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Abstract: This paper extended the ZTP regression model to Zero-truncated generalized

Poisson regression model. An algorithm for estimating parameters was obtained and two

score tests were presented for testing the ZTP regression model against the ZTGP regression

model, and for testing the significance of regression coefficients. A numerical example was

given to illustrate our method and the power of score tests was investigated by Monte Carlo

simulation.
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0 Introduction

For a random variable y representing counts where sample mean and sample variance are
almost equal, the Poisson model is the standard approach to analysis. Quite often, count data
exhibit substantial variations where the sample variance is either smaller or larger than the
sample mean and it is classified as under- or over-dispersion, respectively. Various models and
associated estimation methods have been proposed to deal with these dispersions, including
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negative binomial models, mixed Poisson models, generalized Poisson models, hurdle Poisson
models, Censored Poisson models and inflated Poisson models[1−10].

Meanwhile, we often find in some situations that count data not only has no zeros but
also structurally excludes having 0 counts. For example, there is no zero length of hospital
stay and zeros counts are structurally excluded from lengths of stay. Therefore, zero-truncated
Poisson model has been used to analysis the hospital length of stay data[3,8]. In this paper, as
a supplement of the above work on count regression models and score tests, our interest is to
study zero-truncated generalized Poisson model(ZTGP) since it is a natural extension of the
ordinary Poisson model.

The outline of the paper is as follows: In Section 1, we introduce the ZTGP regression
model and its estimation method. Score tests for dispersion and regression parameters in the
model are developed in Section 2. Section 3 presents an example to illustrate our methodology.
A simulation study for powers of score test statistics will be presented in Section 4 and some
conclusions are given in the last section.

1 Zero-truncated generalized Poisson regression model

and estimation

Consider the generalized Poisson distribution with probability mass function[11].

f(y;λ) =
1
y!

(
λ

1 + αλ

)y

(1 + αy)y−1exp
{
− λ(1 + αy)

1 + αλ

}
, (1.1)

with y = 0, 1, 2, · · · . In this distribution, the mean and variance of the distribution are, respec-
tively, λ and λ(1+αλ)2, and the parameter α can be interpreted as a dispersion parameter. It is
easily seen that α = 0 indicates the presence of equality of mean and variance (equi-dispersion),
then the probability function in (1.1) reduces to the Poisson distribution, while α > 0 is over-
dispersion and α < 0 is under-dispersion in the generalized Poisson distribution. Whenever
α < 0, the value of α is such that 1 + αλ > 0 and 1 + αy > 0 so that the probability in(1.1) is
non-negative. For more details, the reader is referred to Consul[11], Consul and Famoye[2].

At the same time, we often find that our count response model fails to have 0 counts.
That is, we discover not only that the count has no zeros but also that it structurally excludes
having 0 counts. A standard method of dealing with count models that excludes zero counts
is to use a model typically referred to as a zero-truncated count model[8]. We do this by de-
termining the formula to calculate 0 counts, subtract it from one, and then divide the count
distribution probability function by the resultant value. Then the zero-truncated generalized
Poisson distribution can be expressed as

f(y;λ|y > 0) =
1

y!(exp(λ/(1 + αλ)) − 1)

(
λ

1 + αλ

)y

(1 + αy)y−1exp
{
− αλy

1 + αλ

}
, (1.2)

with y = 1, 2, · · · . The model (1.2) is denoted by ZTGP (α, λ). When α = 0, the distribution
reduces to zero-truncated Poisson model.
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Assume that each observation yi, i = 1, 2, · · · , n submits to zero-truncated generalized
Poisson distribution, i.e., yi ∼ ZTGP (α, λi). Following the generalized linear model approach,
we relate parameters λi to covariates xi ∈ Rp through the log-link function so that

log λi = xT
i β. (1.3)

Then we call model (1.2) and (1.3) the zero-truncated generalized Poisson regression model,
where β is a p-dimension regression coefficient, and xT

i = (xi1, xi2, · · · , xip), i = 1, 2, · · · , n.
The log-likelihood function of the ZTGP regression model based on a sample of n independent
observations is expressed as

log L = l(α, β|y > 0) =
n∑

i=1

[
yi(log λi − log(1 + αλi)) + (yi − 1)log(1 + αyi) −

αλyi

1 + αλi

−log yi! − log(exp(λi/(1 + αλi)) − 1)

]
. (1.4)

Following the approach generalized Poisson regression model, we can obtain the maximum
likelihood estimators by using the Newton-Raphson iterative method. By differentiating the
log-likelihood function (1.4) with respect to α, β, we have

∂l

∂α
=

n∑
i=1

(
−yiλi(2 + αλi)

(1 + αλi)2
+

yi(yi − 1)
1 + αyi

+
λ2

i exp(λi/(1 + αλi)
exp(λi/(1 + αλi) − 1)(1 + αλi)2

)
, (1.5)

∂l

∂β
=

n∑
i=1

(
yi

(1 + αλi)2
− λi(λi/(1 + αλi)

exp(λi/(1 + αλi) − 1)(1 + αλi)2

)
xi, (1.6)

so the score function is U =
(

∂l
∂α , ∂l

∂β

)
, and by differentiating twice the log-likelihood function

with respect to α, β, we have the observed Fisher information matrix

K = −


∂2l

∂α2

∂2l

∂α∂βT

∂2l

∂β∂α

∂2l

∂β∂βT

 . (1.7)

The inverse of matrix K is partitioned as follows.

K−1 =

(
Kαα Kαβ

K βα K ββ

)
, (1.8)

where

∂2l

∂α2
=

n∑
i=1

{
yiλ

2
i

3 + αλi

(1 + αλi)3
− y2

i (yi − 1)
(1 + αyi)2

− λ2
i exp(λi/(1 + αλi) ·

(1 − α2λ2
i )(exp(λi/(1 + αλi) − 1) − λi

(1 + αλi)4(exp(λi/(1 + αλi) − 1)2

}
,
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∂2l

∂β∂βT
=

n∑
i=1

{
− 2αλiyi

(1 + αλi)3
− λiexp(λi/(1 + αλi) ·

(1 − α2λ2
i )(exp(λi/(1 + αλi) − 1) − λi

(1 + αλi)4(exp(λi/(1 + αλi) − 1)2

}
xix

T
i ,

∂2l

∂β∂α
=

n∑
i=1

{
− 2λiyi

(1 + αλi)3
− λiexpλi/(1 + αλi) ·

λ2
i − (2λi + 2αλ2

i )(exp(λi/(1 + αλi) − 1)
(1 + αλi)4(exp(λi/(1 + αλi) − 1)2

}
xi.

The Newton-Raphson iterative algorithm used above requires the specification of initial
values. Our suggestion is setting α = 0 and β using ML estimation obtained from the Pois-
son regression model. Let ξ = (α, βT)T, under the usual regularity conditions for maximum
likelihood estimation, when the sample size is large, ξ̂ ∼ Np

(
ξ,K−1

)
approximately.

2 Score tests for dispersion and regression parameters

In many applications, it is important to assess whether the assumed model is indeed
appropriate. Gupta et al.[12], Feng-Chang Xie, et al.[13] developed score tests to detect the
dispersion and zero inflation in a zero-inflated generalized Poisson regression model and a zero-
inflated generalized Poisson mixed regression model. In this section, we derive two methods
to test significance of dispersion and regression coefficients in ZTGP model. The test for
significance of dispersion is equivalent to test the hypothesis

H01 : α = 0, H11 : α 6= 0. (2.1)

Let ξ̂1 = (0, β̂T)T be the restricted maximum likelihood estimates(REML) under H01. Then
the score test statistic for testing H01 is

SC1 =

{(
∂l

∂α

)2

Kαα

}
ξ̂1

, (2.2)

where Kαα is the block matrix corresponding to the parameter α for the inverse of Observed
Fisher information matrix K . The standard asymptotic statistic suggests that the score statis-
tic is asymptotically distributed as χ2(1). Zhao Yang et al.[14] suggested this statistic is more
appropriate in practical application than likelihood ratio test statistics due to the higher em-
pirical power of the score test and only requires the parameter of interest test be estimated
under null hypothesis(zero-truncated Poisson model). Meanwhile, the covariate effects on the
parameter λ of ZTGP should also be considered. We may test the following hypothesis about
regression coefficients

H02 : β∗ = 0, H12 : β∗ 6= 0, (2.3)

where β∗ is a subset of β without the intercept β0. Let ξ̂2 = (α̂, β̂0, 0T)T be the REML
estimates of parameter ξ under null hypothesis H02. Based on the log-likelihood function l and
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partitioning the xi as (1, (x∗
i )

T)T, we can get the score function of β∗ as

∂l

∂β
=

n∑
i=1

(
yi

(1 + αλi)2
− λi(λi/(1 + αλi)

exp(λi/(1 + αλi) − 1)(1 + αλi)2

)
x∗

i , (2.4)

Partitioning the matrix K ββ as

K ββ =

(
K β0β0 K β0β∗

K β∗β0 K β∗β∗

)
, (2.5)

where K ββ is the block matrix corresponding to the parameter β. Then the score test statistic
for testing β∗ is

SC2 =

{(
∂l

∂β∗

)T

K β∗β∗
(

∂l

∂β∗

)}
ξ̂1

. (2.6)

3 Example: hospital length of stay data

To illustrate our methodology for fitting a ZTGP model, we first consider a data set from
the 1997 MedPar dataset (available at http://www. gseis.ucla.edu/courses/data/medpar). The
response variable y denote the length of hospital stay which does not and cannot have any zero
values. Length of stay begins with a value of one and grows from there. There are 1 495
observations in the MedPar dataset, and the minimum count is 1 and the maximum count is
116, with mean 9.854 2 and median 8. The dispersion index (the ratio of variance to mean)
is 7.917 5. so the data exhibit over-dispersion. There are 9 variables in the dataset. Here we
select five important explanatory variables, i.e., hmo(x1), white(x2), type2(x3), type3(x4), died
(x5), from the variables and using the zero-truncated generalized Poisson regression model to
fit the data for illustrating our results:

yi ∼ ZTGP (α, λi)

with log λi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5. The estimations are β̂ =
(2.346 2,−0.067 6,−0.117 9, 0.251 9, 0.734 8,−0.242 0) and α̂ = 0.154 1. To test the significance
of the dispersion and regression coefficients, using the results obtained in Section 2, we get the
score test statistics SC1 = 1259.3, SC2 = 136.9. The corresponding p-values are all smaller
than 0.000 1. There we should reject the hypothesis H01 and H02. ZTGP regression model is
suitable for this dataset. To compare the goodness of fit, we compute the values of AIC and
the minus log-likelihood for ZTGP model and some other alternative models to fit these data.
The results are provided in Tab. 1, which shows that among these models, the ZTGP regression
model, is better than others to fit this data set.

Tab. 1 Compare of different models for MedPar dataset
model number model type −log L AIC

1 Poisson 6 835.0 9.135 7

2 zero-truncated Poisson 6 834.7 9.135 3

3 generalized Poisson 4 768.6 6.370 0

4 zero-truncated generalized Poisson 4 738.2 6.329 4
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where AIC = −2(log L + k)/n, k is the total number of parameters in the model.

4 Simulation study

In this section, we examine the performances of score test statistics via Monte Carlo
simulations to provide finite-sample properties of the proposed statistics. The model used for
simulation study is

yi ∼ ZTGP (α, λi), i = 1, · · · , n,

where log λi = β0 + β1xi, and the true values under the null hypothesis is chosen as β0 =
−0.8, β1 = 1.2.

We first generate a set of random numbers from a uniform distribution in the interval [1,3]
as the value of xi. To get values of yi, a random variate is drown from a ZTGP model with
the true values of parameters, the value of xi, and a given β0, β1. Repeating this procedure n

times, we get a set of simulated data yi, i = 1, 2, · · · , n.
In brief, here we only list the result of score test statistics SC1, i.e., the performance for

testing of dispersion. The values of score test statistics SC1 are computed by formulas (2.2)
shown in Section 3. We take α = 0.01, 0.025, 0.05, 0.075, 0.1. For given values of parameters,
we do 1 000 replications(the values of xi are fixed for each replication). We then obtain the
empirical power of the tests by calculating the proportion of times that the test value is greater
than the χ2

α(1) critical value at α = 0.05 level. The simulation are performed for different n to
get the simulated powers of test statistics. The results are shown in Tab. 2 and Fig. 1.

Tab. 2 Simulation powers of SC1

n α = 0.01 α = 0.025 α = 0.05 α = 0.075 α = 0.1

40 0.067 0.164 0.574 0.826 0.952

80 0.075 0.369 0.892 0.996 1

120 0.097 0.502 0.957 0.997 1

200 0.171 0.785 0.996 1 1

The results shown in Tab. 2 and Fig. 1 that the power of the test for detecting dispersion
α increase slowly for small n(n = 40) and small α(α = 0.01); but for larger values of n, as α

increases it approaches to 1 quickly.

Fig. 1 Simulated power of test statistic SC1
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5 Conclusion

In this paper, we have presented a zero-truncated generalized Poisson regression model.
An algorithm for estimating parameters is obtained and two score tests are presented for testing
the ZTP regression model against the ZTGP regression model, and for testing the significance of
regression coefficients. A numerical example and Monte Carlo simulation are given to illustrate
our method.

Our main work has been focused on the ZTGP regression models without correlation
between observations. However, it seems that it is reasonable to assume the correlation
between observations. We will consider it in our future research.
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