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ABSTRACT 

VALUE OF TRAVELER INFORMATION FOR ADAPTIVE ROUTING IN 

STOCHASTIC TIME-DEPENDENT NETWORKS 

 

FEBRUARY 2009 

 

HE HUANG, M.S., Civil & Environmental Engineering 

 

UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Song Gao 

 

 

Real-time information plays an important role in travelers’ routing choices in an 

uncertain network by enabling online adaptation to revealed traffic conditions. The 

quality of the information affects its effectiveness. Usually there are some limitations in 

the information provided to the travelers, spatially, temporally or both. In this thesis, 

three variants of an optimal adaptive routing problem with partial online information 

problem are introduced: global information with time lag, global pre-trip information and 

radio information on a subset of links without time lag. A generic description of online 

information is provided.  An algorithm is designed for the optimal routing problem in 

stochastic time-dependent networks with partial online information and specializations 

required for each of the three variants are given. A test example is conducted and 

computationally verifies the non-negative value of information.  The work in this thesis is 

potentially of interest to traveler information systems evaluation and design. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Motivation 

Congestion is an important worldwide transportation issue. In developed countries 

where building more infrastructures is usually politically, financially and environmentally 

constrained, a lot of efforts have been devoted to making full use of current infrastructure 

system with the help of Intelligent Transportation Systems (ITS). 

Advanced Traveler Information System (ATIS), a sub-system of ITS, aims to 

provide travelers with real-time information about network conditions, in the hope that 

better informed travelers can make better decisions, and thus collectively the congestion 

would be relieved.  In order to assess an ATIS, a comprehensive model is needed to take 

into consideration the demand-supply interaction under the influence of ATIS (Gao, 

2008).  This thesis deals with the demand side of the problem, which describes the 

optimal routing decisions a traveler can make with the help of ATIS and how much 

benefit can be obtained from traveler information. Note that no demand-supply 

interaction is modeled in this thesis, i.e., travel times are not affected by travelers’ 

choices.  This is the study of the value of traveler information for a single traveler in an 

uncertain network. 

The value of information provided by ATIS is most evident when traffic 

conditions are stochastic. In a network where traffic quantities are almost certain, 

travelers are already quite well informed and ATIS has little to provide. Stochasticity is a 

basic feature of congested traffic networks. One significant source of the randomness is 

the disturbances to traffic networks, such as incidents, vehicle breakdown, bad weather, 
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work zones, special events, etc. Traffic networks are treated as stochastic to better reflect 

reality and enable the modeling of information.   

There are various implementations of ATIS, and they differ in the spatial and 

temporal availability, the quality, the format, and limitation of information provided. For 

example, a variable message sign (VMS) is usually fixed in location and thus only 

travelers passing it can obtain the information. It is also limited in the amount of 

information it can provide. Radio-based systems can provide information to travelers 

anywhere in the radio coverage. Relatively more detailed information is available 

compared to VMS, yet still the coverage is usually limited to major highways and 

arterials. Besides the limitation on the spatial side, there is also limitation on the temporal 

side. Usually radio broadcast provides traffic condition information every 15 minutes for 

example, and so for travelers there is a time lag with the information. Internet can also be 

an access to ATIS, providing travelers with information such as camera images, travel 

time estimations, work zone and event schedule, and travel advisories. However, once 

travelers are en route, they can hardly have access to internet, and so internet-based ATIS 

implementation is usually viewed as a pre-trip planner. More advanced in-vehicle 

systems are also emerging, possibly with a database of road map, travel times under 

normal conditions, records of past incidents, etc., and can communicate with information 

centers to obtain very detailed and updated information. 

Travelers' routing decisions in a stochastic network with online information is 

conceivably different from those in a deterministic network.  It is generally believed that 

adaptive routing will save travel time and enhance travel time reliability.  For example, in 

a network with random incidents, if one does not adapt to an incident scenario, he/she 
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could be stuck in the incident link for a very long time.  However, if adequate online 

information is available about the incident, the traveler can avoid it by switching to an 

alternative route. The adaptation also ensures that the travel time is not prohibitively high 

in incident scenarios, and thus provides a more reliable travel time. 

It is therefore a very interesting research question how an individual traveler 

makes adaptive routing decisions based on provided information in a stochastic and time-

dependent (STD) network, whose link travel times are random variables with time-

dependent distributions.  In previous work Gao and Chabini (2006) and Gao (2005), the 

optimal routing problem with perfect online information is studied and the value of 

perfect online information evaluated.  This study is an extension of Gao and Chabini 

(2006) and Gao (2005) where a number of partial online information situations are 

considered.  A different algorithm is required, and it is a generic one which can also solve 

the perfect online information problem in Gao and Chabini (2006) and Gao (2005).  

The thesis is organized as follows. First a literature review is given and the 

contributions of this thesis are summarized. Next the optimal routing policy problem in a 

stochastic time-dependent network is defined for partial online information situations.  

Four variants which are particularly pertinent in traffic networks are then studied. A 

generic algorithm which provides an exact optimal solution to the variants is presented.  

Computational tests are carried out and the results are given. Finally some conclusions 

are made and future research directions are given. 
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1.2 Literature Review 

Two of the important characteristics of a network are time-dependency (whether a 

link cost is dependent on the arrival time at the beginning of the link) and stochasticity 

(whether link costs are random variables).  Routing problems in deterministic networks, 

both static and dynamic, have been important and well researched topics for a long time 

(see e.g., Ahuja et al. 1993, Chabini, 1998).  Routing problems in stochastic networks are 

relatively less studied compared to their deterministic counterpart.  Two possible types of 

routing problems exist in a stochastic network: non-adaptive and adaptive.  Non-adaptive 

routing does not consider the fact that information on arrival times on intermediate nodes 

and/or link travel time realizations will be available during a trip, and thus a fixed path is 

determined at the origin node and followed regardless of the actual realizations of the 

stochastic network.  On the other hand, adaptive routing considers intermediate decision 

nodes, and a next link (or sub-path) is chosen based on information collected thus far.  

The adaptive routing problem is the focus of the review.    

Various assumptions are made to define a stochastic network and how the 

realizations of the stochastic network are revealed to the travelers. Studies in both static 

and time-dependent (and stochastic) networks are reviewed.  In Andreatta and Romeo 

(1988), the topology of the static network is stochastic; in Polychronopoulos and 

Tsitsiklis (1996), the whole static network is described by a joint distribution of link 

travel costs in the dependent case, and by marginal distributions of link travel times in the 

independent case; in Polychronopoulos (1992),  Psaraftis and Tsitsiklis (1993) and Kim 

et al. (2005), the link costs evolve as Markov processes; in Hall (1988), Chabini (2000), 

Miller-Hooks and Mahmassani (2000), Pretolani (2000), Miller-Hooks (2001), Yang and 
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Miller-Hooks (2004), Bander and White (2002), Fan et al. (2005b) and Opasanon and 

Miller-Hooks (2006), time-dependent networks are described by marginal distributions of 

link travel times; in Gao and Chabini (2006), time-dependent  networks are described by 

joint distribution of travel times of all links at all times; and in Waller and Ziliaskopoulos 

(2002), Fan et al. (2005a)  and Boyles (2006), conditional probabilities of adjacent link 

travel costs are utilized.  As for the revealing of network conditions, in Andreatta and 

Romeo (1988), Polychronopoulos and Tsitsiklis (1996), Cheung (1998), Fu (2001), 

Waller and Ziliaskopoulos (2002) and Provan (2003) it is assumed that one learns the 

realization of a link travel cost once he/she arrives at the node from which the link 

emanates; in Chabini (2000), Miller-Hooks and Mahmassani (2000), Miller-Hooks 

(2001), Yang and Miller-Hooks (2004), Bander and White (2002), Pretolani (2000), Fan 

et al. (2005b), Opasanon and Miller-Hooks (2006) it is not stated explicitly how travelers 

learn about the network conditions other than the arrival times at decision nodes, hence 

the term “time-adaptive”; in Waller and Ziliaskopoulos (2002), Fan et al. (2005a) and 

Boyles (2006) it is assumed that travelers remember only the travel time on the last link 

they traverse; in Gao and Chabini (2006) it is assumed that travelers have knowledge 

about all link travel time realizations up to the current time;  and in Psaraftis and 

Tsitsiklis (1993) and Kim et al. (2005) it is assumed that Markovian travel times and thus 

travelers learn the current state of the Markovian chain at any time.  

The optimal adaptive routing problem studies in stochastic time-dependent (STD) 

networks are summarized in Table 1 – 1 with a taxonomy developed by Gao and Chabini 

(2006).  A more detailed review follows. 

 



 

6 

Table 1-1 Taxonomy of the optimal routing policy problem 

 

                  Information 

Network 

Perfect 

 online 

Partial 

 online 

No online information 

(time-adaptive) 

No link-wise and 

time-wise dependency 
 

Complete dependency 

Gao and 

Chabini 

(2002, 

2006) 

This thesis 

Partial dependency  

Psaraftis and 

Tsitsiklis 

(1993), Kim 

et al. (2005), 

Boyles (2006) 

Hall (1987), Miller-Hooks and 

Mahmassani (2000), Chabini 

(2000), Pretolani (2000), 

Miller-Hooks (2001), Bander and 

White (2002), Yang and Miller- 

Hooks (2004), Fan et al. (2005b), 

Opasanon and Miller-Hooks 

(2006) 

 

Hall (1986) studies for the first time the time-dependent version of the ORP 

problem.  It is shown that in an STD network, routing policies are more effective than 

paths.   Chabini (2000) gives a dynamic programming algorithm based on the concept of 

decreasing order of time (DOT). The algorithm is optimal in the sense that no algorithms 

with better theoretical complexity exist.  Miller-Hooks and Mahmassani (2000) develop a 

label-correcting algorithm.  Insight into the difference between an optimal routing policy 

problem and a least expected time path problem is provided.  Later Miller-Hooks (2001) 

compares the said label-correcting algorithm and the dynamic programming algorithm 

working in decreasing order of time (Chabini, 2000) in both sparse transportation 

networks and dense telecommunication data networks.   Yang and Miller-Hooks (2004) 

also extend the study of the time-adaptive routing policies to a signalized network.   

Pretolani (2000) uses a hyper-path representation of the adaptive routing problem 

based on arrival times.  Bander and White (2002) design a heuristic approach with a 

promising feature: it will terminate with an optimal solution if one exists, given that the 

heuristic function underestimates the true cost-to-go. The proposed heuristic has a 
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significant computational advantage compared to dynamic programming, shown through 

computational tests.  Fan et al. (2005b) maximize the probability of arriving on time with 

continuous probability density functions on link travel times. Later in Fan and Nie (2006), 

algorithmic issues are explored for the same problem.  Opasanon and Miller-Hooks (2006) 

study the time-adaptive problem with multiple optimization criteria.   

Psaraftis and Tsitsiklis (1993) study the problem in acyclic networks, implying 

that no link would be visited twice, so it is not helpful to keep information of any already 

traversed links.  This assumption along with the infinite horizon assumption makes a 

polynomial running time algorithm possible. Kim et al. (2005) study a similar problem in 

a general network with a wider information range. Boyles (2006) studies the problem 

with minimum expected disutility, which is a general piece-wise polynomial function of 

arrival time at the destination. 

1.3 Contributions 

Gao and Chabini (2006) establish a formal framework for the problem and design 

both exact and approximation algorithms for the problem with perfect online information.  

This thesis builds on Gao and Chabini (2006) and the contributions to the state of art are 

threefold: 

• A generic representation of online information is provided from which three 

specializations of partial online information are derived.  The generic 

representation provides a unified view towards routing problems with online 

information. 
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• A theoretical proof of the value of information is given which shows that in an 

adaptive routing context in an STD network, more information is always better (at 

least not worse) in a flow-independent network. 

• A generic algorithm for a number of partial online information variants is 

designed.  This enables the systematic study of the value of traveler information 

for adaptive routing in an uncertain network where a wide variety of information 

access situations can be modeled. 
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CHAPTER 2 

 

PROBLEM DEFINITION 

2.1 The Network 

Let G = (N, A, T,C
~

) denote a stochastic time-dependent network. N is the set of 

nodes and A is the set of links, with |N| = n and |A| = m.  It is assumed that there is at 

most one directional link from node j to k, and thus a link can be denoted as (j, k). T is the 

set of time periods {0, 1, …, K-1}. A support point is defined as a distinct value (vector 

of values) that a discrete random variable (vector) can take. Therefore a probability mass 

function (PMF) of a random variable (vector) is a combination of support points and the 

associated probabilities. Throughout this thesis, a symbol with a ∼ over it is a random 

variable (vector), while the same symbol without the ∼ is its support point. The travel 

time on each link (j, k) at each time period t is a random variable 
tjkC ,

~
with finite number 

of discrete, positive and integral support points.  Beyond time period K-1 travel times are 

static, i.e., travel times on link (j, k) at any time t > K-1 is equal to that at time K – 1 for 

any given support point. The time period from 0 to K-1 is denoted as the dynamic period, 

while that beyond K-1 static period. It is generally possible to model the peak period as 

dynamic, while off-peak as static when traffic is more stable.  {C
1
, …,C

R
} is the set of 

support points of the joint probability distribution of all link travel times at all times, 

where 
r

C is a vector of time-dependent link travel times with a dimension K × m, r = 1, 

2, …, R.  
r

tjkC ,  is the travel time of link (j, k) at time t in the r-th support point, which has 

a probability pr, and 1
1

=∑
=

R

r

rp .   
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An example network is shown in Figure 2-1 and Table 2-1 with 3 nodes, 3 links 

and 2 time periods.  There are 3 support points, each with a probability of 1/3, for the 

joint distribution of 6 travel time random variables (links (a, b), (b, c) and (a, c) over time 

periods 0 and 1).  A support point can be conveniently viewed as a day.  Travel times 

beyond time 1 are the same as those at time 1 for each of the 3 support points. 

 

Figure 2-1 Algorithm DOT-PART: A Small Network 

Table 2-1 Support points for the Small Network 

 

Time Link C
1
 C

2
 C

3
 

(a, b) 1 1 1 

(b, c) 2 2 1 0 

(a, c) 3 3 2 

(a, b) 1 1 2 

(b, c) 1 2 1 1 

(a, c) 3 2 2 

3/1321 === ppp  

2.2 Online Information 

Let H be a trajectory of (node, time) pairs a traveler could experience in the 

network to the current node j and time t: H = {(j0, t0), …, (j, t)}, where j0 is the origin, t0 

is the departure time, j is the current node and t is the current time.  Denote the 

information coverage on links and time periods as Q ⊆ A × T.  Information is represented 

as the travel time realizations on time-dependent links in Q.  It is assumed there is no 

error in revealing the true travel times, i.e., a 1 minute travel time will be revealed as 1 

a 

b 

c  
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minute, not any other value.  An information scheme is defined as a mapping from 

trajectory H to coverage Q, that is, information depends on traversed locations and times. 

Here are examples of online information schemes with trajectory H = {(j0, t0), …, (j, t)}: 

• Perfect online information (Gao and Chabini, 2006): Q
POI

(H) = A × {0,1,…,t} (all 

links up to the current time) 

• Global information with time lag ∆: Q
LAG

(H) = A × {0,1,…,t - ∆} (all links up to 

∆ time ago) 

• Global pre-trip information with departure time t0: Q
PRE

(H) = A × {0,1,…,t0} (all 

links up to the departure time t0) 

• Radio information on B ⊆ A with no time lag: Q
RADIO

(H) = B × {0,1,…,t} (a 

subset of links up to the current time) 

• No online information (see e.g., Gao and Chabini, 2006): Q
NOI

(H) = ∅ (no 

information on any link at any time) 

The example in Figure 2-1 and Table 2-1 is used to illustrate the different 

information schemes. At time 0 and any node, a traveler with POI knows the travel time 

realizations of {
0,

~
abC ,

0,

~
bcC ,

0,

~
acC } which could be either {1,2,3} or {1,1,2}; a traveler 

with global information with a lag of 1 minute does not know any travel time realization 

yet; a traveler with global pre-trip information with departure time 0 has the same 

knowledge as with POI; a traveler with radio information on link (a, b) with no time lag 

knows the travel time realization of 
0,

~
abC  which is always 1; and a traveler with NOI 

simply does not know any travel time realization.   
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As the time moves from 0 to 1, more information could be obtained while that 

from time 0 is kept.  A traveler with POI knows the travel time realizations of 

{
0,

~
abC ,

0,

~
bcC ,

0,

~
acC ,

1,

~
abC ,

1,

~
bcC ,

1,

~
acC } which could be each of the 3 support points; a 

traveler with global information with a lag of 1 minute knows what happened at time 0: 

the travel time realizations of {
0,

~
abC ,

0,

~
bcC ,

0,

~
acC } which could be either {1,2,3} or 

{1,1,2}; a traveler with global pre-trip information with departure time 0 does not gain 

any more information en route and thus his/her information remains unchanged ; a 

traveler with radio information on link (a, b) with no time lag knows the travel time 

realization of {
0,

~
abC ,

1,

~
abC } which could be {1,1} or {1,2}; and a traveler with NOI still 

does not know any travel time realization.   

As the time moves from 1 to 2, only the traveler with global information with a 

lag of 1 minute will gain more useful information, as he/she now knows what happened 

in time 1.  A traveler with POI, pre-trip or radio information does not gain any more 

useful information because his/her information is always up-to-date and the information 

he/she had at time 1 is enough for any time periods beyond 1 due to the static period 

assumption.  A traveler with NOI does not gain any more information by definition. 

2.3 Event Collection 

The concept of event collection is generalized from that defined in Gao and 

Chabini (2006) to the case of a general information scheme.  Let QC
~

 be the vector of 

random travel times of all time-dependent links in Q.  For a given support point QC , 

there exists one or more support points C of the network, such that the travel time on any 
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time-dependent link in Q is the same in both QC  and C . In other words, for any possible 

revealed link travel times in Q, a set of support points of the network that are compatible 

with the information can be identified.  Such a set is defined as an event collection, EV.  

As more information is collected, information coverage Q grows and the size of EV 

decreases or remains unchanged.  When EV becomes a singleton, a deterministic network 

(not necessarily static) is revealed to the traveler.  If a traveler has perfect online 

information with Q
POI

 = A × {0, 1,…, t}, the network becomes deterministic no later than 

the start of the static period, i.e., K – 1.  When travelers have less than perfect online 

information, it is possible that the network remains stochastic beyond the dynamic period. 

In the example of Figure 2-1 and Table 2-1, it is assumed that a traveler has POI. 

At time 0 he/she received the information that travel times on links (a, b), (b, c) and (a, c) 

are 1, 2 and 3 respectively.  By utilizing his/her a priori knowledge of the joint 

distribution of link travel times, he/she can infer that support points C
1
 or C

2
 are possible 

as both provide compatible travel times with what is revealed, while support point C
3
 is 

not.  Therefore his/her event collection is {C
1
, C

2
}. As the time moves from 0 to 1, the 

traveler obtains more information.  If the newly revealed travel times on links (a, b), (b, 

c) and (a, c) are 1, 1 and 3 respectively, the traveler knows for sure that support point C
1 

will be realized and his/her event collection is {C
1
}. Similarly, If the newly revealed 

travel times on links (a, b), (b, c) and (a, c) are 1, 2 and 2 respectively, the traveler knows 

for sure that support point C
2 
will be realized and his/her event collection is {C

2
}. 

Similarly a traveler with global information with a lag of 1 minute has no idea 

which support point will be realized at time 0 and his/her event collection is {C
1
, C

2
, C

3
}.  

At time 1, he/she knows link travel times realized at time 0, and is faced with the same 
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situation as a traveler with POI did at time 0.  If the revealed travel times on links (a, b), 

(b, c) and (a, c) at time 0 are 1, 2 and 3 respectively, his/her event collection is {C
1
, C

2
}.  

At time 2, he/she will have an event collection {C
1
} or {C

2
}.  The same logic can be 

applied to other information schemes.  Note that for NOI, the event collection remains as 

{C
1
, C

2
, C

3
} for any time period. 

All the possible event collections with information coverage Q, denoted as 

EV(Q), can be generated by performing a partition of {C
1
, …,C

R
} based on QC

~
. EV(Q) = 

{EV1, EV2, …}, where r

tjkC ,  is invariant over r∈EVi, ∀((j, k), t)∈Q, ∀i, and ∃ ((j, k), t)∈Q 

such that '

,,

r

tjk

r

tjk CC ≠ , for r∈EVi , r’∈EVj, j ≠ i, ∀i, ∀j . In other words, support points in 

an EV are undistinguishable in terms of revealed travel times on links in Q, but are 

distinctive from those in another EV. All the possible event collections for a given 

information scheme can be generated in preprocessing.   Here are some important facts 

about event collections: 

• There is no overlapping among elements of EV(Q) , so there are at most R event 

collections at any certain time and location  (|EV(t)| ≤ R); 

• Any element EV of EV(Q) is a subset of one and only one  element EV’ of a later 

EV (Q’): EV’∩EV = ∅ or EV’; 

• | EV(Q)| ≥ | EV(Q’)|; 

The generation of event collection can be carried out in increasing order of time, 

as the information coverage can only grow and later partitions can be done based on 

earlier ones.  An example from Figure 2-1 and Table 2-1 is shown here for a traveler with 



 

15 

up-to-date radio information on link (a, b).  Since the information coverage depends only 

on the current time t, not the trajectory, Q (H) can be simplified as Q (t) and EV (Q) as 

EV (t).  At time 0, information coverage Q (0) = {(a, b)} × {0}. The travel time on link 

(a, b) at time 0 is 0 for all 3 support points, so the partition yields only one event 

collection and EV (0) = {{C
1
, C

2
, C

3
}}.  At time 1, information coverage Q (1) = {(a,b)} 

× {0, 1} where the incremental information is on {(a, b)} × {1}.  The partition can then 

be carried out on EV(0) based on travel time realizations of link (a, b) at time 1, which 

can be either 1 or 2.  Therefore EV(1) = {{C
1
, C

2
}, {C

3
}}.  During the static period, no 

more useful information will be available, so EV (t) = {{C
1
, C

2
}, {C

3
}} for all t > 1.   

Another example is shown for a traveler with global information with a lag of 1 

minute.  At time 0, Q (0) =∅, and thus EV (0) = {{C
1
, C

2
, C

3
}}.  At time 1, Q (1) = 

{(a,b), (b,c), (a,c)} × {0}.  First check link-time pair ((a,b), 0) with only 1 possible value, 

and {{C
1
, C

2
, C

3
}} remains unchanged.  Next check ((b,c),0) with 2 possible values and 

{{C
1
, C

2
, C

3
}} is partitioned as {{C

1
, C

2
}, {C

3
}}.  Lastly check ((a,c),0) and {{C

1
, C

2
}, 

{C
3
}} remains unchanged because  C

1
ac,0 and C

2
ac,0 are the same, while {C

3
} is already a 

singleton.  Therefore EV (1) = {{C
1
, C

2
}, {C

3
}}.  Similarly EV (t ≥ 2) = {{C

1
}, {C

2
}, 

{C
3
}}.  

2.4 The Decisions and the Optimal Routing Policy Problem 

It is assumed that travelers can make decisions only at nodes. The decision is 

what node k to take next at each node, based on the current state x = {j, t, EV}, where j is 

the current node, t is the current time, and EV is the current event collection. A routing 
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policy µ is defined as a mapping from state to decision on the next node, for all possible 

states and all possible next nodes out a given state, kEVtjx a},,{: =µ . 

The next state 






=

~

','
~

, EVtky  of the traveler is uncertain. The travel time on link 

(j, k) at time t given EV could be uncertain, resulting in an uncertain arrival time '
~
t  at 

node k.  The next event collection 
~

'EV  is uncertain because: 1) '
~
t  is uncertain and thus 

the next information coverage '
~
Q  is uncertain, e.g., at 8:00 with a possible travel time of 

1 or 2 minute(s) on the next link, '
~
Q could cover either 8:01 or both 8:01 and 8:02; 2) 

Even with a given Q’ and a given t’, travel times of links in Q’ between t and 't are 

uncertain. 

For a traveler with up-to-date radio information on link (a,b) in Figure 2-1 and 

Table 2-1, let cCCCa =}},,{,0,{ 321µ .  The travel time on link (a, c) could be either 3 or 

2 given the event collection {C
1
, C

2
, C

3
}, with a probability of 2/3 or 1/3.  If the travel 

time is 3, the event collection at node c will be an element of EV(3); if the travel time is 

2, the event collection at node c will be an element of EV(2).  In this specific example, 

EV(3) = EV(2), but generally they are not equal. 

The traveler makes another decision at state y, and continues the process until the 

destination node is reached.  The travel time of a routing policy from any initial state to a 

destination is a random variable; a routing policy can be manifested as different paths in 

different support points. 

Definition 1: (Optimal routing policy problem).  The optimal routing policy 

(ORP) problem in a stochastic time-dependent network is to find the routing policy that 
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optimizes an objective function to a given destination d, for all possible states, i.e., all 

possible combinations of origins, departure times and event collections.   

The objective function can be expected travel time, travel time variance and 

expected travel time schedule delay, or a combination of some of the criteria.  

2.5 The Value of Information 

Let e(µ,x) be the objective function of following routing policy µ from an initial 

state x, and e*(x) = minµ e(µ,x). The value of information is to be investigated 

theoretically in obtaining e*(x) and a theorem is to be proved that “more information is 

always better (or at least not worse) in flow-independent networks”. 

Two information schemes 1 and 2 in the same network are to be studied.  It is 

assumed that for any trajectory H, information scheme 2 has a larger coverage Q2 than 

that of information scheme 1, Q1: Q1⊆ Q2.  

Definition 1 (S1 contains S2).  A partition of set S is a set of subsets which are 

mutually exclusive and collectively exhaustive of S. Let S1 and S2 be two partitions of S.  

S1 contains S2 if for any y∈ S2, there exists z∈ S1, such that y ⊆ z and y∩ z’=∅, ∀z’≠ z. In 

other words, any element of S2 is a subset of one and only one element of S1.  See Figure 

2 for a schematic representation. 

 

S a b c d e f g h 

S1 a b c d e f g h 

S2 a b c d e f g h 

 

Figure 2-2 A schematic view of S1 containing S2 

 

Lemma 1. EV(Q1) contains EV(Q2), for any trajectory H.  
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Proof: By definition, EV(Q1) and EV(Q2) are two partitions of the set of network 

support points {C
1
, …,C

R
}.  Assume by contradiction that EV(Q1) does not contain 

EV(Q2), then there exists EV2∈EV(Q2), such that for any EV1∈EV(Q1), EV2∩EV1≠EV2.  

As EV(Q1) and EV(Q2) are partitions of the same set, there must exist EV1, such that  

EV2∩EV1≠∅. By definition travel times on all time-dependent links in Q2 is invariant 

across support points in EV2. As Q1⊆ Q2, travel times on all time-dependent links in Q1 is 

also invariant across support points in EV2, specifically from EV2∩EV1 to 

EV2\(EV1∩EV2). Since EV1∩EV2 and EV2\(EV1∩EV2) are subsets of two distinctive 

elements of EV(Q1),  by definition travel times on all time-dependent links in Q1 vary 

from EV1∩EV2 to EV2\(EV1∩EV2).  There is a contradiction and this completes the proof. 

Theorem 1. The optimal objective function value under information scheme 2 is 

no worse than that under information scheme 1, for the same origin j0, departure time t0, 

and event collections EV2 and EV1, where EV2 is a subset of EV1. Mathematically  

),,,(),,( 100

*

1200

*

2 EVtjeEVtje ≤  ,, 00 TtNj ∈∀∈∀  1221 |, EVEVEVEV ⊆∀ . 

Proof: It is to be shown that any feasible routing policy µ1 under information 

scheme 1 is equivalent to at least one feasible routing policy µ2 under information scheme 

2. It is proved by construction. At the initial state, set ),,(),,( 10012002 EVtjEVtj µµ = . 

Upon arrival at the next node j1 at time t1, the information coverage Q1 is a subset of Q2 

from the trajectory {(j0, t0), (j1, t1)}. By Lemma 1, EV(Q1) contains EV(Q2), therefore set 

.),(),,,(),,( '

1

'

22

'

2

'

1111

'

2112 EVEVQEVEVEVtjEVtj ⊆∈∀= µµ  The process continues 

and a routing policy µ2 is obtained defined over information scheme 2 which produces 

exactly the same trajectory as µ1, and thus the same objective function value.  Therefore 
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there exists a feasible routing policy under information scheme 2 with the same objective 

function value as the optimal routing policy under information scheme 1 and the optimal 

objective function under scheme 2 is at least as good as that under scheme 1.  This 

completes the proof. 
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CHAPTER 3 

 

ALGORITHM DESIGN 

3.1 Partial Online Information Problem Variants 

In order to study the value of information in the context of optimal adaptive 

routing in a flow-independent network, algorithms are designed to solve the optimal 

routing policy (ORP) problem with partial online information.  The variants considered 

are pertinent in a traffic network: 

• Global information with time lag ∆ (LAG). For example, at 7:00 travelers only 

have information about traffic conditions up to 6:45.  

• Global pre-trip information with departure time t0 (PRE). For example, travelers 

get pre-trip information from internet before they start the journey. Once 

departed, they can no longer get online for more information.  Therefore EV(t) = 

EV(t0), ∀t ≥ t0. 

• Information on a subset of links with no time lag (RADIO).  For example, only 

traffic conditions on several major highways and arterials will be reported in a 

radio broadcast. 

• No online information (NOI).  This can be viewed as a special case of partial 

online information. 

A generic algorithm is presented based on generic optimality conditions for the 

four partial online information problem variants and perfect online information (POI) 

variant.  It can be shown that the generic algorithm is equivalent to Algorithm DOT-SPI 

in Gao and Chabini (2006) which is designed to solve the POI variant only. 
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Some characteristics of the five variants are: 

• In all variants, information coverage Q is determined by the current time, instead 

of the whole trajectory, therefore EV(t) is used instead of EV(Q). Note that time 

lag ∆ in LAG, departure time t0 in PRE and radio coverage B in RADIO are 

treated as exogenous system parameters. 

• With the exception of LAG, in all other variants travelers receive no more useful 

information during the static period, i.e., Q does not grow beyond time K–1, either 

because no information is provided by definition (PRE and NOI), or additional 

information will not enlarge Q (RADIO and POI); 

• In the case of LAG with a time lag ∆, a traveler continues receiving information 

beyond the static period until K – 1 + ∆, at which time Q = A × T. 

Let T* denote the time beyond which a traveler receives no more information, and 

thus T* = K – 1 + ∆ for LAG, and T* = K – 1 for all other four variants (PRE, RADIO, 

POI and NOI). Consider the routing decision making beyond T*. The event collection 

will remain the same during all future time periods as that at time T*, EV∈ EV(T*), since 

no more information will be received.  The travel times are also static by definition.  It is 

like traveling in a static and stochastic network defined by EV with no information.  An 

optimal routing problem in such a network can be solved by a classical static shortest 

path algorithm in a converted deterministic network by taking link travel time means.  

3.2 The Optimality Conditions 

Since link travel times are random variables, there exist multiple optimization 

criteria.  The expected travel time is used in the remaining of the thesis, as generally it is 
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the primary criterion in routing choices.  Other criteria regarding travel reliability, such as 

travel time variance and expected travel time schedule delay, and a combination of some 

of the criteria, will be explored in future researches. 

Let eµ (j, t, EV) be the expected travel time to the destination node d if the 

departure from node j happens at time t with the event collection EV by following routing 

policy µ. Sµ (j, t, r) is the travel time to the destination node d if support point r is realized 

with a departure from node j at time t by following routing policy µ. The relationship 

between eµ (j, t, EV) and Sµ (j, t, r) is as follows: 

∑
∈

=
EVr

EVrrtjSEVtje )|Pr(),,(),,( µµ     (1) 

The routing policy is defined on event collection, not support point. However, for 

each support point, a routing policy is manifested as a path with a certain travel time.  For 

example, for a traveler with up-to-date radio information on link (a,b) in Figure 2-1 and 

Table 2-1, the routing decision at node a at time 0 can only be made based on the event 

collection {C
1
, C

2
, C

3
}.  Let cCCCa =}},,{,0,{ 321µ .  The travel time by following 

routing policy µ starting from node a at time 0 is a random variable with possible 

different outcomes in different support points: ),0,( 1
CaSµ = 3, ),0,( 2

CaSµ =3, and 

),0,( 3
CaSµ =2.   

The relationship between Sµ at node j and the succeeding node k by following µ  is 

critical to solving the ORP problem.  Sµ (j, t, r) is defined for a trip departing at time t.  

For the variants POI, LAG, RADIO and NOI, the information coverage is not a function 

of departure time, and thus the event collections at time t is the same no matter whether t 

is the departure time or not.  In this case,  
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),,(),,( ,, rCtkSCrtjS
r

tjk

r

tjk ++= µµ  , where ),,( EVtjk µ= , EVr∈      (2) 

For the PRE variant, however, the information coverage does depend on departure 

time, and thus in general (2) does not hold.  A different variable  );,,( 0trtjSµ  can then 

be defined as the travel time from node j and time t to the destination node if support 

point r is realized by following routing policy µ, with a departure time t0.  Similarly 

);,,( 0tEVtjeµ  and );,,( 0tEVtjµ can be defined. In this case, 

);,,();,,( 0,,0 trCtkSCtrtjS
r

tjk

r

tjk ++= µµ , where );,,( 0tEVtjk µ= , EVr∈  

∑
∈

=
EVr

EVrtrtjStEVtje )|Pr();,,();,,( 00 µµ

 
Proposition 1: For the POI, LAG, RADIO and NOI variants, the minimum 

expected travel time ),,(* EVtjeµ , ∀j∈N\{d}, ∀t, ∀EV∈EV(t) and optimal routing policy 

µ* are solutions to the following system of equations: 

( )








++= ∑
∈

∈
EVr

r

tjk

r

tjk
jAk

EVrrCtkSCEVtje )|Pr(),,( min),,( ,*,
)(

* µµ               (3) 

( )








++= ∑
∈

∈
EVr

r

tjk

r

tjk
jAk

EVrrCtkSCEVtj )|Pr(),,( minarg),,(* ,*,
)(

µµ               (4) 

where  ),,*,(),,( *,**,* rCtkSCrtjS
r

tjk

r

tjk ++= µµ ),,(** EVtjk µ= , EVr∈ .  A (j) is the 

set of downstream nodes out of node j.  The boundary conditions are:  

1) At the destination: 0),,(* =EVtdeµ , dEVtd =),,(*µ , ∀t, ∀EV∈EV(t).  
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2) Beyond T*: )*,,()*,,( ** EVTjEVTtj µµ =≥ , ∀j, ∀EV∈EV(T*), where T*=K–

1+∆ for LAG, and T*= K–1 for all other 3 variants (RADIO, POI and NOI).  

Proof: (Necessity). The necessity can be proved by showing that if ),,(* EVtjeµ  

is the minimum expected travel time and µ* the optimal routing policy, they must satisfy 

the system of equations (3) ~ (4).   

Trivially, if the boundary conditions at the destination node are not satisfied, µ* is 

not optimal.   

The optimal routing policy beyond T* is not a function of time t, because both the 

travel times and event collections do not change over time.  Thus 

)*,,(* EVTtj ≥µ = )*,,(* EVTjµ , ∀j, ∀EV∈EV (T*).  Further making use of (1) in (3) 

and (5) and the following are obtained: 









+= ∑
∈

∈
)*,,()|Pr( min)*,,( **,

)(
* EVTkeEVrCEVTje

EVr

r

Tjk
jAk

µµ               (5) 









+= ∑
∈

∈
)*,,()|Pr( minarg)*,,(* **,

)(
EVTkeEVrCEVTj

EVr

r

Tjk
jAk

µµ               (6) 

These are the optimality conditions of a static shortest path problem in a 

converted deterministic network where link travel times are replaced by their means 

∑
∈EVr

r

Tjk EVrC )|Pr(*,  at T* given an event collection EV∈EV(T*).  In a static stochastic 

network, the expected path travel time is equal to the sum of the expected link travel 

times along the path, and therefore the minimum expected time path is the same as the 

shortest path in a converted deterministic network where link times are replaced by their 
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means.  If µ* is optimal, it must manifest as the shortest path in each of the converted 

deterministic network defined by EV, and thus (5) and (6) must be satisfied.  

Assume by contradiction that (3) and (4) are not satisfied for some state with a 

departure time earlier than T*.  Let (j, t, EV) be such a state. Therefore there must exist an 

outgoing node k’∈A (j), such that 

( ) ( )∑∑
∈∈

++<++
EVr

r

tjk

r

tjk

EVr

r

tjk

r

tjk EVrrCtkSCEVrrCtkSC )|Pr(),*,()|Pr(),,'( *,**,,'*,' µµ  

Therefore a different routing policy µ’ can be constructed such that µ’(j, t, EV) = 

k’, and µ’ = µ* for all other states.  Then the following is obtained: 

( )

( )

( ) ),,()|Pr(),*,(

)|Pr(),,'(

)|Pr(),,'()|Pr(),,(),,(

**,**,

*,*,'

,'','''

EVtjeEVrrCtkSC

EVrrCtkSC

EVrrCtkSCEVrrtjSEVtje

EVr

r

tjk

r

tjk

EVr

r

tjk

r

tjk

EVr

r

tjk

r

tjk

EVr

µµ

µ

µµµ

=++<

++=

++==

∑

∑

∑∑

∈

∈

∈∈

 

which is contradicted with fact that µ* is optimal. 

(Sufficiency) The sufficiency can be proved by showing that if ),,(* EVtjeµ  and 

µ* satisfy the system of equations (3) ~ (4), they must be the minimum expected travel 

time and the optimal routing policy respectively.   

Assume by contradiction that µ* is not optimal, therefore there must exist a 

routing policy µ such that eµ(j, t, EV) < eµ*(j, t, EV) for some (j, t, EV).  From the proof of 

necessity, (5) ~ (6) are also the sufficient condition for µ* to be optimal at or beyond T*. 

Therefore t < T*.  Assume t is the latest time when the inequality occurs, and thus eµ(j, t’, 

EV) = eµ*(j, t’, EV), ∀t’>t . Assume µ(j, t, EV) = k:  
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( )

( )

( )
),,(

)|Pr(),*,(

)|Pr(),,(

),,()|Pr(

),,()|Pr(
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,,

,,

,,
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EVrrCtkSC

EVrrCtkSC

EVCtkeEVrC

EVCtkeEVrC

EVrrCtkSEVrC

EVrrCtkSCEVrrtjSEVtje

EVr

r

tjk

r

tjk

EVr

r

tjk

r

tjk

r

tjk

EVr

r

tjk

r

tjk

EVr

r

tjk

EVr

r

tjk

EVr
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tjk

EVr
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tjk
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EVr
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µ

µ

µ

µ

µ

µµµ

=

++≥

++=

++=

++=

++=

++==

∑

∑

∑

∑

∑∑

∑∑

∈

∈

∈

∈

∈∈

∈∈

 

Therefore the assumption is not valid and µ* is optimal.  

Proposition 2: For the PRE variant with departure time t0, the minimum expected 

travel time );,,( 0* tEVtjeµ , ∀j∈N\{d}, ∀EV∈EV(t) and optimal routing policy µ* are 

solutions to the following system of equations: 

( )








++= ∑
∈

∈
EVr

r

tjk

r

tjk
jAk

EVrtrCtkSCtEVtje )|Pr();,,( min);,,( 0,*,
)(

0* µµ               (7) 

( )








++= ∑
∈

∈
EVr

r

tjk

r

tjk
jAk

EVrtrCtkSCtEVtj )|Pr();,,( minarg);,,(* 0,*,
)(

0 µµ               (8) 

where  ),;,*,();,,( 0*,**,0* trCtkSCtrtjS
r

tjk

r

tjk ++= µµ );,,(* 0

*
tEVtjk µ= , EVr∈ . A(j) 

is the set of downstream nodes out of node j.  The boundary conditions are:  

1) At the destination: 0);,,( 0* =tEVtdeµ , dtEVtd =);,,(* 0µ , ∀t, ∀EV∈EV(t).  

2) Beyond T*: );*,,();*,,( 0

*

0

*
tEVTjtEVTtj µµ =≥ , ∀j, ∀EV∈EV(T*), where 

T*=K–1. 



 

27 

The proof of Proposition 2 is similar to that of Proposition 1 with notation change 

only.  

Proposition 3: Optimality conditions (3) ~ (4) are equivalent to the optimality 

conditions for the perfect online information (POI) variant in Gao and Chabini (2006). 

The proof of Proposition 3 is done by making use of the fact that with POI, the 

travel time on an outgoing link is a deterministic value given an event collection. 

3.3 Algorithm DOT-PART 

The evaluation of ),,(* EVtjeµ  only depends on ),',(* rtjSµ  from a later time t’ > 

t, due to the positive and integral link travel time assumption.  Therefore the labels can be 

optimally set in a decreasing order of time, making use of the acyclic property of the 

network along the time dimension. At time T* and beyond, any deterministic static 

shortest path algorithm can be used to compute ),,(* EVtjeµ , ∀j∈N, ∀t≥T*, 

∀EV∈EV(T*). The procedure to generate event collections carry out partitions of the 

network support points in an increasing order of time.  At time t, a partition is made on 

EV(t-1) based on each (link, time) pair in the incremental information coverage, Q(t)\Q(t-

1). Note that Q is written as a function of t, because in all the 5 variants, Q only depends 

on t, not the trajectory.   

The algorithm solves the ORP problem from all initial states for POI, LAG, 

RADIO and NOI, but only from departure time 0 for PRE.  In order to solve PRE variant 

with all departure times, an outer loop over all departure times t0 has to be added to the 

main loop, and the main loop over time t will be from T*-1 down to t0.  This is because 

the event collection at time t when t is the departure time is different from when t is not.  
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For any other variant, the event collection at t is the same regardless of the departure 

time.  Adding an outer loop is not the most efficient implementation to solve the PRE 

variant.  However since the focus of this thesis is the study of the value of traveler 

information, a correct implementation is enough.  More efficient implementations will be 

explored in future research. 

 

Algorithm DOT-PART 

(Generic for the 5 variants: POI, LAG, PRE with departure time 0, RADIO and NOI) 

Initialization 

Step 1: 

If information scheme = LAG with a lag of ∆ then 

T* = K – 1 + ∆ 

else 

T* = K – 1 

Construct EV(t), t = 0, …, T* by calling Generate_Event_Collection (see the statement 

below) 

Step 2: 

Compute )*,,(* EVTjeµ  and )*,,(* EVTjµ , *)(, TEVNj EV∈∀∈∀  with a static 

deterministic shortest path algorithm in a converted static deterministic network where 

link travel times are replaced by their means at time T*.  

Compute )*,,(* rTjSµ  by executing µ* in the original static stochastic network, 

EVrNj ∈∀∈∀ , ; ).*,,()*,,( ** rTjSrTtjS µµ =>  
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Step 3: 

eµ* (j, t, EV) � +∞, )(*,},{\ tEVTtdNj EV∈∀<∀∈∀  

eµ* (d, t, EV) � 0, )(*, tEVTt EV∈∀<∀  

 

Main Loop 

For t = T*-1 down to 0 

For each EV∈EV(t) 

For each link (j, k)∈A 

( )∑
∈

++=
EVr

r

tjk

r

tjk EVrrCtkSCtemp )|Pr(),,( ,*, µ

 

If  temp_e < eµ* (j, t, EV) then 

eµ* (j, t, EV) = temp_e 

µ*(j, t, EV) = k 

For each r∈EV and each j∈N 

k* = µ*(j, t, EV) 

),*,(),,( *,**,* rCtkSCrtjS
r

tjk

r

tjk ++= µµ  

 

Generate_Event_Collection 

D = {C
1
, …,C

R
} 

For t = 0 to T* 

If information scheme = POI 

  Q(t) = A × {0,1,…,t }    

If information scheme = LAG with a lag ∆ 
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  Q(t) = A × {0,1,…,t - ∆} 

If information scheme = PRE with departure time 0 

Q(t) = A × {0} 

If information scheme = RADIO with link set B 

  Q(t)  = B × {0,1,…,t} 

Q(-1) = ∅ //a proxy for the convenience of representation 

For t = 0 to T* 

For each (link, time) pair ( )( )',, tkj  ∈ Q(t) \ Q(t-1) 

For each disjoint subset S∈D 

D’ � A partition of S based on tjkC ,
~

 

D � Union of all D’ 

EV(t) � D; 

 

Following a similar analysis as in Gao and Chabini (2006), it can be derived that 

Algorithm DOT-PART has a complexity of O(mKRlnR + R×SSP) and Ω(mKR + SSP), 

where SSP is the complexity of the static deterministic shortest path algorithm.  The 

algorithm is strongly polynomial in R, the number of support points of the link travel time 

joint distribution.  For real applications, time-dependent travel time observations on all 

links from each day can be viewed as one support point. 

A running time test is conducted with randomly generated networks on a Dell 

Optiplex with 2.40GHz Intel Core 2 CPU and 2.00GB of RAM. Details of the random 

network generator can be found in Gao (2005). The number of nodes (n), the number of 

time periods (K), and the number of support points (R) are chosen as input variables; the 
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number of links (m) is three times as great as the number of nodes. Random numbers 

from multivariate normal distributions are generated for link travel times.  The 

relationship between running time of the algorithm and the input variables for the LAG 

variant is shown in Table 3-1. It can be seen that the relationship between running time 

and each of the 3 input variables is close to linear. Similar tests are conducted for other 

variants and the relationships are similar. 

Table 3-1 Relationship between CPU time (sec) and input variables in LAG variant 

 

Running time of Generate_Event_Collection 

m 30 60 90 

   K 

R 
600 1200 1800 600 1200 1800 600 1200 1800 

50 0.239211 0.461097 0.665552 0.47334 0.925444 1.352627 0.708472 1.392897 2.008585 

100 0.48257 0.916187 1.337647 0.952481 1.8222 2.700408 1.434959 2.753483 3.999361 

300 1.416003 2.701326 3.951077 2.810238 5.359506 7.861029 4.206747 7.990318 11.76882 

Running time of DOT-PART for LAG variant (excluding Generate_Event_Collection) 

m 30 60 90 

   K 

R 
600 1200 1800 600 1200 1800 600 1200 1800 

50 0.652758 1.167605 1.693616 1.456281 2.555125 3.682067 2.282774 4.047678 5.795551 

100 1.43934 2.469138 3.511649 3.185009 5.387602 7.667592 4.998235 8.52984 12.06706 

300 5.652469 8.856279 12.11531 12.45083 19.62694 27.11089 19.78276 31.1017 43.87052 

 

For applications in real life size networks, the computational time is not the 

constraint, but the memory is.  One possible solution is to change the representation of 

link travel times from discrete time based to continuous time based.  A piece-wise linear 

representation of link travel times has been implemented and computational tests have 

been conducted in a Swedish city network with about 7500 directional links, 39600 time 

periods and 30 support points.  The results in real-life networks will be reported in 

succeeding researches. 
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CHAPTER 4 

 

COMPUTATIONAL TESTS 

4.1 Objectives 

The objectives of the computational tests are to: 1) compare computationally the 

optimal expected travel times of each of the three partial online information variants and 

no online information (NOI) with perfect online information (POI); 2) compare 

computationally the optimal expected travel times of partial online information variants 

with the same type of information but different system parameters; 3) show the value of 

information and verify the theoretical result derived in Section 2.5 that more information 

is always better (or at least not worse) in a flow-independent network. 

4.2 The Test Network 

 

Figure 4-1 The test network 

The test network is shown in Figure 4-1 with 6 nodes and 8 directed links. There 

are diversion possibilities at nodes 0, 1 and 2. The study period is from 6:30am to 

8:00am. The time resolution is 1 minute for departures and arrivals at intermediate nodes, 

and there are 90 time periods in total.  The travel time is in seconds. 
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The link travel time distribution is generated through an exogenous simulation 

with the mesoscopic supply simulator of DynaMIT from Ben-Akiva, et al. (2001).  The 

demand between OD (0, 5) is low between 6:30am to 7:00am and higher later on. There 

are random incidents in the network defined as follows: 1) There is at most one incident 

for any given day; 2) The incident has a positive probability of occurrence on link 0, 2, 4 

and 6, but zero on link 1, 3, 5 and 7; and 3) If an incident occurs on a link, the start time 

can be every 10 minutes with equal probability. The 4 possible locations and 9 possible 

start times result in 4×9+1 (no incident) =37 support points.  Details of the network can 

be found in Gao (2005). 

4.3 Test Results 

Algorithm DOT-PART is run for the three partial online information schemes, no 

online information (NOI) and perfect online information (POI) to derive the minimum 

expected travel times from each of the variants from node 0 to node 5 for all departure 

times and all event collections. The results are aggregated by departure time, by taking an 

expectation over all event collections at a given time. 

Figures 3.a and 3.b show the result for the LAG (global information with time lag 

∆) variant: LAG5 indicates there is a 5 minutes information time lag, and LAG10 and 

LAG15 respectively a 10 minutes and 15 minutes lag. It can be seen that the following 

relationship holds: 

POI ≤ LAG5 ≤ LAG10 ≤ LAG15 ≤ NOI. 

Figure 3.c shows the results for the PRE (global pre-trip information) variant. It 

can be seen that the following relationship holds: 

POI ≤ PRE ≤ NOI. 
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Figures 3.d and 3.e show the results for the RADIO (information on a subset of 

links with no time lag) variant: RADIO4 indicates only traffic condition information on 

link 4 is provided and RADIO45 on both link 4 and 5. Note that link 4 has a positive 

incident probability while link 5 does not.  In fact, the lower half of the network is 

incident free and serves as potential diversions in case of incidents in the upper half the 

network. Reporting traffic conditions on links with incident is definitely helpful, but if 

alternative routes are also congested then there is probably no benefit to divert.  If 

combined with reports on alternative routes, the value of information can be enhanced.  It 

can be seen that the following relationship holds: 

POI ≤ RADIO45 ≤ RADIO4 ≤ NOI. 

It also holds for other radio coverage situations on shown here.  For example, POI 

≤ RADIO23 ≤ RADIO2 ≤ NOI, where RADIO2 indicates only traffic condition 

information on link 2 is provided and RADIO23 on both link 2 and 3. 

In summary, the following conclusions can be drawn: 

• The results from the situations with partial online information are better than that 

of no online information, but worse than that of POI: POI ≤ LAG, PRE, RADIO≤ 

NOI; 

• The less information time lag, the better the results: LAG5 ≤ LAG10 ≤ LAG15; 

• The more information provided, either temporal or spatial, the better the results: 

PRE ≤ NOI; RADIO45 ≤ RADIO4. 

These results show the value of information for optimal adaptive routing on both 

temporal and spatial dimensions in terms of reducing expected travel time. 
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a) Results for the LAG variant vs. POI and NOI 

 

 
 

b) Results for the LAG variant with different ∆∆∆∆ 
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c) Results for the PRE variant vs. POI and NOI 

 

 
 

d) Results for the RADIO variant vs. POI and NOI 
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e) Results for the RADIO variant with different B 

 

Figure 4-2 The test results 
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CHAPTER 5 

 

CONCLUSION AND FUTERE DIRECTION 

5.1 Conclusion 

The optimal routing policy (ORP) problems in stochastic time-dependent (STD) 

networks with partial online information are studied.  A unified view is described towards 

online information based on which generic optimality conditions for the optimal routing 

problem with partial online information are derived. Three variants that are particularly 

pertinent to the modeling and routing applications in traffic networks are then studied in 

detail: global information with time lag, global pre-trip information, and radio 

information on a subset of links without time lag. The three variants take into account the 

partial online information with limitations on both temporal and spatial sides, which are 

realistic depictions of traffic systems equipped with ATIS.  An exact algorithm 

(Algorithm DOT-PART) is designed for the partial online information problem and 

implemented for the three variants and no online information (NOI) variant. 

Computational results show that more information is generally better (or at least not 

worse) in the specific test setting.  A theoretical proof of the non-negative value of 

traveler information for adaptive routing in a flow-independent stochastic network can be 

found in Gao and Huang (2008). 

5.2 Future Direction 

Future researches on ORP problems in STD networks with partial online 

information can be in the following directions: 
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• As an implementation of ATIS, VMS discussed in the introduction is an 

interesting variant of partial online information problem and probably one of the 

mostly used.  The VMS case is more involved than those discussed in this thesis, 

as the information is trajectory-based. 

• In this work, the three variants contain information limitation on either temporal 

or spatial dimension. In the future research, a combination of limitations on both 

dimensions can be considered, e.g., a more realistic radio broadcast variant with 

time lag. 

• In this work expected travel time is used as the criterion in routing choices. Other 

criteria, such as travel time variance and expected travel time schedule delay, and 

a combination of some of the criteria, will be explored. 
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APPENDIX 

 

AN ILLUSTRATIVE EXAMPLE FOR ALGORITHM DOT-PART 

An example is to be used to illustrate how Algorithm DOT-PART works.  The 

small network in Figure A-1 is the same as the example network in Figure 2-1. It has 

three nodes, three links and the number of time periods is 2.  The values of the travel time 

realizations are in Table A-1, the same as those in Table 2-1.  Each of the three support 

points has a probability of 1/3.  The network is designed to be very small to make the 

understanding of the algorithm easier.  Note that travelers starting from node b or node c 

have no choice but to take node c as the next node.  It is suggested that the reader pay 

attention to how routing decision at node a is affected by time and online information. 

 

Figure A-1 Algorithm DOT-PART: A Small Network 

 

Table A-1 Support points for the Small Network 

Time Link C
1
 C

2
 C

3
 

(a, b) 1 1 1 

(b, c) 2 2 1 0 

(a, c) 3 3 2 

(a, b) 1 1 2 

(b, c) 1 2 1 1 

(a, c) 3 2 2 

 

1. POI variant 

T* = K – 1 = 1. Beyond T* = 1, travelers receive no more information. 

Step 1:  Construct EV(t), t = 0, 1 by calling Generate_Event_Collection 

a 

b 

c  
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 D = {{C
1
, C

2
, C

3
}} 

 t = 0  Q
POI

 (0) = A × {0}    //all links at time 0 

  ((j, k), t’) = ((a, b), 0)    //link (a, b) at time 0 

   S = {C
1
, C

2
, C

3
} 

    D’ = {{C
1
, C

2
, C

3
}} 

   D = {{C
1
, C

2
, C

3
}} 

  ((j, k), t’) = ((b, c), 0)    //link (b, c) at time 0 

   S = {C
1
, C

2
, C

3
} 

    D’ = {{C
1
, C

2
}, {C

3
}} 

   D = {{C
1
, C

2
}, {C

3
}} 

  ((j, k), t’) = ((a, c), 0)    //link (a, c) at time 0 

   S = {C
1
, C

2
} 

    D’ = {{C
1
, C

2
}, {C

3
}} 

   S = {C
3
} 

    D’ = {{C
1
, C

2
}, {C

3
}} 

   D = {{C
1
, C

2
}, {C

3
}} 

  EV(0) = {{C
1
, C

2
}, {C

3
}} 

 t = 1  Q
POI

 (1) = A × {0,1}    //all links at time 0 and 1 

  Q
POI

 (1) \ Q
POI

 (0) = A × {1}   //all links at time 1 

  ((j, k), t’) = ((a, b), 1)    //link (a, b) at time 1 

   S = {C
1
, C

2
} 

    D’ = {{C
1
, C

2
}, {C

3
}} 

   S = {C
3
} 
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    D’ = {{C
1
, C

2
}, {C

3
}} 

   D = {{C
1
, C

2
}, {C

3
}} 

  ((j, k), t’) = ((b, c), 1)    //link (b, c) at time 1 

   S = {C
1
, C

2
} 

    D’ = {{C
1
}, {C

2
}, {C

3
}} 

   S = {C
3
} 

    D’ = {{C
1
}, {C

2
}, {C

3
}} 

   D = {{C
1
}, {C

2
}, {C

3
}} 

  ((j, k), t’) = ((a, c), 1)    //link (a, c) at time 1 

   S = {C
1
} 

    D’ = {{C
1
}, {C

2
}, {C

3
}} 

   S = {C
2
} 

    D’ = {{C
1
}, {C

2
}, {C

3
}} 

   S = {C
3
} 

    D’ = {{C
1
}, {C

2
}, {C

3
}} 

   D = {{C
1
}, {C

2
}, {C

3
}} 

  EV(1) = {{C
1
}, {C

2
}, {C

3
}} 

 

A summary of the results of constructing event collections is as follows. 

  EV(0) = {{C
1
, C

2
}, {C

3
}} 

  EV(1) = {{C
1
}, {C

2
}, {C

3
}} 

 

Step 2: Compute eµ* (j, 1, EV), )1(, EV∈∀∈∀ EVNj  
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This step involves solving deterministic static shortest path problems with each 

single support point C
r
, r = 1, 2, 3.  Any classical shortest path algorithm can be used.  In 

our small network, this can be done by observation.  The results are listed in Table A-2.  

In each result cell, the minimum expected travel time is given and the corresponding next 

node is in the parenthesis. Since event collections at static time period are all singleton, 

Sµ* (a, 1, C
i
) = eµ* (a, 1, {C

i
}), i = 1, 2, 3. 

 

Step 3: eµ* (j, t, EV) � +∞, )(,1},,{ tEVtbaj EV∈∀<∀∈∀  

eµ* (c, t, EV) � 0, )(,1 tEVt EV∈∀<∀  

 

Step 4:  (main loop) 

t = 0  

 EV = {C
1
, C

2
} 

  (j, k) = (a, b) 

   temp_e = [1 + Sµ* (b, 0+1, C
1
)] Pr(C

1
 | EV) 

 + [1 + Sµ* (b, 0+1, C
2
)] Pr(C

2
 | EV)  

= (1 + 1) ×0.5 + (1 + 2) ×0.5 = 2.5 < +∞ 

   eµ* (a, 0, {C
1
, C

2
}) = 2.5,  µ*(a, 0, {C

1
, C

2
}) = node b 

   Sµ* (a, 0, C
1
) = 1 + Sµ* (b, 0+1, C

1
) = 1 + 1 = 2 

   Sµ* (a, 0, C
2
) = 1 + Sµ* (b, 0+1, C

2
) = 1 + 2 = 3 

  (j, k) = (b, c) 

   temp_e = [2 + Sµ* (c, 0+2, C
1
)] Pr(C

1
 | EV)  

 + [2 + Sµ* (c, 0+2, C
2
)] Pr(C

2
 | EV) 
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= (2 + 0) ×0.5 + (2 + 0) ×0.5 = 2 < +∞ 

   eµ* (b, 0, {C
1
, C

2
}) = 2,  µ*(b, 0, {C

1
, C

2
}) = node c 

   Sµ* (b, 0, C
1
) = 2 + Sµ* (c, 0+2, C

1
) = 2 + 0 = 2 

   Sµ* (b, 0, C
2
) = 2 + Sµ* (c, 0+2, C

2
) = 2 + 0 = 2 

  (j, k) = (a, c) 

   temp_e = [3 + Sµ* (c, 0+3, C
1
)] Pr(C

1
 | EV) 

 + [3 + Sµ* (c, 0+3, C
2
)] Pr(C

2
 | EV) 

= (3 + 0) ×0.5 + (3 + 0) ×0.5 = 3 < eµ* (a, 0, {C
1
, C

2
}) 

 EV = {C
3
} 

  (j, k) = (a, b) 

   temp_e = [1 + Sµ* (b, 0+1, C
3
)] Pr(C

3
 | EV) 

= (1 + 1) ×1 = 2 < +∞ 

   eµ* (a, 0, {C
3
}) = 2,  µ*(a, 0, {C

3
}) = node b 

   Sµ* (a, 0, C
3
) = 1 + Sµ* (b, 0+1, C

3
) = 1 + 1 = 2 

  (j, k) = (b, c) 

   temp_e = [1 + Sµ* (c, 0+1, C
3
)] Pr(C

3
 | EV)  

= (1 + 0) ×1 = 1 < +∞ 

   eµ* (b, 0, {C
3
}) = 1,  µ*(b, 0, {C

3
}) = node c 

   Sµ* (b, 0, C
3
) = 1 + Sµ* (c, 0+1, C

3
) = 1 + 0 = 1 

  (j, k) = (a, c) 

   temp_e = [2 + Sµ* (c, 0+2, C
3
)] Pr(C

3
 | EV)  

= (2 + 0) ×1 = 2 = eµ* (a, 0, {C
3
}) 
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The summary of results at time 1 and 0 is in Table A-2.   

Table A-2 Results in the Static Period and at Time 0 in POI variant 

 

Time t ≥ 1, EV(1) = {{C
1
}, {C

2
}, {C

3
}} 

        EV 

Node 
{C

1
} {C

2
} {C

3
} 

b 1(node c) 2(node c) 1(node c) 

a 2(node b) 2(node c) 2(node c) 

Time t = 0, EV(0) = {{C
1
, C

2
}, {C

3
}} 

        EV 

Node 
{C

1
, C

2
} {C

3
} 

b 2(node c) 1(node c) 

a 2.5(node b) 2(node c) 

 

2. NOI variant 

T* = K – 1 = 1. Beyond T* = 1, travelers receive no more information. 

Step 1:  Construct EV(t), t = 0, 1 by calling Generate_Event_Collection 

 D = {{C
1
, C

2
, C

3
}} 

 t = 0 Q
LAG

 (0) = ∅     //no information available 

  EV(0) = {{C
1
, C

2
, C

3
}} 

 t = 1 Q
LAG

 (1) = ∅     //no information available 

  EV(1) = {{C
1
, C

2
, C

3
}} 

 

A summary of the results of constructing event collections is as follows. 

  EV(0) = {{C
1
, C

2
, C

3
}} 

  EV(1) = {{C
1
, C

2
, C

3
}} 

 

Step 2: Compute eµ* (j, 1, EV), )1(, EV∈∀∈∀ EVNj  
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This step involves solving deterministic static shortest path problems with each 

single support point C
r
, r = 1, 2, 3.  Any classical shortest path algorithm can be used.  In 

our small network, this can be done by observation.  The results are listed in Table A-3.  

In each result cell, the minimum expected travel time is given and the corresponding next 

node is in the parenthesis. Sµ* (b, 1, C
1
) = 1, Sµ* (b, 1, C

2
) = 2, Sµ* (b, 1, C

3
) = 1, Sµ* (a, 1, 

C
1
) = 3, Sµ* (a, 1, C

2
) = 2, Sµ* (a, 1, C

3
) = 2. 

 

Step 3: eµ* (j, t, EV) � +∞, )(,1},,{ tEVtbaj EV∈∀<∀∈∀  

eµ* (c, t, EV) � 0, )(,1 tEVt EV∈∀<∀  

 

Step 4:  (main loop) 

t = 0 

 EV = {C
1
, C

2
, C

3
} 

  (j, k) = (a, b) 

   temp_e = [1 + Sµ* (b, 0+1, C
1
)] Pr(C

1
 | EV) 

 + [1 + Sµ* (b, 0+1, C
2
)] Pr(C

2
 | EV)  

+ [1 + Sµ* (b, 0+1, C
3
)] Pr(C

3
 | EV) 

= (1 + 1) ×1/3 + (1 + 2) ×1/3 + (1 + 1) ×1/3 = 7/3 < +∞ 

   eµ* (a, 0, {C
1
, C

2
, C

3
}) = 7/3,  µ*(a, 0, {C

1
, C

2
, C

3
}) = node b 

   Sµ* (a, 0, C
1
) = 1 + Sµ* (b, 0+1, C

1
) = 1 + 1 = 2 

   Sµ* (a, 0, C
2
) = 1 + Sµ* (b, 0+1, C

2
) = 1 + 2 = 3 

   Sµ* (a, 0, C
3
) = 1 + Sµ* (b, 0+1, C

3
) = 1 + 1 = 2 

  (j, k) = (b, c) 
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   temp_e = [2 + Sµ* (c, 0+2, C
1
)] Pr(C

1
 | EV)  

 + [2 + Sµ* (c, 0+2, C
2
)] Pr(C

2
 | EV) 

 + [1 + Sµ* (c, 0+1, C
3
)] Pr(C

3
 | EV) 

= (2 + 0) ×1/3 + (2 + 0) ×1/3 + (1 + 0) ×1/3 = 5/3 < +∞ 

   eµ* (b, 0, {C
1
, C

2
, C

3
}) = 5/3,  µ*(b, 0, {C

1
, C

2
, C

3
}) = node c 

   Sµ* (b, 0, C
1
) = 2 + Sµ* (c, 0+2, C

1
) = 2 + 0 = 2 

   Sµ* (b, 0, C
2
) = 2 + Sµ* (c, 0+2, C

2
) = 2 + 0 = 2 

   Sµ* (b, 0, C
3
) = 1 + Sµ* (c, 0+1, C

3
) = 1 + 0 = 1 

  (j, k) = (a, c) 

   temp_e = [3 + Sµ* (c, 0+3, C
1
)] Pr(C

1
 | EV) 

 + [3 + Sµ* (c, 0+3, C
2
)] Pr(C

2
 | EV)  

+ [2 + Sµ* (c, 0+2, C
2
)] Pr(C

2
 | EV) 

= (3 + 0) ×1/3 + (3 + 0) ×1/3 + (2 + 0) ×1/3 

 = 8/3 > eµ* (a, 0, {C
1
, C

2
, C

3
}) 

 

The summary of results at time 1 and 0 is in Table A-3.   

Table A-3 Results in the Static Period and at Time 0 in NOI variant 

 

Time t ≥ 1, EV(0) = {{C
1
, C

2
, C

3
}} 

        EV 

Node 
{C

1
, C

2
, C

3
} 

b 4/3(node c) 

a 7/3(node c) 

Time t = 0, EV(0) = {{C
1
, C

2
, C

3
}} 

        EV 

Node 
{C

1
, C

2
, C

3
} 

b 5/3(node c) 

a 7/3(node b) 
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3. LAG variant 

Set: ∆ = 1. T* = K – 1 + ∆ = 2. Beyond T* = 2, travelers receive no more information. 

Step 1:  Construct EV(t), t = 0, 1, 2 by calling Generate_Event_Collection 

 D = {{C
1
, C

2
, C

3
}} 

 t = 0 Q
LAG

 (0) = ∅     //no information available yet 

  EV(0) = {{C
1
, C

2
, C

3
}} 

 t = 1 Q
LAG

 (1) = A × {0}    //all links at time 0 

  Q
LAG

 (1) \ Q
LAG

 (0) = A × {0}   //all links at time 0 

  ((j, k), t’) = ((a, b), 0)    //link (a, b) at time 0 

   S = {C
1
, C

2
, C

3
} 

    D’ = {{C
1
, C

2
, C

3
}} 

   D = {{C
1
, C

2
, C

3
}} 

  ((j, k), t’) = ((b, c), 0)    //link (b, c) at time 0 

   S = {C
1
, C

2
, C

3
} 

    D’ = {{C
1
, C

2
}, {C

3
}} 

   D = {{C
1
, C

2
}, {C

3
}} 

  ((j, k), t’) = ((a, c), 0)    //link (a, c) at time 0 

   S = {C
1
, C

2
} 

    D’ = {{C
1
, C

2
}} 

   S = {C
3
} 

    D’ = {{C
3
}} 

   D = {{C
1
, C

2
}, {C

3
}} 
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  EV(1) = {{C
1
, C

2
}, {C

3
}} 

 t = 2 Q
LAG

 (2) = A × {0,1}    //all links at time 0 and 1 

  Q
LAG

 (2) \ Q
LAG

 (1) = A × {1}   //all links at time 1 

  ((j, k), t’) = ((a, b), 1)    //link (a, b) at time 1 

   S = {C
1
, C

2
} 

    D’ = {{C
1
, C

2
}} 

   S = {C
3
} 

    D’ = {{C
3
}} 

   D = {{C
1
, C

2
}, {C

3
}} 

  ((j, k), t’) = ((b, c), 1)    //link (b, c) at time 1 

   S = {C
1
, C

2
} 

    D’ = {{C
1
}, {C

2
}} 

   S = {C
3
} 

    D’ = {{C
3
}} 

   D = {{C
1
}, {C

2
}, {C

3
}} 

  ((j, k), t’) = ((a, c), 1)    //link (a, c) at time 1 

   S = {C
1
} 

    D’ = {{C
1
}} 

   S = {C
2
} 

    D’ = {{C
2
}} 

   S = {C
3
} 

    D’ = {{C
3
}} 

   D = {{C
1
}, {C

2
}, {C

3
}} 
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  EV(2) = {{C
1
}, {C

2
}, {C

3
}}  

 

A summary of the results of constructing event collections is as follows. 

  EV(0) = {{C
1
, C

2
, C

3
}} 

  EV(1) = {{C
1
, C

2
}, {C

3
}} 

  EV(2) = {{C
1
}, {C

2
}, {C

3
}}  

 

Step 2: Compute eµ* (j, 2, EV), )2(, EV∈∀∈∀ EVNj  

This step involves solving deterministic static shortest path problems with each 

single support point C
r
, r = 1, 2, 3.  Any classical shortest path algorithm can be used.  In 

our small network, this can be done by observation.  The results are listed in Table A-4 

for nodes b and a only.  In each result cell, the minimum expected travel time is given 

and the corresponding next node is in the parentheses. Since event collections at static 

time period are all singleton, Sµ* (a, 2, C
i
) = eµ* (a, 2, {C

i
}), i = 1, 2, 3. 

 

Step 3: eµ* (j, t, EV) � +∞, )(,2},,{ tEVtbaj EV∈∀<∀∈∀  

eµ* (c, t, EV) � 0, )(,2 tEVt EV∈∀<∀  

Step 4:  (main loop) 

t = 1  

 EV = {C
1
, C

2
} 

  (j, k) = (a, b) 

   temp_e = [1 + Sµ* (b, 1+1, C
1
)] Pr(C

1
 | EV) 

 + [1 + Sµ* (b, 1+1, C
2
)] Pr(C

2
 | EV)  
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= (1 + 1) ×0.5 + (1 + 2) ×0.5 = 2.5 < +∞ 

   eµ* (a, 1, {C
1
, C

2
}) = 2.5,  µ*(a, 1, {C

1
, C

2
}) = node b 

   Sµ* (a, 1, C
1
) = 1 + Sµ* (b, 1+1, C

1
) = 1 + 1 = 2 

   Sµ* (a, 1, C
2
) = 1 + Sµ* (b, 1+1, C

2
) = 1 + 2 = 3 

  (j, k) = (b, c) 

   temp_e = [1 + Sµ* (c, 1+1, C
1
)] Pr(C

1
 | EV)  

 + [2 + Sµ* (c, 1+2, C
2
)] Pr(C

2
 | EV) 

= (1 + 0) ×0.5 + (2 + 0) ×0.5 = 1.5 < +∞ 

   eµ* (b, 1, {C
1
, C

2
}) = 1.5,  µ*(b, 1, {C

1
, C

2
}) = node c 

   Sµ* (b, 1, C
1
) = 1 + Sµ* (c, 1+1, C

1
) = 1 + 0 = 1 

   Sµ* (b, 1, C
2
) = 2 + Sµ* (c, 1+2, C

2
) = 2 + 0 = 2 

  (j, k) = (a, c) 

   temp_e = [3 + Sµ* (c, 1+3, C
1
)] Pr(C

1
 | EV) 

 + [2 + Sµ* (c, 1+2, C
2
)] Pr(C

2
 | EV) 

= (3 + 0) ×0.5 + (2 + 0) ×0.5 = 2.5 = eµ* (a, 1, {C
1
, C

2
}) 

 EV = {C
3
} 

  (j, k) = (a, b) 

   temp_e = [2 + Sµ* (b, 1+2, C
3
)] Pr(C

3
 | EV) 

= (2 + 1) ×1 = 3 < +∞ 

   eµ* (a, 1, {C
3
}) = 3,  µ*(a, 1, {C

3
}) = node b 

   Sµ* (a, 1, C
3
) = 2 + Sµ* (b, 1+2, C

3
) = 2 + 1 = 3 

  (j, k) = (b, c) 
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   temp_e = [1 + Sµ* (c, 1+1, C
3
)] Pr(C

3
 | EV)  

= (1 + 0) ×1 = 1 < +∞ 

   eµ* (b, 1, {C
3
}) = 1,  µ*(b, 1, {C

3
}) = node c 

   Sµ* (b, 1, C
3
) = 1 + Sµ* (c, 1+1, C

3
) = 1 + 0 = 1 

  (j, k) = (a, c) 

   temp_e = [2 + Sµ* (c, 1+2, C
3
)] Pr(C

3
 | EV)  

= (2 + 0) ×1 = 2 < eµ* (a, 1, {C
3
}) 

   eµ* (a, 1, {C
3
}) = 2,  µ*(a, 1, {C

3
}) = node c 

   Sµ* (a, 1, C
3
) = 2 + Sµ* (c, 1+2, C

3
) = 2 + 0 = 0 

 

Similar calculations can be carried out at time 0 and a summary of results is in 

Table A-4. 

 

Table A-4 Results in the Static Period and at Time 1 and 0 in LAG variant 

 

Time t ≥ 2, EV(2) = {{C
1
}, {C

2
}, {C

3
}} 

        EV 

Node 
{C

1
} {C

2
} {C

3
} 

b 1(node c) 2(node c) 1(node c) 

a 2(node b) 2(node c) 2(node c) 

Time t = 1, EV(1) = {{C
1
, C

2
}, {C

3
}} 

        EV 

Node 
{C

1
, C

2
} {C

3
} 

b 1.5(node c) 1(node c) 

a 2.5(node b) 2(node c) 

Time t = 0, EV(0) = {{C
1
, C

2
, C

3
}} 

        EV 

Node 
{C

1
, C

2
, C

3
} 

b 5/3(node c) 

a 7/3(node b) 
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4. PRE variant 

Set: t0 = 0. T* = K – 1 = 1. Beyond T* = 1, travelers receive no more information. 

Step 1:  Construct EV(t), t = 0, 1 by calling Generate_Event_Collection 

 D = {{C
1
, C

2
, C

3
}} 

 t = 0  Q
PRE

 (0) = A × {0}    //all links at time 0 

  ((j, k), t’) = ((a, b), 0)    //link (a, b) at time 0 

   S = {C
1
, C

2
, C

3
} 

    D’ = {{C
1
, C

2
, C

3
}} 

   D = {{C
1
, C

2
, C

3
}} 

  ((j, k), t’) = ((b, c), 0)    //link (b, c) at time 0 

   S = {C
1
, C

2
, C

3
} 

    D’ = {{C
1
, C

2
}, {C

3
}} 

   D = {{C
1
, C

2
}, {C

3
}} 

  ((j, k), t’) = ((a, c), 0)    //link (a, c) at time 0 

   S = {C
1
, C

2
} 

    D’ = {{C
1
, C

2
}, {C

3
}} 

   S = {C
3
} 

    D’ = {{C
1
, C

2
}, {C

3
}} 

   D = {{C
1
, C

2
}, {C

3
}} 

  EV(0) = {{C
1
, C

2
}, {C

3
}} 

 t = 1 Q
PRE

 (1) = Q
PRE

 (0)    //no more information 

  Q
POI

 (1) \ Q
POI

 (0) = ∅ 

EV(1) = {{C
1
, C

2
}, {C

3
}} 
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A summary of the results of constructing event collections is as follows. 

  EV(0) = {{C
1
, C

2
}, {C

3
}} 

  EV(1) = {{C
1
, C

2
}, {C

3
}}  

 

Step 2: Compute eµ* (j, 1, EV), )1(, EV∈∀∈∀ EVNj  

This step involves solving deterministic static shortest path problems with each 

single support point C
r
, r = 1, 2, 3.  Any classical shortest path algorithm can be used.  In 

our small network, this can be done by observation.  The results are listed in Table A-5 

for nodes b and a only.  In each result cell, the minimum expected travel time is given 

and the corresponding next node is in the parentheses. Sµ* (b, 1, C
1
) = 1, Sµ* (b, 1, C

2
) = 2, 

Sµ* (b, 1, C
3
) = 1, Sµ* (a, 1, C

1
) = 1+1 =2, Sµ* (a, 1, C

2
) = 1+2 =3, Sµ* (a, 1, C

3
) = 2. 

 

Step 3: eµ* (j, t, EV) � +∞, )(,1},,{ tEVtbaj EV∈∀<∀∈∀  

eµ* (c, t, EV) � 0, )(,1 tEVt EV∈∀<∀  

Step 4:  (main loop) 

t = 0 

 EV = {C
1
, C

2
} 

  (j, k) = (a, b) 

   temp_e = [1 + Sµ* (b, 0+1, C
1
)] Pr(C

1
 | EV) 

 + [1 + Sµ* (b, 0+1, C
2
)] Pr(C

2
 | EV)  

= (1 + 1) ×0.5 + (1 + 2) ×0.5 = 2.5 < +∞ 

   eµ* (a, 0, {C
1
, C

2
}) = 2.5,  µ*(a, 0, {C

1
, C

2
}) = node b 
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   Sµ* (a, 0, C
1
) = 1 + Sµ* (b, 0+1, C

1
) = 1 + 1 = 2 

   Sµ* (a, 0, C
2
) = 1 + Sµ* (b, 0+1, C

2
) = 1 + 2 = 3 

  (j, k) = (b, c) 

   temp_e = [2 + Sµ* (c, 0+2, C
1
)] Pr(C

1
 | EV)  

 + [2 + Sµ* (c, 0+2, C
2
)] Pr(C

2
 | EV) 

= (2 + 0) ×0.5 + (2 + 0) ×0.5 = 2 < +∞ 

   eµ* (b, 0, {C
1
, C

2
}) = 2,  µ*(b, 0, {C

1
, C

2
}) = node c 

   Sµ* (b, 0, C
1
) = 2 + Sµ* (c, 0+2, C

1
) = 2 + 0 = 2 

   Sµ* (b, 0, C
2
) = 2 + Sµ* (c, 0+2, C

2
) = 2 + 0 = 2 

  (j, k) = (a, c) 

   temp_e = [3 + Sµ* (c, 0+3, C
1
)] Pr(C

1
 | EV) 

 + [3 + Sµ* (c, 0+3, C
2
)] Pr(C

2
 | EV) 

= (3 + 0) ×0.5 + (3 + 0) ×0.5 = 3 > eµ* (a, 0, {C
1
, C

2
}) 

 EV = {C
3
} 

  (j, k) = (a, b) 

   temp_e = [1 + Sµ* (b, 0+1, C
3
)] Pr(C

3
 | EV) 

= (1 + 1) ×1 = 2 < +∞ 

   eµ* (a, 0, {C
3
}) = 2,  µ*(a, 0, {C

3
}) = node b 

   Sµ* (a, 0, C
3
) = 1 + Sµ* (b, 0+1, C

3
) = 1 + 1 = 2 

  (j, k) = (b, c) 

   temp_e = [1 + Sµ* (c, 0+1, C
3
)] Pr(C

3
 | EV)  

= (1 + 0) ×1 = 1 < +∞ 
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   eµ* (b, 0, {C
3
}) = 1,  µ*(b, 0, {C

3
}) = node c 

   Sµ* (b, 0, C
3
) = 1 + Sµ* (c, 0+1, C

3
) = 1 + 0 = 1 

  (j, k) = (a, c) 

   temp_e = [2 + Sµ* (c, 0+2, C
3
)] Pr(C

3
 | EV)  

= (2 + 0) ×1 = 2 = eµ* (a, 0, {C
3
}) 

 

Similar calculations can be carried out for departure time t0 = 1 and a summary of 

results is in Table A-5. 

 

Table A-5 Results in the Static Period and at Time 0 in PRE variant 

 

Time t ≥ 1, EV(1) = {{C
1
}, {C

2
}, {C

3
}} 

        EV 

Node 
{C

1
} {C

2
} {C

3
} 

b 1(node c) 2(node c) 1(node c) 

a 2(node b) 2(node c) 2(node c) 

Time t = 0, EV(0) = {{C
1
, C

2
}, {C

3
}} 

        EV 

Node 
{C

1
, C

2
} {C

3
} 

b 2(node c) 1(node c) 

a 2.5(node b) 2(node b) 

 

5. RADIO variant 

Set: B = {(a,b)}. T* = K – 1 = 1. Beyond T* = 1, travelers receive no more information. 

Step 1:  Construct EV(t), t = 0, 1 by calling Generate_Event_Collection 

 D = {{C
1
, C

2
, C

3
}} 

 t = 0  Q
RADIO

 (0) = B × {0}    //link set B at time 0 

  ((j, k), t’) = ((a, b), 0)    //link (a, b) at time 0 

   S = {C
1
, C

2
, C

3
} 

    D’ = {{C
1
, C

2
, C

3
}} 



 

57 

   D = {{C
1
, C

2
, C

3
}} 

  EV(0) = {{C
1
, C

2
, C

3
}} 

 t = 1  Q
RADIO

 (1) = B × {0,1}   //link set B at time 0 and 1 

  Q
POI

 (1) \ Q
POI

 (0) = B × {1}   //link set B at time 1 

  ((j, k), t’) = ((a, b), 1)    //link (a, b) at time 1 

   S = {C
1
, C

2
, C

3
} 

    D’ = {{C
1
, C

2
}, {C

3
}} 

   D = {{C
1
, C

2
}, {C

3
}} 

EV(1) = {{C
1
, C

2
}, {C

3
}} 

 

A summary of the results of constructing event collections is as follows. 

  EV(0) = {{C
1
, C

2
, C

3
}} 

  EV(1) = {{C
1
, C

2
}, {C

3
}}  

 

Step 2: Compute eµ* (j, 1, EV), )1(, EV∈∀∈∀ EVNj  

This step involves solving deterministic static shortest path problems with each 

single support point C
r
, r = 1, 2, 3.  Any classical shortest path algorithm can be used.  In 

our small network, this can be done by observation.  The results are listed in Table A-6 

for nodes b and a only.  In each result cell, the minimum expected travel time is given 

and the corresponding next node is in the parentheses. Sµ* (b, 1, C
1
) = 1, Sµ* (b, 1, C

2
) = 2, 

Sµ* (b, 1, C
3
) = 1, Sµ* (a, 1, C

1
) = 1+1 =2, Sµ* (a, 1, C

2
) = 1+2 =3, Sµ* (a, 1, C

3
) = 2. 

 

Step 3: eµ* (j, t, EV) � +∞, )(,1},,{ tEVtbaj EV∈∀<∀∈∀  
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eµ* (c, t, EV) � 0, )(,1 tEVt EV∈∀<∀  

Step 4:  (main loop) 

t = 0 

 EV = {C
1
, C

2
, C

3
} 

  (j, k) = (a, b) 

   temp_e = [1 + Sµ* (b, 0+1, C
1
)] Pr(C

1
 | EV) 

 + [1 + Sµ* (b, 0+1, C
2
)] Pr(C

2
 | EV)  

+ [1 + Sµ* (b, 0+1, C
3
)] Pr(C

3
 | EV) 

= (1 + 1) ×1/3 + (1 + 2) ×1/3 + (1 + 1) ×1/3 = 7/3 < +∞ 

   eµ* (a, 0, {C
1
, C

2
, C

3
}) = 7/3,  µ*(a, 0, {C

1
, C

2
, C

3
}) = node b 

   Sµ* (a, 0, C
1
) = 1 + Sµ* (b, 0+1, C

1
) = 1 + 1 = 2 

   Sµ* (a, 0, C
2
) = 1 + Sµ* (b, 0+1, C

2
) = 1 + 2 = 3 

   Sµ* (a, 0, C
3
) = 1 + Sµ* (b, 0+1, C

3
) = 1 + 1 = 2 

  (j, k) = (b, c) 

   temp_e = [2 + Sµ* (c, 0+2, C
1
)] Pr(C

1
 | EV)  

 + [2 + Sµ* (c, 0+2, C
2
)] Pr(C

2
 | EV) 

 + [1 + Sµ* (c, 0+1, C
3
)] Pr(C

3
 | EV) 

= (2 + 0) ×1/3 + (2 + 0) ×1/3 + (1 + 0) ×1/3 = 5/3 < +∞ 

   eµ* (b, 0, {C
1
, C

2
, C

3
}) = 5/3,  µ*(b, 0, {C

1
, C

2
, C

3
}) = node c 

   Sµ* (b, 0, C
1
) = 2 + Sµ* (c, 0+2, C

1
) = 2 + 0 = 2 

   Sµ* (b, 0, C
2
) = 2 + Sµ* (c, 0+2, C

2
) = 2 + 0 = 2 

   Sµ* (b, 0, C
3
) = 1 + Sµ* (c, 0+1, C

3
) = 1 + 0 = 1 
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  (j, k) = (a, c) 

   temp_e = [3 + Sµ* (c, 0+3, C
1
)] Pr(C

1
 | EV) 

 + [3 + Sµ* (c, 0+3, C
2
)] Pr(C

2
 | EV)  

+ [2 + Sµ* (c, 0+2, C
2
)] Pr(C

2
 | EV) 

= (3 + 0) ×1/3 + (3 + 0) ×1/3 + (2 + 0) ×1/3 

 = 8/3 > eµ* (a, 0, {C
1
, C

2
, C

3
}) 

 

The summary of results at time 1 and 0 is in Table A-6. 

Table A-6 Results in the Static Period and at Time 0 in RADIO variant 

 

Time t ≥ 1, EV(1) = {{C
1
, C

2
}, {C

3
}} 

        EV 

Node 
{C

1
, C

2
} {C

3
} 

b 1.5(node c) 1(node c) 

a 2.5(node b) 2(node c) 

Time t = 0, EV(0) = {{C
1
, C

2
, C

3
}} 

        EV 

Node 
{C

1
, C

2
, C

3
} 

b 5/3(node c) 

a 7/3(node b) 

 

The summary of the expected travel time from node a to node c for each 

departure time in all variants (POI, NOI, LAG, PRE, and RADIO) is in Table A-7. 

Table A-7. The expected travel time from node a to node c in all variants 

Departure time t POI NOI LAG (∆ = 1) PRE RADIO (B = {(a,b)}) 

≥ 2 2 7/3 2 2 7/3 

= 1 2 7/3 7/3 2 7/3 

= 0 7/3 7/3 7/3 7/3 7/3 
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