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ABSTRACT

NUMERICAL FORCING OF HORIZONTALLY-HOMOGENEOUS
STRATIFIED TURBULENCE

MAY 2011

KAUSTUBH RAO

B.E., UNIVERSITY OF MUMBAI

M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Stephen de Bruyn Kops

It is often desirable to study simulated turbulent flows at steady state even if the flow has no

inherent source of turbulence kinetic energy. Doing so requires a numerical forcing scheme and

various methods have been studied extensively for turbulence that is isotropic and homogeneous

in three dimensions. A review of these existing schemes is used to form a framework for more

general forcing methods. In this framework, the problem of developing a forcing scheme in Fourier

space is abstracted into the two problems of (1) prescribing the spectrum of the input power and

(2) specifying a force that has the desired characteristics and that adds energy to the flow with

the correct spectrum. The framework is used to construct three forcing schemes for horizontally

homogeneous and isotropic, vertically stratified turbulence. These schemes are implemented in

large-eddy simulations and their characteristics analyzed. Which method is “best” depends on the

purpose of the simulations, but the framework for specifying forcing schemes enables a systematic

approach for identifying a method appropriate for a particular application.
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CHAPTER 1

INTRODUCTION

Turbulence is a non-linear phenomenon occurring in almost every aspect of nature that in-

volves fluids. While an exact definition of turbulence is elusive, turbulent flows are recognized

by chaotic-like velocity fluctuations in time and space, existence of a range of scales of motions

and kinetic energy dissipation [Pope, 2000]. Turbulence usually stems from some instability in

the fluid flow. For example, in homogeneous flows the instability arises from the destabilizing

inertial forces overcoming the stabilizing viscous forces. The ratio of inertial to viscous forces

known as Reynolds number (Re) gives an estimate on the instability, thereby giving a measure on

the turbulent intensity of the flow. In the case of density stratified flows, in addition to viscosity,

gravitational forces act as stabilizing forces. Density stratified flows are characterized by density

gradients in the vertical direction leading to the formation of distinct density layers. Gravity plays

an important role in the formation of layers and gives rise to buoyancy forces. Stratified flows

are marked with intermittent patches of turbulence arising due to buoyancy forces. Strength of

stratification is measured by the ratio of inertial to gravitational forces, known as Froude number

(Fh).

Fh =
U
NL . (1.1)

L is the horizontal length scale into which energy is assumed to be fed, U is the corresponding

horizontal velocity scale (rms velocity) andN = (− (g/ρ0) (dρ̃/dz))1/2, is the buoyancy frequency

also known as the Brunt-Väisälä frequency. The requirement for stratified turbulence is that Fh �

1.
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A characteristic of the simplest canonical, or building block flows useful in research is that

they are inherently dissipative due to viscosity and as a result are not stationary. This implies,

in addition to the time scale of turbulent structures there exists a decay time scale. However,

some canonical flows such as shear layers or channel flow are inherently stationary, also, in nature

mean shear and other phenomena provide continual sources of turbulent kinetic energy to balance

energy dissipation. These flows are often approximated to be statistically stationary on time scales

that are longer compared to the time scales of turbulence. The question arises as to whether to

study turbulent flows that lack a source of energy in their canonical form, that is, decaying in

time, or to artificially force them to be statistically stationary. Both approaches have strengths and

weaknesses.

Consider, for example, the simplest of all canonical turbulent flows, isotropic homogeneous

turbulence [Pope, 2000]. In a laboratory, the flow is well approximated far downstream of a grid

in a wind tunnel such as in the experiments of Comte-Bellot and Corrsin [1971]. Producing a

direct numerical simulation of that experiment with the correct energy decay rate requires includ-

ing in the simulation length scales that are much larger than the integral scale of the turbulence

[de Bruyn Kops and Riley, 1998], and even then the simulation results have anomalies that appear

to stem from the initialization technique and the finite size of the computational domain [Wang

and George, 2002]. Therefore, despite the use of the best techniques known and significant com-

putational resources, simulations of the most basic of turbulent flows do not necessarily yield

results that are as close to the canonical case as one might like. Forcing the simulated flow to be

statistically stationary through the addition of energy at the largest length scales breaks the link

between the simulations and a realizable laboratory experiment and introduces an arbitrary forcing

mechanism, but it eliminates the time scale of the energy decay which is so hard to get right in

simulations of the decaying flow. It also eliminates the need to devote considerable computation

effort to computing the flow at length scales much larger than the integral scale.
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In turbulence subject to strong stable stratification, one of the simplest canonical flow configu-

rations is horizontally homogeneous and isotropic with a density gradient in the vertical direction.

As with unstratified flows, simulating the “correct” temporal development of the flow might be a

distraction from understanding other aspects of the flow physics. Riley and de Bruyn Kops [2003]

ran simulations of a decaying flow based on turbulence downstream of a grid in a stratified tank.

The simulations developed many characteristics observed in laboratory experiments but for a sig-

nification portion of the total simulation time the flow was either strongly influenced by the initial

conditions or else had lost too much energy to have useful statistics. Lindborg [2006] simulated

horizontally-homogeneous stratified turbulence forced to stationarity using a stochastic technique.

In that paper, detailed characteristics of the forcing scheme were not highly relevant and were

omitted. The study of stratified turbulence using numerical simulations of flows with no intrinsic

source of turbulence kinetic energy, however, requires a full understanding of the effects of the

forcing, which is the focus of this thesis.

The outline of the thesis is as follows. In section 1.1, a historical review of forcing schemes

is presented with emphasis on unstratified turbulence since most work on forcing techniques has

been focused on that flow regime. A generic framework for numerical Fourier space forcing is pro-

posed in section 1.2. In chapter 2, basic equations are presented with emphasis on the Boussinesq

approximation of Navier-Stokes equation. In chapter 3, the importance of discrete time in numer-

ical simulations is revealed and the theory for random and deterministic Fourier space forcing of

horizontally homogeneous stratified turbulence is developed. In chapter 4, appropriate simulation

parameters for the forcing schemes developed are enlisted to enable their comparison with refer-

ence to Lindborg [2006] simulations. Finally, characteristics of the forcing schemes in terms of

the temporal accuracy, the rate of convergence to a statistically stationary state and conclusions are

drawn in the chapter 5.
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1.1 Background on Forcing Schemes

Historically, the credibility of numerical simulations of fluid flows has depended on favorable

comparisons between the simulation results and measurements of physical flows. While accep-

tance has increased of simulations that are not referenced to specific measurements, it is neverthe-

less highly desirable to match simulations to laboratory flows. Doing this for statistically stationary

flows outside of boundary layers is a challenge, but some progress has been made in developing

laboratory experiments in turbulence that is mechanically forced [Hwang and Eaton, 2004; Vari-

ano and Cowen, 2008; Variano et al., 2004], and in simulations with stochastic real-space forcing

[Lundgren, 2003; Perot, 2010(submitted); Rosales and Meneveau, 2005]. The most common ap-

proach to applying forcing in simulations of unbounded turbulent flows, however, is to do so in

Fourier space. The drawback is that the simulations are not realizable in the laboratory but the

methodology is well-supported by theory.

A review of Fourier-space forcing schemes reveals desirable characteristics of forcing tech-

niques along with several pitfalls. Kuczaj and Geurts [2006] note that forcing techniques can be

designed to add constant power or to maintain constant energy in, say, a range of wave numbers.

Forcing can then be implemented via a stochastic approach or a deterministic one. One of the

earliest forcing schemes sought to maintain the kinetic energy in the flow stationary by freezing

the amplitude of the velocity in all modes with wave number magnitude in a given range, that is,

in a particular “wave number band” [Siggia and Patterson, 1978]. This approach requires knowing

a priori the desired energy in those modes and precludes any affect of motions at small length

scales on the dynamics of the large length scales. Chasnov [1991] relaxes the latter constraint by

requiring that the average energy in a wave number band be held fixed while allowing the energy

in each mode to vary. Unfortunately, schemes of this type suffer from large excursions of the av-

erage kinetic energy of the flow in the process of converging [Sullivan et al., 1994; Vincent and

Meneguzzi, 1991]. Alternative approaches hold constant the average energy in the flow [Gross-
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mann and Lohse, 1992; Machiels, 1997] and allow the spectrum to evolve to stationarity, which

can result in large excursions of the energy at particular wave numbers.

To address the problems with slow convergence and large energy fluctuations that are common

to many schemes, Overholt and Pope [1998] force the flow toward the prescribed energy spectrum

over some range of wave numbers but do not require that the target energy spectrum be matched

exactly. Instead, a spring-damper analogy is used to construct differential equations for each band

of wave numbers, the equations are tuned to be approximately critically damped, and their solutions

are used to determine the force magnitudes at each time step. The forcing results in the energy

spectrum of the flow optimally approaching the target.

In addition to having a mechanism for determining how much power to add to the flow and

at what wave number bands, a forcing scheme must include a process for distributing the energy

across the individual modes that make up a band. In the earliest schemes the modes were simply

frozen. Many later schemes used linear amplification of the existing velocity field [Kerr, 1981;

Overholt and Pope, 1998; Vincent and Meneguzzi, 1991]. This approach of adding energy by

scaling existing velocities allows the large scales of the flow to evolve in time but it is not clear that

the resulting simulation will be statistically stationary, and also large scale anisotropies are frozen

[Vincent and Meneguzzi, 1991]. The method of Overholt and Pope uses linear amplification but

the amplification factor is dynamically controlled to improve convergence.

Stochastic approaches can also be used to distribute the forcing power across multiple wave

number modes. This avoids some of the problems associated with linear amplification. One of the

first stochastic forcing schemes for homogeneous isotropic turbulence is that of Eswaran and Pope

[1988]. In this approach, random acceleration forces are added when the velocities for the wave

number modes being forced are advanced in time. Constraints are imposed so that the resulting

velocity field remains non-divergent and that the forces are applied at the desired length scales for

the desired duration.

5



In most of the schemes just considered, the kinetic energy is prescribed in one way or another.

This is appropriate for flows for which theory is sufficiently developed to guide the selection of the

target energy. The theory of stratified turbulence has not advanced to the point of providing such

guidance. In fact, only recently has it been shown that energy input at the large scales of a stratified

flow cascades to the small scales [Lindborg, 2006; Riley and de Bruyn Kops, 2003]. Therefore, a

class of forcing schemes where power input is prescribed is attractive for simulations of stratified

turbulence.

Ghosal et al. [1995] developed a non-stochastic, constant-power scheme in which linear ampli-

fication is used to add energy to the flow. Stationarity is observed when dissipation rate fluctuates

about the constant power input. Very high energy levels and associated numerical problems can

result with schemes of this type because of the time required for the turbulence cascade to develop.

As with the constant-energy approaches, the side-effects of linear amplification can be ameliorated

by stochastic methods [Carati et al., 1995; Misra and Pullin, 1997]. Methods have also been de-

veloped in which both the input power and the distribution of the input power across several wave

number bands are prescribed [Chen, 1992; Wang et al., 1996].

Most of the work on forcing schemes have been focused on isotropic homogeneous flows. Nu-

merical forcing of stratified flows is fairly recent and requires research. For the same, Lindborg

[2006] approximates stratified flows to be horizontally-homogeneous and isotropic while using a

variant of Alvelius forcing scheme to force just horizontal modes of horizontal velocity compo-

nents. In this thesis a generic framework for Fourier space numerical forcing is developed and

Lindborg [2006] simulations are reproduced. Thus proving that the framework is not limited only

to the regime of isotropic homogeneous flows.
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1.2 General Framework for Fourier Space Numerical Forcing

The preceding review reveals that the development of a Fourier-space forcing scheme is com-

posed of two subproblems: determining how much energy to add to each wave number band and

how to distribute the energy among the modes that make up each band. In this section, a frame-

work is developed that enables the two subproblems to be addressed systematically. Before the

framework is introduced it is important to consider the discrete time aspect of numerical forcing.

A characteristic of many forcing schemes is that they are derived in terms of equations that

are continuous in time. Forcing is done by appending an artificial force term to the Navier-Stokes

time-continuous momentum equation. The nature of the force is described by it’s orientation and

phase with respect to velocity. The addition of a force term in the momentum equation results in

a spatial force-velocity correlation term in the kinetic energy equation. This implies, only a force

that correlates with velocity can contribute to input power. In other words, only a force parallel-in-

phase with velocity can contribute to kinetic energy. Alvelius [1999] considers the discrete nature

of time in numerical simulations and reveals the existence of an additional spatial force-force

correlation term that contributes to kinetic energy. This term has no analog in the time-continuous

evolution of kinetic energy and arises as a result of the force being constantly applied over the

discrete interval of time. Due to the existence of this term, forces that do not correlate spatially

with velocity can also inject power, hence forces that are perpendicular and parallel-out-of-phase

with velocity can also contribute to kinetic energy. Thus the input power is considered to have

contributions from forces perpendicular, parallel-out-of-phase and parallel-in-phase with velocity.

In section 3.2.1 it is shown for a prescribed distribution of power, the individual contribu-

tions to power by forces that correlate with velocity and those that don’t can be controlled. The

forcing scheme by Alvelius can be considered to avail a special case of this control, where contri-

bution to power by force-velocity correlation is set to zero, thereby injecting power solely through

force-force correlation. With this control, the problem of prescribing power is now isolated from

prescribing the nature of force. This allows the framework for numerical forcing to be formulated

7



Qg, Qf, Rf Simulations

Implement Force

+Q R f g d

Prescribe Power

Figure 1.1. Figure shows the new framework for numerical forcing schemes.

as three addition steps. First, power is prescribed. For example, the power prescribed can have a

constant wave-number distribution or adapt with time by a control equation [section 3.2.2]. Sec-

ond, the nature (orientation and phase) of force is chosen [section 3.2.1]. Lastly, combine the first

two steps into a practical algorithm constituting a simulation [section 3.2.3]. This framework is

summarized in figure 1.1, where “Q” or “R” represent two ways to prescribe power and “f”,“g”

and “d” represent three kinds of forces detailed in chapter 3.

1.3 Numerical Forcing of Horizontally-Homogeneous Stratified Flows

The framework developed in this thesis is proved by successfully forcing horizontally-homogeneous

stratified flow into a statistical steady state. To force such flows requires the force to be isotropic

and homogenous in the horizontal plane while ensuring the velocity field remain non-divergent. In

Fourier space this is achieved by forcing only the horizontal components of velocity in the horizon-

tal plane κ3 = 0. This makes the system highly constrained and as a result, force perpendicular to

velocity cannot exist and the directional degree of freedom for choosing force is lost. This leaves

only the phase and magnitude of the force to be modeled or stochastically assigned.

Numerical simulations run by Lindborg [2006] pertain to forcing horizontally-homogeneous

stratified flows. These simulations are reproduced by developing a Qg scheme that is a specific

case of the generic framework. The scheme takes advantage of the fact that for discrete time it

8



is possible to inject power by spatial force-force correlation. The Qg scheme uses a “g” force

that does not correlate with velocity. Since the power injected by the g force is an artifact of

discretization, it is not desirable to have this force correlate in time with itself. To ensure this,

stochastic processes similar to Alvelius is used.

The physical implications for an out-of-phase force (g force) is unclear. In order to justify that

numerical forcing is a surrogate for slowly-developing large scales, two new forcing schemes are

developed that utilize an “f” force that is spatially correlated with velocity. These are presented

as specific cases of the framework. The first scheme termed as the Qf scheme, injects a constant

power distribution similar to Qg scheme. The mechanism of input power distribution for both the

Qg and Qf is constant and independent of the runtime flow dynamics. As a result, slow convergence

to steady state is observed. To address this, a second “Rf scheme” based on Overholt and Pope

[1998] is developed. In this scheme the mechanism of input power uses a control system that takes

into account information from runtime flow dynamics (spectrum of kinetic energy at κ3 = 0 plane).

Based on this information the distribution of input power among horizontal wave-number bands is

accordingly adjusted to converge the flow to a given target spectrum. As expected, convergence

to steady state is observed to be faster. This method, however requires a target spectrum to be

provided, which for the horizontally-homogeneous stratified flow, does not exist. However, to test

the methodology a target spectrum is acquired from the converged solutions of the Qf scheme.
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CHAPTER 2

THEORETICAL CONSIDERATIONS

This chapter defines terminology and nomenclature for various physical quantities that enable

mathematical representation of forcing schemes. A brief overview on equations in physical space

and Fourier space is given. A fluid flow can be expressed by conservation equations. These

equations represent the balances, changes and fluxes of physical quantities pertaining to fluid flow

with respect to space and time. The fundamental governing equations of a fluid element are the

continuity, momentum and internal energy equation along with the equation of state. Using these

equations, equations for potential and kinetic energy can be derived. For detailed derivations, refer

Kundu and Cohen [2002]; Panton [1984]; Pope [2000]; Spiegel and Veronis [1960].

2.1 General Continuity Equation

Consider a material region (M). Let dV be an infinitesimal volume with density ρt. As mass

is conserved for all time, the rate of change of mass (M) of the material region (system) is zero.

This is mathematically expressed as,

D

Dt
(MM) =

D

Dt



∫

M

ρtdV


 = 0 , (2.1)

where D(· · · )/Dt is the material derivative. Using Leibnitz’s theorem to take the differential

operator inside the integral and using Gauss theorem gives,

∂ρt
∂t

+
∂

∂xi
(ρtui) = 0 . (2.2)
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ui is ith component of the velocity vector (~u) of the fluid element. This is the mass conservation

equation or continuity equation for a fluid system in the domain of continuum mechanics [Panton,

1984].

2.2 General Momentum Equation

The momentum equation can be derived based on Newton’s second law. For detailed deriva-

tion, refer appendix A and Panton [1984]. If external force ~b and gravity ~g = [0, 0, g] are the only

body forces per unit mass then the general momentum equation is,

∂

∂t
(ρtui) +

∂

∂xj
(ρtujui) = −∂pt

∂xi
+ ρt (−gδi3 + bi) +

∂τij
∂xj

, (2.3)

where τij is a symmetric viscous tensor. The Navier-Stokes momentum equation obtained by

substituting equation (A.10) for τij is,

∂

∂t
(ρtui) +

∂

∂xj
(ρtujui) = −∂pt

∂xi
+ ρt (−gδi3 + bi) + 2

∂

∂xj
(µSij)−

2

3

∂

∂xi

(
µ
∂uj
∂xj

)
. (2.4)

pt is the thermodynamic pressure, µ is molecular viscosity, g is the magnitude of gravitational ac-

celeration and Sij is the symmetric strain rate tensor (defined in equation (A.8)). Forcing schemes

(discussed in chapter 3) acheive statistical steady by modeling the external force term ~b appended

to the momentum equation.

2.3 General Internal Energy Equation

Internal energy of the fluid particle is due to microscopic motions. These include translational,

vibrational and rotational motions. The sum of all these energies is the absolute thermodynamic

internal energy. The internal energy per unit mass is,

de ≡ CvdT , (2.5)
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where Cv is the specific heat at constant volume and dT is an infinitesimal change in temperature.

Internal energy of a system can change as a result of energy flux across the surface boundary

of the system. Energy flux occurs due to heat transfer by conduction, convection, radiation or

diffusion of different chemical species. Heat transfer is given by, −niqidS, where ~q denotes the

heat flux per unit mass across surface element dS having outward normal ~n. Heat flux is defined

as

qi ≡ −kT
∂T

∂xi
, (2.6)

where kT is the thermal conductivity of the fluid element. The equation for internal energy is,

∂

∂t
(ρte) +

∂

∂xi
(ρtuje) =

∂

∂xi

(
kT
∂T

∂xi

)
− pt

∂ui
∂xi

+ τij
∂ui
∂xj

. (2.7)

Internal energy cannot be measured directly, instead it is inferred from measuring temperature.

Thus it is convenient to cast the above equation in terms of temperature. Referring to appendix B

for derivation and noting

ρt : ρt (pt, T, ξ) , (2.8)

the internal energy equation in terms of temperature is,

ρtCp
DT

Dt
=

∂

∂xi

(
kT
∂T

∂xi

)
+ Tβt

Dpt
Dt

. (2.9)

βt is the coefficient of thermal expansion, Cp is the specific heat at constant pressure and ξ is

entropy per unit mass.

2.4 General Kinetic Energy Equation

The equation for kinetic energy is obtained by the dot product of velocity with the momentum

equation (2.3). Using the relation ui∂ui = (1/2)∂ (uiui), the kinetic energy equation is,

12



∂

∂t

(
ρt

1

2
u2

)
+

∂

∂xi

(
ρtuj

1

2
u2

)
= −ui

∂pt
∂xi

+ ui
∂τij
∂xj

+ ρtui (−gδi3 + bi) (2.10)

where τij is given by equation (A.11), u = |~u| and 1
2
u2 = 1

2
uiui.

2.5 The Boussinesq Approximation

First suggested by Boussinesq [1903], density stratified flows are modeled by the Boussinesq

approximation of Navier-Stokes equation (equations (2.13), (2.14) and (2.15)). In the Boussinesq

approximation it is assumed that density fluctuations are a result of thermal effects and the accel-

erations of the fluid element are small compared to that of gravity.

Any physical variable, ψt, can be decomposed into three components: spatial average, ψo,

variation in absence of motion, ψ̃, and fluctuations due to fluid motion, ψ [Spiegel and Veronis,

1960]. Thus density ρt and pressure pt can be decomposed respectively as,

ρt (~x, t) = ρ0 + ρ̃ (z) + ρ (~x, t) ,

pt (~x, t) = po + p̃ (z) + p (~x, t) ,
(2.11a)

where z corresponds to depth. In the Boussinesq approximation, terms of order ε are kept, where

ε ≡ ∆ρ̃

ρ0

� 1 (2.12)

and ∆ρ̃ = (ρ̃max − ρ̃min) is the maximum variation in density.

The Boussinesq approximation of the continuity, density, momentum and kinetic energy equa-

tion are derived in appendix C. The internal energy equation combined with equation of state gives

[refer section C.3.3],
∂ρ

∂t
+ ui

∂ρ

∂xi
+ ui

dρ̃ (z)

dxi
δi3 = Dm

∂2ρ

∂x2
i

. (2.13)
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Dm = kT/ (ρ0Cp) is the mass diffusivity. The continuity equation is (refer section C.3.1),

∂ui
∂xi

= 0 . (2.14)

The momentum equation is (refer section C.3.2),

Dui
Dt

= − 1

ρ0

∂p

∂xi
− ρ

ρ0

gδi3 + bi + ν
∂2ui
∂x2

j

. (2.15)

ν = µ/ρ0 is the kinematic viscosity (assumed to be a constant). Defining vorticity to be ωi ≡

εijk (∂uk/∂xj) and using the identity,

uj
∂ui
∂xj

= −εijkωjuk +
1

2

∂

∂xi
(ujuj) , (2.16)

the momentum equation (2.15) in terms of vorticity is,

(
∂

∂t
− ν ∂

2

∂x2
j

)
ui = εijkujωk −

∂

∂xi

(
1

ρ0

p+
1

2
ujuj

)
+ bi −

ρ

ρ0

gδi3 . (2.17)

The momentum equation is conveniently written as,

∂ui
∂t

= Ai + Zi +Di + bi −Bi . (2.18)

Where,

Ai ≡ εijkujωk .

Zi ≡ − ∂
∂xi

(
1
ρ0
p+ 1

2
u2
)
,

Di ≡ ν ∂2

∂x2j
ui ,

Bi ≡ gi
ρ0
ρδi3 .

(2.19)

Ai represents advection of momentum, Zi is the gradient of the modified pressure, Di represents

the viscous diffusion of momentum and Bi is the gravity term.
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The kinetic energy equation from equations (C.22) and (C.23) is

∂Ek
∂t

+ uj
∂Ek
∂xj

= −ui
ρ0

∂p

∂xi
− ρ

ρ0

uigδi3 + uibi + 2ν
∂

∂xj
(uiSij)− εk , (2.20)

where Ek = 1
2
u2 is the kinetic energy per unit mass, εk, defined in equation (C.24), is the dissipation

of kinetic energy (refer section C.3.4). The term, (ρ/ρ0)uigδi3 = (ρ/ρ0)gu3 is known as the

buoyancy flux term. It acts as a coupling term between kinetic and potential energy by transferring

energy back and forth between these two forms of energy.

By using the Boussinesq approximation, it is assumed that density fluctuations are only due to

temperature fluctuations and not due to pressure effects. With this assumption the internal energy

equation (2.9) simplifies to

ρtCp
DT

Dt
=

∂

∂xi

(
kT
∂T

∂xi

)
. (2.21)

2.6 Potential Energy

In this section the evolution of potential energy equation is given and the corresponding terms

are defined. For more details refer Holliday and McIntyre [1981]; Lorenz [1955]; Winters et al.

[1995].

The evolution equation for potential energy can be obtained by multiplying equation (2.13) with

ρ and appropriately scaling so that the buoyancy flux term appearing in the kinetic energy equation

(2.20) and potential energy equation (2.22) are identical and of opposite signs. The equation for

potential energy obtained is,

∂Ep
∂t

+ ui
∂Ep
∂xi

=
g

ρ0

ρuiδi3 +Dm
∂2Ep
∂x2

i

− εp (2.22)

where,

Ep =
−g

2ρ0
dρ̃
dz

ρ2 (2.23)
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is the available potential energy of the fluid element and

εp = − g

ρ0
∂ρ̃
dz

Dm
∂ρ

∂xi

∂ρ

∂xi
, (2.24)

is the dissipation of potential energy.

2.7 Contributions to Kinetic Energy

Total kinetic energy can be decomposed into contributions by horizontal and vertical veloc-

ity components. The contribution to kinetic energy by horizontal velocity components gives the

horizontal contribution to kinetic energy, Eh. Similarly, contribution by the vertical component of

velocity gives vertical contribution to kinetic energy, Ev. For research purposes, the simplest den-

sity stratified flows considered are horizontally-homogeneous and isotropic. Decomposing kinetic

energy into Eh and Ev gives a better understanding of the energetics the flow and terms responsible

for the transfer of energy between Eh and Ev become apparent. Mathematical expressions for Eh
and Ev are derived in appendix D.

Eh ≡ 1
2

(u1u1 + u2u2) ,

Ev ≡ 1
2
u3u3 ,

Ek = Eh + Ev .

(2.25a)

Horizontal components are denoted by subscript h. For a vector (~·)h implies index h = 1, 2. With

this notation, horizontal component of velocity is, uh = [u1, u2] and Eh = (1/2)uhuh. Vertical

components are denoted by subscript v and for a vector (~·)v = (~·)3 and Ev = (1/2)u3u3.

The horizontal and vertical contributions to kinetic energy are derived in appendix D. The

equation for the horizontal contribution to kinetic energy (Eh) is,
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∂Eh
∂t

+ uh
∂Eh
∂xh

+ u3
∂Eh
∂x3

=− uh
ρ0

∂p

∂xh
+ bhuh + 2ν

∂

∂xj
(uhShj) (2.26)

− 2νShjShj + 2ν (S13r13 + S23r23) ,

where rij is the angular deformation rate tensor. The vertical contribution to kinetic energy (Ev) is

∂Ev
∂t

+ uh
∂Ev
∂xh

+ u3
∂Ev
∂x3

=− u3

ρ0

∂p

∂x3

− ρ

ρ0

u3g + bvu3 + 2ν
∂

∂xj
(u3S3j) (2.27)

− 2νS3jS3j − 2ν (S13r13 + S23r23) .

By decomposing Ek into Eh and Ev contributions (equations (2.26) and (2.27)), the existence of

2ν (S13r13 + S23r23) term is revealed. Observing the sign of this term in both the equations, it ap-

pears to be a viscous coupling term between horizontal and vertical contribution to kinetic energy.

2.8 Spectral Equations

Fourier space numerical forcing requires Fourier transforming the basic equations in the three

spatial directions. In this section the mathematical terminology used to describe and quantify

Fourier space quantities is presented.

Let (̂·) denote Fourier transform along the three spatial directions of (·). The Fourier transform

of the continuity equation (2.14) is,

κiûi = 0 . (2.28)

κi is the ith component of the three dimensional wave-vector, ~κ. The Fourier transform of the

momentum equation (2.18) is,

∂

∂t
ûi(~κ, t) = Âi(~κ, t)− B̂i(~κ, t) + Ẑi(~κ, t) + b̂i(~κ, t) + D̂i(~κ, t) . (2.29)
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Eliminating the Ẑi term, the Fourier space momentum equation for forced density stratified flows

is (refer appendix E),
∂ûi
∂t

= Λij

(
Âj − B̂j

)
− νκ2ûi + b̂i . (2.30)

~̂A ≡ ̂(~u× ~ω), Λij ≡ [δij − (κiκj)/κ
2] and κ ≡ |~κ| is the magnitude of the wave-vector. The

momentum equation (2.30) is conveniently written as,

∂ûi(~κ, t)

∂t
= âi(~κ, t) + b̂i(~κ, t) (2.31)

where b̂i is the forcing term and âi represents the contribution from Navier-Stokes accelerations.

Let (·)∗ denote complex-conjugate. The equation for Fourier space kinetic energy (Êk ≡

ûiû
∗
i /2) is obtained by the dot product of equation (2.30) with the complex-conjugate of velocity

vector (û∗i ). Equation for Êk derived in section E.2 restated is,

∂Êk(~κ, t)

∂t
=Λij

(
Âj − B̂j

)
û∗i + b̂iû

∗
i − νκ2Êk . (2.32)

The equation for Fourier space kinetic energy is conveniently written as,

∂Êk(~κ, t)

∂t
= T̂k(~κ, t)− T̂B(~κ, t) + T̂b(~κ, t) + T̂εk(~κ, t) . (2.33)

Where T̂k(~κ, t) is a non-linear term responsible for transferring energy from low wave numbers

to high wave numbers or, in other words, transferring energy from large scales to smaller scales

of motion. T̂b(~κ, t) is the injected power due to forcing, T̂B(~κ, t) is the buoyancy flux term and

T̂εk(~κ, t) is the Navier-Stokes dissipation term. These terms are defined in appendix E, equation

(E.14).
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The Fourier transform of density equation (2.13) multiplied with scaling constant

C = −g/ (2ρ0(dρ̃/dz)) is,

C ∂ρ̂
∂t

+
̂(
Cui

∂ρ

∂xi

)
− g

ρ0

û3 = −CDmκ
2ρ̂ . (2.34)

The above equation is multiplied by the complex conjugate of ρ̂ (refer appendix E, section E.3) to

give the Fourier space equation of available potential energy (Êp),

∂Êp(~κ, t)

∂t
= −T̂p(~κ, t) + T̂B(~κ, t) + T̂εp . (2.35)

T̂p is the transfer of potential energy, T̂B, discussed earlier is the buoyancy flux term and T̂εp is the

dissipation of potential energy. These terms are defined in appendix E, equation (E.19).
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CHAPTER 3

FORCING METHODOLOGY

This chapter presents a general framework for numerical forcing in Fourier space. Numerical

forcing in Fourier space can be decomposed into two isolated problems, namely determining the

distribution of energy over wave-number bands and how to distribute energy among the modes

that make up each band. Three forcing schemes are developed as specific cases of this frame-

work. However, before introducing the framework, the importance of considering discrete time in

numerical simulations is first discussed.

3.1 Importance of Discrete Time

A characteristic of many forcing schemes is that they are derived in terms of equations that are

continuous in time. In continuous time domain, power can only be injected via a spatial force-

velocity correlation. From equation (2.20), this can be achieved only by a force parallel-in-phase

with velocity. Alvelius [1999] considers the discrete nature of time in the time evolution of energy

and reveals the existence of an additional spatial force-force correlation term that also contributes

to adding energy. This term has no analog in the time-continuous evolution of energy and arises

as a result of the force being constantly applied over a discrete interval of time. The existence of

an additional force-force correlation term allows three possible sources of input power. These are,

force perpendicular, in-phase-parallel and out-of-phase-parallel to velocity.
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3.1.1 Spatial Correlation of Force

An important aspect that results from discretizing time is the contribution to power by spatial

force-force correlation. Let ~a represent all the Navier-Stokes acceleration terms in momentum

equation (2.18) giving,
∂ui(~x, t)

∂t
= ai(~x, t) + bi(~x, t) . (3.1)

To simplify analysis, consider discretizing above equation by an Euler step. Dropping the repre-

sentation of spatial and temporal dependence yields,

u
(n+1)
i = u

(n)
i + (a

(n)
i + b

(n)
i )∆t . (3.2)

∆t is the discrete time-step over which physical terms remain constant and the superscript (n)

indicates the discrete time step number (t(n)). Average kinetic energy 〈Ek〉` for the (n + 1)th

time-step is
〈
E (n+1)
k

〉
`

=
1

2

〈
u

(n+1)
i u

(n+1)
i

〉
`
.

〈· · · 〉` indicates spatial average. Substituting equation (3.2) in the above equation yeilds,

〈
E (n+1)
k

〉
`

=
1

2

[〈
u

(n)
i u

(n)
i

〉
`

+
〈

(a
(n)
i + b

(n)
i )2∆t∆t

〉
`

+ 2
〈

(u
(n)
i a

(n)
i + u

(n)
i b

(n)
i )∆t

〉
`

]
. (3.3)

Dropping the 〈· · · 〉` notation, the rate of change of kinetic energy is:

E (n+1)
k − E (n)

k

∆t
=

∆Ek
∆t

=

{
1

2
b

(n)
i b

(n)
i ∆t+ u

(n)
i b

(n)
i + u

(n)
i a

(n)
i

}
+
[
a

(n)
i + b

(n)
i

]
a

(n)
i ∆t . (3.4)

In the above equation, u(n)
i b

(n)
i is analogous to uibi term in continuous time kinetic energy equation

(2.20). This is the contribution to power by spatial force-velocity correlation. u(n)
i a

(n)
i corresponds

to the Navier-Stokes energy terms and terms in [· · · ] brackets correspond to first order error terms

resulting from Euler discretization. Also present in the above equation is b(n)
i b

(n)
i term that has no
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analogue in the time continuous equation (2.20). This is the contribution to power by the spatial

force-force correlation.

The b(n)
i b

(n)
i term is an artifact of discretizing time and is a result of force remaining constant

over the discrete interval of time, ∆t. To emphasize, assume the effects of Navier-Stokes acceler-

ation to be negligible (a
(n)
i ≈ 0) and resulting equation is,

∆Ek
∆t

=
1

2
b

(n)
i b

(n)
i ∆t+ u

(n)
i b

(n)
i . (3.5)

This shows that, in the limit ∆t tends to zero the power contribution from spatial force-force term

goes to zero and is bounded.

3.1.2 Temporal Correlation of Force

To emphasize and for simplicity consider the sole effect of force on a fluid element (thus

Navier-Stokes accelerations are ignored). Force bi causes an acceleration of the fluid element

given by,
∂ui(~x, t)

∂t
= bi(~x, t) . (3.6)

Solving equation (3.6) yeilds,

ui(~x, t) =

∫ t

t0

bi(~x, τ)dτ + ui(~x, t0) . (3.7)

Where t0 is some point in time when velocity ui(~x, t0) is known.

We can define integrated kinetic energy as 〈Ek〉` (t) = 1
2
〈uiui〉`. Power input, P(t) is the rate

of change of integrated kinetic energy. Differentiating 〈Ek〉` (t) with respect to t yields,

d 〈Ek〉` (t)

dt
= 〈uibi〉` =

∫ t

t0

〈bi(t)bi(τ)〉` dτ + 〈bi(t)bi(t0)〉` . (3.8)
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Thus power input is,

P(t) =
d

dt
〈〈Ek〉`〉∞ =

∫ t

t0

〈〈bi(t)bi(τ)〉`〉∞ dτ + 〈〈bi(t)bi(t0)〉`〉∞ , (3.9)

where 〈· · · 〉∞ represents ensemble averages over infinite number of realizations. The last term

of the above equation shows that temporal force-force correlation contributes to power input and

must be accounted for.

The forcing scheme developed by Alvelius uses a force that injects power solely through the

fictitious force-force correlation. From equation (3.9) it becomes clear that temporal correlation of

this force must be accounted for. For the same, Alvelius employs stochastic processes to ensure

that temporal correlation of this force is limited only to the discrete instant in time it exists. In

other words, 〈〈bi(t)bi(t0)〉`〉∞ term in equation (3.9) is set to zero by using stochastic processes.

3.1.3 Various Contributions to Power by Discrete Force

A force in general can be decomposed into components that are perpendicular to the veloc-

ity, parallel-in-phase and parallel-out-of-phase with velocity. Consider the Fourier transform of

discrete momentum equation (3.2) in all three directions

û
(n+1)
i (~κ) = û

(n)
i (~κ) +

(
â

(n)
i (~κ) + b̂

(n)
i (~κ)

)
∆t . (3.10)

~κ is the wave vector and hat (̂.) signifies the three dimensional Fourier transform of the quantity. In

order to avoid cumbersome notation, for the moment, let the dependence on ~κ be dropped. Before

steady-state is attained the momentum equation is driven largely by the force term rather than the

Navier-Stoke’s acceleration terms. Thus, â(n)
i ∆t is assumed to be negligible and ignored. The rate

of change of kinetic energy due to the forcing is
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∆Êk
∆t

=
1

∆t

(
1

2
û

(n+1)
i û

(n+1)∗
i − 1

2
û

(n)
i û

(n)∗
i

)
(3.11)

=
∆t

2
b̂

(n)
i b̂

(n)∗
i +

1

2

(
û

(n)
i b̂

(n)∗
i + û

(n)∗
i b̂

(n)
i

)
,

where asterisk, (̂·)∗ denotes complex conjugate. The b̂(n)
i b̂

(n)∗
i ∆t/2 term arises as a result of force

being constant over the discrete interval of time ∆t. Let the phase and orientation describe the na-

ture of the force. b̂i can be decomposed into forces that are parallel-in-phase, parallel-out-of-phase

and perpendicular with respect to velocity. The contribution to power by these forces respectively

are P̂1(~κ), P̂2(~κ), and P̂3(~κ). Observing equation (2.20), in the continuous time formulation, en-

ergy is added to the flow only by the component of force parallel-in-phase with velocity. Whereas

in discrete time, existence of b̂(n)
i b̂

(n)∗
i term allows force components parallel-out-of-phase and per-

pendicular to velocity to add energy. This can be expressed mathematically as,

∆Êk(~κ)

∆t
= P̂1(~κ) + P̂2(~κ) + P̂3(~κ) (3.12)

= P̂ (~κ) .

The above equation represents power input at a discrete instant in time.

3.2 Implementing Forcing

Implementing a specific forcing scheme requires three addition steps. The first step is to impose

constraints on the force direction and phase. This determines the contributions of P̂1, P̂2 and P̂3 to

the forcing spectrum. In most schemes, the only constraint is that the force should not result in a

divergent velocity field. Alvelius [1999] shows how to choose a force with an additional constraint

being that the force is uncorrelated with the velocity field. Second, the left hand side (LHS) of

equation (3.12) must be chosen. In many schemes, equation (3.12) is averaged over wave number

bands so that it is in terms of discrete power spectra. Then the LHS is the spectrum of the input
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power, hereafter referred to as the “forcing spectrum.” For instance, in the scheme of Overholt and

Pope [1998] the forcing spectrum is determined by solving differential equations for each wave

number band to optimally converge the simulation to a model power spectrum. In the scheme

of Alvelius [1999], the forcing spectrum is a Gaussian centered at a specific wave number and

invariant in time. The third step in developing a forcing scheme is to combine the previous two

steps into a practical algorithm

3.2.1 Constructing a Horizontally-Homogeneous and Isotropic Force

To develop a forcing scheme that is horizontally-homogeneous and isotropic, consider a hor-

izontal force, ĥi(~κ), invariant in the vertical direction, that is, ĥi ≡ 0 if κ3 6= 0. Here ~κ =

(κ1, κ2, κ3) is the wave number vector. This force expressed in terms of phase and magnitude is

ĥi(κ1, κ2, 0) =
∣∣∣ĥi(κ1, κ2, 0, )

∣∣∣
c
eiθhei , (3.13)

with ei the unit vector defining the direction, |· · · |c denoting the magnitude of a complex number,

and θh the phase. It can be shown that for a horizontally-homogeneous isotropic force that is non-

divergent, the horizontal components of the force have the same phase θh (refer appendix F). The

force is applied for the duration of time step n, but the superscript indicating the time step number

is omitted to avoid cumbersome notation.

The complex velocity in the plane κ3 = 0 can be expressed similarly as

ûi(κ1, κ2, 0) = |ûi(κ1, κ2, 0)|c eiθuei , (3.14)

where θu is the phase of velocity. From continuity, κ1e1 + κ2e2 = 0 so that ei = (−κ2, κ1)/κh

where κh = (κ2
1 + κ2

2)1/2. The constraint that the force not cause divergence in the velocity field

requires that the force and velocity be parallel and so ei in equations (3.13) and (3.14) must be the

same vector.
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Next, so that the force is horizontally-homogeneous, denote an integral over a circle of radius

κh by
∮

( )dS(κh), and define

U(κh) =

∮
(|ûi(κ1, κ2, 0)|c)dS(κh) ,

H(κh) =

∮
(
∣∣∣ĥi(κ1, κ2, 0)

∣∣∣
c
)dS(κh) ,

and

P (κh) =

∮
P̂ (κ1, κ2, 0)dS(κh) .

The latter is simply the forcing spectrum from equation (3.12). In terms of the velocity and the

horizontal force spectra,

P (κh) =
∆t

2
H2(κh) +H(κh)U(κh)

(
ei(θh−θu) + e−i(θh−θu)

)

2

=
∆t

2
H2(κh) +H(κh)U(κh) cos(θh − θu) , (3.15)

which is a quadratic equation in H(κh). Given a forcing spectrum, P (κh), H(κh) is now defined.

Furthermore, we have arrived at the comforting result that for the force, hi, to be real, P (κh) must

be non-negative (refer section 3.2.2). The first term on the RHS of equation (3.15) corresponds to

the power input due to the spatial force-force correlation at a given discrete time-step. That is, it

is the horizontal spectrum corresponding to P̂1, which arises from the discretization of time in a

simulation. The second term is due to the force-velocity correlation and corresponds to P̂2. A term

corresponding to P̂3 cannot occur in this forcing scheme because of the requirement that in 2D the

force be parallel to the velocity in order to avoid forcing the flow to be divergent.

Equation (3.15) provides the magnitude of the force that will add to the flow power with spec-

trum P (κh). It remains to select the phase of the force. In general, θh is a free parameter that

can be selected, e.g., stochastically. In this research, the limiting cases of the force and velocity
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being exactly in phase or out of phase are considered, and their magnitudes are denoted F (κh) and

G(κh) that satisfy the equations

P (κh) =
∆t

2
F 2(κh) + F (κh)U(κh) , (3.16)

P (κh) =
∆t

2
G2(κh) . (3.17)

The force magnitudes have been defined as functions of κh. The force can be a function of the

local wave number components, κ1 and κ2, and so there remains a free parameter in the description

of the force, namely the distribution of the force among all the nodes with horizontal wave number

magnitude κh−∆κh ≤ κh < κh+∆κh where ∆κh defines the size of a wave number band. In this

paper, entirely different approaches are used for choosing this free parameter for the in-phase force

than for the out-of-phase force. For the former, it is reasoned that force is applied by amplifying

the velocity magnitude and so is inherently distributed across the wave number band. It could be

distributed a different way, but a physical justification for doing so is not clear and we choose not

to. Therefore

f̂i(κ1, κ2, 0) = F (κh)e
iθuei . (3.18)

The out-of-phase force arises entirely from the discretization of time and, therefore, it has no

physical analog. It is inherently uncorrelated with the velocity. As shown by Alvelius, it can also

be made uncorrelated with itself in time, such that from equation (3.7) its correlation in time will

have the property,

〈gi(t)gi(τ)〉∞ = Pδ (t− τ) . (3.19)

Where, as mentioned earlier 〈· · · 〉∞ represents ensemble averaging over infinite number of real-

izations,

P =

κh=κmax∫

κh=κmin

P (κh)dκh . (3.20)
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is the total power injected and κmin and κmax are the maximum and minimum horizontal wave-

numbers which indicate the domain of the simulation. Using equation (3.19) in equation (3.9) we

can conclude on an average only force-force correlation contributes to the power input,

P =
d

dt
〈Ek〉∞ =

∫ t

tn

〈〈bi(t)bi(τ)〉`〉∞ dτ . (3.21)

This is possible if the force is stochastically directed among the modes in the wave number band.

To achieve this, G(κh) is replaced by A(κh)B(κ1, κ2) with B(κ1, κ2) a real random variable uni-

form in [0...1] and A(κh) defined by

A2(κh) =
G2(κh)∮

B2(κ1, κ2)dS(κh)
. (3.22)

Thus, the out-of-phase force is

ĝi(κ1, κ2, 0) = A(κh)B(κ1, κ2)eiθu+π/2ei . (3.23)

3.2.2 Selection of Forcing Spectrum

In section 3.2.1, it is shown how to construct forces that will yield a given forcing spectrum,

P (κh, t). Here, the dependence of the forcing spectrum on time is explicitly shown. As reviewed in

section 1.1, quite a few approaches have been used in the past to prescribe the forcing spectrum for

turbulence that is homogeneous and isotropic turbulence in all three directions. Here two methods

are presented for specifying P (κh, t). The first method is based on that of Lindborg [2006] and

results in constant input power. The forcing spectrum, denotedQ(κh), is Gaussian centered around

forcing wave number, κf , and with characteristic width, c:

Q(κh) = C exp

[
−
(
κh − κf

c

)2
]
. (3.24)

The constant C determines the total input power.
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The second method for specifying P (κh, t) is based on that of Overholt and Pope [1998]. The

resulting spectrum is denoted R(κh, t). Let Ek(κh, t) be the horizontally averaged kinetic energy

spectrum of the flow at time t and let Em(κh) be the target spectrum, that is, the desired Ek(κh, t)

when the simulation is statistically steady. In a simulation with forcing, the spectrum evolves in

time according to
∂Ek(κh, t)

∂t
= R(κh, t) + Λ(κh, t) ,

where Λ(κh) accounts for all of the terms in the Navier-Stokes equations except for forcing. For

the horizontally-homogeneous isotropic flow scenario, only the horizontal components of velocity

with κ3 = 0 are forced. Thus,

Ef (κh, t) = 1
2

∮
(ûi(κ1, κ2, 0)û∗i (κ1, κ2, 0))dS(κh)

for i = 1, 2

(3.25)

is the part of kinetic energy spectrum directly affected by forcing. The goal is to determineR(κh, t)

as a function of time that will optimally converge Ef (κh, t) to Em(κh). Letting Ef (t), R(t), and

Em be shorthand notation for Ef (κh, t), R(κh, t), and Em(κh), respectively, and using dots to

indicate differentiation in time,

Ëf (t) = −βĖf (t)− ω2
0[Ef (t)− Em] (3.26)

is an ordinary differential equation for a specific value of κh with β the damping coefficient and ω0

is the angular frequency at which the solution oscillates. Assuming that the forcing dominates the

Navier-Stokes terms until the simulation is nearly converged suggests writing equation (3.26) with
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Ėf (t) = R(t). Note that equation (3.26) is critically damped when β = 2ω0. Upon introducing a

dimensionless damping factor α, equation (3.26) can be written as,

Ṙ(t) = −2αω0R(t)− ω2
0[Ef (t)− Em] . (3.27)

An under damped, critically damped, and over damped system results when α < 1, α = 1, and

α > 1, respectively. The time scale for R(t) to converge to the stationary solution is τ = 2π/ω0.

Letting τs be the smallest time scale in the flow then

Tf =
τ

τs
(3.28)

is the ratio of the response time for the forcing to the response time of the turbulence. Thus, α and

Tf are simulation parameters that can be tuned to optimize the convergence characteristics of the

simulation.

Equation (3.27) does not impose any constraint on the sign of R. Recall from section 3.2.1

that for the the force magnitude to be real requires that P (κh) be non-negative. This requirement

is straightforward to enforce in a simulation simply by setting the force to zero if R(κh) < 0 as is

done by Overholt and Pope [1998].

Lastly, it may be desirable to force only some wave numbers, say those below some cutoff

value κR. In the simulations reported in this paper, setting R(κh) = 0 for κh > κR is found to

be satisfactory. In other applications, it might be necessary to multiply R(κh) by a cutoff function

such as tanh(κh/κR) (c.f. Ref. Overholt and Pope [1998]).

3.2.3 Specific Forcing Schemes

In section 3.2.1 and 3.2.2, the problem of specifying a scheme for horizontally homogeneous

and isotropic forcing was abstracted into the two problems of prescribing the forcing spectrum,
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P (κh), and specifying a force having the desired characteristics and that produces P (κh). There

are endless ways of prescribing the spectrum and specifying the force and so, for specificity, we

consider two forces, ~f and ~g, and two spectra, Q andR. Of the four possible combinations of force

and spectrum schemes, we consider three:

Qf: A constant power scheme with force and velocity in phase.

Qg: A constant power scheme with force and velocity exactly out of phase.

Rf: A constant energy scheme with force and velocity in phase.

All of the schemes force only wave number modes with κ3 = 0. As noted by Lindborg [2006],

however, it is desirable to excite a small vertical shear when simulating horizontally homogeneous

stratified turbulence. To accomplish this, the forcing spectrum is scaled down and a small amount

of power is added to the three wave number modes (0, 0, 3κm), (0, 0, 4κm), and (0, 0, 5κm), where

κm is the smallest non-zero vertical wave number in the simulation. Following Lindborg, 1% of

the forcing power is applied to these three modes and the remaining 99% is distributed across the

κ3 = 0 plane by the forcing scheme.
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CHAPTER 4

SIMULATIONS

The characteristics of the three forcing schemes introduced in section 3.2.3 are studied by

implementing them in large eddy simulations. The simulated flow is a solution to the Navier-Stokes

equations with the Boussinesq assumption and hyperviscous and hyperdiffusion terms replacing

the Stokes viscosity and Fick diffusion terms to represent dynamics at scales smaller than the grid

spacing. A force term is included in the momentum equation to implement schemes Qf, Qg, or Rf.

The thermal energy equation is written in terms of density, and a mean density gradient, d 〈ρ̃〉h /dz,

is imposed, with 〈· · · 〉h denoting the planar mean.

4.1 Governing Equations

The governing equations are written in non-dimensional form in terms of characteristic veloc-

ity, length, and density scales, U , L, and ˘̆ρ, respectively. Note that U is a characteristic value, not

the specific value from any particular simulation. Similarly, L is a characteristic value since, for

each of the forcing schemes, the force is applied over a range of length scales. In terms of these

scaling parameters the governing equations are

∂ŭi
∂x̆i

= 0 , (4.1a)

∂ρ̆

∂t̆
+ ŭi

∂ρ̆

∂x̆i
− ŭ3 =

1

P̆rR̆e`

∂4ρ̆

∂x̆i
4 , (4.1b)
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∂ŭi

∂t̆
+ ŭj

∂ŭi
∂x̆j

=− 1

F̆h
(ρ̆δi3)− ∂p̆

∂x̆i
(4.1c)

+
1

R̆e`

(
∂4ŭi

∂x̆j
4

)
+ b̆i ,

where, ·̆ indicates non-dimensionalized quantities. The hyper-viscous Reynolds, Froude, and tur-

bulent Prandtl numbers are defined as

F̆h =
U
NL , R̆e` =

UL
νh

, P̆r =
νh
Dh

.

Here, νh is the constant hyper-viscosity and Dh is the constant hyper-diffusivity, g is the mag-

nitude of the gravitational acceleration and N = (−(g/ρ0)(d 〈ρ̃〉h /dz))1/2 is the Brunt Väisälä

frequency. ~̆u is the velocity vector, ρ̆ and p̆ are the density and pressure deviations from their hy-

drostatic values. The pressure has been scaled by the dynamic pressure, ρ0 U2, and the density by

L |d 〈ρ̃〉h /dz|.

A pseudo-spectral technique is used to compute the spatial derivatives and a third-order Adams-

Bashforth scheme with projection is used to advance the solution in time. A spherical wave-number

truncation of approximately 15/16 κ̆max, with κ̆max the maximum wave number in the discrete

Fourier transforms, is used to reduce aliasing errors. The momentum equation is advanced in

time with the nonlinear term expressed in vorticity form, while the alternating time-step scheme

suggested by Kerr [1985] is employed for the density field to approximate the skew-symmetric

form of the non-linear term and thereby minimize aliasing [Boyd, 2001].

4.2 Simulation Parameters

The simulation parameters can be divided into three groups: those common to all the simula-

tions, those relevant to forcing schemes Qf and Qg, and those relevant to scheme Rf. The common

parameters, listed in Table 4.1, define the size of the computational domain, the (uniform) grid
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Table 4.1. Simulation parameters common to all three forcing schemes

L̆h = Lh/L 4

L̆v = Lv/L 0.5
Nh 256 grid points
Nz 32 grid points
F̆h 6.17× 10−2

R̆e` 7.15× 1012

P̆r 1.0

Table 4.2. Simulation parameters for forcing scheme Qf and Qg

κ̆f 4.0
c̆ 3.0

P̆ 1.0

Table 4.3. Simulation parameters for forcing scheme Rf

ᾰ 1.8
κ̆R 10

T̆f 0.4

spacing, and the physical parameters not associated with forcing. In the table, L̆h and L̆v are, re-

spectively, the horizontal and vertical dimensions of the three-dimensional computational domain,

and Nh and Nz are the corresponding number of grid points. For all the simulations, the velocity

fields are initialized to zero everywhere, as is the deviatoric density, ρ̆.

In the constant power forcing schemes, Qf and Qg, three independent parameters define the

forcing scheme. It is convenient to choose these to be the forcing power, P̆ and the mean, κ̆f , and

variance, c̆, of Q̆(κ̆h). The peak value of that function, C̆, is then defined by (c.f. equation (3.24))

C̆ =
P̆

κ̆max∫

κ̆min

exp

[
−
(
κ̆h − κ̆f

c̆

)2
]
dκ̆h

. (4.2)
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where κ̆min is the minimum wave number in the discrete Fourier transforms. In terms of the

characteristic velocity and length scales, P̆ = P/(U3/L) and κ̆f = 2π/L. The parameters for the

Qf and Qg simulations are given in Table 4.2. Simulation Qg corresponds exactly to Lindborg’s

run 1.

The parameters specific to forcing scheme Rf are the target energy spectrum Ĕm(κ̆h), the high-

est wave number forced, κ̆R, the damping coefficient, ᾰ, and the forcing time scale ratio, T̆f .

Ĕm(κ̆h) is set equal to the stationary solution from case Qf so that the characteristics of the dif-

ferent forcing schemes can be easily compared. The remaining parameters are as shown in Table

4.3. These were determined by trial and error. Most interesting is the behavior of the scheme

for different values of ᾰ. Let Ĕf (t̆) be the total horizontal kinetic energy in all the wave numbers

being forced and Ĕm the corresponding target value. The ratio Ĕf (t̆)/Ĕm is plotted versus time in

figure 4.1. When equation (3.27) is under damped (ᾰ = 0.4) or critically damped (ᾰ = 1.0) then

there is significant oscillation of the energy about the target value. When equation (3.27) is over

damped (ᾰ = 1.8) then the energy converges to the target nearly optimally. This result is consis-

tent with those of Overholt and Pope. Of course convergence of Ĕf (t̆)/Ĕm to unity does not ensure

convergence of the spectrum to the target spectrum at each wave number, but this was the case in

our simulations.
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Figure 4.1. Time evolution of the ratio of horizontal contribution to kinetic energy at the forcing
plane to target energy for scheme Rf.
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CHAPTER 5

RESULTS

Analysis of the simulation results is divided into three sections. First it is verified that the

prescribed input power for the Q schemes, and the prescribed model spectrum for the R scheme,

are achieved. Second, the performance of the schemes are evaluated in terms of the time it takes

for the solution to converge and the overshoot in kinetic energy. Third, some characteristics of

schemes are examined in terms of the physical phenomenon that they are designed to emulate.

5.1 Verification

The most important characteristic of a forcing scheme is that the numerical implementation

applies the desired force. This may seem like a matter of accurately writing the software, but in

light of the insight by Alvelius that the discretized transport equations allow for power inputs that

have no analog in the continuous equations, it is worthwhile to verify that the careful theoretical

development in chapter 3 does indeed carry over to the actual simulations. This has been done

for the simulations by verifying that the power input by force-force and force-velocity correlations

are as prescribed, that the desired forcing or target spectra result, and that the statistics of the

steady-state solutions are independent of the size of the time step in the simulations.

In this paper, demonstration of the numerical implementations is limited to showing that the

prescribed power or prescribed model spectrum is achieved. These are shown in figure 5.1 and 5.2.

In figure 5.1 it is evident that the time-averaged forcing spectrum, P̆(κ̆h), matches that specified

by equation (3.24). The over bar denotes time averaging over a period of about one large eddy turn
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Figure 5.1. The agreement between forcing spectrum defined by equation (3.24) and actual in-
jected forcing spectrum for the Qf and Qg schemes.

over time, that is, over unity dimensionless time. Also included in the plot is the spectrum of the

input power in the Rf scheme.

Figure 5.2 shows the agreement between the target spectrum, Ĕm, and the steady-state spectrum

for scheme Rf. As with the Q schemes, the implementation yields the desired results. Also shown

in the figure are the steady state spectra for the Q schemes. Recall that the model spectrum was

chosen to be the converged spectrum from scheme Qf. The spectrum for the Qg scheme should not

necessarily agree with the other two. From figures 5.1 and 5.2 and other analyses not shown, it is

concluded that the theory from chapter 3 is accurately implemented in the time- and space-discrete

simulations.

38



0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

κ̆h

Ĕ
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Figure 5.2. The agreement between model spectrum, Ĕm(κ̆h) and Ĕf (κ̆h) for the Rf scheme.

A principle difference between the f and g forces is expected in their temporal autocorrelations.

Let the autocorrelation of the force, ~̆b, be denoted
〈
~̆b ? ~̆b

〉
`
(τ̆) with τ̆ the separation in time and

as mentioned earlier, 〈· · · 〉` indicates that the correlations have been averaged over space. This

quantity is plotted for the three forcing schemes in figure 5.3. As expected from the derivation by

Alvelius [1999], the g force is not correlated in time and so the autocorrelation is non-zero only at

τ̆ = 0. The f force is correlated over a separation time of τ̆ > 1. This is consistent with the idea

that the f force represents the effects of coherent structures larger than the simulation domain. The

correlation time of the f force as implemented in the Rf scheme is slightly less than as in the Qf

schemes. This is as expected since the magnitude of the force varies in time with the Rf approach

but not with the Qf approach.
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Figure 5.3. The spatially averaged temporal autocorrelation of the force, ~̆b for each forcing scheme.

5.2 Performance

An important metric by which to judge the performance of a forcing scheme is the time it takes

for the simulation to converge to steady state. Of course the statistics that must be converged,

and the criteria by which convergence is judged, are dependent on the purpose of the particular

simulation. Here, several flow statistics are considered as functions of time in order to gain an

appreciation for the convergence characteristics of the three forcing schemes.

5.2.1 Dissipation Rate and Forcing Power

Given the choice made in chapter 4 to make the domain-averaged forcing power a simulation

parameter, a natural test for convergence is that the total energy dissipation rate, that is, the sum
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Figure 5.4. Time evolution of spatially averaged energy dissipation rate, ε̆(t̆) and forcing power,
P̆(t̆) for the Qf and Qg schemes.

of the dissipation rates of kinetic and available potential energy, equals the forcing power when

averaged over time. The total dissipation rate is denoted ε̆(t̆) = ε̆k(t̆) + ε̆p(t̆) and is plotted, along

with forcing power in Fig. 5.5. The possibility of time dependent forcing power, as occurs in the

Rf scheme, is made explicit with the notation P̆(t̆) even though it is, by definition, constant in the

Q schemes.

In all cases, ε̆(t̆) and P̆(t̆) converge, to the extent that they ever will, by about t̆ = 2. This

transient is a reflection on the flow physics as much as on the forcing schemes as it takes some

time for the gradients responsible for dissipation to develop. It is known that this flow transfers

energy down scale [Lindborg, 2006], and the cascade takes time to develop.
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Figure 5.5. Time evolution of spatially averaged energy dissipation rate, ε̆(t̆) and forcing power,
P̆(t̆) for the Rf scheme.

The oscillation of ε̆(t̆) about P̆(t̆) in the Q schemes apparently reflects some interaction be-

tween the forcing and the flow physics since the Qf and Qg schemes behave differently. Recall that

the Qf scheme is designed with the thought that the forcing represents the effects of length and time

scales larger than those in the simulation domain so that the force is correlated with the velocity.

In the Qg scheme, the discrete nature of the time-stepping is taken advantage of to add power with

the force-velocity correlation zero. The Qg approach has no physical analog but, from Fig. 5.5, it

has the potentially useful characteristic that it produces a more nearly constant dissipation rate than

does the Qf scheme. With the Rf scheme, the dynamics are even more complicated since both ε̆(t̆)

and P̆(t̆) are responding to the flow. Significant variations over time of both P̆(t̆) and ε̆(t̆) occur.
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Figure 5.6. Time evolution of the domain-averaged kinetic energy, Ĕk(t̆), for all schemes.

5.2.2 Energy

While the time to convergence of the dissipation rate is about the same for all the schemes since

it is dependent on the flow physics, the time required for the kinetic energy to converge depends

much more strongly on the forcing scheme. The domain average kinetic energy, Ĕk(t̆), is shown

for each scheme in Fig. 5.6. Consistent with the results of Lindborg, the Qg scheme causes the

kinetic energy to overshoot and then converge by about t̆ = 20. The results of the Qf scheme are

comparable. The Rf scheme, on the other hand, converges the kinetic energy by about t̆ = 2.

Recall that the force in all the schemes is applied on the plane κ̆3=0, except for the very small

forces used to induce vertical shear. The energy on the forced plane, Ĕf (t̆), is shown in Fig. 5.7.

Here it is very evident that the Rf scheme converges to the target energy with very little deviation
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Figure 5.7. Time evolution of kinetic energy in the modes being forced, Ĕf (t̆), for all schemes.

from the time-averaged value after about t̆ = 2. The target spectrum for the Rf scheme was

taken from the converged solution for the Qf scheme and so, as expected, the Qf and Rf schemes

converge to the same energy on the forced plane.

As discussed at the beginning of section 1.1, schemes that emulate physical forces are attractive

since the simulation results can then be matched to laboratory flows. For the forcing methods

presented in this paper, the characteristics of the forces must be deduced from their effects on the

simulated flow. Looking again at Figs. 5.6 and 5.7, it is apparent that the Qf and Qg schemes result

in comparable time-averaged values of Ĕk(t̆) yet different values of Ĕf (t̆). Evidently, the average

Ĕk(t̆) is dominated by the flow physics and so it is not strongly dependent on the details of the

forcing while the average Ĕf (t̆) does depend on the exact characteristics of the force.
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5.3 Conclusions

Forcing schemes that emulate physical flows are attractive since the characteristics of the force

are clear in terms of physical processes. Many times, however, it is desirable to use a numerical

forcing method that has no physical analog. When this is done, the metrics for judging the forcing

scheme are quite subjective as reflected in the considerable discussion in the literature, reviewed

in section 1.1. The framework for writing general schemes for applying forces in Fourier space is

developed by taking advantage of several decades of work on forcing schemes for isotropic homo-

geneous turbulence. In this framework, the tasks of choosing the forcing spectrum and choosing

the characteristics of the force are abstracted and treated separately. We then use the framework

to write several forcing schemes for horizontally homogeneous and isotropic, vertically stratified

flows.

An important advance in forcing schemes was made by Alvelius [1999]. He noted that in the

time-discretized fluid transport equations, a force does not need a component parallel to and in

phase with the velocity in order to add energy. This fact is taken advantage of here to create forces

that are either perfectly correlated with or perfectly uncorrelated with the velocity. Additionally,

the deterministic forcing scheme of Overholt and Pope [1998] is used as the basis for a fast-

converging scheme that may be appropriate in cases when a target steady-state energy spectrum is

known.

Three forcing schemes, developed in terms of the new framework, are tested in large-eddy

simulations. Each has different characteristics and which is “best” depends on the metrics of

interest. The deterministic scheme with the force and velocity correlated, scheme Rf, converges

the fastest but the variability in the domain-averaged kinetic energy when the flow is statistically

steady is greater than in the other schemes. It also requires a target spectrum to be known a priori,

which might not be possible when simulating new flow configurations. The least variability in

kinetic energy at steady state is observed with scheme Qg in which non-zero forcing power is

realized only because of the discrete time stepping and the force is uncorrelated with itself in time.
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The underlying bias is that the forcing scheme should represent motions at length and time scales

that are large compared with those in the simulation. Scheme Qg is undesirable on this basis, but

the resulting low variance in the domain-averaged kinetic energy is attractive.

The results of the three sample schemes demonstrates that the utility of a particular forcing

technique is closely coupled with the purpose of the simulations. Using the framework presented

to abstract the components of the forcing scheme makes it straightforward to develop a family of

schemes for a particular application. Simple test runs then reveal the effects of each forcing method

on the simulated flow.
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APPENDIX A

STRESS TENSOR

The momentum of a fluid element with infinitesimal volume dV is ρtuidV . The equation for

the time rate change of momentum of a material regionM is,

D

Dt



∫

M

ρtuidV


 =

∫

M

ρtFidV +

∫

M

RidS . (A.1)

Fi and Ri represent the body forces and surface forces acting on the fluid element respectively.

Using Liebnitz and Gauss theorem we can arrive at,

∫

M

[
∂

∂t
(ρtui) +

∂

∂xi
(ρtujui)

]
dV =

∫

M

ρtFidV +

∫

M

RidS . (A.2)

A.1 Stress Tensor

Let Tij be a stress tensor such that

Rj (~n; ~x) = niTij , (A.3)

where ni is the outward drawn normal to the surface element dS at position ~x [Panton, 1984] . For

a stationary fluid the only normal stress that exists is thermodynamic pressure pt. Thermodynamic

pressure is a function of the thermodynamic state of a fluid, that is pt : pt(e, ρt). However, when

a fluid is in motion, viscous stresses (τij) exist in addition to pt to balance the imbalances in force

causing motion. Thus

Tij = −ptδij + τij . (A.4)
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A.2 Mechanical and Thermodynamic Pressure

Thermodynamic pressure contributes to normal stress on the surface of a fluid element and it

is isotropic. However, when a fluid is in motion normal viscous stresses come into existence and

are not isotropic. The average of normal stresses, termed as mechanical pressure (pm) is used to

understand normal surface forces.

pm = −1

3
(T11 + T22 + T33) = −1

3
Tii . (A.5)

As per Stoke’s assumption, the difference in mechanical and thermodynamic pressure is considered

to be a linear function of the rate of expansion [Panton, 1984],

pm − pt = βp∇ · ~u = −βp
ρt

Dρt
Dt

(A.6)

where βp is the bulk modulus. For incompressible fluids βp is zero and hence there is no difference

between pm and pt. In other words, Stoke’s assumption implies that, the average normal viscous

stress is zero.

A.3 Navier-Stokes Stress Tensor

Most fluids are isotropic having no moments on their surfaces thereby implying the stress tensor

to be symmetric. Also Tij is assumed to be linearly dependent on velocity gradients. Then Tij can

be written as [Aris, 1962; Batchelor, 1956; Prager, 1961; Yih, 1974]

Tij =

(
−pt + λ

∂uk
∂xk

)
δij + 2µ

(
∂uj
∂xi

)

sym

. (A.7)

Where λ is the second coefficient of viscosity, µ is the first coefficient of viscosity (assumed to be

a constant) and (∂uj/∂xi)sym is the symmetric strain rate tensor, Sij . The symmetric strain rate
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tensor is defined as,

Sij ≡
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
=

(
∂uj
∂xi

)

sym

. (A.8)

Contracting equation (A.7) on i and dividing by 3 gives,

pt − pm =

(
λ+

2

3
µ

)
∂uk
∂xk

= −
(
λ+

2

3
µ

)
1

ρt

Dρt
Dt

. (A.9)

Low mach number flows have quick relaxation (time taken for energy be to be equally distributed

into rotational, translational and vibrational modes) thus the difference between thermodynamic

and mechanical pressure is negligible (Stoke’s assumption). Therefore, λ = −2
3
µ. Substituting for

λ in equation (A.7), the final expression for Navier-Stokes stress tensor is obtained,

Tij = −ptδij + τij ,

=

(
−pt −

2

3
µ
∂uk
∂xk

)
δij + 2µSij . (A.10)

The Navier-Stokes viscous stress tensor is,

τij = −2

3
µ
∂uk
∂xk

δij + 2µSij . (A.11)

The momentum equation (2.3) has a ∂τij/∂xj term, which for the Navier-Stokes viscous tensor

∂τij
∂xj

=
1

3
µ
∂

∂xi

(
∂uj
∂xj

)
+ µ

∂2ui
∂x2

j

. (A.12)

For an incompressible flow ∂ui/∂xi = 0 and assuming µ to be a constant, the above equation

simplifies to,
∂τij
∂xj

= 2µ
∂Sij
∂xj

= µ
∂2ui
∂x2

j

. (A.13)
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An important identity to note is that, product of a symmetric tensor with any tensor results in a

symmetric tensor, thus

Sij
∂ui
∂xj

= SijSij . (A.14)
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APPENDIX B

INTERNAL ENERGY EQUATION

Internal energy cannot be measured directly but instead it is inferred from temperature. Thus

it is beneficial to re-cast equation (2.7) in terms of temperature. Enthalpy per unit mass, h is given

as [Panton, 1984],

h = e+
pt
ρt
. (B.1)

Equation (2.7) redefined in terms of enthalpy is [Bird et al., 2002],

ρt
Dh

Dt
=

∂

∂xi

(
kT
∂T

∂xi

)
+ τij

∂ui
∂xj

+
Dpt
Dt

. (B.2)

Assuming enthalpy to be a function of only temperature (T ) and thermodynamic pressure (pt), the

differential form of equation (B.1) is,

dh =

(
∂h

∂T

)

pt

dT +

(
∂h

∂pt

)

T

dpt , (B.3)

where the quantity in the subscript indicates that it is being held constant for the differential at

hand. The first term on the right hand side of equation (B.3) is recognized to be the specific heat at

constant pressure, Cp and the second term on the right hand side is evaluated using equation (B.1)

to give,

dh = CpdT +
1

ρt
(1 + Tβt) dpt , (B.4)
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where βt ≡ (−1/ρt)(∂ρt/∂T )pt is the coefficient of thermal expansion. Multiplying equation

(B.4) with ρt and equating it with the right hand side of equation (B.2) gives,

ρtCp
DT

Dt
=

∂

∂xi

(
kT
∂T

∂xi

)
+ τij

∂ui
∂xj

+ Tβt
Dpt
Dt

. (B.5)

Using scaling analysis shown in Kundu and Cohen [2002] reveals the contribution of viscous

stresses to be negligible. Thus the internal energy equation is,

ρtCp
DT

Dt
=

∂

∂xi

(
kT
∂T

∂xi

)
+ Tβt

Dpt
Dt

. (B.6)
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APPENDIX C

BOUSSINESQ EQUATIONS

In this section the Boussinesq approximation with a forcing term in the momentum equation is

discussed.

C.1 Decomposition of Density and Pressure

Consider a physical variable (ψt) decomposed into its spatial average (ψo), its variation in

absence of motion (ψ̃) and fluctuations due to fluid motion (ψ). [Spiegel and Veronis, 1960]

ψt (~x, t) = ψo + ψ̃ (z) + ψ (~x, t) . (C.1)

ψo would be time dependent if boundary conditions vary with time, however for simplicity it is

assumed independent of time. The physical quantities of interest are density and pressure and are

decomposed as,

ρt (~x, t) = ρ0 + ρ̃ (z) + ρ (~x, t) ,

pt (~x, t) = po + p̃ (z) + p (~x, t) .
(C.2a)

We can obtain a scale for heights, especially for density as,

Dρ =

∣∣∣∣
ρ0

(dρ̃/dz)

∣∣∣∣ . (C.3)
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The approximation we wish to make is that the fluid motions are confined to a layer of height d

that is much less than the smallest scale height, D = (Dρ)min � d. Integrating from the height of

minimum density to maximum density (ρ̃max − ρ̃min) = ∆ρ̃, we get and define,

∆ρ̃

ρ0

≡ ε� 1 . (C.4)

This becomes the static condition that requires to be imposed to make the above approximation.

This holds for infinitesimal amplitudes of motion. However, for non-linear analysis we have,

∣∣∣∣
ρ

ρ̃

∣∣∣∣ ≤ O(ε) . (C.5)

This says that the magnitude of fluctuations should not exceed in order of magnitude the static

variation. This must be verified a posteriori from solutions to the problem.

C.2 Hydrostatic Relation

The momentum equation (2.3) simplified using equation (2.2) with gravity and external forcing

being the only body forces is

ρt
∂ui
∂t

+ ρtuj
∂ui
∂xj

= −∂pt
∂xi

+ ρt (−gδi3 + bi) + µ
∂2ui
∂x2

j

+
µ

3

∂

∂xi

(
∂uj
∂xj

)
, (C.6)

and continuity equation (2.2) is
Dρt
Dt

= −ρt
∂ui
∂xi

. (C.7)

In absence of motion and external forcing, equation (C.6) simplifies to,

∂p̃

∂xi
= −g (ρ0 + ρ̃) δi3 , (C.8)
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in other words,
dp̃

dz
= −g (ρ0 + ρ̃) . (C.9)

Equation (C.9) is the hydrostatic relation and is assumed to hold true even when motion exists.

Substituting the hydrostatic relation in the momentum equation we obtain,

ρt
∂ui
∂t

+ ρtuj
∂ui
∂xj

= − ∂p

∂xi
− ρgδi3 + ρtbi + ρ0ν

∂2ui
∂x2

j

+
ρ0ν

3

∂

∂xi

(
∂uj
∂xj

)
. (C.10)

C.3 The Boussinesq Approximation

The continuity and momentum equation are scaled in factors of O (ε). The Taylor’s series

expansion of (1/ρt) in terms of ρ0 is,

ρ−1
t = ρ−1

0 − ρ−2
0 (ρt − ρ0) + ρ−3

0 (ρt − ρ0)2 − · · · . (C.11)

Substituting equation (C.2) gives,

ρ−1
t = ρ−1

0

(
1−

(
ρ̃

ρ0

+
ρ

ρ0

)
+

(
ρ̃

ρ0

+
ρ

ρ0

)2

− · · ·
)
. (C.12)

Noting that (ρ̃/ρ0) ≤ O (ε) and (ρ/ρ0) ≤ O (ε), the above equation is,

1

ρt
=

1

ρ0

(
1−O (ε) +O

(
ε2
)
− · · ·

)
. (C.13)

C.3.1 Continuity Equation

Substituting equation (C.2) for density in equation (C.7) while taking ρ0 common gives,

−1

ρt

D

Dt

[
ρ0

(
1 +

ρ̃

ρ0

+
ρ

ρ0

)]
=
∂ui
∂xi

. (C.14)
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Using equations (C.4) , (C.5) and (C.13) in the above equation gives,

− D

Dt

[
ε
ρ̃

∆ρ̃
+ ε

ρ

∆ρ̃

]
+O

(
ε2
)

=
∂ui
∂xi

. (C.15)

Keeping to the first order, the continuity equation is then,

∂ui
∂xi

= 0 . (C.16)

C.3.2 Momentum Equation

Similar to the continuity equation, the momentum equation (C.10) after using relation (C.13)

and keeping to first order is,

Dui
Dt

= − 1

ρ0

∂p

∂xi
− ρ

ρ0

gδi3 + bi + ν
∂2ui
∂x2

j

+
ν

3

∂

∂xi

(
∂uj
∂xj

)
. (C.17)

Expressing the momentum equation in terms of ε gives,

Dui
Dt

= − ε

∆ρ̃

∂p

∂xi
− ε

∆ρ̃
gρδi3 + bi + ν

∂2ui
∂x2

j

+
ν

3

∂

∂xi

(
∂uj
∂xj

)
, (C.18)

where ν = µ/ρ0 is the kinematic viscosity assumed to be constant. Also using equation (C.16) in

the momentum equation we get

Dui
Dt

= − ε

∆ρ̃

∂p

∂xi
− ε

[
ρ

∆ρ̃

]
gδi3 + bi + ν

∂2ui
∂x2

j

. (C.19)

The second term of the right hand side of the momentum equation (C.19) appears to be of

O (ε2). In the absence of forcing (bi = 0), the system is driven by density fluctuations. This term

contains the fluctuating component of density, and thus the characteristic acceleration of the fluid

will be of the order O (ε [ρ/∆ρ̃] g). This forces the conclusion that the acceleration by gravity is

much larger than the characteristic acceleration that offsets the second |ρ/∆ρ̃| ≤ ε term [Spiegel

and Veronis, 1960].
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C.3.3 Density Equation

By using the Boussinesq approximation, it is assumed that density fluctuations are only due

to temperature fluctuations and not due to pressure effects. Thus in the equation of state (2.8),

density is a function of temperature only. Using equation (C.4) along with the fact that fluctuations

in density are small, the relationship between temperature and density is linearized. The evolution

equation of density for a fluid particle by combining internal energy equation with the equation of

state is,
Dρ

Dt
= Dm

∂2ρ

∂x2
i

, (C.20)

where Dm = kT/ (ρ0Cp) is the mass diffusivity. Upon substituting equation (C.2) in equation

(C.20) the evolution equation for density is,

∂ρ

∂t
+ ui

∂ρ

∂xi
+ ui

dρ̃ (z)

dxi
δi3 = Dm

∂2ρ

∂x2
i

. (C.21)

C.3.4 Kinetic Energy

The kinetic energy is obtained by the dot product of ~u with the momentum equation (2.15).

Since the Boussinesq approximation of continuity equation is ∂ui/∂xi = 0, the ν(∂2ui/∂x
2
j) term

in the momentum equation is written in terms of Sij ( using equation (A.13)) to give the final

kinetic energy equation as,

∂Ek
∂t

+
∂

∂xj
(ujEk) = −ui

ρ0

∂p

∂xi
− ρ

ρ0

uigδi3 + uibi + 2νui
∂Sij
∂xj

. (C.22)

where Ek = 1
2
u2 is the kinetic energy per unit mass. Using the identity described in equation

(A.14), the last term, 2νui(∂Sij/∂xj) is rewritten as

2νui
∂Sij
∂xj

= 2ν
∂

∂xj
(uiSij)− εk . (C.23)
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Where

εk ≡ 2νSijSij (C.24)

is known as the dissipation of kinetic energy.
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APPENDIX D

HORIZONTAL AND VERTICAL CONTRIBUTIONS TO KINETIC
ENERGY

Equation for kinetic energy is derived by the dot product of velocity with the momentum equa-

tion. The momentum equation (2.15) restated is,

Dui
Dt

= − 1

ρ0

∂p

∂xi
− ρ

ρ0

gδi3 + bi + 2ν
∂Sij
∂xj

. (D.1)

Kinetic energy (Ek) is decomposed into horizontal and vertical contributions respectively as,

Eh ≡ 1
2

(u1u1 + u2u2) ,

Ev ≡ 1
2

(u3u3) .
(D.2)

Horizontal components (or contributions) are denoted by subscript h and for a vector (~·)h implies

h = 1, 2. With this notation, horizontal component of velocity, uh = [u1, u2] and Eh = (1/2)uhuh.

Vertical components (or contributions) are denoted by subscript v and for a vector (~·)v = (~·)3.

The evolution equation for Eh is obtained by the dot product of horizontal component of ve-

locity with the horizontal momentum equation. Similarly equation for Ev is obtained by the dot

product of vertical component of velocity with the vertical momentum equation. For an incom-

pressible flow, equations for Eh and Ev are

DEh
Dt

= −uh
ρ0

∂p

∂xh
+ bh + 2νuh

∂Shj
∂xj

, (D.3)

DEv
Dt

= −u3

ρ0

∂p

∂x3

+ bv + 2νu3
∂S3j

∂xj
− ρ

ρ0

gu3 . (D.4)
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τij is a symmetric stress tensor, with Navier-Stokes assumptions it is expressed in equation

(A.11). For an incompressible fluid, τij = 2µSij . The tensor, ∂ui/∂xj can be decomposed into

symmetric and anti-symmetric part as,

∂ui
∂xj

=
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
+

1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
, (D.5)

=
1

2

(
∂ui
∂xj

)

sym

+
1

2

(
∂ui
∂xj

)

asym

, (D.6)

= Sij + rij . (D.7)

rij is the angular-deformation rate tensor. It is an anti-symmetric tensor. The product of a symmet-

ric tensor (such as Sij) with an anti-symmetric tensor (such as rij) is a null tensor. Thus,

Sij
∂ui
∂xj

= SijSij +��
��*0

Sijrij . (D.8)

However, Shj and S3j independently are not symmetric. Therefore,

2νShj
∂uh
∂xj

= 2νShjShj + 2νShjrhj , (D.9)

2νS3j
∂u3

∂xj
= 2νS3jS3j + 2νS3jr3j . (D.10)

Noting the above equations, the viscous work term appearing in the kinetic energy equations are

split as

2νuh
∂Shj
∂xj

= 2ν
∂

∂xj
(uhShj)− (2νShjShj + 2νShjrhj) , (D.11)

2νu3
∂S3j

∂xj
= 2ν

∂

∂xj
(u3S3j)− (2νS3jS3j + 2νS3jr3j) . (D.12)
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Since, Ek = Eh + Ev, by adding equations (D.3) and (D.4) the total kinetic energy equation (2.20)

is recovered. Terms, 2νShjrhj and 2νS3jr3j do not appear in the total kinetic energy equation

therefore,

Shjrhj = −S3jr3j . (D.13)

Thus with equations, (D.3), (D.4), (D.11), (D.12) and (D.13) the equation for the horizontal and

vertical contribution of kinetic energy is presented in equations (2.26) and (2.27)
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APPENDIX E

SPECTRAL EQUATIONS

E.1 Momentum Equation

Let (̂·) denote fourier transform along the three spatial directions of (·). fourier transformation

of the momentum equation (2.18) is,

∂

∂t
ûi(~κ, t) = Âi(~κ, t) + Ẑi(~κ, t) + D̂i(~κ, t) + b̂i(~κ, t)− B̂i(~κ, t) . (E.1)

Similarly the Fourier transform of the continuity equation (2.14) is,

κiûi = 0 . (E.2)

κi is the ith component of the three dimensional wave-vector, ~κ. It is possible to eliminate Ẑi.

Taking the dot product of equation (E.1) with ~κ and using the continuity relation (E.2) gives,

0 = κi

(
Âi − B̂i

)
+ κiẐi . (E.3)

Substituting for Ẑi from equation (2.19) yields,

̂(
pt
ρ0

+
ujuj

2

)
=
κi
κ2

(
Âi − B̂i

)
. (E.4)

κ ≡ |~κ| is the magnitude of the wave-number. Substituting (E.4) into (E.1) gives,

∂ûi
∂t

= Âi − B̂i +
κiκj
κ2

(
Âj − B̂j

)
+ D̂i + b̂i . (E.5)
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Thus the Fourier space momentum equation for forced density stratified flows is,

∂ûi
∂t

= Λij

(
Âj − B̂j

)
− νκ2ûi + b̂i . (E.6)

Where ~̂A ≡ ̂(~u× ~ω) and Λij ≡ [δij − (κiκj)/κ
2]. The momentum equation including hyper-

viscosity (defined by Lindborg [2006]) is,

∂ûi
∂t

= Λij

(
Âj − B̂j

)
− νκ2ûi +

(
νh
(
κ2

1 + κ2
2

)4
+ νvκ

8
3

)
ûi + b̂i . (E.7)

For isotropic-homogeneous flows, B̂i = 0 thus,

∂ûi
∂t

= ΛijÂj − νκ2ûi + b̂i . (E.8)

E.2 Kinetic Energy Equation

The Fourier space kinetic energy (Êk ≡ ûiû
∗
i /2) equation is obtained by the dot product of

equation (2.30) with the complex-conjugate of velocity vector (û∗i ). Equation for kinetic energy is,

∂Êk(~κ, t)

∂t
= Λij

(
Âj − B̂j

)
û∗i − νκ2Êk(~κ, t) + b̂iû

∗
i . (E.9)

From continuity relation, κiûi = κiû
∗
i = 0, the dot product Λijû

∗
i simplifies to

Λijû
∗
i =

[
δij −

κiκj
κ2

]
û∗i , (E.10)

= δijû
∗
i −
�
�
�
�>

0
κiû
∗
iκj
κ2

, (E.11)

= û∗i . (E.12)
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The equation for Fourier space kinetic energy is conveniently written as,

∂Êk(~κ, t)

∂t
= T̂k(~κ, t) + T̂b(~κ, t)− T̂B(~κ, t)− T̂εk(~κ, t) . (E.13)

Where

T̂k(~κ, t) ≡
1

2

(
Âjû

∗
i + Â∗j ûi

)
, (E.14)

T̂b(~κ, t) ≡
1

2

(
b̂iû
∗
i + b̂∗i ûi

)
,

T̂B(~κ, t) ≡ g

2ρ0

(ρ̂û∗3 + ρ̂∗û3) ,

T̂εk(~κ, t) ≡ −νκ2Êk (~κ, t) ,

T̂hk(~κ, t) ≡
(
νh
(
κ2

1 + κ2
2

)4
+ νvκ

8
3

)
Êk(~κ, t) ,

T̂εkh(~κ, t) ≡ T̂εk + T̂hk .

With the inclusion of hyper-viscosity, the kinetic energy equation is

∂Êk(~κ, t)

∂t
= T̂k(~κ, t)− T̂B(~κ, t) + T̂b(~κ, t) + T̂εkh(~κ, t) . (E.15)

For isotropic homogeneous flows T̂B = 0, the kinetic energy equation is,

∂Êk(~κ, t)

∂t
= T̂k(~κ, t) + T̂b(~κ, t) + T̂εk(~κ, t) . (E.16)

E.3 Density and Potential Energy Equation

Equation (2.13) for density multiplied with scaling C = −g/ (2ρ0(dρ̃/dz)) is,

C ∂ρ
∂t

+ Cui
∂ρ

∂xi
− g

ρ0

u3 = CDm∇2ρ . (E.17)
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Fourier transforming this equation gives,

C ∂ρ̂
∂t

+
̂(
Cui

∂ρ

∂xi

)
− g

ρ0

û3 = −CDmκ
2ρ̂ . (E.18)

Multiplying above equation with the complex conjugate of ρ̂ gives,

C ∂
∂t

(ρ̂∗ρ̂) = −ρ̂∗
(

̂
Cui

∂ρ

∂xi

)
+

g

ρ0

ρ̂∗û3 −Dmκ
2Cρ̂∗ρ̂ .

Calling

Êp(~κ, t) ≡ Cρ̂∗ρ̂ , (E.19)

T̂p(~κ, t) ≡
1

2

(
ρ̂∗

(
̂
Cui

∂ρ

∂xi

)
+ ρ̂

(
̂
Cui

∂ρ

∂xi

)∗)
,

T̂εp(~κ, t) ≡ −Dmκ
2Êp ,

the spectral form of potential energy is,

∂Êp(~κ, t)

∂t
= −T̂p(~κ, t) + T̂B(~κ, t) + T̂εp(~κ, t) . (E.20)
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APPENDIX F

THE PHASE FOR VECTOR

F.1 Derivation for Phase of Velocity Component: θu
Velocity vector in Fourier space is, ûi(κ1, κ2, κ3, t) and the divergence condition is,

κiûi = 0. (F.1)

For horizontally homogeneous isotropic forcing, only the horizontal components of velocity in the

horizontal Fourier plane κ3 = 0 are forced. Thus for this plane the divergence condition is,

κ1û1 + κ2û2 = 0,

where û1 = a1 + ib1 and û2 = a2 + ib2 are the complex horizontal components of the velocity

field. Let | · · · |c denote the magnitude of a complex number. Then the horizontal components of

the velocity vector can be written as,

û1 = |û1|ceiθ1 , (F.2)

û2 = |û2|ceiθ2 , (F.3)

where

θi = tan−1

(
bi
ai

)
for i = 1, 2 . (F.4)
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is the phase for each of the horizontal component of velocity. Applying divergence condition

yields,

a2 = a2
κ2

κ1

, (F.5)

b2 = b2
κ2

κ1

. (F.6)

From this it can be seen that θ1 = θ2 = θu.
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J. Boussinesq. Théorie analytique de la chaleur, volume 2, p. 172. Gauthier-Villars, Paris, 1903.

J. P. Boyd. Chebyshev and Fourier Spectral Methods. Dover, 2001.

D. Carati, S. Ghosal, and P. Moin. On the representation of backscatter in dynamic localization
models. Phys. Fluids, 7(3):606–616, 1995.

J. R. Chasnov. Simulation of the Kolmogorov inertial subrange using an improved subgrid model.
Phys. Fluids A, 3:188–200, 1991.

X. Chen, S. Shan. High-resolution turbulent simulations using the Connection Machine-2. Comput.
Phys., 6:643–646, 1992.

G. Comte-Bellot and S. Corrsin. Simple Eulerian time correlation of full and narrow-band velocity
signals in grid-generated ‘isotropic’ turbulence. J. Fluid Mech., 48:273–337, 1971.

S. M. de Bruyn Kops and J. J. Riley. Direct numerical simulation of laboratory experiments in
isotropic turbulence. Phys. Fluids, 10(9):2125–2127, 1998.

V. Eswaran and S. B. Pope. Direct numerical simulations of the turbulent mixing of a passive
scalar. Phys. Fluids, 31:506–520, 1988.

S. Ghosal, T. S. Lund, P. Moin, and K. Akselvoll. A dynamic localization model for large-eddy
simulation of turbulent flows. J. Fluid Mech., 286:229–255, 1995.

S. Grossmann and D. Lohse. Scaling in hard turbulent Rayleigh-Benard Flow. Phys. Rev. A, 46:
903–917, 1992.

68



D. Holliday and M. McIntyre. On potential energy density in an incompressible, stratified fluid. J.
Fluid Mech., 107:221–225, 1981.

W. Hwang and J. K. Eaton. Creating homogeneous and isotropic turbulence without a mean flow.
Exp. Fluids, 36:444–454, 2004.

R. M. Kerr. Theoretical Investigation of a Passive Scalar such as Temperature in Isotropic Turbu-
lence. PhD thesis, Cornell University, 1981.

R. M. Kerr. Higher-order derivative correlations and the alignment of small-scale structures in
isotropic turbulence. J. Fluid Mech., 153(31):31, 1985.

A. K. Kuczaj and B. J. Geurts. Mixing in manipulated turbulence. J. Turbulence, 7:1–28, 2006.

P. K. Kundu and I. M. Cohen. Fluid Mechanics. Academic Press, 2nd edition, 2002.

E. Lindborg. The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550:207–242, 2006.

E. N. Lorenz. Available potential energy and the maintenance of the general circulation. Tellus, 7:
157–167, 1955.

T. S. Lundgren. Linearly forced isotropic turbulence. In Annual Research Briefs 2003, pages
461–473. Center for Turbulence Research, 2003.

L. Machiels. Predictability of small-scale motion in isotropic fluid turbulence. Phys. Rev. Lett., 79:
3411–3414, 1997.

A. Misra and D. I. Pullin. A vortex-based subgrid stress model for large-eddy simulation. Phys.
Fluids, 9:2443–2454, 1997.

M. R. Overholt and S. B. Pope. A deterministic forcing scheme for direct numerical simulations
of turbulence. Comput. Fluids, 27:11–28, 1998.

R. L. Panton. Incompressible Flow. John Wiley & Sons, New York, 1984.

J. B. Perot. Determination of the decay exponent of mechanically stirred isotropic turbulence.
Fluids Dynamics Research, 2010(submitted).

S. B. Pope. Turbulent Flows. Cambridge University Press, Cambridge, 2000.

William Prager. Introduction to Mechanics of Continua. Boston, Ginn and Company, 1961.

J. J. Riley and S. M. de Bruyn Kops. Dynamics of turbulence strongly influenced by buoyancy.
Phys. Fluids, 15(7):2047–2059, 2003.

C. Rosales and C. Meneveau. Linear forcing in numerical simulations of isotropic turbulence:
Physical space implementations and convergence properties. Phys. Fluids, 17(9), 2005.

69



E. D. Siggia and G. S. Patterson. Intermittency effects in a numerical-simulation of stationary
3-dimensional turbulence. J. Fluid Mech., 86:567–592, 1978.

E. A. Spiegel and G. Veronis. On the Boussinesq approximation for a compressible fluid. Astrophys
J., 131:442–447, 1960.

N. P. Sullivan, Mahalingam S., and R. M. Kerr. Deterministic forcing of homogeneous, isotropic
turbulence. Phys. Fluids, 6(4):1612–1614, 1994.

E. A. Variano and E. A. Cowen. A random-jet-stirred turbulence tank. J. Fluid Mech., 604:1–32,
2008.

E. A. Variano, E. Bodenschatz, and E. A. Cowen. A random synthetic jet array driven turbulence
tank. Exp. Fluids, 37:613–615, 2004.

A. Vincent and M. Meneguzzi. The spatial structure and statistical properties of homogeneous
turbulence. J. Fluid Mech., 225:1–20, 1991.

H. Wang and W. K. George. The integral scale in homogeneous isotropic turbulence. J. Fluid
Mech., 459:429–443, 2002.

L. P. Wang, S. Y. Chen, J. G. Brasseur, and J. C. Wyngaard. Examination of hypotheses in the Kol-
mogorov refined turbulence theory through high-resolution simulations. Part 1. Velocity field. J.
Fluid Mech., 309:113–156, 1996.

K. B. Winters, P. N. Lombard, J. J. Riley, and E. A. D’Asaro. Available potential energy and
mixing in density-stratified fluids. J. Fluid Mech., 289:115–128, 1995.

C. S. Yih. Fluid Dynamics. McGraw-Hill, 1974.

70


