, we give an example as follows.

Example 2.4 Put A =


1 1 1 1
0 0 1 1
0 0 1 1
0 0 0 1

 , X =


1 1 0
1 0 0
1 0 0
1 0 0

 , Y =


0 0 0
0 0 0
1 0 0
1 0 1

 . Then

A+ =


1
2 − 1

4 − 1
4 0

1
2 − 1

4 − 1
4 0

0 1
2

1
2 −1

0 0 0 1

 , XY ∗ =


0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1

 ,

(e=1 48 �)
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(A+XY ∗)+ =


0 0 0 0
0 0 0 0
0 0 0 1

2

0 0 0 1
2

 , (XY ∗A+)+ =


0 0 0 0
1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

0 0 0 0

 .

It is easy to verify that R(X) ⊆ R(A), R(Y ) ⊆ R(A∗) and XY ∗A+XY ∗ = XY ∗. So

by Corollary 2.3, (A − XY ∗)+ =


1
2 0 0 0
1
2 0 0 0
0 0 0 −1
0 0 0 0

 .
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