
University of Massachusetts - Amherst
ScholarWorks@UMass Amherst

National Center for Digital Government Research Centers and Institutes

12-7-2009

The Dependent Variable: Defining Open Source
"Success" and "Abandonment" Using
Sourceforge.Net Data
Charles Schweik
University of Massachusetts - Amherst

Follow this and additional works at: http://scholarworks.umass.edu/ncdg
Part of the Computer Sciences Commons, Political Science Commons, and the Science and

Technology Studies Commons

This Research, creative, or professional activities is brought to you for free and open access by the Research Centers and Institutes at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in National Center for Digital Government by an authorized administrator of
ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Schweik, Charles, "The Dependent Variable: Defining Open Source "Success" and "Abandonment" Using Sourceforge.Net Data"
(2009). National Center for Digital Government. Paper 35.
http://scholarworks.umass.edu/ncdg/35

http://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fncdg%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/ncdg?utm_source=scholarworks.umass.edu%2Fncdg%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/centers?utm_source=scholarworks.umass.edu%2Fncdg%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/ncdg?utm_source=scholarworks.umass.edu%2Fncdg%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fncdg%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/386?utm_source=scholarworks.umass.edu%2Fncdg%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=scholarworks.umass.edu%2Fncdg%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=scholarworks.umass.edu%2Fncdg%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/ncdg/35?utm_source=scholarworks.umass.edu%2Fncdg%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

The Dependent Variable:

Defining Open Source "Success" and "Abandonment" Using Sourceforge.Net Data

Charles M. Schweik

National Center for Digital Government
Center for Public Policy and Administration

Department of Natural Resources Conservation
University of Massachusetts, Amherst

NCDG Working Paper No. 09-003

Submitted December 7, 2009

The National Center for Digital Government is supported by the National Science Foundation under Grant No.
0131923. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the
author and do not necessarily reflect the views of the National Science Foundation.

Support for “The Dependent Variable” was provided by a grant from the U.S. National Science Foundation
(NSFIIS 0447623). Any opinions, findings, conclusions, or recommendations expressed in this material are the
authors and do not necessarily reflect the views of this agency.

Comments/reactions to this material are welcome and appreciated. Please send them to
cschweik@pubpol.umass.edu. If you use or would like to cite this material, please email
cschweik@pubpol.umass.edu for permission.

Schweik – Draft – Please do not cite or quote

 2

PART III

EXPLORATORY DATA ANALYSIS OF
SOURCEFORGE.NET DATA

Schweik – Draft – Please do not cite or quote

 3

INTRODUCTION TO PART III

 In Part II of this book, we explored theoretical concepts involved in explaining the

open source software phenomenon. In this section, Part III, we undertake an empirical

examination of open source projects to investigate the research questions and hypotheses

presented in tables at the conclusions of Chapters 2, 3, 4 and 5, respectively.

 To do this, we take advantage of a very large database of projects (107,000+)

found on the open source hosting site Sourceforge.net. This database was compiled by

people involved in the FLOSSMole project (2006) along with some data we collected from

Sourceforge.net ourselves. As we emphasize in Chapter 6, we see Sourceforge.net as a kind

of “remote sensor” of open source projects, analogous to satellites like Landsat that monitor

our Earth. Given that Sourceforge.net will likely be around for some time, it is worthwhile to try

and understand what this database can tell us about open source collaboration.

 Our first task is to utilize Sourceforge.net project data to develop a theoretically

sound and robust measure of open source collaborative success or abandonment – our

dependent variable. We present this work in Chapter 6. In Chapter 7, we describe the

independent variables we use in our analyses, and review the Classification Tree statistical

methods we use. With this foundation in place, we examine the factors that help to distinguish

between successful or abandoned Sourceforge.net projects in the two longitudinal stages we

introduced in Chapter 3 (Figure 3.2): the “Initiation” or pre-release stage (Chapter 8), and the

“Growth” or post-first release stage (Chapter 9). Each chapter reports its own findings for the

stage it analyzes. We close Part III of the book with a comparative discussion of differences

and similarities between these two stages. We also emphasize (as anticipated) that the SF

database is incomplete to capture all the theoretical factors thought to explain open source

success and abandonment.

Schweik – Draft – Please do not cite or quote

 1

CHAPTER 6

THE DEPENDENT VARIABLE:
DEFINING OPEN SOURCE "SUCCESS" AND "ABANDONMENT" USING

SOURCEFORGE.NET DATA1

 From the very beginning of this research project, we understood that we needed to

define what success meant in open source so that we could use that definition to create a

dependent variable for our empirical studies. Does success mean a project has developed

high quality software, or does it mean that the software is widely used? How might extremely

valuable software that is used by only a few people, such as software for charting parts of the

human genome, fit into this definition? In this chapter, we establish a robust success and

abandonment measure that satisfies these conditions. We describe the process we went

through to create a definition of open source success and abandonment, and how we used

that definition to classify nearly all the projects hosted on Sourceforge.net (SF, as of October

2006) as either successful or abandoned.

 The work to create a defensible measure of project success and abandonment was

time-consuming and extensive. It involved interviewing open source developers (a different

set of interviews than the ones we will present later in Chapter 10), studying the work of

others (e.g., Capiluppi, Lago, & Moriso, 2007; Crowston, Annabi & Howison, 2003; Hissam,

Weinstock, Plaksoh & Asundi, 2007; Robles et al., 2007; Stewart and Ammeter, 2005), and

doing test sampling of SF data. Our resulting classification is, as far as we can tell, the first

comprehensive success and abandonment classification of SF projects, and with it

established, we can answer simple, but previously unanswered questions like: How many

1 This chapter is based on material we previously published in Upgrade: The European Journal for the

Informatics Professional (http://www.upgrade-cepis.org). We are grateful to the Upgrade editors for granting
us permission to do so.

Schweik – Draft – Please do not cite or quote

 2

projects hosted on SF continue to be worked on collaboratively? How many are abandoned?

Are projects using particular programming languages or in certain topic areas of software

development more likely to achieve collaborative success? Or, are projects targeted at

particular audiences or being developed for open source operating systems more likely to

succeed? The data stored on SF are important because they hold the answers to these and

other similar questions.

 The next section of this chapter describes SF in more detail, along with the types of

data recorded by SF, and our ideas about how representative SF is of open source in

general. We then describe our interviews with open source software developers that were

designed to collect feedback about our initial ideas about how to define open source project

success. Later sections of this chapter describe our six-stage success and abandonment

classification system and the methodology we used to classify SF projects. We developed a

definition of project success that is based on successful collective action rather than high

quality or widespread use. The chapter closes with a discussion of our results and the

statistical validation of those results, as well as our conclusions about the advantages and

deficiencies of success and abandonment as our dependent variable.

About Sourceforge (SF)

 We have mentioned the SF open source project web hosting site in earlier chapters,

but before now, we have never described it in detail. As of this writing (July 2009), SF has

over 2 million registered users and provides free-of-charge web hosting services and

collaborative tools for over 230,000 open source software projects (Sourceforge, 2009). The

tools provided by SF include: software code repositories (with version control), bug-tracking

Schweik – Draft – Please do not cite or quote

 3

utilities, online forums, email mailing lists, a wiki, links to a separate project website in addition

to the project's presence on the SF website, file downloading services for the project's

software, and a web-based administrative interface so that open source software project

administrators can manage all of these tools. In short, SF provides the tools that most

projects require to develop open source software. The oldest projects currently hosted on SF

were registered in 1999 when the service started.

Data Available for Projects Hosted on SF

 SF stores and makes publicly available much of the information generated by a

project's administrator when the project is created, as well as any information generated over

time by the tools the project uses. For example, the project's pages on SF provide the date

the project was registered and the number of developers working on the project, as well as

the number of times the project's code repository has been accessed, historical records of the

number of bug posts and feature requests, searchable archives of forum posts and emails,

the number of project software releases, and the total number of times the software has been

downloaded. And, this only describes a portion of the information available for a given project.

We will describe these data in more detail later in this chapter and in Chapter 7.

 The people associated with two academic projects – one at the University of Notre

Dame called the Sourceforge Research Data Archive (Van Antwerp and Madey, 2008) and

the other, the FLOSSmole project (FLOSSmole, 2005) based at Syracuse University

(http://ossmole.sourceforge.net/) – understand the importance of capturing and keeping

historical SF data. For researchers like us who are trying to learn about and explain the open

source development phenomenon, the availability of these historical repositories is critically

important. We view these projects as “remote sensors” of open source project activity.

Schweik – Draft – Please do not cite or quote

 4

Through their efforts to periodically sample or collect temporal “slices” of the SF database,

these projects are actively building a historical repository of open source projects similar to

the way NASA's Landsat satellite system and the EROS Space Center have collected and

archived historical data about change in conditions of the earth's surface. There are great

analytical opportunities in these datasets. Although we only look at one timepoint of the SF

database in the empirical analysis of Sourceforge projects we will present in Chapter 7, we

believe our analysis captures a time-series element because the dataset is a snapshot of

approximately 107,000 projects all at different points in their project life cycle. Given the

likelihood that SF will be around for years to come (and hopefully these archival projects will

be too), it is important to investigate what can be learned about open source using SF data

alone. This chapter, along with the rest of Part III of this book, is devoted to this task.

Is Sourceforge Representative of all Open Source Projects?

 Because our classification of SF projects and our analysis in Chapters 8 and 9

exclusively use data gathered from SF, it is important to ask the question: to what degree is

SF representative of the population of open source projects “out there”? To what degree

would any findings based on SF apply to open source in general? In our view, the

representativeness of SF can be defined along at least two dimensions: First, whether or not

the projects on SF are representative of the broader universe of open source projects, and

second, whether or not developers on SF representative of the broader universe of open

source developers.

 While SF hosts the greatest number of open source projects, as we noted in Chapter 1,

there are many other open source project hosting sites, including BerliOS, Freepository,

Savannah, Sharesource, and others (see Open Directory Project, 2008). In addition, many

Schweik – Draft – Please do not cite or quote

 5

open source projects maintain their own web sites and other project infrastructure on their

own servers. Based on an Internet search and literature review (see Appendix 6.1 for search

procedures), it appears that no one has a sound estimate of how many Free/Libre and Open

Source Software projects exist or how many people are working on them. Since the

population of open source projects and developers is unknown, it is not surprising that we

were not able to find any empirical analysis to assess how representative SF is of this

unknown population.

 However. researchers have considered this or closely-related questions. In one of the

earliest references to the representativeness of SF, Madley, Freeh and Tynan (2002) mention

that they assumed that SF was representative because of its popularity and because of the

number of projects hosted there, although they note that this assumption “needs to be

confirmed” (p. 1812). Confirming their assumption will prove difficult because it requires

determining the extent of the open source universe – which, as we mentioned above, has not

yet been accomplished. For example, Ghosh (2005) notes that there is no census of the

universal population of open source developers. Additionally, there does not appear to be any

estimate of the total number of open source projects, although Carlo Daffara (2007), who is

associated with the European Union's European Working Group on Libre software, helped to

create an estimate of the number of “active and stable” projects for the FLOSSMetrics (2007)

project. Daffara defined active projects as projects with an 80-100% activity index (SF and

some other hosting sites generate an “activity” index) and a release within the last six months.

In the process of arriving at their estimate, Daffara (2007) examined 100 projects each from

Sourceforge, BerliOS, Savannah, Gna and other hosting sites which showed that active

projects comprise about 8-10% of the total. By using various techniques and information from

other sources, they arrived at a lower-bound figure of 195,000 projects in the open source

Schweik – Draft – Please do not cite or quote

 6

universe, with about 13,000 active projects and about 5,000 active, mature and stable

projects. Because they were only interested in active and stable projects that were useful for

Small and Medium- Sized Enterprises (SMEs), they did not try to estimate an upper-bound

figure for the population of open source projects.

 With regard to the second representative dimension, “developers,” Ghosh (2005)

states that the FLOSS survey was random and thus the results of the survey are applicable to

the entire universe of open source developers. One way to help establish whether SF is

representative would be to duplicate Ghosh's FLOSS survey on a random sample drawn from

SF developers. If the results are statistically similar, then this would support the hypothesis

that SF developers are representative of the universe of open source developers. While to our

knowledge, no one has conducted such a study. However, Raymond (2004) did a Web

search on the use of the terminology “open source” versus the terminology “free software2” on

both SF and the Internet as a whole. Raymond found that about 3% of the developers on SF

use the term “free software” and that about 4.5 % of the developers on the Web in general

use the term “free software,” while about 99% of the developers on Savannah.gnu.org (a

hosting site set up by “free software” advocates) used the term “free software.” Although this

does not make a strong case – it represents only one (philosophical) attribute of software

developers (refer back to Chapter 3) – it gives a sense that the developers in SF use

philosophical terminology roughly similar to the more broad population of open source

developers found across Internet.

 Spaeth et al. (2007) argue that sampling the Debian GNU/Linux Distribution is more

2 Recall from Chapter 1 that these terms reflect a philosophical difference, where “free” or “libre” software
captures the viewpoint that software should be a public good, whereas “open source” software is sometimes
considered more open or willing to work with commercial interests. Recall also that in this book for ease of
reading we use the “open source” widely to include both philosophies.

Schweik – Draft – Please do not cite or quote

 7

representative for some purposes than sampling SF for two reasons: (1) because “a

distribution...represents the population of projects in use,” and (2) because Debian includes

projects hosted on several open source hosting sites in addition to projects that host their own

projects on their own hardware. A “distribution” is a release of an operating system, often

Linux, combined with a large number of commonly used software programs, and thus, Spaeth

refers to a distribution as being representative of open source projects that are actually used

by a large number of people. Because Debian selects projects from a number of hosting sites,

and from projects that are hosted privately, Spaeth feels that this diversity may be more

representative than a single hosting site like SF.

 However, Spaeth et al. (2007) also point out that projects associated with Debian must

have a “free” license. In addition, all associated Debian free software projects will be

successful by our definition (see our definitions below) in order to be included in the Debian

package. Furthermore, software that runs on Windows is not included in the Debian

Distribution. From this, we conclude that Debian is not representative of the entire population

of open source projects because projects with non-free licenses, failed projects, and projects

that run on operating systems other than Linux are not included.

 Many reasons exist for believing that the projects hosted on SF are more

representative of the open source universe than any other repository. First, SF hosts more

projects and users than any other repository. Second, Daffara (2007) shows that the rate of

active projects on SF is very nearly the same as other hosting sites, thus providing a piece of

evidence that SF is representative of other hosting sites. Third, Raymond's (2004) web search

provides evidence that the developers on SF are roughly representative of the developers on

the entire Internet, at least in terms of their use of certain terminology. Finally, using the data

we have (FLOSSMole, 2006) SF has over one thousand projects having one hundred

Schweik – Draft – Please do not cite or quote

 8

thousand downloads or more and over 147 projects having over one million downloads. If

Daffara (2007) is correct that only about 5,000 stable mature and active projects exist in the

entire population of open source projects, then it is likely that many of them are represented

on SF.

One of the reviewers of an earlier version of this book said: “there is often an unstated

assumption [in open source research] that there is such an animal as ‘The Open Source

Developer’ and that he/she lives in SourceForge – and neither is true. There are dozens of

radically different development contexts many highlighted in the previous chapter and each

context is populated with communities of developers with very different motivations and

characteristics.” We agree. Chapter 3 emphasized the heterogeneity in developer types, and

we recognize that there are a variety of contexts (project hosting sites or self-hosted

collaboration platforms) where open source developers work. But there is evidence that

suggests that SF is representative of other hosting sites, and has more projects, more failed

projects and a significant number of active, mature and stable projects (Daffara, 2007; English

and Schweik, 2007). SF may be the best single source of data representative of the entire

open source population and consequently, provides a good place for investigating the

questions we posed in Chapters 2-5.

With the significance and utility of SF noted, we can move to the discussion of how we

used some of these data to create a measure of the success of open source projects. But

first, let us take a look at what some open source developers we interviewed thought about

success and abandonment of projects.

Schweik – Draft – Please do not cite or quote

 9

Developer Opinions about Success and Abandonment

 We conducted eight interviews (Schweik and English, 2007) with open source

developers between January and May of 2006 to get opinions about definitions of success

and, at that time, we were using the term “failure” rather than abandonment. We stratified our

sampling by categories of projects with <5, 5-10, 11-25 and >25 developers, and interviewed

developers from two projects in each category. Interviews were conducted over the phone,

digitally recorded, transcribed and analyzed. We asked interviewees how they would define

success in an open source project. Interviewees responded with five distinct views. One

defined success in terms of the vibrancy of the project’s developer community. Three defined

open source success as widely used software. Two others defined success as creating value

for users. One developer cited achieving personal goals, and the last interviewee felt his

project was successful because it created technology that percolated through other projects

even though his project never produced a useful standalone product.

 Immediately after asking interviewees about success, we asked how they would define

failure in an open source project. Interestingly, all eight developers said that failure had to do

with a lack of users and two indicated that a lack of users leads to project abandonment. In a

probing question that followed, we asked if defining a failed project as one that was

abandoned before producing a release seemed reasonable. Four interviewees agreed

outright, three agreed with reservations, and one disagreed. Two of those with reservations

raised concerns about the quality of the release. For example, one project might not make its

first release until it had a very stable, well functioning application while another project might

release something that was nearly useless. Another interviewee had concerns about how

much time could pass before a project was declared failed or abandoned. One developer

Schweik – Draft – Please do not cite or quote

 10

argued that a project that was abandoned before producing a release could be successful

from the developer’s point of view if he had improved his programming skills by participating.

The dissenting developer felt that project source code would often be incorporated into other

open source projects and would not be a failure even if no release had been made. These

discussions led us toward the use of the term of “abandonment” rather than “failure” because

many projects that had ceased collaborating still would not be viewed as failed projects.

 So, how do these responses inform working definitions of project success and

abandonment? Because we view open source projects as a commons driven by collective

action with the goal of producing software (recall Chapter 2), defining success in terms of

producing “useful software” makes sense. Six of the eight interviewees suggested that

success involves producing something useful for users. Since the real “tragedy of the

commons” for an open source project (see Schweik and English, 2007) involves a failure to

sustain collective action to produce, maintain or improve the software, defining failure in terms

of project abandonment makes sense, and generally, our interviewees agreed. Treating the

first release as a milestone or transition point between what we refer to as the “Initiation

Stage” and the project “Growth Stage” (see Figure 3.2; Schweik, 2007; Schweik and English,

2007) emerges logically from this line of thinking.

A Success/Abandonment Classification System for Open Source Commons

 In recent years, scholars have investigated different approaches to measuring the

success and failure of open source projects. For example, studies such as Capiluppi, Lago,

and Moriso (2007), Crowston, Annabi and Howison (2003), Hissam, et al. (2007), Robles et

al. (2007), and Stewart and Ammeter (2005) measured open source project “life” or “death” by

Schweik – Draft – Please do not cite or quote

 11

monitoring project activity measures such as: (1) the release trajectory (e.g., movement from

alpha to beta to stable release); (2) changes in version number; (3) changes in lines of code;

(4) the number of “commits” or check-ins to a central software code repository, and (5) activity

or vitality scores measured on collaborative platforms such as SF and Freshmeat.net. Weiss

(2005) assessed project popularity using web search engines. Crowston, Howison and

Annabi (2006) reviewed traditional models used to measure information systems success and

then adapted them to open source. They collected data from Sourceforge.net (SF) and

measured community size, bug-fixing time and the popularity of projects.

 After conducting our interviews, reviewing the ideas and work of the other researchers

above, and carefully considering those inputs along with our own thinking about success and

abandonment from a “commons” and collective action perspective, we developed a six-class

system for describing success and abandonment of open source projects across our two

longitudinal stages of Initiation and Growth (see Table 6.1). Recall that in Chapter 3 (see

Figure 3.2), we defined “Initiation” as the start of the project to its first public release, and

“Growth” as the period after this release.

 We classify a project as (1) Successful in the Initiation Stage (SI) when it has produced

“a first public release.” This can be easily measured for SF lists all of a project’s releases. A

project that is successful in the initiation phase automatically becomes an indeterminate

project in the growth phase.

 Projects are classified as (2) Abandoned in the Initiation Stage (AI) when the project is

abandoned before producing a first public release. We define abandonment as few forum

posts, few emails to email lists, no code commits or few other signs of project activity over a

one-year period. Preliminary data we have analyzed from SF indicates that projects in

Initiation that have not had a release for a year are generally abandoned (see the discussion

Schweik – Draft – Please do not cite or quote

 12

of the “test sample” below).

 A project is classified as a (3) Success in the Growth Stage (SG) when it exhibits three

releases of a software product that performs a useful computing task for at least a few users

(it has to be downloaded and used). We decided that the time between the first release and

the last release must be at least six months because it needs to capture some relatively

significant effort. (We have found in some cases on SF multiple releases are posted over a

single day which would in relative terms not be a meaningful new release.) As mentioned

above, we can easily measure the number of releases and the time between them, since SF

tracks this information. However, measuring “a useful computing task” is harder and more

subjective. Acquiring the number of downloads recorded on project websites is probably the

easiest measure, with the assumption that many downloads captures the concept of utility.

A project is considered (4) Abandoned in the Growth Stage (AG) when it appears to be

abandoned without having produced three releases or when it produced three releases but

failed to produce a useful software product. We classify a project as (5) Indeterminate in the

Initiation Stage (II) when it has yet to reveal a first public release but shows significant

developer activity. Finally, projects are assigned (6) Indeterminate in the Growth Stage (IG)

when they have not produced three releases but show development activity or when they

have produced three releases over less than six months and show development activity.

Schweik – Draft – Please do not cite or quote

 13

Table 6.1
Our Dependent Variable:

Six Success/Abandonment Classes and their Methods of Operationalization

Class/Abbreviation Definition(D)/Operationalization(O)/SF Variables used(SFV)

Success, Initiation (SI) D: Developers have produced a first release.
O: At least 1 release (Note: all projects in the growth stage are SI)
SFV: Number of Releases

Abandonment, Initiation (AI) D: Developers have not produced a first release and the project is
abandoned.
O: 0 releases AND >=1 year since SF project registration
SFV: Number of Releases, Project Lifespan

Success, Growth (SG) D: Project has achieved three meaningful releases of the software and the
software is deemed useful for at least a few users.
O: 3 releases AND >= 6 months between releases AND has >10
downloads.
SFV: Number of Releases, First Release Date, Last Release Date,
Downloads, Data Collection Date

Abandonment, Growth (AG) D: Project appears to be abandoned before producing 3 releases of a
useful product or has produced three or more releases in less than 6
months and is abandoned.
O: 1 or 2 releases and >=1 year since the last release at the time of data
collection OR 3 or more releases and < 11 downloads during a time period
greater than 6 months starting from the date of the first release and ending
at the data collection date OR 3 or more releases in less than 6 months
and >= 1 year since the last release.
SFV: Number of Releases, First Release Date, Last Release Date, Data
Collection Date, Downloads, Project Lifespan

Indeterminate Initiation (II) D: Project has yet to reveal a first public release but shows significant
developer activity.
O: 0 releases and < 1 year since project registration
SFV: Number of Releases, Project Lifespan

Indeterminate Growth (IG) D: Project has not yet produced three releases but shows development
activity or has produced 3 releases or more in less than 6 months and
shows development activity.
O: 1 or 2 releases and < 1 year since the last release OR 3 releases and <
6 months between releases and < 1 year since the last release
SFV: Number of Releases, First Release Date, Last Release Date, Data
Collection Date

Operationalizing the Classification System

 As a first step in operationalizing our definitions for open source success and

abandonment using the definitions (denoted as “D:”) in Table 6.1, we conducted a random

test sample of sixty projects hosted on SF using the FLOSSmole project data we referred to

earlier (FLOSSmole, 2006). The FLOSSmole project is itself an open source-like project

Schweik – Draft – Please do not cite or quote

 14

where researchers and others collaborate to collect and analyze data about open source

software. The data is collected by automated “spidering3” of SF and other open source

hosting sites, and made publicly available. We decided to conduct this test sample from the

FLOSSmole database to look for problems with our classification scheme and to get some

idea about the number of projects likely to fall within each of the classes.

 Following the logic used in our open source developer interviews and knowing we

wanted to study projects with larger numbers of developers because of their more interesting

collective action issues, we stratified by number of developers into categories of <10, 10-25

and >25 developers. We randomly sampled twenty projects from each category for a total of

sixty projects. We chose 20 projects because it was a reasonable undertaking given time

constraints. For these sixty sampled projects, we manually compiled data on project

registration, last release date, number of downloads, project website URL and forum/email/

postings among other data. From this data, similar to the coding often done in qualitative case

study methods, we made a judgment about whether the software was “useful” and whether

the project was abandoned. We classified the projects as SI, AI, SG or AG based on this

information. No indeterminate cases were found in this sample.

 Perhaps the most important information we acquired from this test sample effort is that

the vast majority of projects that have not had a release for a year are abandoned. All 27

projects in the sample that (1) had not provided a release in over a year and (2) had less than

three releases were abandoned. This finding suggested that we could produce a relatively

simple but approximately accurate classification by using a project’s failure to release within a

year as a proxy for abandonment. This test sample process and qualitative analysis provided

3 For non-technical readers, this means writing a program that reads pages on these websites and extracting

out the data needed.

Schweik – Draft – Please do not cite or quote

 15

confidence that our conceptual ideas for these definitions were accurate. Our next step was to

implement these concepts using SF data in our dataset.

Data Description

 Of course, the operationalization of the definitions for success and abandonment have

much to do with the availability of data in SF to implement these concepts. We needed a

number of variables to operationalize our classification system. These variables included:

Project Lifespan, Number of Releases, First Release Date, Last Release Date, Data

Collection Date and Downloads. Fortunately, many of these variables existed in data

gathered by FLOSSmole. We used FLOSSmole data from August, 2006 because this was the

most recent data available at the time we developed this classification. However, not all of the

data we needed were available from FLOSSmole, so we spidered the SF website ourselves

between September 24, 2006 and October 16, 2006 to gather the missing variables. The

missing variables included: Number of Releases, First Release Date and Last Release date.

We call the data we spidered ourselves the “UMass data.”

 The FLOSSmole data had complete data for 119,355 projects, but 8,422 of these

projects either had missing data or were purged from SF between the time the FLOSSmole

data were collected and the time the UMass data were collected, thus leaving 110,933

projects. We eliminated another 3,186 projects from our classification because these projects

had zero releases and downloads listed on SF, but also had project websites not hosted on

SF that may have been used to distribute files.4 In the end, we classified 107,747 projects.

4 In later analyses, had we left these projects with external project web pages in, they could have been falsely

classified as abandoned even though they were active in other web locations than Sourceforge.

Schweik – Draft – Please do not cite or quote

 16

Our dataset also includes other numerical and categorical independent variables for these

projects. These are used to construct both independent and dependent variables.

Independent variables (and the associated approach to analysis) will be described in Chapter

7. The variables used to create our dependent variable are described more precisely below,

and Table 6.2 shows descriptive statistics for these variables.

Project Lifespan

 Project Lifespan is the time between the date the project was registered on SF and the

time our data were collected. Since the UMass data were collected after the FLOSSmole

data, the data collection dates for the UMass data were used in our calculations.

Number of Releases

 The Number of Releases variable is somewhat complicated by the fact that SF lists

information for “Package,” “Release,” and “Filename” on project download pages. Projects

can release one or more “Packages” that can each contain one or more “Releases.” In

addition, the “Releases” can each contain one or more “files.” SF totals both the number of

“releases” and the number of “files released” at the bottom of each project's download page.

These totals sum the number of releases and files in all packages. The number of “files

released” is often greater than the number of “releases.” In our dataset, we created the

“Number of Releases” variable which is the total number given for SF “Releases,” rather than

using the total number of “files released.” If there are several files released within a “release,”

quite often they are help files or different file formats for the same working program, so using

“files released” would not be appropriate for the purposes of our classification.

Schweik – Draft – Please do not cite or quote

 17

First Release Date

 This variable is the date the first release was made.

Last Release Date

 This variable is the date the last release was made.

Data Collection Date

 This variable is recorded by the spidering software when the web page is downloaded

from SF.

Downloads

 Our downloads variable is the total number of downloads over the project lifetime for

each project.

Table 6.2
Descriptive Statistics for Dependent Variable Components:
FLOSSMole (2006) and UMass Sept-Oct 2006 Spidered Data.

Variable Name Min 1st Quad Median Mean 3rd Quad Max

Project Lifespan
(yrs)

0.003 1.08 2.39 2.54 3.70 6.74

Number of
Releases

0 0 1.00 2.77 2.00 537

Downloads 0 0 23 12,835 494 228,643,712

Schweik – Draft – Please do not cite or quote

 18

Classification Results

Table 6.3 provides the number of SF projects classified in each of our two longitudinal

stages: Initiation and Growth using the FLOSSMole (2006) and UMass spidered data. In

these 107,747 SF projects, about half were in the Initiation Stage and the other half were in

the Growth Stage. Table 6.3 also reports projects that could not be classified.

Table 6.3
Sourceforge.net Projects Organized by
Longitudinal Stage (as of August 2006)

Stage # of Projects (% of Total
Classified)

Initiation Stage 50,662 (47)

Growth Stage 57,085 (53)

Not classified 3,186*

Total classified 107,747

* These are valid projects, but could not be classified
because they have 0 releases & downloads on SF but

have other websites that may be used for these functions.

 Table 6.4 summarizes our results of the success and abandonment classification of all

projects on SF. As Table 6.4 column 3 shows, potential classification errors stem primarily

from two sources: (1) Source 1 Error – using one year without a release as a proxy for

abandonment, and (2) Source 2 Error – using the number of downloads per month as a proxy

for the software being useful.

Schweik – Draft – Please do not cite or quote

 19

Table 6.4
Classification of all FLOSS projects on Sourceforge.net

(as of August 2006)

Class # of
Projects

(%of Total)

Possible Classification Errors
(other than errors in the SF data)

Abandoned in
Initiation (AI)

37,320 (35) The project is not abandoned but > 1 year old

Successful
Growth (SG)

15,782 (15) The software is not used in spite of not meeting the
download criteria for abandonment

Abandoned in
Growth (AG)

30,592 (28) The project is not abandoned, OR the project produced
useful software even though it met the download criteria
for abandonment

Indeterminate
in Initiation (II)

13,342 (12) No classification errors (by definition)

Indeterminate in
Growth (IG)

10,711 (10) No classification errors (by definition)

Total 107,747

Note: SI is not listed because these successes are now Growth Stage projects. Including SI
would double count.

Validation of Results

 To test the validity of the results in Table 6.4, we took a random sample of three

hundred classified projects, and checked each project's classification results by manually

reviewing its SF pages. Table 6.5 lists validation results. Of the 106 projects originally

classified Abandoned in Initiation (AI), 77 were correctly classified, ten were incorrectly

classified, eighteen were deleted from SF and one had missing information and could not be

validated (19 missing or deleted in total), resulting in our highest classification error rate of

11.5%. The ten misclassifications did not list a release for a year after they were registered,

but did show some developer activity in the year before our data were collected (Source 1

error). Regarding the eighteen deleted projects, it is highly likely that most if not all of these

were classified correctly, given SF regularly purges inactive projects; however, it is possible

Schweik – Draft – Please do not cite or quote

 20

that some were active and were moved to other hosting platforms by the project developers.

Consequently, we keep 11.5% as the error rate for AI, but the true error rate is probably

lower. Of the 101 cases that were originally assigned to the Abandoned in Growth (AG) class,

eight were active and incorrectly classified for an error rate of 7.9%. Finally, of the 93 cases

that were classified as Successful in Growth (SG), 92 were classified correctly and one could

not be validated because of missing data on SF. In other words, our SG classification had an

error rate of very close to 0. These validation results show that the classification varies from

what we would consider “reasonably accurate” (AI) to “extremely accurate” (SG). This gives a

high-level of confidence that we can use this measure as a dependent variable in the analysis

we present in Chapter 7 and later in the book.

Table 6.5
FOSS Project Classification Validation Results

Original Class (#
of cases)

Correct Incorrect Deleted or
Missing Data

Error Rate %

AI
(106)

77 10 19 11.5

AG
(101)

93 8 0 7.9

SG
(93)

92 0 1 0

Totals
(300)

262 18 20 6.4

Schweik – Draft – Please do not cite or quote

 21

Conclusion/Summary

 This chapter is critical for this study for it explains how we conceptualized and

produced the dependent variable – success and abandonment of SF projects – that is used in

much of the empirical work that follows. First, we explained how data is produced and stored

on the SF web site, and how representative that data may be of open source projects in

general. Although we cannot know for sure whether SF is truly representative of the open

source phenomenon as a whole, we believe it is the most representative single source of data

available at this time. Next, we described our efforts to come up with a defensible definition

for open source project success and abandonment. We did this by conducting interviews with

developers that revealed their ideas about these concepts and reviewing existing work done

on this subject. We presented our definitions (Table 6.1) and tested these definitions by

conducting a test sample of SF projects, classifying them based on our ideas, and manually

reviewing the projects. These activities helped finalize our ideas about how to define and

operationalize success using SF data. We then discussed how we operationalized these

concepts using SF data. In the end, we have created a classification system based on

successful collective action as opposed to a classification system that classified successful

projects from a software engineering point of view (e.g., a measure of software quality) or the

concept of a “large number of users” (recall our classification treats a small number of users

(e.g., specialized software) as a successful case. Finally, we presented the results of our

efforts to validate the classification, and based on those results, we believe that this

classification, used as a dependent variable, has adequate accuracy to produce meaningful

results in statistical analyses of SF data.

 All the data used in our classification and more detailed working notes on our

Schweik – Draft – Please do not cite or quote

 22

classification process have been given back to the FLOSSMole project, and are available on

our project website (http://www.umass.edu/digitalcenter/ossuccess/). We hope that other

researchers will consider the use of this classification definition – and, in the spirit of open

source build and improve upon it – to classify projects at various points in time other than

August, 2006. With our dependent variable in hand, we can now analyze how project

characteristics affect success and abandonment, and begin to investigate the question: What

can SF data tell us about what makes open source projects a successful collaboration? In

Chapters 7, 8 and 9 we investigate this question.

Schweik – Draft – Please do not cite or quote

 23

Appendix 6.1

Search Procedure for Literature on the Representativeness of Sourceforge.net
(Summer, 2007)

GOOGLE
Phrase:
population open source software project - 255,000 results narrowed search
"population of open source projects" - 2 results looked at both
population "open source projects" - 39,600 results looked at top ten
estimate population "open source" project - 56,500 results looked at 20
"estimate population" "open source projects" - 11 results looked at all
is sourceforge.net representative of open source population? - 33,100 results looked at top
ten
total number open source software projects - 3,190,000 results (found Galoppini's estimate)
"total number of open source software projects" - 0 results
estimate "total number" "open source projects" - returned 3,370 looked at top 20
census of open source software projects - 1,170,000 results
census "open source projects" - 5,990 results looked through 100
is sourceforge.net representative of open source population? - 5,230 results

GOOGLE SCHOLAR
Phrase:
population open source software project - 124,000 results
"population of open source projects" - 0 results
population "open source projects" - 997 results
estimate population "open source" project - 10,200 results looked at 20
"estimate population" "open source projects" - 0 results
total number open source software projects - 237,000 results looked at top 20
"total number of open source software projects" - 0 results
estimate total number open source projects - 233,000 results looked at 100
estimate "total number" "open source projects" - 341 results looked at 150
census of open source software projects - 29,300 results
census "open source projects" - 97 results looked through 30
 Found http://www.osscensus.org/
http://waughpartners.com.au/research/census2007

is sourceforge.net representative of open source population? - 934 results.(Madley paper
2002)

SEARCHED "ACADEMIC SEARCH PREMIER"
Phrase:
population open source projects - 0 results
census open source projects - 0 results
survey open source projects - 0 result
estimate number open source software project - 0 results
sourceforge - 26 results looked at 26

Schweik – Draft – Please do not cite or quote

 24

SEARCHED ENGINEERING VILLAGE
Phrase:
population open source projects - 27 results looked at 27
census open source software project - 1 result
survey open source projects - 64 results
estimate number open source software project - 6 results
sourceforge - 72 results
sourceforge representative - 4 results looked at 4

SEARCHED IEEE XPLORE
Phrase:
population open source projects - 0 results
census open source software project - 0 results
survey open source projects - 0 results
estimate number open source software project - 0 results
sourceforge - 16 results looked at 16

SEARCHED ISI WEB OF KNOWLEDGE
Phrase:
population open source projects - 3 results
census open source software project - 0 results
survey open source projects - 20 results looked at 20
estimate number open source software project - 0 results
sourceforge - 72 results
sourceforge representative

SEARCHED SCIENCE DIRECT
Phrase:
population open source projects - 4 results
census open source software project - 0 results
survey open source projects - 17 results looked at 17
estimate number open source software project - 1 result
sourceforge - 13 results

	University of Massachusetts - Amherst
	ScholarWorks@UMass Amherst
	12-7-2009

	The Dependent Variable: Defining Open Source "Success" and "Abandonment" Using Sourceforge.Net Data
	Charles Schweik

