文章编号: 1000-4750(2011)11-0001-06

变刚度变轴力 Timoshenko 悬臂柱的弯矩放大系数

赵 钦,*童根树

(浙江大学建筑工程学院,杭州 310058)

摘 要: 该文由简到繁,分析了等截面到变截面,同时考虑剪切变形和弯曲变形的 Timoshenko 悬臂柱的弯矩放 大系数。通过求解等截面悬臂柱集中力下的基本微分方程,得到弯矩放大系数的表达式。并在此基础上,研究了 悬臂柱的轴力、截面的弯曲刚度和剪切刚度均沿高度线性变化的情况。通过研究获得了弯矩放大系数及其沿高度 的变化规律,并拟合成与等截面柱具有相似形式的表达式。与 ANSYS 有限元结果的对比表明,模拟 Timoshenko 悬臂柱弯矩放大系数的拟合公式均具有良好的精度。

关键词:稳定性;二阶效应;弯矩放大系数;柱;弯曲;剪切

中图分类号: TU311; TU323.1 文献标志码: A

MOMENT AMPLIFICATION FACTORS OF CANTILEVERS WITH VARIABLE AXIAL FORCES AND SECTIONAL RIGIDITIES

ZHAO Qin, *TONG Gen-shu

(Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China)

Abstract: From constant to variable, the moment amplification factors of cantilevers with different cross-sections were studied in this paper, while both shear and flexural deformations were considered simultaneously. A moment amplification factor formula for the cantilever with a constant cross-section was obtained by solving differential equations. By taking further research on cantilevers with linearly changing axial forces, the bending stiffness and shear stiffness, the variation of the moment amplification factors along the height of the cantilever can be described by the proposed approximate formula. The factors were also calculated by the finite element method, and the comparison shows that the accuracy of the given formula is suitable. **Key words:** stability; second order effect; moment amplification factor; column; bending; shear

高层建筑结构体系在多高层建筑中的应用非 常广泛,很多高层结构体系可以简化为考虑整体弯 曲变形和剪切变形的悬臂柱。这种结构体系的二阶 效应,可以通过二阶的有限元分析来掌握。对剪切 型框架结构进行分析后发现^[1-3],结构各层的二阶 效应可采用如下公式计算:

$$A_{mi} = \left(1 - \frac{V_i \delta_i}{Q_i h_i}\right)^{-1} \tag{1}$$

式中: V_i 、 Q_i 分别是第i 层总的竖向力和总的水平力; h_i 、 δ_i 是第i 层的层高和总水平力作用下的

位移。

对弯曲型悬臂结构,二阶效应系数可以采用二 阶分析的方法加以确定,等截面等轴力的杆件的弯 矩放大系数,稳定理论教科书^[4-5]中大多已经有介 绍,书中一般只关注最大值的放大系数沿杆长的变 化,可以参考现有的推导获得^[1-3]。应用于高层的 结构,因为涉及到变截面以及变轴力,问题变得更 为复杂,但是通过研究,得到类似于式(1)的公式, 仍然是受欢迎的。

本文取几种情况,研究变截面变轴力悬臂柱的

作者简介:赵 钦(1983-),男,浙江金华人,博士生,从事钢结构稳定研究(E-mail: zhaoqin1983@163.com); *童根树(1963-),男,浙江建德人,教授,博士,博导,从事钢结构稳定研究(E-mail: tongs@zju.edu.cn).

收稿日期: 2010-02-26; 修改日期: 2010-04-14

弯矩二阶效应系数,以得到一些规律性的认识。

1 悬臂构件算例模型

如图1中所示底端固接5种情况的轴心受压悬 臂柱,同时考虑弯曲变形和剪切变形,计算代表二 阶效应大小的弯矩放大系数。其中Case1的等截面 等轴力的悬臂柱,可以获得解析解,而Case2~ Case5的轴力或/和截面性质沿高度线性变化,只能 采用数值方法求解。

(a) Case 1
 (b) Case 2
 (c) Case 3
 (d) Case 4
 (e) Case 5
 图 1
 弯剪型悬臂柱的 5 种计算模型
 Fig.1
 Five models for shear-flexural cantilevers

1.1 Case 1 的弯矩放大系数

压力P作用下Timoshenko梁屈曲平衡方程是:

$$Ely_b^{(4)} + P(y_b'' + y_s'') = 0$$
 (2)
式中: y_b 是弯曲挠度; y_s 是剪切挠度。两者间有
关系:

$$EIy_b''' = Sy_s' \tag{3}$$

消去式(2)中的
$$y_s$$
,并记 $k^2 = \frac{P}{EI(1 - P/S)}$,得

到**:**

$$y_b^{(4)} + k^2 y_b'' = 0 (4)$$

其通解为:

$$y_b = C_3 + C_4 x - C_1 \cos kx - C_2 \sin kx$$

边界条件 $y_b(0) = 0$, $y'_b(0) = 0$, $y''_b(H) = 0$ 和
 $Elv'''_{abc} + P(v'_{abc} + v'_{bc})|_{abc} = -O$ 得 $(u = kH)$:

$$y_b = \frac{Q[\tan u - kx + \sin kx - \tan u \cos kx]}{k^3 EI(1 - P/S)}$$
(5)

$$y_s = \frac{Q[\sin kx + \tan u(1 - \cos kx)]}{k(S - P)} \tag{6}$$

则考虑P-Δ后悬臂柱任意截面的弯矩为:

$$M_{\rm II} = -EIy_b'' = \frac{Q\sec u \sin(u - kx)}{k(1 - P/S)} \tag{7}$$

一阶弯矩为 $M_1 = Q(H - x)$,柱顶承受水平力 Q和竖向压力P时,考虑二阶效应的柱子各部位的 弯矩放大系数为:

$$A_{m} = \frac{M_{II}}{M_{I}} = \frac{\sec u \sin[u(1 - x / H)]}{(1 - P / S) \cdot u(1 - x / H)}$$
(8)

其中:
$$u = kH = \frac{\pi}{2} \sqrt{\frac{P}{P_{\rm E}(1-P/S)}}$$
; H 是柱高; x 是

离底部距离; $P_{\rm E} = \frac{\pi^2 EI}{4H^2}$ 。对式(8)各项进行级数展开,相乘并保留前面两项得到弯矩放大系数近似式:

$$A_{m} = \left[1 + \alpha_{1} \frac{P}{P_{E}} \left(1 - \frac{P}{S}\right)^{-1}\right] / \left(1 - \frac{P}{P_{E}} - \frac{P}{S}\right) \quad (9)$$

其中, $\alpha_1 = 0.25 - 0.41 \left(1 - \frac{x}{H} \right)^2$ 为高度变化系数。

下面进行有限元验证。模型基本信息:如图 1(a),底端固接的轴心受压悬臂柱,分为十层计算 各高度弯矩放大系数,层高 h = 4m,总高 H = 40m; 柱截面为 $lm \times lm$, $I = 8.33 \times 10^{10} mm^4$; 材料弹性 模量 $E = 206 kN/mm^2$ 。

采用 ANSYS 对结构整体进行一阶和二阶弹性 分析,得到悬臂柱的弯矩放大系数,并与式(9)作比 较。采用 BEAM189 单元建模,本算例中,悬臂柱 为等截面,只在柱顶有水平荷载和竖向荷载作用。

为了考虑弯曲变形与剪切变形占总变形的比例不同时公式的精度,分别计算各类型的算例,记 $\gamma = \frac{\pi^2 EI}{1.2H^2 S}: \gamma \leq 0.1$ 时剪切变形的影响在10%以内,弯曲变形为主导; $0.1 \leq \gamma \leq 10$ 时受弯曲变形和剪切变形两方面的影响; $\gamma \geq 10$ 时弯曲变形的影响在10%以内,剪切变形为主导^[6]。算例如表1所示, 柱顶作用竖向力 $P = 0.2P_{cr}$,水平力Q = 0.1P。

表 1 Case 1 算例列表 Table 1 Subcases for Case 1

编号	S/N	$P_{\rm cr}/{ m N}$	γ	结构形式
(a)	8.83×10^{8}	2.57×10^{7}	0.1	弯曲型
(b)	1.32×10^{8}	2.20×10^{7}	0.67	弯剪型,弯曲为主
(c)	1.32×10^{7}	8.80×10^{6}	6.7	弯剪型, 剪切为主
(d)	6.69×10^{6}	5.34×10^{6}	13.2	剪切型

各算例计算和比较结果如图 2 和表 2 所示。

以上有限元计算表明,通过平衡微分方程得到 的弯矩放大系数式(9),无论在剪切型、弯曲型、弯 剪型算例中,误差都小于1%,具有很高的精度。

Fig.2 Moment amplification factors for Case 1

表2 (Case 1	弯矩放大系数
------	--------	--------

1 able 2 Wollielle amplification factors for Case I	Table 2	Moment	amplification	factors f	for Case 1
---	---------	--------	---------------	-----------	------------

		$\gamma = 0.1$			$\gamma = 0.67$	
$\frac{x}{H}$	位移 放大系数	FEM 弯矩 放大系数	式(9)	位移 放大系数	FEM 弯矩 放大系数	式(9)
0	-	1 2.06	1 2 1 1	-	1 211	1 216
0.1	1.176	1.225	1.23	1.118	1.228	1.232
0.2	1.2	1.242	1.247	1.157	1.243	1.247
0.3	1.212	1.257	1.262	1.181	1.256	1.261
0.4	1.22	1.271	1.275	1.197	1.268	1.272
0.5	1.227	1.282	1.286	1.209	1.278	1.282
0.6	1.232	1.291	1.295	1.218	1.286	1.29
0.7	1.236	1.299	1.302	1.225	1.293	1.296
0.8	1.24	1.304	1.307	1.231	1.297	1.3
0.9	1.242	1.307	1.31	1.236	1.3	1.303
-						
		$\gamma = 6.7$			$\gamma = 13.2$	
$\frac{x}{H}$	位移	γ=6.7 FEM 弯矩	-12 (0)	位移	γ=13.2 FEM 弯矩	-12 (0)
$\frac{x}{H}$	位移 放大系数	γ = 6.7 FEM 弯矩 放大系数	式(9)	位移 放大系数	γ =13.2 FEM 弯矩 放大系数	式(9)
$\frac{x}{H}$	位移 放大系数 -	y = 6.7 FEM 弯矩 放大系数 1.233	式(9) 1.235	位移 放大系数	γ = 13.2 FEM 弯矩 放大系数 1.239	式(9) 1.24
$\frac{\frac{x}{H}}{0}$	位移 放大系数 - 1.169	γ = 6.7 FEM 弯矩 放大系数 1.233 1.24	式(9) 1.235 1.242	位移 放大系数 - 1.198	γ =13.2 FEM 弯矩 放大系数 1.239 1.244	式(9) 1.24 1.245
$\frac{x}{H}$ 0 0.1 0.2	位移 放大系数 - 1.169 1.182	γ = 6.7 FEM 弯矩 放大系数 1.233 1.24 1.247	式(9) 1.235 1.242 1.249	位移 放大系数 - 1.198 1.206	γ = 13.2 FEM 弯矩 放大系数 1.239 1.244 1.248	式(9) 1.24 1.245 1.249
$ \frac{x}{H} $ 0 0.1 0.2 0.3	位移 放大系数 - 1.169 1.182 1.193	γ = 6.7 FEM 弯矩 放大系数 1.233 1.24 1.247 1.253	式(9) 1.235 1.242 1.249 1.255	位移 放大系数 - 1.198 1.206 1.212	γ = 13.2 FEM 弯矩 放大系数 1.239 1.244 1.248 1.252	式(9) 1.24 1.245 1.249 1.253
$ \frac{x}{H} $ 0 0.1 0.2 0.3 0.4	位移 放大系数 - 1.169 1.182 1.193 1.203	γ = 6.7 FEM 弯矩 放大系数 1.233 1.24 1.247 1.253 1.258	式(9) 1.235 1.242 1.249 1.255 1.26	位移 放大系数 - 1.198 1.206 1.212 1.218	γ=13.2 FEM 弯矩 放大系数 1.239 1.244 1.248 1.252 1.255	式(9) 1.24 1.245 1.249 1.253 1.256
$ \frac{x}{H} $ 0 0.1 0.2 0.3 0.4 0.5	位移 放大系数 1.169 1.182 1.193 1.203 1.211	γ = 6.7 FEM 弯矩 放大系数 1.233 1.24 1.247 1.253 1.258 1.262	式(9) 1.235 1.242 1.249 1.255 1.26 1.264	位移 放大系数 - 1.198 1.206 1.212 1.218 1.224	γ=13.2 FEM 弯矩 放大系数 1.239 1.244 1.248 1.252 1.255 1.255 1.258	式(9) 1.24 1.245 1.249 1.253 1.256 1.259
$ \frac{x}{H} 0 0.1 0.2 0.3 0.4 0.5 0.6 $	位移 放大系数 - 1.169 1.182 1.193 1.203 1.211 1.218	γ = 6.7 FEM 弯矩 放大系数 1.233 1.24 1.247 1.253 1.258 1.262 1.266	式(9) 1.235 1.242 1.249 1.255 1.26 1.264 1.268	位移 放大系数 - 1.198 1.206 1.212 1.218 1.224 1.228	γ = 13.2 FEM 弯矩 放大系数 1.239 1.244 1.248 1.252 1.255 1.255 1.258 1.26	式(9) 1.24 1.245 1.249 1.253 1.256 1.259 1.261
$ \frac{x}{H} $ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7	位移 放大系数 1.169 1.182 1.193 1.203 1.211 1.218 1.224	$\gamma = 6.7$ FEM 弯矩 放大系数 1.233 1.24 1.247 1.253 1.258 1.262 1.266 1.269	式(9) 1.235 1.242 1.249 1.255 1.26 1.264 1.268 1.27	位移 放大系数 - 1.198 1.206 1.212 1.218 1.224 1.228 1.222 1.232	γ = 13.2 FEM 弯矩 放大系数 1.239 1.244 1.248 1.252 1.255 1.258 1.26 1.262	式(9) 1.24 1.245 1.249 1.253 1.256 1.259 1.261 1.263
$ \frac{x}{H} $ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	位移 放大系数 - 1.169 1.182 1.193 1.203 1.211 1.218 1.224 1.229	$\gamma = 6.7$ FEM 弯矩 放大系数 1.233 1.24 1.247 1.253 1.258 1.262 1.266 1.269 1.271	式(9) 1.235 1.242 1.249 1.255 1.26 1.264 1.268 1.27 1.272	位移 放大系数 - 1.198 1.206 1.212 1.218 1.224 1.228 1.222 1.232	γ = 13.2 FEM 弯矩 放大系数 1.239 1.244 1.248 1.252 1.255 1.255 1.258 1.26 1.262 1.263	式(9) 1.24 1.245 1.249 1.253 1.256 1.259 1.261 1.263 1.264

1.2 Case 2~Case 5 的弯矩放大系数公式

图 1(b)~图 1(e)的模型相对于图 1(a)的变化如 表 3 所示。

表 3	算例主要信息
Table 3	Cases information

	14010 5	ases miermanen	
算例	EI 、 S	竖向荷载	水平荷载
Case 1	无变化	顶部集中荷载	顶部集中荷载
Case 2	无变化	沿高度均布	顶部集中荷载
Case 3	沿高度线性变化	沿高度均布	顶部集中荷载
Case 4	无变化	沿高度均布	沿高度均布
Case 5	沿高度线性变化	沿高度均布	沿高度均布

Case 3、Case 5 变截面算例中,保持截面高度 不变,只逐层减少宽度,以模拟刚度沿高度的线性 变化^[7]。柱顶截面为 0.5m×1m, 柱底、柱顶截面刚 度比 $EI_0:EI_t = S_0:S_t = 2:1$ 。通过修正式(9)得到各 算例的弯矩放大系数公式,通过有限元计算对各种 变形形式时放大系数进行比较。

1.2.1 Case 2

此时截面刚度沿高度不变,但轴力沿高度线性 变化,柱顶作用集中力。与 Case 1 相比, Case 2 结 构形式上没有变化,只是改变了荷载施加方式。借 用式(9)的形式,经过大量计算,发现下式可以较好 地拟合数值计算获得的弯矩放大系数:

$$A_{m} = \frac{1 + \alpha_{2} \frac{P_{0.7}}{P_{E}} \left(1 - \frac{P(x)}{S}\right)^{-1}}{1 - P_{0.7}/P_{E} - P(x)/S}$$
(10)

其中: $\alpha_2 = 0.2 \frac{P_{\rm E}}{S} - 0.4 \frac{P_{\rm E}}{S} \left(1.6 - \frac{x}{H} / \frac{P_{\rm E}}{S} \right)^2$; $P_{0.7}$ 是

离底部 0.7 *H* 处截面的轴力。式(10)与有限元计算 结果对比的算例如表 4 所示,柱身作用均布竖向荷 载 *p*,其中 *p* 的选择是使得弯矩放大系数处在 1.2 左右,这样得到的结果不会因为放大系数太小而显 示不出公式的精度来,又不至于使弯矩放大系数太 大而偏离实际,因为实际的弯矩放大系数很少会超 过 1.15。柱顶作用集中水平力*Q* = *pH* / 60(弯矩放 大系数与水平力大小无关,但与水平力分布形式有 关)。比较结果如图 3 所示。

表 4 Case 2 算例列表 Table 4 Subcases for Case 2

	1 4010	54 Subcase	5 101 C	ase 2	
编号	S/N	<i>p/</i> (N/mm)	γ	结构	钩形式
(a)	1.32×10^{8}	250	0.67	弯剪型,	弯曲为主
(b)	1.32×10^{7}	75	6.7	弯剪型,	剪切为主
(c)	6.69×10^{6}	50	13.2	剪	切型
	1.35 1.30 1.25 凝 業 1.20 ※ 業 1.20 ※ 業 1.20 ※ 業 1.20 ※ 業 1.20 ※ 業 1.20 ※ 業 1.20 ※ 第 4 5 (1.25)			=0. 67, 有限5 =0. 67, 式(10 =6. 70, 有限5 =6. 70, 式(10 =13. 2, 有限5 =13. 2, 式(10	τ΄) τ΄)
	0.0		0.6	0.8	1.0
	相对坐标 x/H				
	图 3	Case 2 弯矩	迫放大	糸数	
Fig.3 Moment amplification factors for Case 2					

1.2.2 Case 3

此时截面刚度和轴力均沿高度线性变化,柱顶 作用集中力。经计算,发现采用如下与式(9)相似的 公式可以较好地拟合数值计算获得的弯矩放大系 数:

$$A_{m} = \frac{1 + \alpha_{3} \frac{P_{0.7}}{P_{E0.3}} \left(1 - \frac{P(x)}{S(x)}\right)^{-1}}{1 - P_{0.7}/P_{E0.3} - P(x)/S(x)}$$
(11)

其中: $\alpha_3 = 0.2 \frac{P_{E0.3}}{S_{0.3}} - 0.4 \frac{P_{E0.3}}{S_{0.3}} \left(1.6 - \frac{x}{H} / \frac{P_{E0.3}}{S_{0.3}} \right)^2$; $P_{E0.3} = \frac{\pi^2 E I_{0.3}}{4H^2}$ 是离地 0.3H 处的截面抗弯刚度计算 的临界荷载; $S_{0.3}$ 是离地 0.3H 处截面的剪切刚度, $\gamma_{0.3} = \frac{\pi^2 E I_{0.3}}{1.2H^2 S_{0.3}}$ 。对比算例见表 5,顶部与底部抗 剪刚度比 $S_t / S_0 = 0.5$,柱身均布竖向荷载 p,柱顶 集中水平力 Q = pH / 60。计算和比较结果如图 4 所示。

表 5 Case 3 算例列表(1) Table 5 Subcases for Case 3(1)

				()	
编号	S_0/N	<i>p/</i> (N/mm)	γ	结构	形式
(a)	1.32×10^{8}	250	0.67	弯剪型,	弯曲为主
(b)	1.32×10^{7}	75	6.7	弯剪型,	剪切为主
(c)	6.69×10 ⁶	50	13.2	剪切	刃型
弯矩放大系数 A	1.30 1.25 1.20 1.15 1.00 0.0 1.05 7_{03} 7_{03} 1.00 0.0	=0.67,有限元 =0.67,式(11) =6.70,有限元 =6.70,式(11) 	γ _{0.3} =13.2,年 γ _{0.3} =13.2,年 0.6 标 <i>x/H</i> 放大系	j限元 t(11) 0.8 数(1)	1.0

为了考察其他刚度变化时公式的精度,改变刚 度沿高度线性变化的大小,柱顶、柱底截面刚度比 $EI_t/EI_0 = S_t/S_0 = 0.3$ 。比较式(11)与 ANSYS 有限 元结果,对比的算例数据与表 5 所示一致。计算和 比较结果如图 5 所示。

对抗弯刚度与剪切刚度沿高度线性变化比例 不同的情况,式(11)的精度通过下面算例进行验证。 顶底截面刚度比 $EI_t/EI_0 = 0.5$, $S_t/S_0 = 0.3$,其余同 Case 3 (1)。比较式(11)与有限元结果,算例如表 6 所示,底部截面抗弯刚度 $EI_0 = 1.72 \times 10^{16}$ N•mm², 均布竖向荷载 p,柱顶集中水平力Q = pH/60, 计算和比较结果如图 6。

表 6 Case 3 算例列表(2) Table 6 Subcases for Case 3(2)

编号	S_0/N	<i>p/</i> (N/mm)	γ	结构形式	
(a)	1.32×10^{8}	250	0.73	弯剪型,弯曲为主	
(b)	1.32×10^{7}	75	7.28	弯剪型, 剪切为主	
(c)	6.69×10^{6}	50	14.35	剪切型	

Fig.6 Moment amplification factors for Case 3(3)

1.2.3 Case 4

此时截面刚度沿高度不变,轴力沿高度线性变 化,作用有沿高度均布的水平力。经计算,发现采 用下式可以较好地拟合数值计算获得的弯矩放大 系数:

$$A_{m} = \frac{1 + \alpha_{4} \frac{P_{0.7}}{P_{E}} \left(1 - \frac{P(x)}{S}\right)^{-1}}{1 - P_{0.7}/P_{E} - P(x)/S}$$
(12)

其中: $\alpha_4 = 0.15 \frac{S}{P_E} - 0.9 \left(1.1 - \frac{x}{H} \right)^2$ 。算例如表 7, 均布竖向荷载 p,均布水平荷载 q = 0.5 p,结果如 图 7 所示。

p/(N/mm) S/N编号 γ 结构形式 1.32×10^{8} 弯剪型,弯曲为主 (a) 250 0.67 1.32×10^{7} 弯剪型, 剪切为主 (b) 62.5 6.7 6.69×106 (c) 37.5 13.2 剪切型 1.30 1.25 A_m 1.20 弯矩放大系数 1.15 1.10 =0.67.有限元 ~0.67,式(12) 1.05 =6.70,有限元 γ=13.2,有限元 γ=6.70,式(12) -γ=13.2.式 (12) 1.00 0.6 0.8 1.0 0.0 0.4 相对坐标 x/H 图 7 Case 4 弯矩放大系数 Fig.7 Moment amplification factors for Case 4

表 7 Case 4 算例列表 Table 7 Subcases for Case 4

1.2.4 Case 5

此时截面刚度和轴力沿高度线性变化,承担沿 高度均布水平荷载。经计算,发现采用下式可以较 好地拟合数值计算获得的弯矩放大系数:

$$A_{m} = \frac{1 + \alpha_{5} \frac{P_{0.7}}{P_{E0.3}} \left(1 - \frac{P(x)}{S(x)}\right)^{-1}}{1 - P_{0.7}/P_{E0.3} - P(x)/S(x)}$$
(13)

其中: $\alpha_5 = 0.15 \frac{S_{0.3}}{P_{E0.3}} - 0.9 \left(1.1 - \frac{x}{H}\right)^2$ 。验证算例如

表 8 所示,顶部与底部抗剪刚度比 $S_t / S_0 = 0.5$,柱 身作用均布竖向荷载 p,均布水平荷载 q = 0.5 p。 计算和比较结果如图 8 所示。

表 8	Case 5 算例列表(1)
Table 8	Subcases for Case 5(1)

编号	S/N	<i>p/</i> (N/mm)	γ	结构形式
(a)	1.32×10^{8}	200	0.67	弯剪型,弯曲为主
(b)	1.32×10^{7}	50	6.7	弯剪型, 剪切为主
(c)	6.69×10^{6}	25	13.2	剪切型

Fig.8 Moment amplification factors for CASE 5(1) 为了考察其他刚度变化时公式的精度,改变刚

度沿高度线性变化的大小,柱顶、柱底截面刚度比 $EI_t/EI_0 = S_t/S_0 = 0.3$ 。比较式(11)与 ANSYS 有限 元结果,对比的算例数据与表 8 所示一致。计算和 比较结果如图 9 所示。

对抗弯刚度与剪切刚度沿高度变化比例不同时,式(11)的精度通过下面算例验证。设柱顶、柱底截面刚度比 $EI_t/EI_0 = 0.5$, $S_t/S_0 = 0.3$,其余同 Case 5(1)。算例见表 9,底部截面抗弯刚度 $EI_0 = 1.72 \times 10^{16}$ N•mm²,柱身作用均布竖向荷载 p,均 布水平荷载 q = 0.5p,比较结果如图 10 所示。

表 9 Case 5 算例列表(2) Table 9 Subcases for Case 5(2)

				()
编号	S/N	<i>p/</i> (N/mm)	γ	结构形式
(a)	1.32×10^{8}	200	0.73	弯剪型,弯曲为主
(b)	1.32×10^{7}	50	7.28	弯剪型, 剪切为主
(c)	6.69×10^{6}	25	14.35	剪切型
	1 26 -			

2 结论

本文通过求解平衡微分方程得到等截面悬臂 构件在顶部集中荷载作用下的弯矩放大系数公式。 并在其基础上,通过有限元计算,拟合出变截面构 件在多种荷载下的弯矩放大系数表达式:

$$A_{m} = \left[1 + \alpha \frac{P_{eq}}{P_{E,eq}} \left(1 - \frac{P_{x}}{S_{x}} \right)^{-1} \right] / \left(1 - \frac{P_{eq}}{P_{E,eq}} - \frac{P_{x}}{S_{x}} \right) (14)$$

其中: P_{eq} 为轴力代表值,轴力沿高度线性变化时, 取离底部 0.7H 处截面的轴力; $P_{E,eq}$ 为构件等效临 界荷载, $P_{E,eq} = \frac{\pi^2 E I_{eq}}{4H^2}$,截面抗弯刚度沿高度变化 时,取离底部 0.3H 处截面的抗弯刚度进行计算; P_x 为计算高度截面的轴压力; S_x 为计算高度截面的剪 切刚度; α 为高度变化系数。如上文所述,根据不 同荷载类型、不同截面类型有不同取值。

各类模型的有限元建模分析并与式(14)的计算 结果的对比表明,同时考虑弯剪变形的弯矩放大系 数式(14)在剪切型、弯曲型、弯剪型构件的计算中 都有较好的精度。

通过式(14)这类公式,变截面、变轴力悬臂构件的二阶效应得到了更好的认识^[8-10]。

参考文献:

 (1) 童根树, 胡进秀. 弯曲型支撑-框架结构的屈曲及位移 和弯矩放大系数[J]. 建筑钢结构进展, 2007, 9(1): 52-56.

Tong Genshu, Hu Jinxiu. Buckling of frames braced by shear-walls and amplification factors for drift and moment [J]. Progress in Steel Building Structures, 2007, 9(1): 52-56. (in Chinese)

[2] 童根树,高宇.两个弯剪型抗侧力体系的线性相互作用[J]. 建筑钢结构进展, 2008, 10(5): 28-34.
 Tong Genshu, Gao Yu. Linear interaction between two

shear-flexural substructures under horizontal load [J]. Progress in Steel Building Structures, 2008, 10(5): 28– 34. (in Chinese)

- [3] 童根树. 钢结构的平面内稳定[M]. 北京: 中国建筑工 业出版社, 2005.
 Tong Genshu. In plane stability of steel structures [M]. Beijing: China Architecture & Building Press, 2005. (in Chinese)
- [4] 陈骥. 钢结构稳定理论与设计[M]. 第 4 版. 北京: 科学出版社, 2008.
 Chen Ji. Stability of steel structures theory and design [M]. 4th ed. Beijing: Science Press, 2008. (in Chinese)
- [5] Smith B S, Coull A. Tall building structures: Analysis and design [M]. New York: Wiley, 1991.
- [6] 童根树,季渊. 多高层框架-弯剪型支撑结构的稳定性研究[J]. 土木工程学报, 2005, 38(5): 28-33.
 Tong Genshu, Ji Yuan. Stability of multistory frames braced by Timoshenko vertical cantilevers [J]. China Civil Engineering Journal, 2005, 38(5): 28-33. (in Chinese)
- [7] 武藤清. 结构物动力设计[M]. 北京: 中国建筑工业出版社, 1984.
 Muto Kiyoshi. Structure dynamic design [M]. Beijing: China Architecture & Building Press, 1984. (in Chinese)
- [8] Khan F R, Sbarounis J A. Interaction of shear walls and frames [J]. Journal of the Structural Division, ASCE, 1964, 90(3): 285–335.
- [9] Timoshenko S P, Gere J M. Theory of elastic stability[M]. 2nd Ed. New York: McGraw Hill Co. Inc, 1961.
- [10] Rosenblueth E, Holtz I. Elastic analysis of shear walls in tall buildings [J]. Journal of the American Concrete Institute, 1960, 57(12): 1209-1222.