文章编号: 1000-4750(2011)05-0041-08

结构可靠度分析中变量相关时 三种变换方法的比较

吴帅兵^{1,2},*李典庆^{1,2},周创兵^{1,2}

(1. 武汉大学水资源与水电工程科学国家重点实验室,湖北,武汉 430072; 2. 武汉大学水工岩石力学教育部重点实验室,湖北,武汉 430072)

摘 要:介绍了Orthogonal 变换、Rosenblatt 变换和 Nataf 变换三种变换方法的基本原理,并比较了三种变换方法 的优缺点及其适用范围。采用算例详细地比较了三种变换方法对可靠度结果的影响。结果表明,Nataf 变换和 Orthogonal 变换的根本区别在于 Nataf 变换考虑了相关变量变换到相关标准正态空间后相关系数的变化,两种变 换可靠指标的差值与变量的变异系数、变量间相关系数以及变量的分布类型都有关系,变量变异系数的影响尤为 明显。采用 FORM 方法计算可靠指标时,Rosenblatt 变换的不同变量顺序的可靠指标是不同的。当变换后的独立 标准正态空间中功能函数曲线或曲面验算点处非线性程度很高时,采用三种变换时,FORM 方法均不能准确地估 计可靠指标。鉴于 Nataf 变换同时具有计算精度高和适用范围广两个优点,结构可靠度计算时宜优先采用。 关键词:可靠度;相关变量;Orthogonal 变换;Rosenblatt 变换;Nataf 变换 中图分类号:TU318;TB114.3 文献标识码:A

COMPARISON AMONG THREE TRANSFORMATION METHODS FOR STRUCTURAL RELIABILITY ANALYSIS WITH CORRELATED VARIABLES

WU Shuai-bing^{1,2} , ^{*}LI Dian-qing^{1,2} , ZHOU Chuang-bing^{1,2}

(1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China;

2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering, Wuhan University, Ministry of Education, Wuhan 430072, China)

Abstract: This paper aims to compare three most representative transformation methods, namely, Orthogonal transformation, Rosenblatt transformation, and Nataf transformation, for structural reliability analysis with correlated variables. Firstly, the above three transformation methods are introduced. Then, the merits and applicable conditions for the considered three methods are compared. Finally, three examples are employed to compare the reliability results using the three transformation methods. The results indicate that the essential difference between the Nataf transformation and the Orthogonal transformation is that the former can take the reliability indexes for the Nataf transformation and the Orthogonal transformation depends on the coefficients of variation, correlation coefficients, and distribution types associated with input variables, especially for coefficients of variation of the input variables. For different orderings of input variables, the reliability indexes using the Rosenblatt transformation can differ significantly when FORM is used to calculate the reliability index. After

收稿日期: 2009-12-10; 修改日期: 2010-03-12

基金项目:国家自然科学基金项目(50879064, 51028901);高等学校全国优秀博士学位论文作者专项资金项目(2007B50)

作者简介:吴帅兵(1983一),男,江西鹰潭人,博士生,主要从事工程结构可靠度和风险分析方面的研究(E-mail: wushuaibing1983@126.com); *李典庆(1975-),男,湖北竹溪人,教授,博士,主要从事岩土工程可靠度和风险分析,大坝安全的风险和不确定性分析方面的 研究(E-mail: dianqing@whu.edu.cn); 周创兵(1962-),男,江苏南通人,教授,博士,主要从事岩体多场耦合、岩体变形与稳定性方面的研究(E-mail: cbzhou@whu.edu.cn).

transformed into independent standard normal space using the considered three transformation methods, the performance function becomes highlynonlinear, which further impair the accurate estimation of the reliability index when FORM is used. It is recommended that the Nataf transformation be used for reliability analysis involving correlated input variables due to its accuracy and applicability.

Key words: reliability; correlated variables; Orthogonal transformation; Rosenblatt transformation; Nataf transformation

自 1947 年 Freudenthal^[1]发表了题为"结构的安 全度"论文以来,经过 60 余年的发展,可靠度理 论已经取得了巨大的进步,其理论体系基本完善。 众所周知,在求解结构可靠度问题时,常常遇到基 本随机变量是非正态分布,且变量间具有一定相关 性的情况。如风、雪、活荷载等一般都不服从正态 分布,结构的材料特性和疲劳特性是统计相关的。 然而现有的结构可靠度计算方法绝大多是建立在 随机变量为独立标准正态变量的基础上,所以为了 求解变量为相关非正态时结构的可靠度,需要将相 关非正态变量转化为独立标准正态变量,目前使用 比较广泛的方法主要有如下几种: Hermite 多项式 变换^[2]、Winterstein 近似公式^[3]、Orthogonal 变换^[4]、 Rosenblatt 变换^[5]和 Nataf 变换^[6]。Hermite 多项式变 换利用变量的相关系数矩阵和均值、标准差、偏度、 峰度等统计参数,将相关非正态变量表示为独立标 准正态变量的多项式。Winterstein 近似公式是 Hermite 多项式变换的特例,它实际上是三阶 Hermite 多项式。这两种变换的计算精度对变量统 计矩的估计精度非常敏感, 尤其是偏度和峰度两个 参数,遗憾的是当数据有限时,偏度和峰度的计算 精度是很难有保证的。相比之下, Orthogonal 变换、 Rosenblatt变换和Nataf变换所需的变量边缘概率密 度函数及其统计参数可以通过样本较精确地确定。 本文主要研究 Orthogonal 变换、Rosenblatt 变换和 Nataf 变换。

在 Orthogonal 变换、Rosenblatt 变换和 Nataf 变换中,以 1978 年 Rackwitz 和 Fiessler^[4]提出的 Orthogonal 变换在可靠度计算中应用最为广泛。虽 然这种变换方法只有在变量服从正态分布时才是 精确的,但是由于其计算步骤简单,而且可以用于 变量服从任意分布类型的情况,所以得到了广泛的 应用^[7-8]。Rosenblatt 变换^[5]是 Rosenblatt 在 1952 年 提出的,它虽然是精确的变换方法,但是它需要已 知变量联合概率密度函数,这在实际工程中甚至理 论上都是非常困难的,所以其应用范围非常有限。 Ang和Tang^[7]于 1984 年将 Rosenblatt 变换引入到结构可靠度分析中,随后文献[8-9]对 Rosenblatt 变换在可靠度中的应用也进行了一定的研究。如 Ditlevsen 和 Madsen^[8]、Melchers^[9]研究了不同变量顺序对 Rosenblatt 变换可靠指标的影响。Nataf 变换 是建立在 Nataf 分布理论基础上的,Der Kiureghian和 Liu^[6]于 1986 年将 Nataf 变换引入到结构可靠度分析中,并首次给出了 Nataf 变换后的等效相关系数的经验计算公式,从而成功地解决了相关变量当量正态化后相关系数的变化这一关键问题。在这以后有关 Nataf 变换的可靠度分析论文无不例外地都引用了他们的成果。如吕大刚^[10]提出了基于线性化Nataf 变换的一次可靠度方法。Noh等^[11]将 Nataf 变换引入到基于可靠性的优化问题中,并指出 Nataf 变换本质上是 Gaussian Copula 函数^[12]。

目前上述三种变换方法在可靠度计算中的应 用研究主要侧重于一种或两种变换方法的简单比 较,还未见有文献对上述三种变换方法的可靠度结 果做系统地分析和比较,尤其是三种变换方法对可 靠指标的影响规律还缺乏深入地研究。本文首先简 单介绍三种变换方法的基本原理。然后比较三种变 换方法的优缺点及其适用范围。最后通过算例来研 究三种变换方法可靠度结果的变化规律。

1 三种变换方法的基本原理

1.1 Orthogonal 变换^[4]

令 $X = (X_1, X_2, \dots, X_n)^T$ 为一组相关非正态变 量,则采用 Orthogonal 变换将其转化为独立标准正 态变量 $U = (U_1, U_2, \dots, U_n)^T$ 一般需要分两步进行。 首先,将相关非正态变量当量正态化转化为相关正 态变量 $Y = (Y_1, Y_2, \dots, Y_n)^T$,当量正态化的条件为: 1) 在设计验算点 x_i^* 处,当量正态变量 Y_i (均值为 μ_{Y_i} ,标准差为 σ_{Y_i})的累积分布函数值 $F_{Y_i}(x_i^*)$ 与原 随机变量 X_i (均值为 μ_{X_i} ,标准差为 σ_{X_i})的累积分 布函数值 $F_{X_i}(x_i^*)$ 相等; 2) 在设计验算点 x_i^* 处,当 量正态变量 Y_i 的概率密度函数值 $f_{Y_i}(x_i^*)$ 与原随机 变量的概率密度函数值 $f_{X_i}(x_i^*)$ 相等。由条件 1)可 得:

$$\mu_{Y_i} = x_i^* - \Phi^{-1}[F_{X_i}(x_i^*)]\sigma_{Y_i}$$
(1)

由条件 2)可得:

$$\sigma_{Y_i} = \frac{\phi(\Phi^{-1}[F_{X_i}(x_i^*)])}{f_{X_i}(x_i^*)}$$
(2)

式中: $\boldsymbol{\Phi}(\cdot)$ 为标准正态累积分布函数; $\boldsymbol{\Phi}^{-1}(\cdot)$ 为标 准正态累积分布函数的反函数; $\boldsymbol{\phi}(\cdot)$ 为标准正态概 率密度函数。

设 C 为随机向量 Y 的相关系数矩阵, λ_i 为 C 的特征值。A 为正交矩阵,其列向量为 C 的特征值 λ_i 对应的特征向量。采用下式可将相关正态随机变 量 Y转化为独立标准正态随机变量 U:

$$\boldsymbol{U} = \sqrt{\boldsymbol{\lambda}}^{-1} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{T} (\boldsymbol{Y} + \boldsymbol{B})$$
(3)

式中: $T = \operatorname{diag}(1/\sigma_{Y_1}, 1/\sigma_{Y_2}, \dots, 1/\sigma_{Y_n})$; $\lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$; $B = (-\mu_{Y_1}/\sigma_{Y_1}, -\mu_{Y_2}/\sigma_{Y_2}, \dots, -\mu_{Y_n}/\sigma_{Y_n})^{\mathrm{T}}$ 。

由上述介绍可以看出,Orthogonal 变换的计算 步骤简单,不受变量分布类型的限制,这也是它被 广泛采用的原因之一。但是应该注意到,当变量从 相关非正态空间变换到相关标准正态空间时, Orthogonal 变换简单地认为变量的相关系数矩阵保 持不变,即变量间相关性不发生任何变化,这与实 际情况不相符。因此,Orthogonal 变换只有在变量 均服从正态分布或变量相互独立时才是精确的,对 于其他的情况来说都是近似的,但大多数情况下其 近似程度较高。

1.2 Rosenblatt 变换^[5]

Rosenblatt 变换直接将相关非正态变量转化为 独立标准正态变量。设有 n 维随机变量 $X = (X_1, X_2, \dots, X_n)^T$,其联合累积分布函数为 $F_X(X)$ 。 根据等概率变换原则有:

$$\begin{cases} \Phi(u_{1}) = F_{1}(x_{1}) \\ \Phi(u_{2}) = F_{2}(x_{2} | x_{1}) \\ \vdots & \vdots \\ \Phi(u_{n}) = F_{n}(x_{n} | x_{1}, \dots, x_{n-1}) \end{cases}$$
(4)

式中 $F_i(x_i|x_1, \dots, x_{i-1})$ 为条件累积分布函数。

由式(4)可得独立标准正态随机变量: $U = (U_1, U_2, \dots, U_n)^T$,

$$\begin{cases} u_{1} = \Phi^{-1}[F_{1}(x_{1})] \\ u_{2} = \Phi^{-1}[F_{2}(x_{2}|x_{1})] \\ \vdots & \vdots \\ u_{n} = \Phi^{-1}[F_{n}(x_{n}|x_{1}, \cdots, x_{n-1})] \end{cases}$$
(5)

当变量联合累积分布函数已知时,Rosenblatt 变换是精确的。当变量间相互独立时,联合累积分 布函数等于单个变量边缘累积分布函数的乘积, Rosenblatt 变换等价于 Orthogonal 变换。

1.3 Nataf 变换^[6]

Nataf 变换利用变量的边缘概率密度函数、相 关系数矩阵及 *n* 维标准正态分布概率密度函数,通 过 Gaussian Copula 函数^[12]构造变量联合概率密度 函数。设有 *n* 维标准正态随机变量 $Y = (Y_1, Y_2, \dots, Y_n)^T$, *Y* 的相关系数矩阵为 $\rho_0 = (\rho_{0ij})_{n \times n}$,相应的 联合概率密度函数为:

$$\phi_n(\boldsymbol{y},\boldsymbol{\rho}_0) = \frac{1}{\sqrt{(2\pi)^n \det(\boldsymbol{\rho}_0)}} \exp\left(-\frac{1}{2} \boldsymbol{y}^{\mathrm{T}} \boldsymbol{\rho}_0^{-1} \boldsymbol{y}\right) \quad (6)$$

式中: det(·)表示矩阵行列式; (·)⁻¹表示对矩阵求逆。

定义 *n* 维随机变量 $X = (X_1, X_2, \dots, X_n)^T$,其相 关系数矩阵为 $\rho = (\rho_{ij})_{n \times n}$ 。根据等概率变换原则可 得 X 和 Y 中的变量有如下函数关系:

$$x_i = F_{X_i}^{-1}[\Phi(y_i)], \quad i = 1, 2, \cdots, n$$
 (7)

式中: $F_{X_i}(\cdot)$ 是变量 X_i 的边缘累积分布函数; $F_{X_i}^{-1}(\cdot)$ 为 $F_{X_i}(\cdot)$ 的反函数。

根据 Nataf 变换理论,利用隐函数求导法则可 推导出变量 X 的联合概率密度函数为:

$$f_{X}(\boldsymbol{x}) = \frac{f_{X_{1}}(x_{1})f_{X_{2}}(x_{2})\cdots f_{X_{n}}(x_{n})}{\phi(y_{1})\phi(y_{2})\cdots\phi(y_{n})}\phi_{n}(\boldsymbol{y},\boldsymbol{\rho}_{0}) \quad (8)$$

式中 $f_{X_i}(\cdot)$ 是变量 X_i 的边缘概率密度函数。一般地, 将式(8)构造的变量 X 的概率分布模型称为 Nataf 分布。

根据相关系数的定义及式(7)和式(8)可得变量 X 的相关系数 ρ_{ij} 与等效标准正态变量 Y 的相关系 数ρ_{0ij} 有以下关系:

$$\rho_{ij} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{x_i - \mu_{x_i}}{\sigma_{x_i}} \frac{x_j - \mu_{x_j}}{\sigma_{x_j}} \phi_2(y_i, y_j, \rho_{0ij}) dy_i dy_j$$
(9)

式中, $\phi_2(y_i, y_j, \rho_{0ij})$ 是相关系数为 ρ_{0ij} 的二维标准 正态分布联合概率密度函数。

当 X_i和 X_j的边缘分布函数及相关系数ρ_{ij}已知时,通过求解式(9)所示的非线性方程就可以确定等

效相关系数 ρ_{0ij} 。上述方程的求解过程一般相当繁琐,幸运的是 Der Kiureghian 和 Liu^[6]已经给出了 10 种常用分布的经验计算公式:

$$\rho_{0ii} = F \rho_{ii} \tag{10}$$

式中系数 $F \ge 1$,它与变量的分布类型、相关系数 及变异系数有关。

 ρ_0 是一对称正定矩阵,对其进行 Cholesky 分 解可得下三角矩阵 Γ_0 ,左乘 Γ_0 的逆可将相关标准 正态变量 *Y*转化为独立标准正态变量 *U*:

$$\boldsymbol{U} = \boldsymbol{\Gamma}_0^{-1} \boldsymbol{Y} \tag{11}$$

至此完成了 Nataf 变换的正变换过程,即将相关非 正态变量转化为独立标准正态变量的过程。

1.4 三种变换方法的比较

上面简单介绍了三种变换方法的基本原理,下 面对上述三种变换方法的计算精度等问题做一比 较。表1从计算精度、计算量、变量分布类型等6 个方面比较了三种变换方法的优缺点及其适用范 围。本文采用的主要是FORM方法和上述三种变换 相结合的方法来计算可靠指标,故在后文中,凡未 加特殊说明的,不同方法的可靠指标结果就简单地 以变换方法来区分,如 Rosenblatt 变换则表示 Rosenblatt 变换和FORM 方法结合的结果。限于篇 幅,具体计算步骤省略。

由表1可以看出:

1) Orthogonal 变换具有计算精度较高和计算量 小的优点,而且它不需要已知变量的联合概率密度 函数,可用于任意分布类型的变量以及变量相关系 数在(-1,1)中变化情况,计算结果较为稳健。因此, Orthogonal 变换的适用范围最广,它是处理相关变 量可靠度计算最常用的方法。国际上常用的可靠度 计算软件^[13]如 NESSUS、Proban、UNIPASS 等都采 用这种变换方法。

2) Rosenblatt 变换的精度最高,但是它的应用 条件非常苛刻,它要求已知变量联合概率密度函 数,这在实际工程中是非常难以满足的。它适用的 变量分布类型以及变量间相关系数的取值范围都 非常有限,最为严重的是采用 FORM 方法计算包含 *n* 个变量的可靠指标时就可能出现 *n*! 个不同的值, 究竟哪一个可靠指标是正确的结果,目前还缺乏一 个判断标准。常用的方法是根据经验选择一个合适 的变量顺序进行可靠度计算^[14],这显然具有一定的 人为因素。所以 Rosenblatt 变换的适用范围非常有 限,目前结构可靠度计算中一般很少采用 Rosenblatt 变换,上面提到的几个软件中都没有采用 Rosenblatt 变换,仅在德国 Rackwitz 等开发的 STRUREL 软 件^[15]中提供了 Rosenblatt 变换。

3) Nataf 变换和 Orthogonal 变换的唯一区别就 在于前者考虑了相关非正态变量空间变换到相关 标准正态变量空间中等效相关系数的变化,而后者 假定相关系数保持不变,因此,Nataf 变换的计算 精度要高于 Orthogonal 变换, 但不巧的是等效相关 系数的计算比较复杂,由此导致了 Nataf 变换比 Orthogonal 变换的计算过程要复杂得多。与 Rosenblatt 变换相比, Nataf 变换不需要已知变量联 合概率密度函数,在已知变量边缘概率密度函数及 其相关系数时,它通过 Gussian Copula 函数人为地 构造变量联合概率密度函数。此外,只要已知等效 相关系数的计算公式, Nataf 变换几乎可以适用于 任意分布类型的变量[16],变量相关系数的取值范围 也较大, 计算结果也很稳健, 它在结构可靠度计 算^[6]以及处理相关非正态变量的抽样问题中^[17]得到 了广泛的应用。

	表1 三种变换方法的比较
Table 1	Comparison among three transformation methods

变换方法	精度	计算量	变量分布类型	变量概率密度函数类型	相关系数范围	变换后相关系数变化	可靠指标是否与变量顺序有关
Orthogonal	较高	小	任意	边缘概率密度函数	(-1,1)	否	否
Rosenblatt	精确	大	少数	联合概率密度函数	很窄	是	是
Nataf	高	较大	大多数	边缘概率密度函数	较宽	是	否

2 算例

本文在 FORM 方法的基础上编写了上述三种 变换方法的可靠指标计算程序 RELCOM,该计算程 序是在 Matlab 语言环境中开发的。为了从定量分析 的角度对可靠度比较上述三种变换方法对可靠度 计算结果的影响,下面采用算例进一步比较上述三 种变换方法的优缺点及可靠指标的变化规律。为了 统一起见,这里将 Orthogonal 变换、Rosenblatt 变 换、Nataf变换的可靠指标分别表示为 β_{O} 、 β_{R} 、 β_{N} ; 蒙特卡罗模拟(Monte Carlo Simulation, MCS)的可 靠指标表示为 β_{MCS} 。 **例**1. 研究 Hohenbichle 和 Rackwitz 分析过的一个例题,功能函数为:

$$g(x_1, x_2) = 18 - 3x_1 - 2x_2$$
(12)
变量 x_1 和 x_2 的联合概率密度函数为^[18]:
 $f_{X, Y}(x_1, x_2) = ((1 + \theta x_1)(1 + \theta x_2) - \theta)e^{-x_1 - x_2 - \theta x_1 x_2},$

 $x_1, x_2 \ge 0$ (13)

式中 θ 为待定参数,且 $0 \le \theta \le 1$ 。由式(13)可得 x_1 和 x_2 的边缘分布均为参数为1的指数分布,即均值和标准差均为1的指数分布。采用 Nataf 变换时有变换到相关标准正态空间中相关系数的计算公式如下^[6]:

$$\rho_0 = (1.229 - 0.367\rho + 0.153\rho^2)\rho \qquad (14)$$

图1给出了不同变换方法的可靠指标随原相关 系数的变化关系,图1中 Monte Carlo 方法(MCS) 的可靠指标是抽样 100 万次的结果, Rosenblatt 变 换和 Nataf 变换的变量顺序为 (x_1, x_2) 。由图 1 可见, 当原相关系数不为零时,三种变换方法的可靠指标 存在一定的差别,但差别很小。此外,Orthogonal 变换的与其余两种变换的可靠指标相比偏小。如当 $\rho = -0.3$ 时, Orthogonal 变换、Rosenblatt 变换、 Nataf 变换的可靠指标分别为 2.75、2.76、2.77。同 时还可以看出,三种变换方法FORM的结果和MCS 的结果存在明显的差别,而且这种差别在 $\rho=0$ 时 达到最大,相应的可靠指标差值为 0.15,但当 $\rho = -0.4$ 时,三种变换的可靠指标和 MCS 可靠指 标差值最大为 0.04。这个结果看似不合理,因为一 般在变量相互独立的情况下, MCS 结果虽然会有波 动,但是相对来说还是很精确的,而三种变换方法 结果又完全一致,这种差别显然不能归因于变换方 法,那么只可能是可靠指标计算方法——FORM方 法本身的误差引起的,本文后面将会给出详细的 解释。

Fig.1 Reliability indexes using different transformation methods

前面已经提到,采用 FORM 方法求可靠指标 时,Rosenblatt 变换的可靠指标与变量顺序有关, 图 2(a)给出了 Rosenblatt 变换的不同变量顺序的可 靠指标随相关系数的变化关系。由于 Rosenblatt 变 换受 θ 取值范围的限制,变量的相关系数只能在 -0.40-0 变化。可以看出,不同变量顺序的可靠指 标存在明显的差别,而且这种差别随着变量间相关 性的增加而明显增大。如当 $\rho = -0.05$ 和-0.40时, 两种变量顺序的可靠指标差值分别为 0.03 和 0.14, 说明 Rosenblatt 变换的可靠指标不具有唯一性。

图 2(b)给出了 Orthogonal 变换和 Nataf 变换的 不同变量顺序的可靠指标,图 2(b)中给出了ρ在 -0.6-0.9 的结果,但这个范围比 Rosenblatt 变换的 相关系数变化范围要大得多。可以看出,不同的变 量顺序对这两种变换的可靠指标完全没有影响。另 外,这两种变换的可靠指标差值在 0.03 以内,差值 很小。两者可靠指标的相对误差小于 1.2%。

图 3 给出了在变量相关系数 $\rho = -0.3$ 时,式(12) 所示的功能函数经过 Rosenblatt 变换和 Nataf 变换 后在独立标准正态空间(U 空间)中的功能函数曲线 g(U)。由于 Orthogonal 变换的结果和 Nataf 变换结 果几乎是相同的,图3中没有给出。由图3可见, 无论是 Rosenblatt 变换还是 Nataf 变换,即使原功 能函数是线性的,变换后的功能函数曲线也是高度 非线性的曲线,而且变量顺序对变换后的功能函数 曲线有明显的影响。图3还给出了相应的验算点。 可以看出,在变量顺序1时,Rosenblatt 变换和 Nataf 变换的验算点几乎重合,但是在变量顺序2时,两 种变换的验算点有较明显的差别,这是因为两种变

图 3 不同变量顺序的 U 空间中的功能函数曲线

换的功能函数曲线在验算点处的非线性程度的差 异引起的。

表 2 给出了 ρ = -0.3 时三种变换方法在不同变 量顺序时的可靠度计算结果。可以看出,除了 Rosenblatt 变换的变量顺序2的可靠指标2.654 和其 他可靠指标相差较大外,其余的不同变换及其不同 变量顺序对应的可靠指标相差都很小,出现这种结 果的原因是 Rosenblatt 变换两种不同变量顺序的 U 空间中功能函数曲线在验算点处非线性程度相差 比较大,所以可靠指标相差较大。而其余两种变换 的不同变量顺序的 U 空间中功能函数曲线在验算 点处的非线性程度相当,所以可靠指标相差很小。 总体来说,上述三种变换的可靠指标精度还是较高 的,相对误差均小于 3%。由表 2 中还可以看出, 对于同一变换来说,不同变量顺序对应的X空间验 算点基本相同,但是U空间中验算点存在明显的差 别。对于相同的变量顺序来说,不同变换的X空间 和 U 空间中验算点均不相同。可见不同变换方法对 X 空间的验算点有明显的影响。

	表 2 不同变量顺序时的可靠度计算结果
Table 2	Reliability analysis results for different orderings of input variables

_	Orthogor	nal 变换	Rosenbl	att 变换	Nataf	变换
	顺序 1 (x1, x2)	顺序 2(x2, x1)	顺序 1(x1, x2)	顺序 2(x2, x1)	顺序 1(x1,x2)	顺序 2(x2, x1)
X_1^{MPP}	5.769	5.769	5.858	5.850	5.879	5.879
X_2^{MPP}	0.346	0.346	0.214	0.225	0.181	0.181
U_1^{MPP}	2.735	-0.547	2.764	-0.836	2.771	-0.970
U_2^{MPP}	0.287	2.695	0.143	2.519	0.169	2.601
可靠指标 β	2.750	2.750	2.767	2.654	2.776	2.776
$\beta_{ m MCS}$			2.7	709		
$ m{eta}-m{eta}_{ m MCS} /m{eta}_{ m MCS} imes100\%$	1.5%	1.5%	2.2%	2.0%	2.5%	2.5%

注: X^{MPP} 为 X空间验算点, U^{MPP} 为 U空间验算点, β_{MCS} 为 Monte Carlo 模拟 100 万次的结果。

前面已经指出,Rosenblatt 变换的不同变量顺 序可靠指标的差异是由于变换后 U 空间中功能函 数曲线在验算点处非线性的程度的差异引起的。为 了定量地比较验算点处非线性程度的差异,表3给 出了当 $\rho = -0.3$ 时,Rosenblatt 变换和 Nataf 变换时 不同变量顺序验算点处的曲率。由于 Orthogonal 变 换的结果和 Nataf 变换结果相近,表3中不再列出。 可以看出,对于 Rosenblatt 变换来说,顺序1和顺 序2的验算点处曲率存在明显差别,顺序2的验算 点处曲率大约是顺序1的7倍。可见顺序2对应的 功能函数曲线在验算点处具有很强的非线性,由此 导致了 FORM 方法不能准确地估算验算点处的可 靠指标,这个结果很好地解释了表2中 Rosenblatt 变换在不同变量顺序的可靠指标存在差异的现象; 另一方面,对于 Nataf 变换来说,功能函数曲线在 验算点处的曲率几乎一样,而且和 Rosenblatt 变换 的变量顺序 1 的验算点处曲率相差不大,因此 FORM 方法计算的不同变量顺序的可靠指标也基 本相同,这个结论和表 2 中的结果是一致的。由表 3 还可以看出,除了 Rosenblatt 变换的变量顺序 2 在验算点处的曲率随变量相关系数的变化存在奇 异现象外,随着变量间负相关性的增加,Rosenblatt 变换和 Nataf 变换在不同变量顺序时验算点处的曲 率是逐渐减小的,也就是说变换后的功能函数曲线 在验算点处的非线性程度是逐渐减小的。这也进一 步说明本算例中 Rosenblatt 变换的变量顺序 2 的结

Fig.3 Performance functions for different orderings

果是不可靠的,同时也更好地解释了为什么图 2(a) 中变量顺序 2 的可靠指标随相关系数的变化不是单 调增加或减小的关系。应该指出的是,当变量间相 互独立时(ρ =0),不同变换方法 U 空间中的功能 函数曲线在验算点处的曲率相等,这是因为变量相 互独立时各种变换本质上是相同的。而且对于本算 例来说,验算点处曲率在 ρ =0时最大,也即非线 性程度最强,此时 FORM 方法计算的可靠指标误差 也最大,这一结果解释了为什么图 1 中三种变换方 法的可靠指标在 ρ =0时和 MCS 可靠指标相差最 大,以及这种差别随变量间负相关性的增加反而减 小的规律。

表 3 不同变量顺序的验算点处曲率

 Table 3
 Curvatures of corresponding to most probable point for different orderings of input variables

	Rosenbl	att 变换	Nataf 变换		
	顺序 1(x1, x2)	顺序 2(x2, x1)	顺序 1(x1, x2)	顺序 2(x2, x1)	
0	0.190	0.190	0.190	0.190	
-0.1	0.123	0.0343	0.171	0.171	
-0.2	0.0694	0.135	0.126	0.126	
-0.3	0.0409	0.279	0.0752	0.0755	
-0.4	0.0249	0.403	0.0352	0.0362	

图 4 给出了 Rosenblatt 变换变量顺序 1 在变量 有不同相关系数时的 U 空间的功能函数曲线。可以 看出, U 空间中功能函数曲线都呈现出明显的非线 性特性,即使在 $\rho = 0$ 时也不例外。而且随着变量 间相关性的增加,功能函数曲线的非线性程度逐步 加强。在功能函数是强非线性的情况下,采用 FORM 方法计算可靠指标将不可避免地带来一定 的误差,但是应该注意到这种误差不是由于 Rosenblatt 变换和 Nataf 变换本身引起的,而是可靠 指标计算方法的问题,关于如何消除或减小变量顺

图 4 不同相关系数的 Rosenblatt 变换功能函数曲线的比较 Fig.4 Comparison among performance functions for different correlation coefficients between input random variables

序对可靠指标的影响已经超出了本文的研究范围, 感兴趣的读者可以参考 Lee 等^[19]研究成果。

图5给出了可靠指标差值随相关系数差值的变 化规律。由图5可见,当变量间正相关时,可靠指 标差值并不是随相关系数差值的增加呈单调增加 或减小的关系,但是总体趋势是增加的。当变量间 负相关时,随着相关系数差值的增加,可靠指标差 值是先增加后减小,存在极大值,这主要与变量在 X 空间中验算点取值有关,图6给出了不同相关系 数对应的 X 空间验算点,从左至右分别为 ρ 从 -0.2--0.6 的情况。对于式(12)所示的功能函数来 说,变量x1的取值范围为[0,6],从表2可以看出, 在 $\rho = -0.3$ 时,采用 Orthogonal 变换和 Nataf 变换 时变量 x₁的验算点分别为 5.769 和 5.879,随着变 量间负相关性的增加,可靠指标继续增大,变量 x1 也必须增加,但是由于变量 x1 已经接近了其取值范 围的上限,从图 6 中可以明显地看出 x₁ 的增量非常 有限, 尤其是 Nataf 变换在 $\rho = -0.5$ 和 $\rho = -0.6$ 的

图 5 可靠指标差值和相关系数差值间的关系 Fig.5 Relationship between the reliability index difference and the correlation coefficient difference

图 6 X 空间的功能函数曲线及验算点

Fig.6 Performance function curve and most probable point 验算点差别很小。正因为如此,导致了可靠指标的 增量也非常有限,于是,当 $\rho < -0.3$ 时,随着相关 系数的减小(绝对值增加),相关系数差值是逐渐增 大的,但可靠指标差值却逐渐变小(见图 5(b))。

3 结论

本文介绍了结构可靠度计算中相关变量三种 常用的变换方法,分析了三种变换方法的优缺点及 其适用条件。在此基础上,采用 FORM 方法结合三 种变换来计算可靠指标。通过算例详细地比较可靠 度结果,由算例分析可以得出以下结论:

(1) Rosenblatt 变换适用于变量联合概率密度函数已知的情况,Orthogonal 变换和 Nataf 变换适用于变量边缘概率密度函数和相关系数已知的情况。 Nataf变换和Rosenblatt 变换的区别在于前者人为地构造变量联合概率密度函数,而 Rosenblatt 变换必须已知变量联合概率密度函数。Orthogonal 变换可以考虑相关系数在(-1,1)内变化情况,Nataf 变换可以考虑相关系数在较大范围变化的情况,而 Rosenblatt 变换考虑变量相关系数的变化范围比较小。总的来说,Orthogonal 变换适用范围最广,Nataf 变换次之,Rosenblatt 变换最小。

(2) Nataf 变换和 Orthogonal 变换的根本区别在 于 Nataf 变换考虑了相关变量变换到相关标准正态 空间后相关系数的变化, Nataf 变换和 Orthogonal 变换的可靠指标差值与相关变量的变异系数、变量 间相关系数以及相关变量的分布类型都有关系,变 异系数的影响尤为明显。当变量间正相关时,可靠 指标差值随相关系数差值的增加总体趋势是增加 的; 当变量间负相关时,可靠指标差值随相关系数 差值的增加存在极大值。 (3) Rosenblatt 变换在理论上是精确的变换,采 用该变换计算可靠指标时不同变量顺序的可靠指 标存在一定的差别,但是应该注意的是可靠指标这 种差别是由于变换后的 U 空间中功能函数曲线在 验算点处非线性程度的差异引起的,因为它会导致 FORM 方法不能准确地估计验算点处的可靠指标, 并不是 Rosenblatt 变换本身的问题引起的。此外, 变量顺序不影响 Orthogonal 变换和 Nataf 变换的可 靠指标及 X 空间中的验算点,但是它会影响 U 空间 中的验算点。

(4) 三种变换都是非线性变换,变换后 U 空间 中功能函数曲线都呈现出强非线性特性,而且这种 非线性程度随变量间相关性以及功能函数曲线非 线性程度的增加而显著增强。

(5) 除了 Orthogonal 变换可靠指标在一些特殊 情况下和 MCS 可靠指标相差较大外, Rosenblatt 变 换和 Nataf 变换的可靠指标和 MCS 差别很小,这说 明大多数情况下三种变换方法的计算精度是有保 证的。鉴于 Nataf 变换同时具有计算精度较高和适 用范围较广两个优点,结构可靠度计算时宜优先 采用。

参考文献:

- Freudenthal A M. Safety of structures [J]. Transactions of ASCE, 1947, 112: 125-180.
- [2] Schoutens W. Stochastic processes and orthogonal polynomials [M]. New York: Springer, 2000.
- [3] Winterstein S R. Nonlinear vibration models for extremes and fatigue [J]. Journal of Engineering Mechanics, 1988, 114(10): 1772-1790.
- [4] Rackwitz R, Fiessler B. Structural reliability under combined load sequence [J]. Computer and Structures, 1978, 114(12): 2195-2199.
- [5] Rosenblatt M. Remarks on a multivariate transformation
 [J]. Annals of Mathematical Statistics, 1952, 23(3): 470-472.
- [6] Der Kiureghian A, Liu P L. Structural reliability under incomplete probability information [J]. Journal of Engineering Mechanics, 1986, 112(1): 85-104.
- [7] Ang A H-S, Tang W H. Probability concepts in engineering planning and design, Vol. II: decision, risk, and reliability [M]. New York: John Wiley & Sons, 1984.
- [8] Ditlevsen O, Madsen H O. Structural reliability methods[M]. New York: John Wiley & Sons, 1996.

(参考文献[9]-[19]转第63页)

- [3] 童根树. 钢结构平面内稳定[M]. 北京: 中国建筑工业 出版社, 2005.
 Tong Genshu. In-plane stability of Steel structure [M].
 Beijing: China Architeture & Building Press, 2005. (in
- Chinese) [4] 周承倜. 弹性稳定理论[M]. 成都: 四川人民出版社, 1981.

Zhou Chengti. Elastic stability theory [M]. Chengdu: Sichuan People's Publishing House, 1981. (in Chinese)

- [5] DeWolf John T, Pelliccione Joseph F. Cross-bracing design [J]. Journal of the Structural Division, ASCE, 1979, 105(7): 1379-1391.
- [6] El-Tayem AA, Goel SC. Effective length factor for the design of X-bracing system [J]. Engineering Journal American Institute of Steel Construction, 1986, 23(1): 41-45.
- [7] Kitipornchai S, Finch David L. Stiffness requirements for cross bracing [J]. Journal of Structural Engineering, ASCE, 1986, 112(12): 2702-2707.
- [8] Picard A, Beaulieu D. Design of diagonal cross bracings, Part 1: theoretical study [J]. Engineering Journal American Institute of Steel Construction, 1987, 24(3): 122-126.
- [9] Stoman Sayed H. Stability criteria for X-bracing system
 [J]. Journal of Engineering Mechanics, ASCE, 1988, 114(8): 1426-1434.
- [10] Stoman Sayed H. Effective length spectra for cross bracing [J]. Journal of Structural Engineering ASCE, 1989, 115(12): 3112-3122.
- [11] Wang Dong Q, Boresi Arthur P. Theoretical study of stability criteria for X-bracing system [J]. Journal of Engineering Mechanics ASCE, 1992, 118(7): 1357-

1364.

- [12] Segal F, Levy R, Rutenberg A. Design of imperfect cross-bracing [J]. Journal of Engineering Mechanics ASCE, 1994, 120(5): 1057-1075.
- [13] Jiho Moona, Ki-Yong Yoonb, Tong-Seok Hanc, Hak-Eun Leea. Out-of-plane buckling and design of X-bracing systems with discontinuous diagonals [J]. Journal of Construction of Steel Research, 2008, 64: 285-294.
- [14] 郭彦林, 王永海. 广州新电视塔透空区群柱稳定极限 承载力设计方法研究[J]. 建筑结构学报, 2010, 31(1): 87-93.
 Guo Yanlin, Wang Yonghai. Studies on stability and design of multi-column in void region of Guangzhou new TV tower [J]. Journal of Building Structures, 2010, 31(1): 87-93. (in Chinese)
- [15] ANSYS, Inc. ANSYS online documentation [S]. 2004.
- [16] Eurocode 3, Design of steel structures, Part 1: general rules and rules for building [S]. 1993.
- [17] GB50205-2001,钢结构工程施工质量验收规范[S].北京:中国计划出版社,2002.
 GB50205-2001, Code for acceptance of construction quality of steel structures [S]. Beijing: China Planning Press, 2002. (in Chinese)
 [18] 查規树 柱间水平增压设计支注[II] 西安建筑利技士
- [18] 童根树. 柱间水平撑杆设计方法[J]. 西安建筑科技大 学学报, 1986, 18(3): 110-140.
 Tong Genshu. Design approach of horizontal braces between columns [J]. J. Xi'an Univ. of Arch. & Tech., 1986, 18(3): 110-140. (in Chinese)
- [19] Heungbae Gil, Yura Joseph A. Bracing requirement of inelastic columns [J]. Journal of Construction of Steel Research, 1999, 51: 1–19.

(上接第48页)

- [9] Melchers R E. Structural reliability: analysis and prediction [M]. 2nd ed. New York: John Wiley & Sons, 1999.
- [10] 吕大刚. 基于线性化 Nataf 变换的一次可靠度方法[J]. 工程力学, 2007, 24(5): 79-86, 124.
 Lu Dagang. First order reliability method based on linearized Nataf transformation [J]. Engineering Mechanics, 2007, 24(5): 79-86, 124. (in Chinese)
- [11] Noh Y, Choi K K, Du L. Reliability-based design optimization of problems with correlated input variables using a Gaussian Copula [J]. Structural and Multidisciplinary Optimization, 2009, 38(2): 1-16.
- [12] Nelsen R B. An introduction to copulas [M]. 2nd ed. New York: Springer, 2006.
- [13] Pellissetti M F, Schueller G I. On general purpose software in structural reliability - An overview [J]. Structural Safety, 2006, 28(1-2): 3-16.
- [14] Dolinsky K. First order second moment approximation in reliability of structural systems: critical review and alternative approach [J]. Structural Safety, 1983, 1(3):

211-231.

- [15] Gollwitzer S, Kirchgäßner B, Fischer R, Rackwitz R. PERMAS-RA/STRUREL system of programs for probabilistic reliability analysis [J]. Structural Safety, 2006, 28(1-2): 108-129.
- [16] Li Hongshuang, Lu Zhenzhou, Yuan Xiukai. Nataf transformation based point estimate method [J]. Chinese Science Bulletin, 2008, 53(17): 2586-2592.
- [17] Chang C H, Tung Y K, Yang J C. Monte Carlo simulation for correlated variables with marginal distributions [J]. Journal of Hydraulic Engineering, 1994, 120(3): 313-331.
- [18] Hohenbichler M, Rackwitz R. Non-normal dependent vectors in structural safety [J]. ASCE Journal of Engineering Mechanics, 1981, 107(6): 1227-1238.
- [19] Lee I, Choi K K, Du L, Gorsich D. Dimension reduction method for reliability-based robust design optimization
 [J]. Computers and Structures, 2008, 86(13-14): 1550-1562.