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ABSTRACT 

ENDOGENOUS TECHNOLOGICAL CHANGE IN THE DICE INTEGRATED 

ASSESSMENT MODEL 

SEPTEMBER 2013 

ROBERT BARRON, B.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

M.S.I.E.O.R., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Erin Baker 

 
Integrated Assessment Models (IAM)s play a key role in climate policy research; 

however, many IAMs are limited by their treatment of technological change. This is a 

particularly vexing limitation because technological change significantly affects the 

optimal carbon policy. We propose a means of incorporating technological change within 

the Dynamic Integrated Model of the Climate and Economy (DICE). We modify DICE to 

allow it to adjust the cost of CO2 abatement based on the demand for solar photovoltaic 

generating capacity.  

We find that deployment of solar photovoltaics (PV) is highly sensitive to returns to 

scale and the grid integration costs associated with PV intermittency. At low returns to 

scale integration costs cause PV to be deployed in steps, reducing the benefit of scale 

effects; at higher returns to scale PV is deployed smoothly but is arrested integration 

costs become significant; and when returns are high PV becomes so inexpensive that it’s 

deployed widely in spite of integration costs. The implication of this behavior is that the 

optimal allocation of research and development resources depends on returns to scale in 

the solar market: if returns to scale are low, R&D should focus on PV itself, while if 

they’re high, R&D should focus on reducing integration costs. 
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CHAPTER 1 

INTRODUCTION 

 Motivation 1.1

Integrated Assessment Models (IAMs) are important tools of climate change policy 

research, but many IAMs are limited by their treatment of technological change. This is a 

vexing limitation because any carbon dioxide (CO2) emissions policy will induce 

technological change, and models which cannot capture this dynamic may miss valuable 

insights, with costly and possibly counterproductive results.  

One common approach to modeling technological change is to use an exogenous 

parameter known as an autonomous energy efficiency index (AEEI). The AEEI approach 

has the merit of simplicity, but it cannot model the Induced Technological Change (ITC) 

caused by a carbon policy. These problems have been recognized as serious limitations 

for IAMs; consequently there has been a trend towards using endogenous technological 

change in IAMs. 

 

 Objectives 1.2

The goal of this thesis is to implement a framework for endogenous technological 

change in one well-known IAM and analyze the impact of ITC on the model’s 

predictions. By synthesizing the research about the nature of technological change and its 

effect on abatement cost we develop an endogenous framework for technological change 

within the Dynamic Integrated Model of the Climate and Economy (DICE) model, 

implement a simplified model of the zero carbon energy market within that framework, 

and analyze the impact of ITC on the optimal level of carbon emissions. For the balance 
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of this thesis we will refer to the unmodified DICE 2007 model as “DICE”, and our 

modified model as “DICE-S”, for DICE with Scale. 

 

 Contributions 1.3

This work contributes to scholarly knowledge by addressing the challenges of 

incorporating ITC in an IAM, with the objective of building a model capable of exploring 

technology policy alongside market policy. This is important because models which 

cannot capture ITC tend to overestimate the true cost of abatement (Popp 2004). While at 

first glance, the implication of overestimating abatement costs may seem to be a simple 

cost savings, they’re more complex: a more accurate representation of abatement costs 

could change the optimal policy. This has important ramifications for society because 

once a policy has been adopted changing course could be extremely costly or even 

impossible. This model provides a tool for exploring the complex impact of technological 

change on optimal carbon policy. 
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CHAPTER 2 

BACKGROUND 

 Climate Change From an Economic Perspective  2.1

In the popular media climate change is frequently presented in terms of global 

temperature increases, retreating ice sheets, rising ocean levels, and the dire 

consequences such events may have for Earth’s ecosystem. Economists take a different 

perspective: they focus on the economic impact of ecological change rather than change 

itself. This is an important point, and one that is easily misunderstood.  The fact that 

economists aren’t directly concerned with the environment does not mean that they are 

unconcerned: economists recognize that the environment has intrinsic value which is 

diminished by climate change, but economists also recognize the economic benefits of 

consuming natural resources; and that such benefits outweigh the costs, up to a point.  To 

the economist, addressing climate change is an optimization problem.  

The economy is composed of many agents acting independently in their own self-

interest. The interactions between these agents—the market—impose an important 

constraint on social planning, namely that any effective policy must either be optimal for 

each individual agent or enforced through costly measures. On the other hand, the 

perfectly competitive market’s remarkable ability to allocate resources efficiently can be 

harnessed to society’s advantage by transforming an intractably complex problem into a 

more manageable exercise in market regulation. For these reasons, large scale economic 

problems must be addressed from the perspective of market regulation.   
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2.1.1 Climate Change as a Market Failure 

The primary market imperfection affecting the climate change problem is the 

externality created by CO2 emissions; since emitters reap all of the benefits of their 

emissions but only a fraction of the damages, they emit at a sub-optimally high level. 

The concept of pollution as a market failure is not new. In the early 20th century 

Pigou (1932) advanced an argument for taxation as a means of addressing pollution 

externalities. Later, Coase (1960) argued that property rights can address externalities in 

certain situations, but also noted that in some cases transaction costs associated with such 

rights could exceed their value. Hardin (1968) coined the term tragedy of the commons to 

describe a situation in which an externality affecting a nonexcludeable good encourages 

its depletion. Climate change has long been conceptualized within this framework: 

William Nordhaus, the creator of DICE, characterized the climate change problem as 

managing the global commons (Nordhaus 1994) , and more recently climate change has 

been called the greatest market failure the world has ever seen (Stern 2007).  

 

2.1.2 The Role of Climate Change Policy 

The goal of climate change policy is to address the market failures that are the 

underlying drivers of climate change.  The tools to repair market failures can be grouped 

into two categories. Interventional approaches such as Pigouvian taxation (Pigou 1932), 

quotas, and Cosian bargaining (Coase 1960) all have the underlying strategy of valuing 

the externality by means of some market intervention.  On the other hand, structural, or 

technology-based approaches such as R&D attempt to remove the economic incentive to 

produce the externality.  
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 Technological Change 2.2

Wing (2006) defines technological change as “a change in the character of 

productive activity” and decomposes the drivers of technological change into invention, 

fueled by creativity and scientific knowledge; innovation, the application of engineering 

knowledge to scaling up and commercializing existing technologies; and diffusion of the 

technologies throughout the economy. These stages outline the path taken by new 

technologies as they are first invented, then commercialized, and finally diffused 

throughout the economy. While the qualitative relationship between technology and 

economic output is clear, a quantitative relationship has been elusive, especially for the 

long time horizon of the climate change problem.  

 

2.2.1 Learning by Doing 

The beginnings of endogenous technological change date back more than a century to 

Bryan, and Harter (1899) (cited in (Nordhaus 2008)), who noted that performance of 

telegraph operators improved with experience. Hicks (1932), proposed the theory of ITC, 

whereby cost minimizing motives will incentivize firms to economize on the costliest 

factors of production. Among the first to notice a relationship between cost and 

experience in a manufacturing setting was Wright (1936), who noted that the number of 

hours required to build an aircraft decreased with each unit produced. Later work by 

Arrow (1962) further developed the concept of learning by doing.  
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Learning by doing has proven to be a useful metric for many technologies and is now 

part of the industrial engineering canon. However, as discussed below, using a learning 

model at higher levels of aggregation may be problematic. 

 

2.2.2 Returns to Scale 

Return to scale is the concept that the unit cost of a good decreases as a function of 

the scale of production. It is structured similarly to the learning curve, except that 

cumulative production is replaced with a representation of the relative change in capacity 

from some arbitrary starting point.   

 

2.2.3 Induced Technological Change   

Cost minimization implies that increasing prices will spur innovation that economizes 

on the factors of production. First introduced by Hicks (1932), ITC implies that price 

instruments will affect the rate of technological change. Over the long term, this can have 

a significant effect on the optimal portfolio.  

Although there is considerable literature which concludes that ITC alone will not be 

enough to solve climate change (Goulder 2004, de Coninck et al. 2008, Gainza-

Carmenates et al. 2010), its self-enforcing nature may have significant implications 

because mitigation costs rise exponentially in the face of incomplete participation 

(Keppo, Rao 2007). 
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 Abatement1 2.3

In this thesis we follow Baker, Clarke & Shittu (2008)  by defining abatement as a 

reduction in emissions below a baseline, in this case the profit maximizing level in the 

absence of both technological change and a carbon policy. Abatement will occur 

whenever either a carbon policy or technological change leads to a new optimum at a 

lower level of emissions. Abatement is often discussed in terms of the Marginal 

Abatement Cost (MAC) and Total Abatement Cost (TAC); the TAC is the total cost of 

achieving a given level of abatement, while the MAC is the cost of abating the next unit 

of emissions.  

 

2.3.1 The Total Abatement Cost Curve 

The TAC curve is defined as the difference between profit or GDP with and without a 

constraint on emissions, with respect to abatement level (Baker, Barron 2013). This 

definition is illustrated in Figure 1 below. Panel (a) illustrates the firm’s abatement 

problem: emissions constraints ei  represent all possible combinations of abatement µ and 

output y and which result in emissions level ei; the firm’s corresponding maximal 

isoprofit curves πi  are tangent to the constraints at the profit maximizing combination of 

output and abatement. Note that as the emissions constraint tightens, the optimal point 

moves up and to the left. This reflects the fact that firms will choose to achieve some 

abatement through output reduction, rather than through abatement effort alone. Panel (b) 

illustrates the corresponding TAC curve. 

                                                 
1 The content of this section borrows heavily from Technical Change and the Marginal Cost of Abatement, 
in the Encyclopedia of Energy, Natural Resource, and Environmental Economics (Baker, Barron 2013).  
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Figure 1: Generating abatement cost curves: (a) The abatement problem, (b) The 

TAC curve (Adapted from (McKitrick 1999, 306-314)). 
 

 
2.3.2 The Marginal Abatement Cost Curve 

The Marginal Abatement Cost (MAC) curve is obtained by differentiating the TAC 

with respect to abatement. As shown in Figure 2, it can be used to determine the optimal 

level of emissions in society, the level of abatement resulting from a given carbon price, 

or to determine the emissions price that would be needed to achieve a particular level of 

emissions: for example, if we want to attain abatement equal to a0, we must set the 

emissions price to p0 (Baker, Barron 2013). 

 

2.3.2.1 Effect of Technological change on the MAC curve  

Technological change affects the level and the shape of the MAC curve, which in turn 

influences the optimal level of abatement and the cost savings realized from 

technological change. Several methods are commonly used to represent the impact of 

technological change on the MAC curve. Some models explicitly assume that technical 

change will pivot the MAC curve down, i.e., reduce the MAC multiplicatively. Others 

represent technical change as impacting the TAC curve, often through pivoting or 
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shifting it down. A third way to represent technical change is through a reduction in the 

emissions-to-output ratio or the emissions-to-energy ratio (which can sometimes be 

interpreted as increasing energy efficiency). Another approach is to model technical 

change as reducing the cost of low-emissions energy. Finally, some models place 

“knowledge” into the production function, and allow knowledge to substitute for fossil, 

non-fossil, or overall energy (Baker, Clarke & Shittu 2008). In this thesis we represent 

technological change through pivots and shifts to the original MAC curve (Figure 3).  

 

 
Figure 2: A simple example of the abatement problem. 

 

 
Modelers should also be aware of the possibility that technological change will have 

more complex effects than simply reducing the MAC, and that these effects can create 

perverse incentives. Indeed, under certain conditions technological change can increase 

the MAC for some levels of abatement, or worse yet, lead to higher emissions. Baker, 

Clarke & Shittu (2008) discuss this matter in some detail and provide a number of 

a0 
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examples of this important phenomenon. In a separate paper Baker and Shittu (2006) 

show that if the elasticity of substitution between fossil fuels and low carbon energy is 

low enough, the MAC will be everywhere increased by technological change. 

 

 
Figure 3: The effect of pivots and shifts on a MAC curve. 

 

To illustrate how technological change can increase the MAC, Baker, et al. (2008) 

give the following example: consider a technology that would be used only at low levels 

of abatement; for example, increasing the efficiency of coal-fired power plants. The 

resulting TAC and MAC curves are illustrated in Figure 4. Such a technology would 

significantly reduce the TAC at low levels of abatement (left panel of Figure 4), but it 

would have little effect at higher levels because society would be burning little coal. 

Therefore, while the TAC is always lower (and the firm strictly better off), the MAC is 

higher at high levels of abatement (right panel of Figure 4). 
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Figure 4: TAC curves before technological change and the resulting MAC curves 

(Reproduced from Baker, Clarke, & Shittu (2008)). 
 

One risk posed by technological change that increases the MAC are perverse 

incentives. Under certain conditions, optimal emissions increase (for a given tax) after 

technological change. This may occur if a breakthrough in a low-efficiency abatement 

technology reduces the cost of low abatement to the point that a firm is better off 

employing the low-cost, low-efficiency abatement technology and paying the higher tax, 

rather than employing a high-cost, high-efficiency abatement technology and paying a 

lower tax (Baker et al. 2008) .  

 

 Integrated Assessment Models 2.4

IAMs can be broadly grouped into two categories: bottom-up models simulate the 

economy through detailed technological models, and top-down models optimize 

theoretically consistent, highly aggregated representations of the economy (Kahouli-

Brahmi 2008). Bottom-up models are generally used to determine the most cost effective 

way to deal with a given policy from a microeconomic standpoint, while top down 

models are used to analyze the macroeconomic effects of policy (Rivers, Jaccard 2005, 
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Popp 2004). In other words, top down models are useful for deciding where to go, and 

bottom up models are used to decide how to get there. 

 

2.4.1 Endogenous Technological Change in IAMs 

One approach to modeling technological change endogenously in IAMs is the 

learning curve approach—technology is assumed to improve as a function of experience. 

Although common, this method is not without problems; the learning parameter is 

technology-specific, so there is no way to aggregate individual learning parameters 

because the aggregate parameter would change as the composition of the market varied. 

The implication here is that there is no single learning parameter that can be applied to 

the entire market. Nordhaus (2008) notes this and several other potential problems with 

using a learning model to endodgenize technological change, including a statistical 

identification problem in trying to separate learning from other technological change 

(such as scale effects), and a propensity to bias optimization models toward technologies 

with (incorrectly) high learning coefficients. Examples of these difficulties can be found 

elsewhere in the literature: Nemet (2006) examined the factors affecting the price of solar 

photovoltaics and concluded that learning by doing has a poor correlation with price for 

solar photovoltaics, and Yu, van Sark and Alsema (2011) noted a similar problem, 

attributing the issue to the effect of scale and scarcity effects. Soderholm and Sundqvist 

(2007) note that scale effects can cause upward bias in the learning parameter for 

increasing returns to scale.  

There can be little doubt that using the learning model has obstacles, but there are 

ways to address the issues. Yu et al. (2011) and Soderholm and Sundqvist (2007) 
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advocate the use of multi factor learning curves. This approach decomposes the drivers of 

technological change into potentially any number of components: scale, learning, and 

scarcity could, in theory, all be separately modeled.  Soderholm and Sundqvist (2007) 

also discuss the importance of choosing the appropriate proxy for learning: installed 

capacity, demand, and total generation have all been proposed, and all lead to different 

results. 

 

2.4.2 The DICE Model 

The DICE model was developed by Yale economist William Nordhaus in the early 

1990s “to improve our understanding of the interaction of economy and climate and to 

design better approaches to economic policy” (Nordhaus 1994). Here we briefly discuss 

the DICE model, in particular its treatment of technological change and the abatement 

cost function.  

DICE’s objective function is:  

                               

 max𝑊 = � 𝑈[𝑐(𝑡), 𝐿(𝑡)]𝑅(𝑡) 
𝑡𝑚𝑎𝑥

𝑡=1

 (1) 

 

where 𝑊 is welfare, 𝑈 is utility, 𝐿 is population, 𝑐 is per-capita consumption, and 𝑅 is the 

discount multiplier. 𝐿 and R are exogenous, and 𝑐(𝑡) is given by: 

 

 𝑐(𝑡) =
𝐶(𝑡)
𝐿(𝑡)

=
𝑄(Ω,𝛬, 𝑡) − 𝐼(𝑡)

𝐿(𝑡)
 (2) 
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where 𝑄 is the net output of society after damages Ω and abatement 𝛬, and 𝐼 is 

investment. The full equation for 𝑄 is: 

 
 𝑄(Ω,𝛬, 𝑡) = Ω(𝑇, 𝑡)�1 − 𝛬(µ, 𝑡)�𝐴(𝑡)𝐾(𝐼, 𝑡)𝛾𝐿(𝑡)1−𝛾  (3) 

 

Note that this is the familiar Cobb-Douglass utility function with additional terms for 

damages and abatement.  

The cost of abatement is given by 

 
 𝛬(𝑡) = 𝜋(𝑡)𝜃1(t)𝜇(𝑡)𝜃2  (4) 

 

where the participation cost markup 𝜋(𝑡) reflects the increasing cost of abatement in the 

face of incomplete participation due to the fact that participants must abate at a higher 

and more expensive level than they otherwise would in order to make up for the non-

participants, and 𝜃1,𝜃2 are calibration parameters that represent the adjusted cost for the 

backstop technology (the price of replacing all fossil fuels with other technologies), and 

the increasing marginal cost of abatement as abatement level rises, respectively.  

In DICE, there are two distinct forms of technological change: total factor 

productivity 𝐴(𝑡), from the familiar Cobb-Douglass utility function, and carbon saving 

technological change 𝜎, which is modeled as a reduction in the carbon intensity of 

economic activity.  Total factor productivity is a parameter that represents the increased 

output resulting from improved technology.  Sigma plays a similar role in the abatement 

cost equation: as sigma decreases so does the cost of abatement.  
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2.4.3 The Global Change Assessment Model (GCAM) 

The Global Change Assessment Model (GCAM) is a bottom-up IAM developed and 

maintained by the (Joint Global Change Research Institute 2012b).  GCAM differs from 

DICE in that it is a technologically detailed model that simulates the economy, with a 

particular emphasis on energy systems. GCAM’s detail makes it well suited to questions 

concerning specific technologies. GCAM plays three important roles in our thesis: we use 

it to estimate the energy intensity of the economy (section 3.6.1), to calculate the initial 

value of the cost of backup electricity (section 3.4.2), and to parameterize the effect of 

solar price on the cost of abatement (section 3.6.4). 
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CHAPTER 3 

THE DICE-S MODEL 

 Overview 3.1

In this thesis we restrict our scope to CO2 emissions; therefore, we use the term 

“clean” to refer to any energy technology that does not emit CO2, without regard to any 

other pollutants it may generate (e.g. nuclear waste). Our strategy is to modify DICE to 

model the clean energy market endogenously and adjust abatement cost accordingly. We 

implement this in four parts: sizing the market, competitively apportioning that market, 

adjusting technology prices, and adjusting the cost of abatement (Figure 5).  

 

 
Figure 5: Schematic of the DICE-S model. 

 

 Sizing the Market 3.2

We begin by determining the energy demanded by the economy. We will distinguish 

between two demands: the total demand for energy in the economy, and the demand for 

clean energy; we term the former “absolute demand”, and refer to the latter as “clean 

       DICE  This Research 
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demand”, or simply “demand”. The absolute demand for energy in the economy is given 

by  

 

 𝐷𝐴𝑏𝑠(𝑡) = 𝜏(𝑡) ∗ 𝑌𝑔𝑟𝑜𝑠𝑠(𝑡) (5) 

 

where 𝑌𝑔𝑟𝑜𝑠𝑠 is global GDP in trillions of dollars and the parameter 𝜏 is the energy 

intensity of the economy in GWh/Trillion $. 𝐷𝑐𝑙𝑒𝑎𝑛, the per-period demand for clean 

energy in GWh, is calculated by multiplying absolute demand by the abatement level 

𝜇(𝑡). Abatement and GDP are native to DICE; the parameter tau is estimated using 

GCAM. 

 

 Apportioning the Market 3.3

Once the size of the market has been determined, that market must be apportioned 

across the available technologies. Cost minimization implies that a single agent model 

such as DICE would choose the least expensive technology to the exclusion of all others, 

and that any LBD effects would only increase the price gap. In reality the market is 

composed of many agents, each solving their own unique optimization problem. 

Variations in the agents’ problems mean that many technologies can survive, resulting in 

a market with multiple viable technologies apportioned roughly according to price. Our 

challenge here is to represent such a market in DICE. The logit choice framework 

(McFadden 1974) offers a compact, well-behaved means of allocating market share in a 

way that meets this requirement.   

The general form of the logit share equation is: 
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 𝑠𝑖 =
𝑏𝑖𝑝𝑖−𝛾𝑖

𝑏𝑖𝑝𝑖−𝛾𝑖 + ∑ 𝑏𝑗𝑝𝑗
−𝛾𝑗

𝑗≠𝑖
 (6) 

                                       

where s is market share, 𝑝 is price, b is the base share weight parameter, 𝛾 is the price 

exponent, i is the technology of interest, and j indexes the balance of the market (BOM).  

We implement a simplified model of the clean energy market, with the BOM 

aggregated into a single good. It is straightforward to show that in the two good case 𝑏𝑗 is 

redundant; the functional form used in our model is shown in Equation (7): 

 

 𝑠𝑆𝑜𝑙 =
𝑏𝑆𝑜𝑙𝑝𝑆𝑜𝑙−𝛾𝑆𝑜𝑙

𝑏𝑆𝑜𝑙𝑝𝑆𝑜𝑙−𝛾𝑆𝑜𝑙 + 𝑝𝐵𝑂𝑀−𝛾𝐵𝑂𝑀
 (7) 

 

 where 𝑠𝑆𝑜𝑙 is solar’s share of the clean energy market.  

The market share of solar is used to calculate the demand for solar 𝐷𝑆𝑜𝑙 by 

multiplying absolute demand 𝐷𝐴𝑏𝑠 by abatement 𝜇 and solar share 𝑠𝑆𝑜𝑙 to obtain the 

demand for solar energy in GWh: 

 
 𝐷𝑆𝑜𝑙 = 𝐷𝐴𝑏𝑠 ∗  𝜇 ∗ 𝑠𝑆𝑜𝑙 (8) 

 

 Solar Price 3.4

In the previous sections we discussed how the model arrives at the demand for solar 

energy. Here we discuss how solar demand affects its price. The price of solar technology 

has two components: the cost of the solar technology itself, and grid integration costs 
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incurred due to the intermittent nature of solar energy. The net price of solar energy is 

given by: 

 𝑝𝑆𝑜𝑙(T) = 𝐶𝑇𝑒𝑐ℎ(𝑇) + 𝐶𝐼𝑛𝑡(𝑇) (9) 

Where 𝐶𝑇𝑒𝑐ℎ(𝑇) and 𝐶𝐼𝑛𝑡(𝑇) represent the cost of base solar technology and the 

integration cost, respectively. 

 

3.4.1 Technology Cost  

We implement technological learning in solar photovoltaics as a return to scale. We 

assume that the price of solar responds to scale after Nemet (2006) and adopt the 

functional form of Nemet and Baker (2009) as shown in (10), using demand as a proxy 

for installed capacity:  

 

 𝐶𝑇𝑒𝑐ℎ(T + 1) = 𝐶𝑇𝑒𝑐ℎ(𝑇) �
𝐷Sol(𝑇 + 1)
𝐷Sol(𝑇)

�
−𝜑𝑆𝑜𝑙

 (10) 

where 𝐶𝑇𝑒𝑐ℎ represents the cost of the base solar technology in $/GWh, and 𝜑𝑆𝑜𝑙 is the 

Return To Scale (RTS) parameter.  

 

3.4.2 Integration Cost 

The intermittent nature of solar energy imposes integration costs on the electricity 

distribution grid (grid). At low levels of market share these costs are negligible, but the 

costs increase significantly as market share increases. We follow the standard assumption 

in GCAM, that the integration issues are solved by building gas turbine backup capacity, 

with a 1:1 backup ratio needed when the market share of solar reaches approximately 

20%.  
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The cost of backup electricity is given by: 

 
 𝐶𝐼𝑛𝑡 = 𝐶𝐵𝑎𝑐𝑘 ∗ 𝜌 (11)  

 

 
 

where 𝐶𝐼𝑛𝑡 is the cost of integration in $/GWh, 𝐶𝐵𝑎𝑐𝑘 is the cost of the backup technology 

(the gas turbines) in $/GWh, and 𝜌 is the backup ratio.  

The backup ratio is given by a logistic function: 

 𝐶𝐼𝑛𝑡 = 𝐶𝐵𝑎𝑐𝑘 ∗ �1 −
1

𝑒𝑎∗𝑚𝑎𝑥[�𝑆𝑆𝑜𝑙−𝑆𝑆𝑜𝑙
∗ �,0]

� (12) 

 

where 𝑆𝑆𝑜𝑙 is the market share of solar; 𝑆𝑆𝑜𝑙∗  is the integration cost threshold, the market 

share requiring a 50% backup ratio; and 𝑎 is a parameter controlling how steeply the 

backup requirement increases. 

The parameter 𝐶𝐵𝑎𝑐𝑘 is derived from GCAM and represents the cost of gas turbine 

generation at a 5% utilization factor (Joint Global Change Research Institute 2012a). The 

initial value for 𝐶𝐵𝑎𝑐𝑘 is the 2005 cost of backup electricity under the GCAM default 

scenario. This cost improves over time at the same rate as 𝜃1(𝑡), the adjusted cost of the 

backstop technology in DICE. The equation for 𝐶𝐵𝑎𝑐𝑘 is : 

 
 𝐶𝐵𝑎𝑐𝑘(𝑡) =  𝐶𝐵𝑎𝑐𝑘(1) ∗ �

𝜃1(𝑡)
𝜃1(1)

� (13) 
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 Changing the TAC curve 3.5

In the previous sections of this chapter we’ve discussed the model of the clean energy 

market itself: the level of abatement determines clean demand, solar’s market share (and 

demand) is determined according to its price, and the next period’s solar price is 

determined by growth in demand for solar.  Now we turn our discussion to how changes 

in the clean energy market affect the cost of abatement in the economy as a whole.  

Recall from section 2.3.1 that abatement is a complex phenomenon involving 

many factors in addition to technology cost. The complexity of the abatement 

phenomenon prevents us from turning directly to theory to construct our model. Instead, 

we follow the lead of Baker and Solak (2011) , and use a bottom up model to simulate the 

economy under a series of assumptions about the price of technology, generate abatement 

cost curves from those simulations, and parameterize these changes as pivots and shifts to 

the MAC curve. The modified MAC curve is:  

 
 𝑀𝐴𝐶� (𝜇;  𝛼,  ℎ) = (1 − 𝛼(𝑝𝑆𝑜𝑙))[𝑀𝐴𝐶(𝜇) − ℎ(𝑝𝑆𝑜𝑙) ∗ 𝑀𝐴𝐶(0.5)] (14) 

 

where 𝛼 and ℎ are the pivot and shift terms (see section 2.3.2.1), respectively, and 

𝑀𝐴𝐶 (0.5) is an arbitrary “anchor point” on the baseline MAC curve. Since DICE does 

not explicitly contain a MAC curve, in order to apply this method to the DICE model, we 

integrate the MAC curve with respect to abatement: 

 𝑇𝐴𝐶�(𝜇;  𝛼,  ℎ) = (1 − 𝛼(𝑝𝑆𝑜𝑙))[𝑇𝐴𝐶(𝜇) − ℎ(𝑝𝑆𝑜𝑙) ∗ 𝑀𝐴𝐶(0.5)µ] (15) 

 

and substitute the result into the original TAC equation in the DICE model.  
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The revised TAC in (15) closes the loop shown in Figure 5. The level of abatement 

determines the demand for clean energy, the price of solar determines the share of that 

demand captured by solar (and therefore solar demand), which in turn affects the future 

price of solar. As the price of solar changes, the TAC also changes, which shifts the 

optimal level of abatement. 

 

 Model Calibration 3.6

Before the model can be used, it must be calibrated. In order to calibrate the model 

we estimate the relevant economic variables and select appropriate parameter values for 

the logit choice equation.  

 

3.6.1 Energy Intensity of the Economy (𝝉)  

In order to calculate the demand for clean energy in GWh we must estimate the 

energy intensity of the economy 𝜏 in kWh/$. For this estimation we use the Global 

Change Assessment Model (GCAM). We calculate 𝜏 for the default settings of GCAM 

and extrapolate this curve into the future (Figure 6).  Table 1 summarizes the data used in 

the calculation. Our price deflators are taken from the Bureau of Economic Analysis 

National Income and Product Accounts (NIPA) Table 1.1.9, Implicit Price Deflators for 

Gross Domestic Product (Bureau of Economic Analysis 2013).  
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Figure 6: Estimation of tau. 

 

Table 1: Energy intensity of the economy in GCAM (continued on next page). 

Year 

Primary 
Energy 

Consumption 
(EJ) 

GDP                   
(MM 1990 

USD) 

kWh/1990 
USD 

kWh/2005 
USD 

1975 160.46 1.21E+07 3.69 2.66 
1990 496.35 1.95E+07 7.07 5.11 
2005 660.91 3.00E+07 6.13 4.43 
2010 699.75 3.26E+07 5.95 4.30 
2015 756.59 3.75E+07 5.61 4.05 
2020 818.58 4.28E+07 5.31 3.83 
2025 878.19 4.89E+07 4.99 3.61 
2030 943.95 5.55E+07 4.73 3.42 
2035 1011.80 6.27E+07 4.48 3.24 
2040 1076.56 7.10E+07 4.21 3.05 
2045 1145.73 7.99E+07 3.98 2.88 
2050 1226.45 9.02E+07 3.78 2.73 
2055 1296.65 1.01E+08 3.56 2.58 
2060 1370.88 1.13E+08 3.36 2.42 
2065 1448.44 1.27E+08 3.17 2.29 
2070 1518.62 1.42E+08 2.96 2.14 
2075 1586.92 1.59E+08 2.76 2.00 
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2080 1651.95 1.78E+08 2.57 1.86 
2085 1707.15 1.98E+08 2.39 1.73 
2090 1758.26 2.20E+08 2.22 1.60 
2095 1804.53 2.43E+08 2.06 1.49 

 

3.6.2 Backup Price 

Backup price is calculated using GCAM default assumptions. The initial backup price 

is the price of backup electricity in 2005 under GCAM default assumptions. Table 2 

summarizes the data used to calculate the initial cost of backup electricity (Table 3). The 

base cost of backup electricity improves at the same rate as the backstop price (see 

section 3.4.2). Figure 7 illustrates the cost pathway for backup electricity: the initial cost 

is approximately $63/Mwh, and declines by approximately 50% per century.  

 

Table 2: Backup electricity in GCAM (continued on next page). 
Region Sector Variable Units 2005 
USA backup_electricity production EJ 1.30E-07 
USA backup_electricity price 1975$/GJ 5.84895 
Canada backup_electricity production EJ 1.68E-08 
Canada backup_electricity price 1975$/GJ 5.94683 
Western Europe backup_electricity production EJ 4.14E-07 
Western Europe backup_electricity price 1975$/GJ 5.85464 
Japan backup_electricity production EJ 2.76E-08 
Japan backup_electricity price 1975$/GJ 6.20995 
Australia_NZ backup_electricity production EJ 9.51E-09 
Australia_NZ backup_electricity price 1975$/GJ 5.9715 
Former Soviet 
Union backup_electricity production EJ 3.04E-08 
Former Soviet 
Union backup_electricity price 1975$/GJ 6.07292 
China backup_electricity production EJ 0 
China backup_electricity price 1975$/GJ 8.2326 
Middle East backup_electricity production EJ 1.43E-08 
Middle East backup_electricity price 1975$/GJ 5.70526 
Africa backup_electricity production EJ 1.55E-08 
Africa backup_electricity price 1975$/GJ 5.78204 
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Latin America backup_electricity production EJ 2.62E-08 
Latin America backup_electricity price 1975$/GJ 5.76034 
Southeast Asia backup_electricity production EJ 1.91E-08 
Southeast Asia backup_electricity price 1975$/GJ 5.91783 
Eastern Europe backup_electricity production EJ 1.09E-08 
Eastern Europe backup_electricity price 1975$/GJ 5.97388 
Korea backup_electricity production EJ 8.42E-09 
Korea backup_electricity price 1975$/GJ 6.03642 
India backup_electricity production EJ 3.03E-08 
India backup_electricity price 1975$/GJ 5.6331 

 

Table 3: Initial price of backup electricity. 
GCAM 
Units 1975$/GJ 5.87 

DICE 
Units 2005$/GWh 62.93 

 

 
Figure 7: Price pathway of backup electricity. 

 

3.6.3 The Logit Choice Equation  

The logit choice function is calibrated based on the initial technology prices and the 

assumption that when prices are equal technologies will have equal market share. We 

also make the assumption that the base shareweight factor 𝑏𝑖 is equal to one, which 
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allows solar to capture up to 100% of the market. These assumptions imply that 𝛾𝑆𝑜𝑙 and 

𝛾𝐵𝑂𝑀 are equal and allow us to solve for their values using our initial technology prices 

(see section 3.6.5). The final equation is shown in Equation (16). 

 

 𝑠𝑖 =
𝑝𝑆𝑜𝑙−4.935

𝑝𝑆𝑜𝑙−4.935 + 𝑝𝐵𝑂𝑀−4.935 (16) 

 

3.6.4 The Pivot and Shift Parameters.  

The pivot and shift parameters were calculated after Baker, Chon and Keisler (2009)2. 

We use GCAM to generate MAC curves for a set of different prices of solar PV to obtain 

a set of estimated pivot and shift terms, one for each set of assumptions (Table 4). Next, 

we normalized the initial price of solar (the GCAM default value) to one and fitted an 

exponential curve to the resulting points using a least-squares regression (Figure 8). By 

normalizing the price of solar to one we eliminate the need to use deflators to convert 

between GCAM and DICE units, and can instead consider only the change in price 

relative to its starting point.  

 

Table 4: Pivot and shift estimates from GCAM. 
Solar Cost 

Assumption ($/kWh) 
Normalized Cost      

(GCAM Default = 1) 
Estimated 

Pivot 
Estimated 

Shift 
0.005 0.044 0.08107 0.05294 
0.03 0.266 0.03704 0.01983 
0.05 0.444 0.01372 0.00824 

0.075 0.665 0.01058 0.00587 
 

 

                                                 
2 The author wishes to acknowledge Rose Zdybel for her help in understanding this process and generating 
the estimates. 
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The resulting expressions are then used in DICE-S to estimate the pivot and shift as 

the net price of solar changes. The final equations for the pivot and shift are given in 

Equation (17) and (18) below. 

 𝛼(𝑝𝑆𝑜𝑙) = .0875𝑒−3.454𝑝𝑆𝑜𝑙 (17) 

 

 ℎ(𝑝𝑆𝑜𝑙) = .0548𝑒−3.646𝑝𝑆𝑜𝑙 (18) 

 

 
Figure 8: Pivot and shift parameters. 

 

3.6.5 Technology Price Estimates  

In DICE-S, the price of clean energy technologies is given in the form of the 

Levelized Cost of Electricity (LCOE), the final “bottom line” price of generated 

electricity. LCOE data is highly variable because of the many factors which affect the 
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final value. In addition to the technology cost, the cost of capital, system lifetime, and 

discount rate all impact the LCOE. This variability is reflected in the wide range of 

values reflected in the literature (Table 5).   

 

Table 5: Levelized Electricity costs in $/GWh used for price path (Lazard 2010, 
Energy Information Administration , Jones 2012, IRENA 2012).  

 
Lazard 

 
EIA TCDB 

 

NREL Energy 
Analysis Office 

(2005) 
 

IEA 
 

IRENA 
 

 Low High Low High Low High Low High Low High 
Nuclear 70 104 41 56       
Biomass 74 124 40 92   60 250   

Geothermal 68 126 37 37 30 50 40 200   
Solar 

Thermal 108 177 199 302 100 170 155 300   
Hydro   19 19   20 230 12 190 
Wind 59 158 40 123 40 60 40 300   

Solar PV 122 175 281 433 200 300 110 400    

 

For each technology's price estimate we choose the median value of the range of price 

estimates for each individual technology. We calculate the price for the BOM as a 

weighted average of the median value of each component technology’s price estimates 

with respect to market share based on generation information from the International 

Energy Agency (IEA 2009). In order to make the generation data consistent with the cost 

data we aggregate all biomass technologies and municipal waste into a single category 

and aggregate tide, wave and ocean into hydropower. The resulting figures for the BOM 

are given in Table 7. 
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Table 6: Electric generation (GWh) in 2009 (IEA 2009).  
Municipal 

Waste* 58152 

Industrial 
Waste 12698 

Primary Solid 
Biofuels** 174596 

Biogases 37856 

Liquid 
Biofuels 4811 

Geothermal 66672 
Solar 

Thermal 842 

Hydro 3328627 
Solar 

Photovoltaics 20155 

Tide, Wave, 
Ocean 530 

Wind 273153 

Nuclear 2696765 
 

Table 7: Technology cost values ($/GWh). 
  Cost  Share 

BOM 77.90 0.9970 
Solar PV 252.64 0.0030 

 

3.6.6 Scale Parameters 

The RTS factor 𝜑 of the solar market is the final element of the calibration process. 

We select a range of scale factors from .15 to .25 based on the literature (Nemet, Baker 

2009, Breyer, Gerlach 2013).  
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 Solver Configuration 3.7

The final step in the calibration process is to adapt the model to its solver. In this 

thesis we use the CONOPT3 solver (Drud 2008). Initial testing of the model revealed 

three significant issues: poor quality initial points, excessively long solution times, and 

stalling. In order to address these issues we specified an alternate starting point, rewrote 

the model to improve solvability, and employed an iterative solving technique.  

By default, CONOPT3 initializes all variables to zero (Drud 2008). This resulted in a 

poor quality initial point due to a large number of zero derivatives as well as undefined 

denominators in several equations. Additionally, during solution runs some variables 

became small enough to produce extremely large derivatives. These issues were 

addressed by assigning lower limits to certain critical variables (Table 8) and using the 

base abatement pathway as an initial point for the optimization. 

In some cases, solution times were excessively long due to CONOPT’s difficulty 

handling expressions in nonlinear functions, products, and quotients (Drud 2008). Editing 

DICE to minimize the occurrence of these functions significantly improved the model’s 

performance, reducing the number of iterations from 762 to 244 (67%). We then used our 

edited version of DICE as the basis for DICE-S. 

Stalling issues were addressed by iterative solving. This technique capitalizes on the 

fact that CONOPT3 calculates an initial point using one method and then switches to 

another method to refine the solution (Drud 2008). Therefore, in cases where the solver 

was unable to reach an optimal solution due to stalling the solver was able to “jump” to 

another nearby point to restart the solution process. The final model code is given in the 

appendix. 
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.  

Table 8: Summary of stability constraints. 
Variable Constraint Reason 

Miu 
Initial value set to 

baseline run optimal 
value 

Reduce zero derivatives. 
Start search near baseline optimal. 

SolDemandRat >1 Theoretical consistency 
(prevents increasing prices). 

Omegadenom >1 Theoretical consistency 
(enforces CO2 as a bad) 

SolNetPrice <400 Prevents overflows in model. 

SolDemand >0.0000005 to 
>0.00005 Prevents overflows in model. 

SolPriceDenom >1 Theoretical consistency 
(prevents increasing prices). 

 

 

In this chapter we have discussed how the DICE-S model models the clean energy 

market, how that market affects the cost of abatement, the calibration of the model, and 

the steps we took to adapt the model to the CONPT solver. DICE-S uses a multi-step 

process to model the effect of solar price on the cost of abatement. DICE-S uses the level 

of abatement to determine the size of the clean energy market, the relative prices of solar 

energy and the BOM determine the market share of solar (and therefore demand) within 

that market, and the price of solar is adjusted based on the market share and total demand 

for solar. The cost of abatement is modeled as a function of solar price according to a 

parameterization generated by a bottom up simulation model (GCAM). We calibrate the 

model according to a series of assumptions about market behavior drawn from theory and 

the literature. Finally, we make minor changes to the model to allow it to run on our 

selected solver. 
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CHAPTER 4 

RESULTS  

 Overview  4.1

Here we present the results of the model runs. For our analysis we select three levels 

of the RTS factor: 15, 20, and 25%, based on the range of estimates found in the literature 

(Nemet, Baker 2009, Breyer, Gerlach 2013). In what follows we shall refer to the 15, 20, 

and 25% scenarios as the low, medium, and high scenarios, respectively. In all cases full 

abatement is reached by 2205; therefore, we limit our discussion to the period prior to 

2205.  

 

 The Solar Market 4.2

The solar market changes significantly as the RTS factor changes: in the low scenario 

solar remains a small part of the market; in the middle level the solar market share rises 

to the integration cost threshold and remains there; and in the high scenario the solar 

captures most of the market (Figure 9). We note the non-monotonic behavior of market 

share in the low scenario, which is caused by the stepwise behavior of the abatement 

curve (see Section 4.3). The price of the base technology remains high in the low 

scenario, falls to approximately the BOM price in the medium scenario, and declines to 

almost nothing in the high scenario (Figure 10).  

Figure 11 illustrates how the integration cost remains negligible in the low scenario, 

but rises significantly in the other two scenarios before declining through time. It is 

important to note that the declining integration cost is due to the underlying backup 

technology becoming cheaper over time, not declining market share. Finally, in Figure 12 
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we see that the net cost of solar falls to just above the BOM price in the low and medium 

scenarios and falls below the BOM price in the high scenario.  

This behavior suggests that there is a critical value of RTS factor below which the 

base technology remains costly enough that integration costs restrict market growth, and 

above which the base technology is so inexpensive that the net cost of solar is essentially 

all from integration costs.   

 

 
Figure 9: Market share of solar. 
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Figure 10: Solar technology price. 
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Figure 11: Solar Integration Cost. 
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Figure 12: Solar net cost. 

 

Net investment in solar is increasing in RTS factor (Figure 15), but the composition 

of spending is different. In the low and medium cases the majority of spending is on the 

technology itself, while in the high scenario spending is almost entirely on integration 

costs (Figure 13 and Figure 14).  
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Figure 13: Cumulative Technology Spending. 

 

 
Figure 14: Cumulative Integration Spending. 
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Figure 15: Cumulative Total Spending. 

 

 Abatement 4.3

The price of solar affects the cost, and therefore the optimal level, of abatement. Both 

the pivot and shift increase through time as the solar cost decreases (Figure 16 and Figure 

17), resulting in increased abatement versus the baseline case in all cases. In both the 

high and medium scenarios abatement follows a smooth path similar in shape to the 

baseline curve (Figure 18); however, in the low scenario the abatement curve increases in 

a series of steps. This behavior occurs because the model is investing in a large amount of 

solar to capitalize on the return to scale, then waiting until the market expands, which 

reduces solar’s market share (and therefore integration costs), before investing in 

additional solar.  In the medium and high scenarios the returns to scale are high enough 

that the model makes its main investment in solar in the first period and subsequent 

investments in solar simply “track” the declining cost of the BOM. 
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Figure 16: Pivot. 

 
Figure 17: Shift. 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

20
05

20
15

20
25

20
35

20
45

20
55

20
65

20
75

20
85

20
95

21
05

21
15

21
25

21
35

21
45

21
55

21
65

21
75

21
85

21
95

22
05

Low

Medium

High

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

20
05

20
15

20
25

20
35

20
45

20
55

20
65

20
75

20
85

20
95

21
05

21
15

21
25

21
35

21
45

21
55

21
65

21
75

21
85

21
95

22
05

Low

Medium

High



 

39 
 

 
Figure 18: Abatement pathways. 

 

 Environment 4.4

Just as with abatement, under the low scenario emissions are not smooth and the 

medium and high scenarios show a smooth path similar to the baseline case but with 

improvement (Figure 19). Temperature rise is also improved, with the improvement 

ranging from 5.8% in the low scenario to 6.1% in the high scenario (Figure 20). 
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Figure 19: CO2 emission pathways. 

 

 
Figure 20: Temperature rise. 
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 Welfare 4.5

Table 9 illustrates the effect of RTS on welfare. The overall welfare improvement 

ranges from .035 to .068 %, which corresponds to 3.16 to 6.06 percent of the maximum 

possible benefit if abatement were free. 

 

Table 9: Effect of RTS Factor on Welfare. 

 

Baseline 
(Unmodified 

Model) 

Low 
(15%) 

Medium 
(20%) 

High 
(25%) 

Maximum           
(Free 

Abatement) 
Objective 
Function 

Value 
150168.3 150221.5 150241.7 150270.5 151856.1 

Percent 
Improvement 
vs. Baseline 

0.000% 0.035% 0.049% 0.068% 1.124% 

Percent of 
Possible 

Improvement 
0.00% 3.16% 4.35% 6.06% 100.00% 

 
 

 Conclusions  4.6

This thesis implemented an endogenous model of solar energy cost in the DICE IAM 

and the resulting DICE-S model was used to examine the effect of returns to scale on the 

behavior of solar technology. The behavior of the solar market raises several important 

questions and points to opportunities for future research. Finally, implementing 

endogenous technological change highlighted several technical modeling challenges that 

need to be overcome. 

The main insight gained from this thesis is that the behavior of the solar market  in 

DICE-S implies that there are three “zones” of solar behavior: a “low zone” where solar 

penetrates the market in a series of steps, which leads to non-monotonic emissions 



 

42 
 

through time; a “medium zone” where the cost of the base technology falls low enough to 

allow the technology into the market, but remains high enough that integration costs 

arrest solar’s penetration when they become significant; and a “high zone” where the 

base technology becomes so inexpensive  that the cost is essentially all from integration 

costs. The implication of this behavior is that the optimal allocation of Research and 

Development (R&D) resources (the optimal R&D portfolio) is dependent on the RTS 

factor of the solar market: if the RTS factor is low, R&D should focus on the base 

technology itself, while if its high, R&D should focus on reducing integration costs – 

R&D on the base technology would be wasted. 

 

 Future Work 4.7

These results raise several important questions: how will changing the integration 

cost threshold affect the clean energy market, how does changing integration cost itself 

affect the market’s behavior, and what approach to integration costs (moving the 

threshold or decreasing them) is best?  

One shortcoming of DICE-S is that there is no limit on the price improvement of the 

base technology. While there is evidence that scale is a primary driver of solar 

technology price, it is likely that other factors play a role as well.  

Another concern is modeling how intermittency affects emissions. This thesis models 

intermittency as increasing the cost of solar, but it neglects the additional emissions 

caused when the backup capacity is used. As the penetration of solar increases, the 

emissions due to backup capacity could become significant. 
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APPENDIX 

MODEL CODE 

Base Model 

$ontext 

DICE delta version 8 

July 17, 2008. 

This version is used for the DICE book, A Question of Balance (YUP, 2008). 

We have included only the base, Hotelling, and optimal runs. 

Exclude statements are removed so that it can run as a self-contained program. 

Created September 5, 2008. 

Note that this can be loaded into a data reading program, 

$offtext 

SETS  T                 Time periods                     /1*60/ ; 

SCALARS 

** Preferences 

B_ELASMU   Elasticity of marginal utility of consumption     /  2.0    / 

B_PRSTP    Initial rate of social time preference per year   / .015    / 

** Population and technology 

POP0     2005 world population millions                  /6514     / 

GPOP0    Growth rate of population per decade            /.35      / 

POPASYM  Asymptotic population                           / 8600    / 

A0       Initial level of total factor productivity      /.02722   / 

GA0      Initial growth rate for technology per decade   /.092      / 
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DELA     Decline rate of technol change per decade       /.001     / 

DK       Depreciation rate on capital per year           /.100     / 

GAMA     Capital elasticity in production function       /.300     / 

Q0       2005 world gross output trill 2005 US dollars   /61.1     / 

K0       2005 value capital trill 2005 US dollars        /137.     / 

** Emissions 

SIG0     CO2-equivalent emissions-GNP ratio 2005         /.13418    / 

GSIGMA   Initial growth of sigma per decade              /-.0730    / 

DSIG     Decline rate of decarbonization per decade      /.003   / 

DSIG2    Quadratic term in decarbonization               / .000   / 

ELAND0   Carbon emissions from land 2005(GtC per decade) / 11.000  / 

** Carbon cycle 

MAT2000  Concentration in atmosphere 2005 (GtC)          /808.9   / 

MU2000   Concentration in upper strata 2005 (GtC)        /1255     / 

ML2000   Concentration in lower strata 2005 (GtC)        /18365    / 

b11      Carbon cycle transition matrix                  /0.810712 / 

b12      Carbon cycle transition matrix                  /0.189288 / 

b21      Carbon cycle transition matrix                  /0.097213 / 

b22      Carbon cycle transition matrix                  /0.852787 / 

b23      Carbon cycle transition matrix                  /0.05     / 

b32      Carbon cycle transition matrix                  /0.003119 / 

b33      Carbon cycle transition matrix                  /0.996881 / 

** Climate model 
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T2XCO2   Equilibrium temp impact of CO2 doubling oC      / 3       / 

FEX0     Estimate of 2000 forcings of non-CO2 GHG        / -.06    / 

FEX1     Estimate of 2100 forcings of non-CO2 GHG        / 0.30    / 

TOCEAN0  2000 lower strat. temp change (C) from 1900     /.0068    / 

TATM0    2000 atmospheric temp change (C)from 1900       /.7307    / 

C1       Climate-equation coefficient for upper level    /.220     / 

C3       Transfer coeffic upper to lower stratum         /.300     / 

C4       Transfer coeffic for lower level                /.050     / 

FCO22X   Estimated forcings of equilibrium co2 doubling  /3.8      / 

** Climate damage parameters calibrated for quadratic at 2.5 C for 2105 

A1       Damage intercept                                / 0.00000    / 

A2       Damage quadratic term                           /  0.0028388 / 

A3       Damage exponent                                 / 2.00       / 

** Abatement cost 

THETA2   Exponent of control cost function                  /2.8     / 

PBACK      Cost of backstop 2005 000$ per tC 2005           /1.17    / 

BACKRAT    Ratio initial to final backstop cost             / 2      / 

GBACK      Initial cost decline backstop pc per decade      /.05     / 

LIMMIU     Upper limit on control rate                      / 1      / 

** Participation 

PARTFRACT1  Fraction of emissions under control regime 2005 /1       / 

PARTFRACT2  Fraction of emissions under control regime 2015 /1       / 

PARTFRACT21 Fraction of emissions under control regime 2205 /1       / 



 

46 
 

DPARTFRACT  Decline rate of participation                   /0       / 

 

** Availability of fossil fuels 

FOSSLIM  Maximum cumulative extraction fossil fuels         / 6000   / 

** Scaling and inessential parameters 

scale1 Scaling coefficient in the objective function       /194     / 

scale2 Scaling coefficient in the objective function       /381800  / 

*Scalars added to original model 

ALPHA0        pivot                                         / 0       / 

b0            shift                                         / 0       / 

FullBack     Market share requiring 50% backup             /   .2    / 

TauBase      Base point for Tau                             /  5.1771 / 

TauFact      Improvement rate for Tau per period            /   .02   / 

SolPrice0    Initial price of solar USD per GWh             / 252.64  / 

SolPrice2    Second period solar price                      /   0      / 

SolVar        Exponent of the solar logit choice equation   /  4.935 / 

SolRTSFact    Solar RTS Factor per doubling                 /   0  / 

BOMPrice0     Inital price for BOM                          / 77.9   / 

BomVar                                                      /  4.935  / 

* Definitions for outputs of no economic interest 

SETS 

TFIRST(T) 

TLAST(T) 
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TEARLY(T) 

TLATE(T) 

TSECOND(T); 

PARAMETERS 

L(T)          Level of population and labor 

AL(T)         Level of total factor productivity 

SIGMA(T)      CO2-equivalent-emissions output ratio 

R(T)          Instantaeous rate of social time preference 

RR(T)         Average utility social discount rate 

GA(T)         Growth rate of productivity from 0 to T 

FORCOTH(T)    Exogenous forcing for other greenhouse gases 

GL(T)         Growth rate of labor 0 to T 

GTHETA1        Growth of cost factor 

GSIG(T)       Cumulative improvement of energy efficiency 

ETREE(T)      Emissions from deforestation 

THETA1(t)      Adjusted cost for backstop 

PARTFRACT(T)  Fraction of emissions in control regime 

AA1           Variable A1 

AA2           Variable A2 

AA3           Variable A3 

ELASMU        Variable elasticity of marginal utility of consumption 

PRSTP         Variable initial rate of social time preference per year 

LAM           Climate model parameter 
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Gfacpop(T)    Growth factor population 

BackPrice(T)  Backup price for Solar 

BOMPrice(T)   Balance of Market Price 

* The following parameters are added. 

TAU(T)        Energy intensity 

TauPrime(T)   Decline rate of TAU; 

* Unimportant definitions to reset runs 

TFIRST(T) = YES$(ORD(T) EQ 1); 

TSecond(T) = YES$(ORD(T) EQ 2); 

TLAST(T)  = YES$(ORD(T) EQ CARD(T)); 

TEARLY(T) = YES$(ORD(T) LE 20); 

TLATE(T)  = YES$(ORD(T) GE 21); 

AA1 = A1; 

AA2 = A2; 

AA3 = A3; 

ELASMU = B_ELASMU; 

PRSTP  = B_PRSTP; 

b11 = 1 - b12; 

b21 = 587.473*B12/1143.894; 

b22 = 1 - b21 - b23; 

b32 = 1143.894*b23/18340; 

b33 = 1 - b32 ; 
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* Important parameters for the model 

LAM     = FCO22X/ T2XCO2; 

Gfacpop(T) =   (exp(gpop0*(ORD(T)-1))-1)/exp(gpop0*(ORD(T)-1)); 

L(T)=POP0* (1- Gfacpop(T))+Gfacpop(T)*popasym; 

ga(T)=ga0*EXP(-dela*10*(ORD(T)-1)); 

al("1") = a0; 

LOOP(T, al(T+1)=al(T)/((1-ga(T)));); 

gsig(T)=gsigma*EXP(-dsig*10*(ORD(T)-1)-dsig2*10*((ord(t)-1)**2)); 

sigma("1")=sig0; 

LOOP(T,sigma(T+1)=(sigma(T)/((1-gsig(T+1))));); 

THETA1(T) = (PBACK*SIGMA(T)/THETA2)* ( (BACKRAT-1+ EXP (-gback* 

(ORD(T)-1)) )/BACKRAT); 

ETREE(T) = ELAND0*(1-0.1)**(ord(T)-1); 

RR(t)=1/((1+prstp)**(10*(ord(T)-1))); 

FORCOTH(T)= FEX0+ .1*(FEX1-FEX0)*(ORD(T)-1)$(ORD(T) LT 12)+ 

0.36$(ORD(T) GE 12); 

partfract(t) = partfract21; 

PARTFRACT(T)$(ord(T)<25) = Partfract21 + (PARTFRACT2-Partfract21)*exp(-

DPARTFRACT*(ORD(T)-2)); 

partfract("1")= PARTFRACT1; 

 

* Parameters added 
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TAU(T) = TauBase*exp((ORD(T)-1)*(-TauFact)); 

 

*BackPrice(T) = 31.684*(Theta1(T)/Theta1("1")); 

BackPrice(T) = 58.70*(Theta1(T)/Theta1("1")); 

BomPrice(T) = BomPrice0*(Theta1(T)/Theta1("1")); 

VARIABLES 

MIU(T)          Emission control rate GHGs 

FORC(T)         Radiative forcing in watts per m2 

TATM(T)         Temperature of atmosphere in degrees C 

TOCEAN(T)       Temperatureof lower oceans degrees C 

MAT(T)          Carbon concentration in atmosphere GtC 

MATAV(T)        Average concentrations 

MU(T)           Carbon concentration in shallow oceans Gtc 

ML(T)           Carbon concentration in lower oceans GtC 

E(T)            CO2-equivalent emissions GtC 

C(T)            Consumption trillions US dollars 

K(T)            Capital stock trillions US dollars 

CPC(T)          Per capita consumption thousands US dollars 

PCY(t)          Per capita income thousands US dollars 

I(T)            Investment trillions US dollars 

S(T)            Gross savings rate as fraction of gross world product 

RI(T)           Real interest rate per annum 

Y(T)            Gross world product net of abatement and damages 
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YGROSS(T)       Gross world product GROSS of abatement and damages 

YNET(T)         Output net of damages equation 

DAMAGES(T)      Damages 

ABATECOST(T)    Cost of emissions reductions 

CCA(T)          Cumulative industrial carbon emissions GTC 

PERIODU(t)      One period utility function 

UTILITY 

* Added to syncronize notation with Balance 

PI(T)           Participation cost markup 

OMEGA(T)        Damage factor 

LAMBDA(T)       Abatement cost factor 

*Intermediate Variable for improved solving 

OMEGADENOM(T)      Denominator of Omega 

* Variables for pivot and shift. 

Alpha(T)        Pivot 

b(T)            Shift 

HALFMAC(T)      Marginal Cost of half abatement (anchor point for b) 

* Define the size of the market for clean energy 

CleanDemand(T) Demand for clean energy 

 

* Variables for solar 

SolTechPrice(T) Price of solar technology dollars per kWh 

SolNetPrice(T)  Solar price net of technology and integration costs 
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SOLPriceDenom(T) Intermediate variable for solar price 

SolDemand(T)   Demand for solar in kWh 

SolDemandRat(T) Intermediate variable solar demand ratio 

SolShare(T)    Actual Market Share of Solar 

SolBase        Base share weight 

SolIntMult(T) 

SolIntCost(T)   Cost of grid integration 

Backup(t) 

 

* Variables for the balance of the market 

BOMPriceFact(T) 

BOMPriceDenom(T) 

BOMDemand(T) 

BOMDemandrat(T) 

BOMShare(T) 

BOMLogit(T) 

BOMPriceA(T)     Dummy Variable to report BomPrice 

 

Theta1A(T)       Dummy Variable to report backstop Price; 

 

POSITIVE VARIABLES MIU, TATM, TOCE, E, MAT, MATAV, MU, ML, Y, 

YGROSS, C, K, I, CCA, PI, Lambda, Omegamax, Halfmac, SolPrice, 

SolNetPrice, SolPriceDenom, SolShare; 
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EQUATIONS 

CCTFIRST(T)      First period cumulative carbon 

CCACCA(T)        Cumulative carbon emissions 

UTIL             Objective function 

YY(T)            Output net equation 

YNETEQ(T)        Output net of damages equation 

YGROSSEQ(T)      Output gross equation 

DAMEQ(T)         Damage equation 

ABATEEQ(T)       Cost of emissions reductions equation 

CC(T)            Consumption equation 

KK(T)            Capital balance equation 

KK0(T)           Initial condition for capital 

KC(T)            Terminal condition for capital 

CPCE(t)          Per capita consumption definition 

PCYE(T)          Per capita income definition 

EE(T)            Emissions equation 

SEQ(T)           Savings rate equation 

RIEQ(T)          Interest rate equation 

FORCE(T)         Radiative forcing equation 

MMAT0(T)         Starting atmospheric concentration 

MMAT(T)          Atmospheric concentration equation 

MMATAVEQ(t)      Average concentrations equation 
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MMU0(T)          Initial shallow ocean concentration 

MMU(T)           Shallow ocean concentration 

MML0(T)          Initial lower ocean concentration 

MML(T)           Lower ocean concentration 

TATMEQ(T)        Temperature-climate equation for atmosphere 

TATM0EQ(T)       Initial condition for atmospheric temperature 

TOCEANEQ(T)      Temperature-climate equation for lower oceans 

TOCEAN0EQ(T)     Initial condition for lower ocean temperature 

PERIODUEQ(t)     Instantaneous utility function equation 

 

* Equations for syncronizing notation with Balance 

PIEQ(T)          Participation Cost Markup 

OMEGAEQ(T)       Damage Equation 

LAMBDAEQ(T)      Abatement cost as a proportion of output 

 

* Intermediate Variables for improved solving 

OMEGADENOMEQ(T)  Denominator of Omega 

 

* New equations 

AlphaEQ(T)       Pivot 

bEQ(T)           Shift 

HALFMACEQ(T)     Marginal cost of half abatement 
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* Define the size of the market for clean energy 

CleanDemandEQ(T) Equation for demand of clean energy 

 

SolTechPriceF(T)       First period solar price 

*SolTechPriceS(T)       Second period solar price 

SolTechPriceEQ(T)      Solar technology price 

 

SolNetPriceEQ(T)       Solar price net of technology and integration cost 

SolPriceDenomEQ(T)     Intermediate variable for solar price 

SolDemandEQ(T)         Demand for solar 

SolDemandRatEQ(T)      Intermediate variable for solar demand ratio 

SolShareEQ(T)          Actual share of solar 

SolIntMultEQ(T)        Multiplier for solar integration cost 

SolIntCostEQ(T) 

BackupEQ(T) 

BOMDemandEQ(T)        Demand for BOM in kWh 

BOMShareEQ(T)         Market share of BOM 

BomPriceAEQ(T) 

MiuEQ(T) 

Theta1AEQ(T)          Dummy Variable to report theta1; 

** Equations of the model 

 

CCTFIRST(TFIRST).. CCA(TFIRST)=E=0; 
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CCACCA(T+1)..      CCA(T+1)=E=CCA(T)+ E(T); 

KK(T)..            K(T+1) =L= (1-DK)**10 *K(T)+10*I(T); 

KK0(TFIRST)..      K(TFIRST) =E= K0; 

KC(TLAST)..        .02*K(TLAST) =L= I(TLAST); 

EE(T)..            E(T)=E=10*SIGMA(T)*(1-MIU(T))*YGROSS(T) + ETREE(T); 

* Replaced ln(2) with .69315 in Force equation for improved solving 

FORCE(T).. FORC(T) =E= 

FCO22X*((log((Matav(T)+.000001)/596.4)/.69315))+FORCOTH(T); 

MMAT0(TFIRST)..    MAT(TFIRST) =E= MAT2000; 

MMU0(TFIRST)..     MU(TFIRST)  =E= MU2000; 

MML0(TFIRST)..     ML(TFIRST)  =E= ML2000; 

MMAT(T+1)..        MAT(T+1)    =E= MAT(T)*b11+MU(T)*b21 + E(T); 

MMATAVEQ(t)..      MATAV(T)    =e= (MAT(T)+MAT(T+1))/2; 

MML(T+1)..         ML(T+1)     =E= ML(T)*b33+b23*MU(T); 

MMU(T+1)..         MU(T+1)     =E= MAT(T)*b12+MU(T)*b22+ML(T)*b32; 

TATM0EQ(TFIRST)..  TATM(TFIRST) =E= TATM0; 

TATMEQ(T+1)..      TATM(T+1) =E= TATM(t)+C1*(FORC(t+1)-LAM*TATM(t)-

C3*(TATM(t)-TOCEAN(t))); 

TOCEAN0EQ(TFIRST)..  TOCEAN(TFIRST) =E= TOCEAN0; 

TOCEANEQ(T+1)..    TOCEAN(T+1) =E= TOCEAN(T)+C4*(TATM(T)-

TOCEAN(T)); 

YGROSSEQ(T)..   YGROSS(T) =e= AL(T)*L(T)**(1-GAMA)*K(T)**GAMA; 

DAMEQ(T)..      DAMAGES(t) =E= YGROSS(T)- YGROSS(T)*OMEGA(T); 
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YNETEQ(T)..     YNET(T) =E=  YGROSS(T)*OMEGA(T); 

AbateEQ(T)..    Abatecost(T) =E= Lambda(T)*Ygross(T); 

YY(T)..         Y(T) =E= YGROSS(T)*(1-LAMBDA(T))*OMEGA(T); 

SEQ(T)..        S(T)    =E= I(T)/(Y(T)+.001); 

RIEQ(T)..       RI(T)   =E= GAMA*Y(T)/K(T)- (1-(1-DK)**10)/10; 

CC(T)..         C(T)    =E= Y(T)-I(T); 

CPCE(T)..       CPC(T)  =E= C(T)*1000/L(T); 

PCYE(T)..       PCY(T)  =E= Y(T)*1000/L(T); 

PERIODUEQ(T)..  PERIODU(T)  =E=   ((C(T)/L(T))**(1-ELASMU)-1)/(1-

ELASMU); 

UTIL..          UTILITY =E= SUM(T, 10 *RR(T)*L(T)*(PERIODU(T))/scale1)+ 

scale2; 

 

* Intermediate Variables for Improved Solving 

OMEGADENOMEQ(T).. OMEGADENOM(T) =E= 1+aa1*TATM(T)+ 

aa2*TATM(T)**aa3; 

* Added to syncronize notation with Balance. 

PIEQ(T)..        PI(T) =E= PARTFRACT(T)**(1-THETA2); 

OMEGAEQ(T)..     OMEGA(T) =E= 1/OMEGADENOM(T); 

LAMBDAEQ(T)..     LAMBDA(T) =E= max[(1-

Alpha(T))*PI(T)*((THETA1(t)*MIU(T)**THETA2)-(b(T)*.045*miu(t))),0]; 
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* Equations for pivot and shift 

*AlphaEQ(T)..     Alpha(T) =E= Alpha0;  (used for baseline and max runs) 

AlphaEQ(T)..     Alpha(T) =E= .0875/exp(3.454*(SolNetPrice(T)/SolPrice0)); 

 

*bEQ(T)..        b(T) =E= b0;  (used for baseline and max runs) 

bEQ(T)..        b(T) =E= .0548/exp(3.646*(SolNetPrice(T)/SolPrice0)); 

 

HALFMACEQ(T)..  HALFMAC(T) =E= THETA2*THETA1(t)*.5**(THETA2-1); 

 

* Equation for the size of the market 

CleanDemandEQ(T)..      CleanDemand(T) =E= Tau(T)*miu(T)*ygross(T); 

 

* Initial Conditions 

SolTechPriceF(Tfirst).. SolTechPrice(Tfirst) =E= SolPrice0; 

*SolTechPriceS(TSecond).. SolTechPrice(TSecond) =E= SolPrice2; 

 

MiuEQ(T)..               Miu(T) =G= Miu(T-1); 

 

* Variables used for troubleshooting - not part of model 

BackupEQ(T)..            Backup(T) =E= Backprice(T); 

BomPriceAEQ(T)..         BomPriceA(T) =E= BomPrice(T); 

Theta1AEQ(T)..           Theta1A(T) =E= Theta1(T); 
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* Intermediate variables 

SolDemandRatEQ(T+1)..    SolDemandRat(T+1) =E= 

max[1,(SOLdemand(T+1)/SOLdemand(T))]; 

SolPriceDenomEQ(T+1)..   SolPriceDenom(T+1) =E= 

SolDemandRat(T+1)**SolRTSFact; 

SolIntMultEQ(T)..        SolIntMult(T) =E= ((1-(1/[1+exp{min(50*(SolShare(T)-

FullBack),15)}]))); 

 

SOLTechPriceEQ(T+1)..   SOLtechPrice(T+1) =E= 

SOLtechPrice(T)/SolPriceDenom(T+1); 

SolDemandEQ(T+1)..      SolDemand(T+1) =E= SolShare(T+1)*CleanDemand(T+1); 

*SolShareEQ(T+1)..       SolShare(T+1) =E= 

(1/exp((solnetprice(T+1)/BomPrice(T+1))**Solvar))/((1/exp(BomVar))+exp((sol

netprice(T+1)/BomPrice(T+1))**Solvar)); 

SolShareEQ(T+1)..       SolShare(T+1) =E= 

(1/solnetprice(T+1)**Solvar)/((1/BomPrice(T+1)**BomVar)+(1/solnetprice(T+1

)**Solvar)); 

 

SolIntCostEQ(T)..      SolIntCost(T) =E= BackPrice(T)*SolIntMult(T); 

*SolIntCostEQ(T)..      SolIntCost(T) =E= 0; 

SolNetPriceEQ(T+1)..     SolNetPrice(T) =E= SolTechPrice(T)+SolIntCost(T); 
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BOMDemandEQ(T+1)..      BOMDemand(T+1) =E= CleanDemand(T+1)-

SolDemand(T+1); 

BOMShareEQ(T)..       BOMShare(T) =E= 1-SOLShare(T); 

 

* Specify starting point and lower limits for theoretical consistency and solvability 

Omegadenom.lo(T) = 1; 

SolDemandRat.lo(T) = 1; 

SolDemand.lo(T)=.00005; 

*SolDemand.lo(T)= 1; 

SolPriceDenom.lo(T) = 1; 

SolNetPrice.up(T) = 400; 

SolNetPrice.lo(T) = .01; 

*BomPrice.lo(T) = .01; 

 

Miu.l("3")=0.18383; 

Miu.l("4")=0.21134; 

Miu.l("5")=0.24047; 

Miu.l("6")=0.27112; 

Miu.l("7")=0.30331; 

Miu.l("8")=0.33713; 

Miu.l("9")=0.37271; 

Miu.l("10")=0.41016; 

Miu.l("11")=0.44962; 
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Miu.l("12")=0.49133; 

Miu.l("13")=0.53559; 

Miu.l("14")=0.58272; 

Miu.l("15")=0.63301; 

Miu.l("16")=0.68679; 

Miu.l("17")=0.7444; 

Miu.l("18")=0.80618; 

Miu.l("19")=0.87242; 

Miu.l("20")=0.94315; 

Miu.l("21")=1; 

Miu.l("22")=1; 

Miu.l("23")=1; 

Miu.l("24")=1; 

Miu.l("25")=1; 

Miu.l("26")=1; 

Miu.l("27")=1; 

Miu.l("28")=1; 

Miu.l("29")=1; 

Miu.l("30")=1; 

Miu.l("31")=1; 

Miu.l("32")=1; 

Miu.l("33")=1; 

Miu.l("34")=1; 
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Miu.l("35")=1; 

Miu.l("36")=1; 

Miu.l("37")=1; 

Miu.l("38")=1; 

Miu.l("39")=1; 

Miu.l("40")=1; 

Miu.l("41")=1; 

Miu.l("42")=1; 

Miu.l("43")=1; 

Miu.l("44")=1; 

Miu.l("45")=1; 

Miu.l("46")=1; 

Miu.l("47")=1; 

Miu.l("48")=1; 

Miu.l("49")=1; 

Miu.l("50")=1; 

Miu.l("51")=1; 

Miu.l("52")=1; 

Miu.l("53")=1; 

Miu.l("54")=1; 

Miu.l("55")=1; 

Miu.l("56")=1; 

Miu.l("57")=1; 
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Miu.l("58")=1; 

Miu.l("59")=1; 

Miu.l("60")=1; 

 

**  Upper and Lower Bounds: General conditions for stability 

 

K.lo(T)         = 100; 

MAT.lo(T)       = 10; 

MU.lo(t)        = 100; 

ML.lo(t)        = 1000; 

C.lo(T)         = 20; 

TOCEAN.up(T)    = 20; 

TOCEAN.lo(T)    = -1; 

TATM.up(t)      = 20; 

miu.up(t)       = LIMMIU; 

 

partfract("1")= 0.25372; 

 

* First period predetermined by Kyoto Protocol. In original DICE, dropped for 

solvability 

*miu.fx("1")     = 0.005; 

 

** Fix savings assumption for standardization if needed 
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s.fx(t)=.22; 

 

** Cumulative limits on carbon use at 6000 GtC 

CCA.up(T) = FOSSLIM; 

 

** Solution options 

option iterlim = 4000; 

option reslim = 99999; 

option solprint = on; 

option limrow = 100; 

option limcol = 100; 

 

model CO2 /all/; 

CO2.optfile = 1; 

 

* Call definition files for individual runs 

*$include def_D2RTS15.gms 

*$include def_D2RTS20.gms 

*$include def_D2RTS25.gms 

 

$include def_D3RTS15.gms 

*$include def_D3RTS20.gms 

*$include def_D3RTS25.gms 
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*$include def_D4RTS15.gms 

*$include def_D4RTS20.gms 

*$include def_D4RTS25.gms 

 
Sample Definition File 

The final lines of the model above call definition files. Definition files are specific to 

each model run and contain the RTS factor for each run, specific instructions about how 

many solve iterations to use, and code to give each input file the appropriate name. Note 

that “SolPrice2” is a legacy parameter from a development version of the model and is 

not used in the final model. SolRTSFact is the exponent necessary to achieve the desired 

percent reduction in cost per doubling in scale. The example below is the definition file 

for the low scenario, the SolRTSFact parameters are .3219 and .4150 for the medium and 

high scenarios, respectively. 

 

SolPrice2 =  155.01; 

SolRTSFact = .2345; 

 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 
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solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

 

*$ontext 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 
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solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

 

 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 
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solve CO2 maximizing UTILITY using dnlp ; 

solve CO2 maximizing UTILITY using dnlp ; 

 

 

 

Parameters 

Year(t)         Date 

 

D3RTS15_SOLPrice(T) 

D3RTS15_SolShare(T) 

D3RTS15_SolDemand(T) 

 

D3RTS15_BOMPrice(T) 

D3RTS15_BOMShare(T) 

D3RTS15_BOMDemand(T) 

 

D3RTS15_alpha(T) 

D3RTS15_b(T) 

D3RTS15_y(t) 

D3RTS15_cpc(t) 

D3RTS15_s(t) 

D3RTS15_indem(t) 

D3RTS15_sigma(t) 
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D3RTS15_tatm(t) 

D3RTS15_mat(t) 

D3RTS15_tax(t) 

D3RTS15_ri(t) 

D3RTS15_rr(t) 

D3RTS15_al(t) 

D3RTS15_forcoth(t) 

D3RTS15_l(t) 

D3RTS15_etree(t) 

D3RTS15_yy(t) 

D3RTS15_cc(t) 

D3RTS15_miu(t) 

D3RTS15_wem(t) 

D3RTS15_ri(t) 

D3RTS15_dam(t) 

D3RTS15_abate(t) 

D3RTS15_mcemis(t) 

D3RTS15_utility 

D3RTS15_alpha(t) 

D3RTS15_b(t) 

D3RTS15_Damages(T) 

D3RTS15_Abate(T) 

D3RTS15_CleanDemand(T) 
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D3RTS15_SolShare(T) 

D3RTS15_SolDemand(T) 

D3RTS15_SolTechPrice(T) 

D3RTS15_SolIntCost(T) 

D3RTS15_solIntMult(T) 

D3RTS15_SolNetPrice(T) 

D3RTS15_Backup(T) 

D3RTS15_BomDemand(T) 

D3RTS15_BOMShare(T) 

D3RTS15_BOMPriceA(T) 

D3RTS15_Theta1A(T); 

 

Year(t)         = 2005 +10*(ord(t)-1); 

D3RTS15_y(t)=y.l(t); 

D3RTS15_cpc(t)=cpc.l(t); 

D3RTS15_s(t)=s.l(t)     ; 

D3RTS15_indem(t)= e.l(t)-etree(t);; 

D3RTS15_sigma(t)=sigma(t) ; 

D3RTS15_tatm(t)=tatm.l(t)  ; 

D3RTS15_mat(t)=mat.l(t)     ; 

D3RTS15_tax(t)=-1*ee.m(t)*1000/(kk.m(t)+.00000000001)       ; 

D3RTS15_ri(t)=ri.l(t); 

D3RTS15_rr(t)=rr(t)   ; 
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D3RTS15_al(t)=al(t)    ; 

D3RTS15_forcoth(t)=forcoth(t); 

D3RTS15_l(t)=l(t); 

D3RTS15_etree(t)=etree(t); 

D3RTS15_yy(t)=yy.m(t)     ; 

D3RTS15_cc(t)=cc.m(t)      ; 

D3RTS15_miu(t)=miu.l(t)     ; 

D3RTS15_wem(t)= e.l(t); 

D3RTS15_ri(t)=ri.l(t)         ; 

D3RTS15_dam(t)= damages.l(t); 

D3RTS15_abate(t) = abatecost.l(t); 

*D3RTS15_mcemis(t)= THETA2*THETA1(t)*miu.l(t)**(THETA2-

1)/sigma(t)*1000; 

D3RTS15_utility=utility.l        ; 

D3RTS15_alpha(t)=alpha.l(t); 

D3RTS15_b(t)=b.l(t); 

*D3RTS15_Damages(T)=damages.l(t); 

D3RTS15_Abate(T)=abatecost.l(T); 

D3RTS15_CleanDemand(T)=cleandemand.l(t); 

D3RTS15_SolShare(T)=solshare.l(T); 

D3RTS15_SolDemand(T)=soldemand.l(T); 

D3RTS15_SolTechPrice(T)=soltechprice.l(T); 

D3RTS15_SolIntCost(T)=solintcost.l(T); 
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D3RTS15_SolIntMult(T)=solintmult.l(T); 

D3RTS15_SolNetPrice(T)=solnetPrice.l(T); 

D3RTS15_Backup(T)=backup.l(T); 

D3RTS15_BomDemand(T)=bomdemand.l(T); 

D3RTS15_BOMShare(T)=bomshare.l(T); 

D3RTS15_BOMPriceA(T)=bompricea.l(T); 

D3RTS15_Theta1A(T)=Theta1A.l(T); 

 

 

File D3RTS15; 

D3RTS15.pc=6; 

D3RTS15.pw=1000; 

Put D3RTS15; 

Put / "Optimal run (economic optimum)"; 

Put / "year"; 

Loop (T, put year(T)::0); 

 

Put / "Abatement"; 

Loop (T, put D3RTS15_Miu(T)::5); 

 

Put / "Pivot"; 

Loop (T, put D3RTS15_Alpha(T)::4); 
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Put / "Shift"; 

Loop (T, put D3RTS15_b(T)::4); 

 

Put / "Damages"; 

Loop (T, put D3RTS15_Dam(T)::3); 

 

Put / "Abatement Cost"; 

Loop (T, put D3RTS15_Abate(T)::4); 

 

Put / "Clean Demand"; 

Loop (T, put D3RTS15_CleanDemand(T)::3); 

 

Put / "Solar Share"; 

Loop (T, put D3RTS15_SolShare(T)::4); 

 

Put / "Solar Demand"; 

Loop (T, put D3RTS15_SolDemand(T)::5); 

 

Put / "Solar Tech Price"; 

Loop (T, put D3RTS15_SolTechPrice(T)::3); 

 

Put / "Solar Integration Cost"; 

Loop (T, put D3RTS15_SolIntCost(T)::4); 
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Put / "Solar Integration Cost Multiplier"; 

Loop (T, put D3RTS15_SolIntMult(T)::5); 

 

Put / "Solar Net Cost"; 

Loop (T, put D3RTS15_SolNetPrice(T)::3); 

 

Put / "Backup Cost"; 

Loop (T, put D3RTS15_Backup(T)::3); 

 

Put / "BOM Demand"; 

Loop (T, put D3RTS15_BomDemand(T)::4); 

 

Put / "Bom Share"; 

Loop (T, put D3RTS15_BOMShare(T)::4); 

 

Put / "Bom Price"; 

Loop (T, put D3RTS15_BOMPriceA(T)::3); 

 

Put / "BackStop price"; 

Loop (T, put D3RTS15_Theta1A(T)::5); 

 

Put / "output"; 
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Loop (T, put D3RTS15_y(T)::3); 

Put / "pccon"; 

Loop (T, put D3RTS15_cpc(T)::3); 

Put / "savrate"; 

Loop (T, put D3RTS15_s(T)::4); 

Put / "indem"; 

Loop (T, put D3RTS15_indem(T)::4); 

Put / "sigma"; 

Loop (T, put D3RTS15_sigma(T)::4); 

Put / "temp"; 

Loop (T, put D3RTS15_tatm(T)::3); 

Put / "conc"; 

Loop (T, put D3RTS15_mat(T)::3); 

Put / "soc cost carbon"; 

Loop (T, put D3RTS15_tax(T)::2); 

Put / "intrate"; 

Loop (T, put D3RTS15_ri(T)::3); 

Put / "discrate"; 

Loop (T, put D3RTS15_rr(T)::5); 

Put / "prod"; 

Loop (T, put D3RTS15_al(T)::5); 

Put / "exogforc"; 

Loop (T, put D3RTS15_forcoth(T)::3); 
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Put / "pop"; 

Loop (T, put D3RTS15_l(T)::3); 

*Put / "carbon tax"; 

*Loop (T, put D3RTS15_mcemis(T)::4); 

Put / "margy"; 

Loop (T, put D3RTS15_yy(T)::3); 

Put / "margc"; 

Loop (T, put D3RTS15_cc(T)::5); 

Put / "miu"; 

Loop (T, put D3RTS15_miu(T)::3); 

Put / "total emissions"; 

Loop (T, put D3RTS15_wem(T)::3); 

Put / "interest rate"; 

Loop (T, put D3RTS15_ri(T)::4); 

Put / "damages"; 

Loop (T, put D3RTS15_dam(T)::3); 

Put / "abatement cost"; 

Loop (T, put D3RTS15_abate(T)::2); 

Put /"objective function"; 

Put D3RTS15_utility::3; 
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