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ABSTRACT

QUANTUM CORRECTIONS TO THE GRAVITATIONAL
INTERACTION OF MASSLESS PARTICLES

SEPTEMBER 2012

THOMAS J. BLACKBURN JR.
B.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Barry Holstein

Donoghue’s effective field theory of quantum gravity is extended to include the interaction of
massless particles. The collinear divergences which accompany massless particles are examined first
in the context of QED and then in quantum gravity. A result of Weinberg is extended to show how
these divergences vanish in the case of gravity. The scattering cross section for hypothetical massless
scalar particles is computed first, because it is simpler, and the results are then extended to photons.
Some terms in the cross section are shown to correspond to the Aichelburg-Sexl metric surrounding
a massless particle and to quantum corrections to that metric. The scattering cross section is also
applied to calculate quantum corrections to the bending of starlight, and though small, the result
obtained is qualitatively different than in the classical case. Since effective field theory includes the
low-energy degrees of freedom which generate collinear divergences, the results presented here will

remain relevant in any future quantum theory of gravity.
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CHAPTER 1
INTRODUCTION

It is well known that general relativity, unlike the other fundamental theories of the standard
model, is non-renormalizable, and that this has been a major obstacle to its quantization. (See for
instance [24].) The classical predictions of the theory have been verified by numerous observations,
including the precession of Mercury, radar time delays, the bending of starlight, and the expansion
of the universe. Because the expansion parameter for quantum corrections to the classical theory
is the Planck length, these corrections should be extremely small at observable energies. However,
as with all quantum field theories, even the lowest order quantum corrections are divergent. In
renormalizable theories like those of the standard model, such divergences can be absorbed into a
finite number of renormalized parameters, whose true values can be determined empirically, and
the remaining predictions of the theory are then finite. In contrast, non-renormalizable theories
like general relativity contain an infinite number of divergent parameters which must be determined
empirically. Because of this, they were once thought of as non-predictive [2] and not sensible [1].

More recently though non-renormalizable theories have become accepted as effective field the-
ories [1, 3]. In this approach, the high-energy, short-distance degrees of freedom which produce
divergences are systematically separated from the low energy, long distance degrees of freedom, and
the high energy degrees of freedom are integrated out. Then at low energies, only a finite number
of renormalized parameters need be considered to any given order.

General relativity has previously been treated as an effective field theory by Donoghue [6, 7, 4,
5, 12, 20], who demonstrated that this method can be used to compute well-defined long-distance
quantum corrections to the classical theory. Thus when interpreted as an effective field theory,
general relativity is a perfectly valid quantum field theory, at least at low energies.

Donoghue and subsequent authors [33] have used this approach to compute the radiative cor-
rections to the Newtonian scattering potential of two particles. Errors in the details of all these
calculations were finally corrected by Bjerrum-Bohr, Donoghue, and Holstein in [7]. Some of the

radiative corrections reported there were shown in [6, 12] to reproduce the known higher-order terms



in the classical metrics surrounding the particles, while others were shown to be quantum corrections
to those metrics.

These calculations all focused on the case ¢> < m?, where ¢ is the momentum transfer and m
the mass of the particles. This is obviously inapplicable to the case of massless particles, such as
photons, for which m = 0. In quantum field theories with massless particles, new types of divergences
appear and present a challenge [17, 16, 1, 18]. These new divergences, known as infrared (or IR)
divergences, originate in the low-energy degrees of freedom. Some are familiar from QED and can
be treated by well known methods, but others are more difficult to deal with.

The effective field theory method still can be applied to the massless case, but since the low-
energy degrees of freedom are included in the effective theory, the IR divergences threaten the
effective theory as well. If these divergences could not be removed somehow then the theory would
be rendered meaningless. Since they occur in the regime where both quantum field theory and
general relativity are expected to be valid, they present a real challenge to the existing theory of
gravity and quantum physics.

On the other hand, since the divergences in the effective theory will be identical to those in the
underlying high energy theory, the treatment of IR divergences in the effective theory will be relevant
to the true theory of quantum gravity, whatever that may be. Also, one might hope that quantum
corrections could be easier to detect empirically in the massless case if some effects are entirely null in
the classical predictions for massless particles. Therefore the calculation of observables for massless
particles in the effective theory of quantum gravity is an important task. This thesis considers the

massless case and the special problems that it involves.

1.1 Overview of Effective Field Theory

Many non-renormalizable theories at least approximately describe nature at low energies. One
of the oldest examples of this is the Fermi theory of weak interactions. Here the weak interactions
of fermions with the W and Z bosons is replaced in the low energy regime by a direct four-fermion

interaction. The exact matrix element for muon-electron scattering via a W, for instance, is of the

form
g,uu - %
M x vyH* (1 — 75) e—5—— 1Y’ (1 — 75) vy (1.1)
q _MW

where e, v., p, and v, are the electron, muon, and neutrino spinors, and My is the W mass.
All the interactions in this reaction are renormalizable. However, when ¢* < M3/, this becomes

approximately



M x vyH (1 - 75) Mi‘%}gwﬂvl’ (1 - 75) vy, (1.2)
This is of the same form as a direct four-fermion coupling, which is non-renormalizable. Another
example is furnished by chiral perturbation theory, which is the low energy approximation to QCD.
In these examples the true high energy theory is renormalizable, but at low energy fields appear to
interact via ’effective’ non-renormalizable interactions. Effective field theory has been used to treat
such theories for a long time. [1, 3]

Consider as an example a complex scalar field § with a spontaneously broken U (1) symmetry

1, 25]:
)\2

L=-0,070"0 — 7

(6%6 —v?)? (1.3)
This is an entirely renormalizable theory. Reparameterize the theory by a polar decomposition in

terms of two real fields x, ¢
9:X6i¢/v (1.4)

The Lagrangian then becomes

2

1 A 2
L=—0,x0"x — U—2X28M¢)8”¢ vy (X2 — 1)2) (1.5)
The invariance of the 6 field under U (1) transformations
0 — fe'™ (1.6)

has become invariance of the ¢ field under the transformation
= P+wv (1.7)

Expanding x about the potential minimum y = v reveals that x is a particle of mass M ~ Av while
the field ¢ is massless. The ¢ and x particles interact via various couplings.

Suppose one is interested only in the scattering of ¢ particles at low energy. Under the Lagrangian
(1.5), this would occur via the exchange of various virtual ¢ and x particles. The quantum field

theory can be derived from the functional integral
W= /D¢Dxeifd4-"fﬁ<x1¢> (1.8)

Divide the degrees of freedom of the fields into those with Euclidean momentum p such that p24+m? >

A% and those with p? +m? < A%, where A defines the cutoff between low and high energy scales.



The former includes all modes of the y field and high-energy modes ¢~ of the ¢ field, while the latter

only includes the low-energy ¢ modes ¢.. Define an effective Lagrangian via
ei S d'aLeps(d<) /D¢>Dxeifd4wﬁ(x7¢<,¢>) (1.9)

Then trivially
W = /D¢<D¢>Dxeifd4w£(xy¢<7¢>) — /D¢<eifd4wﬁeff(¢<) (1.10)

and so the effective Lagrangian functions is the Lagrangian for a quantum field theory which contains
only the ¢ field and has the same scattering amplitudes as the full theory. The effective Lagrangian
may be highly nonlinear, but in general it will be local and it must obey the symmetry (1.7) of the
underlying theory, so it can depend on ¢ only through 9, ¢.

The most general effective Lagrangian respecting the symmetry of the theory is of the form

b .
Logr = = 50000 0+ 107 (0,00"9)° + 112 (0,60"0) 0,0” (9,00"0) + 175 (,60"0)" + - (L.11)

The constants a, b, c... are dimensionless, and since M is the only mass of the underlying theory,
this must set the scale of the effective theory as well. This leaves out redundant interactions of the

form

Eredundant = 7d|:|¢|:|¢ + eaugZ)Da"ng 4 (112)

which may be removed by an integration by parts or by a field redefinition.
A general Feynman diagram constructed from this Lagrangian will be the integral of a rational

function in the internal momenta p with coefficients formed from the external momenta ¢:

Ap" B'rfl Ca”
/&m&mu.p*‘p gt r (1.13)

Dps + Eps—lq + .- Fqs

Each vertex with d derivatives contributes a factor p¢ to the numerator. Each propagator contributes
a factor p? to the denominator. Each integration contributes d*p to the volume element, and a

diagram with I internal lines and V' vertices has L integrations, where

L=1-V+1 (1.14)



is the number of loops in the diagram, so the total volume element is d4Lp. Let d; and n; be the

number of lines and derivatives of vertex i. Then the integral behaves asymptotically at large p like

/prldp (1.15)

where

D= d;—2+4(I-V+1)=4+2I+) (d;—4) (1.16)

Using the identity
2/ +E =Y n, (1.17)

where FE is the number of external lines, this can be expressed
D=4-E-> A (1.18)

where for each vertex

is the dimensionality in powers of mass of the corresponding coupling constant in the Lagrangian.
If D > 0 the integral diverges like p” (or logarithmically if D = 0) and thus will contain terms
ZS:O Crq™ with divergent coefficients C.

The divergent parts of an individual diagram with E external lines are polynomials of degree D
in the external momenta g. These have exactly the same form as the contribution from single vertex
diagrams with n; = F lines and d; < D derivatives, and so they can be absorbed into renormalized
parameters in the Lagrangian. Neither the bare coupling constants in the Lagrangian nor the the
divergent parts of the diagrams can be observed individually. Only the combination of the two in
the renormalized constants can be observed. The values of the renormalized coupling constants are
not predicted by the theory, but must rather be determined either by matching onto the predictions
of the high energy theory, or from experiment.

In a renormalizable theory, only a finite number of parameters. In a renormalizable theory, the
Lagrangian contains only the finite number of possible terms with A; > 0, so D < 4 — E for every
diagram, and only terms in the Lagrangian with A, =4—-d; —n;, =4—-d; — E>4—-D—-FE >0
will be renormalized. However, because L.s; contains coupling constants with negative dimension
A; < 0, the degree of divergence D will grow arbitrarily large with more complicated diagrams.
Thus more and more terms will be renormalized in the effective Lagrangian, and so the Lagrangian

must contain all terms allowed by the symmetry of the theory.



Besides polynomials in the ¢, each diagram also has non analytic parts of the form, for example,
log g?>. These can not be expanded in power of ¢, and so can not be combined with terms in the
effective Lagrangian. Therefore they are observable by themselves and are physically meaningful
predictions of the effective theory. Further, when Fourier transformed to the position representation,
they contribute the long-range pieces of the result, whereas the analytic terms contribute only
derivatives of delta-functions.

Although the full effective Lagrangian must contain an infinite number of terms, at low energy,
only a finite number of them need be considered at a time. Each vertex of dimension 4A; in a diagram
with a given number of external lines will contribute a factor M%¢, which dimensionally must be
accompanied by a factor of g=?¢. Thus at low energy, each diagram will be suppressed by a factor
(%)V where

v=—> N=E-2+2L+) (di—2) (1.20)

i i
by the topological identities above. Thus for a given type of diagram, the dominant behavior at
low energy is given by the tree diagram with the fewest number of derivatives, and each additional
loop or derivative suppresses the diagram by additional factors of ;. One can therefore expand in

powers of i, and to any given order, only a finite number of diagrams contribute.

1.2 Effective Field Theory of Gravity

Once the renormalized coupling constants have been determined, the low-energy behavior of an
effective theory can be computed without even knowing the short-distance theory.

General relativity is an example of a non-renormalizable theory for which there is no known
underlying renormalizable high-energy theory. Nevertheless, whatever the true high-energy theory
of gravitation, one can integrate out the high energy modes in the same way as for the scalar theory

above, defining an effective Lagrangian via [4, 5]
6ifd415(9<) — /Dg>eifd4zﬁ(9<’9>) (121)

where g~ are the high-energy gravitational degrees of freedom, and g~ the low-energy, which will be
the metric tensor g,,, at least in the realm where classical general relativity is valid. The symmetry
of general relativity is general covariance. The only invariant quantity (besides g, itself) of no more

than second order in derivatives which can be formed from the metric tensor g,, is the curvature



tensor R, [26]. Therefore the most general effective Lagrangian of pure gravity consistent with
this symmetry is

Ly=+—g {—4:2 + 2% +c1R? + coR" Ry, + .. } (1.22)
where g is the determinant of g,,,, R, = Rf,, the Ricci tensor, R = R/ the scalar curvature, and
x*/32x = G Newton’s constant. Each factor of Rf,, has two derivatives of the field g,,, and so
higher order terms in the curvature contain greater powers of the derivatives, and are suppressed by
more factors of k2. The coefficients ¢; are normalized to be dimensionless. As explained in chapter
4, this theory is quantized about a background field g,, as gu., = gu + xhy,. Then h,, has the
conventional units and all the coupling constants have negative dimension A;.

As usual, diagrams constructed from this Lagrangian will contain analytic terms with possibly
divergent coefficients as well as non-analytic terms. The divergent pieces can again be absorbed into
the bare parameters in the Lagrangian, and only the finite renormalized parameters have physical
meaning. By the same reasoning as in the scalar case, the degree of divergence of a diagram will
again be given by (1.18). Since the coupling constants have negative dimension A;, in principal all
possible terms in the Lagrangian must be included. Although more and more bare parameters will
be renormalized at higher orders, any given diagram at any given order will only renormalize finitely

many. At one loop, the renormalization of the coupling constants under dimensional regularization

due to gravity have previously been calculated and are[13, 5]

“ Ut 960m2e

(1.23)

¢, = co+ 16072

The values of the renormalized coefficients are not fixed by the theory. However, it is known
empirically that after renormalization, the cosmological constant A" is very small; why this is so is
unknown. Effective field theory adds nothing to the resolution of this mystery, but is consistent with
taking A" = 0. On the other hand, effective field theory does offer a natural explanation why all
of the higher order terms are effectively zero; even beginning with nonzero values of the constants
c", the curvature of physical space-time is so small compared to the Planck length~ x that for any
reasonable values of ¢", the higher order terms will have completely negligible effect [5].

Once the renormalized parameters are specified, the non-analytic terms should give physically
meaningful predictions.

Just as in the case of the scalar field, each diagram will be suppressed by a factor of (kq)” with

v given by (1.20), and to any given order in kg only a finite number of diagrams need be considered.



The leading terms in the expression for any diagram will be those with the fewest numbers of loops
and the least number of derivatives, with each additional loop or derivative suppressing the result
by additional factors of kgq.

[27] has shown that the traditional problems with higher order curvature terms in the gravita-
tional Lagrangian do not occur in the low energy region appropriate for effective field theory. In the
high energy region, when the R? terms become comparable with R, still higher order terms in the
Lagrangian would have to be included, the energy expansion would be invalid, and one can not say
anything about the full series in R.[5]

Gravity has previously been treated successfully as an effective field theory and used to calculate
scattering amplitudes of massive particles of spin 0, 1/2, and 1 [4, 5, 7, 6, 12, 33]. It was also shown
that some diagrams in the scattering amplitude could be interpreted as a correction to the metric
surrounding one of the particles.

These calculations produced leading non-analytic terms of the form log ¢? and \/qi2 in the scat-
tering amplitudes. When Fourier transformed to the position representation, these produced long-
distance results. The square root terms were shown to produce classical, A independent terms in
the position representation, while the log ¢? terms produced quantum terms of first order in &. The
classical terms in the metric were shown [6] to correspond to the known classical corrections to the
linearized Einstein theory in the Schwarzschild and Kerr metrics.

Thus the effective field theory of gravity predicts unambiguous long distance quantum corrections
to classical general relativity. Furthermore, these corrections must be present in any quantum theory

of gravity which reproduces Einstein’s theory at low energy.

1.3 Massless Particles and Infrared Divergences

These previous calculations were done in the limit of ¢ <« m? for particles of mass m. Massless
particles also interact gravitationally. Classically, their scattering cross sections could in theory
be calculated, and the classical metric of a massless scalar particle was given by Aichelburg and
Sexl[8, 9]. Quantum corrections to these results should be calculable by effective field theory, if only
g remains much less than the Planck energy.

However, naive application of quantum field theory to this case, as in the case of other massless
quantum field theories, leads to new, infrared (IR) divergences[19, 1, 18, 16, 17]. Some of these are

just the familiar infrared singularities from QED, which can be removed in the usual way, by the



inclusion of bremsstrahlung. However, there are additional divergences present known as collinear

or mass singularities. When a Feynman integral of the form

1 d*k 1 Ak
/ k2 (p — k)Q e (27r)4 - / k2(=2py -k +k2) - (27r)4 (1.24)

where p? = 0, is integrated over ko, the pole in k? leaves a residue

/ 1 PBr :/ EQd’E‘dqﬁd(COSG) (125

2‘;;" @2p-k)--- 27)° 4k2 | P (1 = cosf) - - -

where the polar angle # is measured from the direction of the vector p, and this diverges logarith-
mically around cosf = 1, that is, when p’is collinear with k.

Such divergences present an additional challenge to the calculation and interpretation of observ-
ables in massless quantum gravity. Since they arise from low-energy regions of virtual momenta,
they can not be ascribed to the integrated degrees of freedom of the underlying high-energy the-
ory. Further, in general they will occur in the coefficients of non-analytic terms from the remaining
integration, and so they can not be removed by renormalization of parameters in the Lagrangian.
Therefore they are not resolved by effective field theory.

Nevertheless massless particles, namely photons, do exist in nature. Since these divergences
occur in the region where both quantum field theory and general relativity are expected to be
valid, a problem with the calculation of the gravitational effects of photons would represent a real
challenge to the existing theory of gravity and quantum physics at low energies. Also, one might
hope that quantum corrections may be more easy to detect empirically in the massless case, since
classically some effects may be entirely null for massless particles, for instance polarization effects in
the gravitational bending of light rays. Therefore the calculation of observables for massless particles

in quantum gravity is an important task.

1.4 Overview of Thesis

This thesis presents calculations to one-loop order of the quantum corrections to the energy-
momentum tensor of massless particles, to the Aichelburg-Sex]l metric, and to the cross section
for scattering of massless particles by particles of arbitrary mass. After the nature of infrared
divergences in general is explored in chapter 2, they are examined in the more familiar context of

QED in chapter 3, before moving on to the main problem of quantum gravity. The gravitational



cross sections are calculated in chapter 4, first for the simpler case of a massless particle of spin 0,
because the gravitational interaction of particles with spin is algebraically more complicated, and
then these results are extended to the massless spin 1 (photon) case. There the collinear divergence
problem is solved by extending a result due to Weinberg [19], who showed that certain collinear
divergences cancel in the total cross section when all diagrams are added together. These results
are then applied and interpreted in chapter 5. It is examined whether certain diagrams can be
interpreted in terms of the metric surrounding a massless particle, as could be done for massive
particles, but it is found that the collinear singularities do not disappear from the result for this
subset of diagrams. The cross section results are also applied to calculate the quantum corrections

to the bending of starlight. Some concluding remarks are offered in chapter 6.

10



CHAPTER 2
FEYNMAN INTEGRALS AND INFRARED DIVERGENCES

The main problem of gravitationally interacting massless particles is the occurrence of infrared
divergences in certain Feynman integrals. In order to understand how this problem is resolved,
it is necessary to understand how these divergences arise. To this end, the integrals involved are
examined and evaluated in this chapter without regard to any specific field theory, paying particular
attention to the origin and treatment of IR divergences. The results will be used in later chapters

in the computation of matrix elements in QED and gravity.

2.1 Preliminary Reduction of Tensor Integrals
With the exception of the bremsstrahlung integrals listed below, the integrals to be calculated

are all of the form

pye k“k”---(k-pl)(k~p2)--- dPk
me = / (k2 — \2) ((p1 —k)? - M2) ((k ) — )\2) ((m R m2) e (2.1)

with up to four propagators, and with multiple factors of the integration momentum % in the nu-
merator. These integrals are computed by reducing them to combinations of simpler scalar integrals
with unity in the numerator and various combinations of propagators comprising the denominator.
Since the IR divergences all originate in the denominators, they are most easily examined after this

reduction has been performed.

2.1.1 Form Factors
First, Feynman diagrams with external lines that have spin are expressed in terms of scalar
'invariant amplitudes’ [23] or form factors. These invariant amplitudes can be calculated individually

by projecting onto appropriately constructed tensors.
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For example, the matrix element for the energy-momentum tensor of a scalar particle in chapter

5 can be written

et(p2—p1)z

- [2P, P F + Y — @’ ) F: 2.2
\/m |: F 1 (QMq 77; Q) 2] ( )

(p2| Ty (2)|p1) =

where p? = p3 = M2, P = w, q = p1 — p2, and F; and Fy are scalar form factors depending on
¢%. The expression determining the matrix element on the left hand side is a sum of tensor integrals
of the form (2.1). By contracting both sides of (2.2) with P*P", one obtains on the left a sum of
scalar integrals, and on the right the quantity 2P*F; — P2¢?F,. Similarly, by contracting both sides
with 7, one obtains a scalar equation for the quantity 2P?F; — 3¢>F,. These two expressions can

then be evaluated independently of one another, and the results used to solve for Fiand Fs.

Similarly, the matrix element for photon-scalar scattering in chapter 4 can be written

—iM = H" e, (pa) €, (p2) (2.3)

where p; and p3 are the momenta of the initial and final scalars, p. and p, the momenta of the initial
and final photons, € (p2) and € (p4) are the polarization vectors of the initial and final photons, and

H has the form

) PHpY , PrPY KMKY gt
H‘u = Hl 7P2 + H2 (T]'u - P2 - K2 - q2 ) (24)
where
p1+ps) K
P = pi+ps— %K
K = pa+p
¢ = P1—DP3=DpPs— P2 (2.5)

By contracting the expression for H** with P*P¥ /P2, one obtains an expression for the scalar Hy,
which can be evaluated independently of Hy. Contracting H*" with the other tensor form in (2.4)

determines an expression for Ho.

2.1.2 Cancellation of Scalar Products
After this, each integral is a scalar with propagators comprising the denominator and with scalar
products of various external and internal momenta in the numerator. Scalar products not involving

the integration momentum k can be brought outside the integral. Integrals with scalar products in

12



their numerators that do involve k£ may be reducible to simpler integrals by reworking the products

so as to cancel with factors in the denominator. For example,

/ L ak = / G lCallly 'k
(=P = M2) (g = 1) K (=P = M2) (g = 1) K
. 'k
20 (e =p)* = M2) (g = b)”
1 d*k
) / (g — k)% k2 20

where p? = M?2. Other formulae can be proven similarly. A list of all such cancellation formulae
used is given in the appendix.

When there are several scalar products in the numerator, the cancellation process can be applied
iteratively. For instance, if the numerator on the left-hand side of (2.6) were (k - p) (k - ¢) instead of

just k - p, then after eliminating the factor of k - p as above:

(k-p1) (k-q) P | qd*k
/(<k—pl>2—M2)<q—k>2k2dk : 2/(<k—p1>2—M2)<q—k>2

1 k- qd*k
) / (q — k)? k2 27

the same process can be used again in the latter integral on the right-hand side of (2.7):

k- d4 ¢ d'k 1 d'k
[l e e [ 29
(g~ a0k 2) (a—h)
2.1.3 Tensor Reduction
However, not all factors of k can be canceled in this way. For instance, if one were to attempt

the same process in the first integral in (2.7),

k-q 4 _ §(k2+q (k q)Q) 4
/(<k—p1>2—M2)<k—q>2dk R /((k—p1)2—M2)(k—Q)2dk
/ k2d'k

(k= p1)* = M) (1~ q)”

N =

_l_

7 d'k
/ ((k=p1)* = 222) (k - )"

13



1 d*k
_5/ ((k—P1)2 —Mz) %)

then there would be nothing left in the denominator of the first integral on the right to cancel the

remaining factor of k2. One is thus forced to evaluate certain integrals such as

K \
/ (0= p0)” = M2) (k- q)2d ’ (2.10)

These tensor integrals, with various powers of k remaining in their numerators, are reduced to
standard scalar integrals using the tensor integral reduction method of Passarino and Veltman[14].

For instance,

W — [k ky _ 1Y ()
B0 = Y (O (211
RV d'k ik
I;ux (q) - / (271.)4 (k2 _ )\2) ((k} _ q)g _ )\2)
1M (q) 1M (q) ,

5 . 2.12
3 dud TR (2.12)

etc. The advantage in projecting out the individual form factors in a diagram first is that with more
scalar products in the numerator, more cancellations may occur, reducing the number of tensor
integrals which must be computed. If instead evaluating the expression for the full diagram directly,
one may have to calculate certain tensor integrals which are orthogonal to those that actually occur
in the final result, thus wasting effort.

Each of the formulae (2.12) can be derived by projecting both sides onto appropriately con-
structed tensors, and canceling the resulting scalar products, as above. For instance, by Lorentz

invariance, the result for I ,(ﬁ,) (¢) must be expressible in terms of ¢, and the metric tensor 7,,,:

d*k k. k
15) (q) :/ — = aquqy + bq* N (2.13)
H (2m)4 (k:2 _ )\2) ((k _ q)2 . )\2> H K

Contracting this equation with ¢,g, produces

_ [ d% (a-k)°
(a+b)g* = / Cm* (k2 = x2) (0= @) = 22)

B 1/ d*k ((k—q)Q—V—qQ—(kQ—AQ))(q~k)
= 5 (2m)4 (k2 — \2) ((k 7q)2 . )\2>

2
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2 d'k -k
- / I (q-k) 5 + analytic terms
2/ (2nm) (k2 — \2) ((k — ¢’ — )\2)
¢ / A ! + analytic t
= = analytic terms
4 ) (2m)t (k2 — \2) ((k —q)? - Az)
7
= Zl(l) (¢) + analytic terms (2.14)

while contracting with 7,,, produces

4 2324 )2
(a+4b)q2 — /dk‘4 k /\+/\2
(2m) (k2 — \2) ((kz —q)? - )\2)
= 0+ analytic terms + o (A\?) (2.15)

Solving these two equations for the two unknowns a and b results in (2.11). If some of the scalar
products do not cancel, then the tensor reduction process must be applied iteratively to the remain-
ing integrals. Because the result for each integral only involves vectors which are present in the
denominator of that integral, at least one of the scalar products will cancel at every stage, and the
iterative process will eventually terminate.

For integrals with several indices and involving several different momenta, the number of possible
tensor forms in the result becomes very large, and the expressions occurring in the equations for
the coefficients become very complicated. One is thus faced with solving a large system of linear
equations with complicated symbolic coefficients, which is potentially a very slow process. Here, to
increase the efficiency of the whole tensor reduction process, Graham-Schmidt orthogonalization of
the tensors is performed first. Thus, for example, instead of expressing (2.13) in terms of ¢,¢q, and

Nuv, One expresses it in terms of g, g, and the orthogonal tensor 7, — quql,/q2:

%) (q) = / d4kD bk =d'quq + V' (N — Qv /T) (2.16)
(2m)"” (k2 — 22) ((k: . )\2)

Since ¢* (nw — q#qu/qQ) = 0, contracting both sides with ¢,q, produces

/4 / d'k (q-k)°
2m)” (k2 — a2 ((k P - /\2)
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4
= qZI(l) (¢) + analytic terms, (2.17)

while contracting with 7, — q#q,,/q2 produces

— d*k k2 — A2 4+ 22 1 d% (q-k)*
v / (2m)" (k2 = 32) (k= )" = 12) / (2m)" (k2 = 32) ((k = 9) = 22)

2
= 0-— qZI(l) (g) + analytic terms + o (A\?) (2.18)

Thus each equation directly determines the corresponding coefficient, without the need ever to solve
a linear system. To give an idea of the savings achieved consider the fourth rank four-point integral
Kvop (P1,D2,q). Even with a computer, previous calculation of similar integrals [12] took a day on
a modern personal computer. With the method described here the computation of K., (p1,p2,q)
takes only about five minutes.

After all this, all of the integrals will have been reduced to combinations of the standard scalar

integrals, with unity in the numerator, listed below:

B 1
K (pr,p2q) = u* D/ ((k —g?— /\2) <(p2 T k)2 - m2)
. 1 dPk
(=0 = 22) (@2 1 - mQ) (@m” i,
T (p1,q) = M4—D/ / kjj
( _ )\2) ( ) (2m)
J = pP —
(p2,q) = n / < _ )\2) (p2 + k)% - m2) (2m)”
2 L ) dPk
J¢ )(p1,p2) = “4 D/ ( M2) (p2 + k — m2> (27T)D
W) = p*P / ( _ Xz) (;i:)]i’
N 1 dPk
I (pr.p2) = n D/ ((p1 L M2) ((pz +k)? - m2> (2m)”
1O (po) = u4—D/ ((p2 " k);_ m2) S (;l;k; (2.19)
where M2 = p? = (p1 — q)%, m2 = pd = (ps + q)°.
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2.2 IR Divergences and Regularization Methods

Most of the scalar integrals listed above contain the usual ultraviolet divergences of quantum
field theory, arising from the infinite range of integration of k. These are dealt with in the usual
way, by using dimensional regularization in D = 4 — €y dimensions, and eventually absorbing the
divergent pieces into renormalized parameters [1, 17]. However the scalar integrals K (p1,p2,q) and
J® (p1,ps) contain divergences, which will be collectively referred to as infrared (IR) divergences,
arising instead from finite regions of integration.

In general, a Feynman diagram with massless propagators will contain infra-red divergences of
two different types [18, 16, 1, 17]. For example, consider the scalar integral J2 (py,py) in (2.19),

which can be written

: dk L 'k
/ k? ((pl —k)* - M2) ((pz +k)? - mQ) (2m)* B / k2 (=2py - k+k2) (2p2 - k + k2) (27)* (2.20)

in the case A> = 0. In the range of integration where k is soft (that is, where all the components of

k are small), this becomes

/ 1 d*k _ / 1 d*k
82 ((pr = ) = 217) ((p2 + k) = m?) (2m)" R (“2p1 - k) (2p2 - K) (2m)"
x % (2.21)

which diverges logarithmically near k£ = 0. This is the familiar IR divergence of, for example, QED,
and occurs regardless of the value of m or M. Such divergences will here be called soft.

But in diagrams with more than one massless propagator, there will also be divergences arising
from the range of integration where k is on-shell and collinear with one of the external massless
momenta p. Consider (2.20) in the case M? = m? = 0. After the integration over kg, the residue

from the pole at k? = 0 leaves a term

3 k2d k| ded (cos 6
/ - ! d kg :/ - ‘ ‘ v (cosf) (2.22)
2‘]“‘(2171%) (2ps - k) (27) 8k2 (p2 - k) [pt| (1 — cos 0)

(measuring the direction of the three-vector k from the three-vector p1), and the integral over cos 6
diverges logarithmically near cos = 1. (There is a similar divergence from the region of k near D3.)
This divergence occurs for k hard as well as soft, as long as k is on-shell. Such divergences will be

called collinear.
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These infrared divergences will cancel in the final results for all physical quantities below, but
in the intermediate calculations they must be dealt with by some sort of regularization. The in-
termediate results then depend on the regularization method used, and to study the effects of this

regulator dependence, three different infra-red regularization methods are examined:

a) regularization by giving a small fictitious mass A to the quantum mediating the interaction
(photon in the case of QED or graviton in the case of gravity) while maintaining a (real or

fictitious) mass m for the particles undergoing scattering,

b) dimensional regularization in D = 4 + ¢;r dimensions, with e;g > 0, setting the mediating

quantum mass A = 0 but still maintaining the non-zero mass m of the scattered particles, and
c¢) dimensional regularization alone, setting both m and A equal to 0.

To see the effect of these regularization methods on soft divergences, consider (2.21) and (2.22)

again. In case a, (2.21) becomes

1 d*k k3dk
/ (k2 = X2) (=2p1 - k) (2p2 - k) (2m)* x / RS log (X*) (2.23)

The integral is effectively cut off on the lower end at A2, and the logarithmic divergence is replaced
by the large but finite quantity log A%. (X is chosen to be much smaller than all other quantities in
the process considered, and one examines the asymptotic behavior as A approaches 0.) To motivate

case b or c, consider that the integral

1 de kDfldk
/ k2 (—=2p1 - k) (2p2 - k) (2m)* x / T (2.24)

is convergent in D > 4 dimensions and divergent in D < 4 dimensions. Thus formally replacing D

by 4 + €rr, €rr a small positive real number, (2.21) becomes

1 dPk /ledk / 1
x [ ——— = [ k"7 Ak oc — 2.25
/ k2 (=2p1 - k) (2p2 - k) (27)" k4 €IR (2.25)

In this case the logarithmic divergence is replaced with a convergent power-law behavior, but with
a coefficient of 1/e;z. Again one is interested only in the asymptotic behavior, this time as e;g
approaches 0. (Note that the sign of e;r required for convergence is opposite to the case of UV

divergences.)
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Next consider the effect of these regularization methods on collinear divergences. In case a or b

(2.22) becomes

1 &’k EQd‘]_ﬂ" d¢d (cos 9)
/ 2{F| 21 k) (2p2 - ) (27’ _/ SE2 (> - k) (V/I® + m? — [pl] cos) xlogmt (220

assuming m is much less than all other quantities (except possibly for A above), while in case c,
introducing spherical coordinates in D dimensions [17], it becomes

D
M2

e/

d(cos®) 1—cos 0)

/ 1 dP 1k
2 ‘E‘ (2p1 - k) (2p2 - k) 2m) P71 I (

o [P
k| |k

*

-2 1
8k2 (py - k) |pt| (1 — cos )

€rrR+2
J e

1
8k2 (p2 - ) |t (1 — cos )

S|€rr—1 2
— (2.27)
€IR

m\b

\

—

61R/2
- 1’\(6[}? +1) €1R+3/d k

d (cos ) 1—co 29) crr/2

k

\

—

€Ir/2
d
T (%8 +1) (2m) 1R * /

(Of course, this integral also has a /¢, singularity from the k integration, and so the final result

will have a double pole in ¢;g.)

2.3 Evaluation of Scalar Integrals
Finally, the scalar integrals I, J, and K can be evaluated using the regularization methods listed
above. While the two- and four-point integrals needed here can be reduced to logarithms, the three-

point integrals can not, and can only be reduced to Spence functions instead. The Spence function

is defined by
1
1
Liy (z) = —/ glog (1—zy)dy (2.28)
0

It satisfies (amongst others) the identity[28, 29]

Lis (z) = — Liy (1 — z) + % —log (2) log (1 — z) (2.29)

The logarithm and Spence function have branch cuts, corresponding to the existence of real
intermediate states in the integrals, and so it is important to pay careful attention to avoid landing

on the wrong branch of the complex plane. In particular the reduction to Spence functions is very
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intricate, and it is easy to make such a mistake. It is easiest to evaluate these integrals first in a

region where real intermediate states can not exist, and where the integrals have no branch cuts,

and then extend the results to the rest of the complex plane by analytic continuation.

Frequently below the integrals will be reduced to the form

/1 log (y — a) — log (yo — a)
0 Y —%o

This can be further reduced as follows
a) —log (yo —a
) (o ) Iy

/110g(y—

0 Y—1Yo
1 1

1 _

:/ 1ogy ady—@(a—yo)Zm'/
o Y—% Yo —a 0
17y01 /

:/ /log< L +
—Yo Yy Yo —a
1*.7!01 ’

:/ /log<1—|— =
0 Yy Yo

dy

dy
Y—1Yo

Yo

0o— 1
—0 (a — yo) 2mi log
1
1
_ 710 ( 1 =% //)d// / ,,,log( yﬁ
oY’ Yo —a
71
—G(a—yo)Zm'logy
Yo
_1 _
- L12< ¥ )—Lig(yo )—H(Q—yo)Qm'logyo
Yo—a Yo —a Yo

where ¥ =y — yo, ¥ =¥ /1—yo, ¥ = ¥'/—y0.

2.3.1 One- and Two-Point Integrals

Consider first the one-point integral

1 dPk
H, =4 P
A / K2 = M2 (27)P

Performing the integration and writing the result in terms of ey =4 — D,

H =

M2 )—EUV/2

M2 ( 1+€U\//2) <W

1672

Expanding in powers of ey,

j 2 M?
H = M (-2 —741-log
167T2 (S9ave 4‘LL

20

1) dy' — 0 (a — yo) 2milog Yo~

—Yo 1
)dy’—/ /log(1+ Y
a 0 Y Yo — a

(2.30)
)
y/l/) dy///
(2.31)
(2.32)
(2.33)
(2.34)



Next consider the generic two point integral

19 (¢*,m3,m3) = u4‘D/ ! a7 (2.35)
b - D .
(k2 —m3) (0= a)” = m3) m)
Introducing Feynman parameters via the rule
1 1
1 / dr (2.36)
ab 0o (az+b(1—2x))
this becomes
D 1
1
1O (¢ mi,m3) = ,u4_D/ d kD/ dx 5
2
@m0 (w2 = mi) + (1 - ) (k- )° - m3))
_ / / de 1
2—-20-x2)k-g+(1—x)q¢®— (l—ar:)mg—mm%)2
(2.37)

Performing the k integration

4

’ L euv/2
0 n _ i p 2/ d (2.38
(4% mi, m3) TR LAl M Ve ey e prapes g prarager o)

where ey = 4 — D. Expanding in terms of ey

, 9 1 ?2? + (—q? + m? — m2) x + m2
I(O) — v s A / dz 1 1 2 2
(¢*, m¥,m3) 672 \ gy ~ 7 ), dvlos pr
1 2 q? zy —1
- (4 “log (1 — 1
6.2 <€UV 7~ log s og(l—z4)+ x4 log -
_—1
—log(1—z_)+z_log : + 2) (2.39)
where 4+ are the two roots of ¢?z% + (—¢* + mi — m3) x4+ + m3 = 0.
Particular cases of (2.39) used below are
D
I(l) (Q) — 4 D/ d”k
k2 (k —q)* (2m)"
7
= 167T2 (6 -y = log e —|—2> (2.40)

- 1 dPk
1% (pr,pr—q) = u D/ ((m k)P Mg) ((p1 —q—k)? - M2> (2m)”

21



where here M2 = p% =(p1 — Q)Qa

- 1 dPk
1 (p1,ps) = p* D/ <(p1 k) M2> ((p3 + k) _m2) (2m)”

_ i i_ o M? +M2_Slo M2—s+2
16m2 \epy 7 g4ﬂ'u2 s Ve

where here s = (p1 +p3)2, M? = p%, m? = P%a

_ 1 dPk
ut D/ ((pl R - MQ) 12 (QW)D

_ (2 log My
1672 \eyv i Og47T,u2

1) (py)

where M? = p?, and

@ _ 1 dPk
I (p) = /(kg_mz) (p—k)2 (27T)D

The case

1 dPk
p2 + k) k2 (2m)"

I8 (py) = M4_D/(

when p3 = m? = 0 requires special attention. After introducing Feynman parameters,

73 (o) = M4_D/1/ 1 i dPk dae
o J (B2+201—2)k-py)* (2m)"

= P 1 1 a7k x
# A'/(%+%1—@pﬁﬂ2@ﬂDd
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(2.42)

(2.43)

(2.44)
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_ 4D 1 dPk
~ / T o (2.46)

Changing to spherical coordinates in D dimensions and performing the angular integration,

I8 (py) = p*Pi

2 D/2 © D—-1 4L
T / (2.47)

I'(D/2) (2m)" k4

This is both ultraviolet and infrared divergent, and so must be split in to two regions of integration,

with D = 4 + €7 in the first and D = 4 — ¢y in the second.

; —€IR€IR/2 Iz
73 - v e 7T / LIR=L Lk
(p2) 872T (2 + e1r/2) (2m)7F J,
; UV —€euv /2 oo
bt — / keov =k
8w T (2 — er/Q) (277) n
. €rr/2 1 . —euv /2 1
_ i s n 1 s (2.48)

8T2T (2+€rr/2) 2m) " et | 8T2T (2 — ey /2) (21) VY evv

Finally, expanding in €;p and eyy,
I3 (py) = +— (2.49)

Lastly, the integral

1 dPk
J® - 4—D/
® = e ek 2n)”
1 dPk
_ 4-D 2.50
" | e (2:30)

though it has three denominators, is more like a two-point integral since two denominators are

repeated. Introducing Feynman parameters,

! x dPk
J® (p) = ,u4_D2/ dx/ 3 5
0 (k2 (1—2)+ (p?2 —2p-k+k?)x)” (27)
1 D
2u4—D/ dx/ < . k]; (2.51)
0 (k2 —2p - kx + p2z)” (27)

Performing the k integration,

1 T

* _pg €rr/2 1
JG = ——=T(1—€r/2)|—— dap o 2.52
W)= et e/ )(47w2> /0 (ol 2
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Performing the x integration,

~ 2\ (L )T ()
J® (p) = —— T (1—erp/2) -2 2 2 2.53
(v) 1672p2? (1=err/2) 47 p? I'(1+e€rr) (2:53)
Expanding in powers of ¢;g,
J®(p) = (2 +log 1’ (2.54)
167w2p2 \ err 7 4 p? '

2.3.2 Three-Point Integral J2
The three-point integral J) (p;, p2) has both soft and, if m approaches 0, collinear singularities.

In any of the IR regularization methods a, b, or c, it has the form

T (prpy) = ui-D d"k 1
(p p ) K / (27T)D (k2 _ AQ) ((pl _ k')2 _ Mz) ((p2 + k)Q _ m2>
_ ap [ d°k 1
- / (2m)P (k2 = X2) (k2 — 2k - p1) (K2 + 2k - o) (2.55)

where M? = p? m? = p3. Incase a, D = 4 and ;g = 0, but A # 0, while in case b or c,
A=0Dbut D=4+ ¢p with e,z > 0. In either case, (2.55) is most easily evaluated by performing
the integration first in the range s < 0 and then extending the result by analytic continuation.

Introducing Feynman parameters via the rule

1 1
L 2/ dx/ dy < . (2.56)
abe 0 0 (a(l—z)+bx(1—1y)+czy)

(2.55) becomes

dPk
J(Q) , _ 4—D/
(p1,p2) K (27r)D
1

R Ty oy e e Y R
ap [ ! dPk x
AR R T = 7w ey e e e eyl

Performing the k integration and writing the result in terms of ;g = D — 4,

1 Ly (_p)\2ter/2 p (1-€1r/2)
J(2) = 9 —EIR/ d / d Z( 77) IR
(p1,p2) H ) r ; Y (2m) e I (3)
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T

. (_)\2 (1 —x) —x2 (poy —p1 (1 — ))2)

_ d (1 —€rr/2)
16 1672 (—dmp2) €1R/2

T

1—€]R/2

. T—— (2.58)
(A (L —x) =2 (M? + (m?* = M? — s)y + sy?)) "
where here s = (p1 + p2)2. The next step depends on the regularization method used.
Using a nonzero A, the integral is convergent with e;r = 0 and becomes
J® (py, / d / d x 2.59
(P1,p2) " 1672 v X x) + a2 (M? 4+ (m? — M? — s)y + sy?) (2:59)

Performing the x integration, in the limit of small A, this becomes

1
(2) - !
T (p1p2) 32772/0 WAL T 23—+ )
M2 2_M2_ 2
.1og< P S)y”y)wm

P /O W =y eV ) -y ) O (260)

where

y+ =

= (2.61)

Note that yy =1 —y_ (M < m).
On the other hand, with A = 0 but €;g > 0, one can factor out the power of z in the denominator

of (2.58) and perform the x integration separately:

. 1 1
_ 1
J® - —Z/drl— 2/d err—1
(p17p2) 1672 0 Y ( 613/) 0 LT M2+(m2—M2—S)y+8y2
€ 2
M? 4+ (m? — M? — 5) y + sy? 1/
42

1 1
= dF 1-— 2
167 2/ y EIR/) rR M2+ (m? — M2 — s)y + sy?
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(2.62)

€ 2
M2+(m2—M2—s)y+sy2 1/
472

Then expanding in powers of €, one finds
—i 1

1
e ),
3212 Jy T M?4 (m2— M2 —s)y+ sy?
2 M? + (m? — M? — s) y + sy®
<+’Y+log ( >y y

J(2) (p17p2) =

€IR 47‘(‘,11,2

) + O (err)

—1

1 1
2552 /dy
32725 Jo T(y—ys)(y—y-)

(efR ++log ﬁ (y—ys) (y— y)) + O (e1r) (2.63)

Comparing (2.60) and (2.63), the remaining y integration is finite in either case, and thus the
only difference between the two regularization methods is that log A2 in one case is replaced by
log 4mp? + % + ~ in the other.

Continuing with the evaluation using dimensional regularization, writing the argument of the

logarithm as a product of positive quantities (y4+ > 1, y— < 0),

—1

! 1
5 /dy
32m?s Jo Ty —ys)(y—y-)

2 -8
(= log —— (y4 — —y
(QR +y+log s (y+ —y)(y—y ))

i 1 1 1 1
32m2sy, —y_ Jo y—-y+) (y—vy-)

2 -5
( +y+log s + log (y+ —y) +log (y—y)> (2.64)

J(z) (P1»P2)

€IR
Adding and subtracting a term log (y; — y—) inside the second parentheses and expanding,

—1 1
32725y —y_

<(612R e 4;;2 Hoslus _y)> /o1 W ((y jy+) (y 1y-))
+/01dy (_10g(y+—y) - 10g(y—y—)>

J? (p1ap2) =

(y+ —v) (y—y-)
b (log(y—y-) —log(y+ —y-) log(ys —y) —log(y+ —y-)
o o =) =) ))
(2.65)
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and using (2.31) this becomes

—1 1
2m2syy —y_

2 oy tlog—2
— O,
€IR 7 g47r 2

1 1 1 1
+ (2 log® (y1 —1) — 3 log®y, — 3 log” (1 —y_) + 3 log® —y)

ol ) e Gemn) e () - (50)
Y+ — Y- Y+ — Y- Y- — Y+ Y- — Y+

(2.66)

I (p1,p2) =

yr —1 1—y_
+10g(y+—y—)> (log —— —log )

Y+ —Y-

where Li () is defined in 2.28. Using 2.29 this becomes

—1 1
J® (p1,p2) = mm
2 — 1—y_
<<+”y+log 5 +log (y4 — ) <log Y+ — log Y )
€1 M Y-
+5 log® (yr —1) — log Yt — 5 1og (I-y-)+ log —y-

+2 Li <y+> 2L12( )
Y+ — Y- Y+~ Y
_ -1 -1
+log i 1og( Y ) log log< as ))
Y- — Y+ Y+ — Y- — Y+ Y+ — Y-
—1 1 2 —1 1—9y_
= 7227 ((—i—v—i—log — ) <loger — log Y )
32mes Yy —y— \\€Ir 4mp? Yt —y-

yr — 1
+ (2 log (y+ —y-) <log +y+> +log —y_logyy —log (1 —y—)log (y4 — 1))

1 1 1 1
- (210g2 (y+ = 1) = Flog’yy — S log® (1 —y-) + 5 log? y—>
1
+2 Liy <y+> — 2 Liy (“)) (2.67)
Y+ — Y- Y+ — Y-

which agrees with [28].

Some frequently used particular cases follow. Continuing from (2.66) in case m? < M2, |s|,

M?  —m?
1— — — 2.
yr — — (2.68)
and using (2.29)
—i 2 M? —s M? m?
7@ e log ——— | (1 1
(p17p2) 3972 (S*M2) +7+ 0og Ar HJ og M2 — s + log M2 — s
—i 1, oM? 1, ,M?>-s 1. o, m?
“log? — — =1 “log? —
3272 (s — M?2) (2 I R VL
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3272 (s —M?) \ 6 P\ M2 —s 2\

which can easily be analytically continued to s > M?. Continuing instead from 2.66 in case M? =
m2,

1 4m? — s
g 2.70
y+ = B s ( )

and

— 1
JP (p1,p2) = 39m2s T
s

L VimP=s _ (; _ 4m275)
2 /—s 2 2y/—s
+2 LIQ 2 \/47712#75 —2 LlQ T
v V=s

2 v —svV4m?2 — — v —=svV4m?2 —
-(—2<+7+log svam 8>log<1+ S+ sv4m s)
€IR

I 42 2m?2
1 +4m?2 — 1 4m? —
+log? _,+w — log? f-i-w
2 2y/—s 2 2¢/—s
1 V= 1 V=
+2 Liy ( + S) ~ 2 Liy ( - S)) (2.71)
2 2v/4m? — s 2 2/4m? —s

which can be analytically continued.
Finally, in the case m = M = 0, where the collinear divergences are regularized by dimensional
regularization, one can also factor out the power of —s in (2.62) and then perform the y integration

separately:

i

—s 6IR/2 1 1 . 91
J@ (p1,p2) 62 > . y2) IR/

— — d
dmp? €IR Jo y(y

I'(1—err/2) (
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- T2 (£ >/

16725 myr?
121 cos (742) D (1/2 = e1/2) T (e1r/2)
€IR ﬁ

{ 4 n 2 1 -5 n 2y n 11 9 —S§
= —— | —+—1o — +=-lo
167m2s \ €7 €IR g47r,u2 €rr 2 & 4

fylog =S LT
o roT
T2 T T 12

i (1 —s 2\> 2 x?
= 2 (10g—2 B T A 2.72
16725 <2<°g4wu2+7+em> T 12) (2.72)

The logarithmic singularities which would exist in (2.71) in the limit m — 0 are replaced in (2.72) by
additional single and double poles in €7, but not just by a simple substitution as when going from
(2.60) to (2.63). However, (2.72) may be obtained by both substituting logm? — log 47w pu? —2/e;r —7y

and adding an additional term #/16x2¢> (2/5§R —+ 7{—;)

2.3.3 Three-Point Integral J1

JM) (py, q) is evaluated following the method of [13].

JY (p1,q)

. dPk 1
] Cr)” k2 b= 0)" (02 = )* - 012)

_ 4—D/ de 1 (2 73)
- A (2mP K2 (k2 —2k-q+ ¢) (k2 — 2k - p1) '

where M? = p? = (pa — q)2. There is no soft divergence in this integral, so A has been set equal to
zero. In the case M? = 0, there is a collinear divergence, which can be regularized either by method
b, maintaining an infinitesimal mass M, or by method c, using dimensional regularization. Again
this is most easily evaluated in either case in the region ¢> < 0. Introducing Feynman parameters,

this time via

1 ! v 1
%_2/0 dx/o dy(a(x—y)+by+c(1—x))3 274

the integral becomes

JV (pr,q) =

D 1
YENy
(2m) 0

e

£ 1
/dy 2 2 2 2 3
o (B@—y)+(# —2k-q+¢?)y+ (k> —2k-p1)(1-2))
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_ oap [ d°k [ e 1
- <2w>D/o i | Y @am - tay

Performing the k integration and writing the result in terms of ;g = D — 4,

2+€IR/2 (1 _ €IR/2)
J(l) (pla Q) = / d.’E/ dy )4+€IR T (3)

(22— (v +pr (1~ x>>2)1_€“”2

(1- 2 1
- = 2/ / i — ”f;é/i o (270)
T (g @ - y) - M2 (1 - 2)%)

bearing in mind that 2¢ - p; = ¢2. The next step depends on the value of M and the regularization
method used.
If M = 0, then, making the change of variables y' = y/x, the denominator can be factored and

the x and y integrals done separately:

(1) _ EIR/Z) x
T pa) 167r2 / / 47T,U )err/2 (q2a2y (1 — o)) erR/?
= #F( — € /2) _q2 crn/? /1 d.’l?fEeIR_l /1 d /( /(1 _ /))613/2—1
16m2¢2 IR A2 o 0 y\y Y
_ i g —q? \"? 1 21 cos (T48) T (1/2 — erp/2) T (e1/2)
 16m2¢2 IR 471';1,2 €IR VT
l 4 2 —q? 2y 1. 5 —¢? —®? 42 g2
L | 1 AT
167242 ( an Cdm? T en 208 dm? e ety Tt
(2.77)
This is the same as (2.72).
With a nonzero M, (2.76) is convergent with e;r = 0 and becomes
) i 1 x 1
J , = —/ d:c/ d, 2.78
1) 1672 Jo o Vy@—y) - 21— 27

Since ¢? is assumed negative, the integrand is finite for all # and y in the range of integration (except

x=y=1). Let ¢ =y — ax, where

?a? —a+M?* =0 (2.79)

4= 2q? T2

2 \/W 1 AMZ — o2
RV L <1Q> (2.50)



Then changing variables and using (2.79) the integral becomes

1
TV (p1,q) = / dw/
167> —az (1—xz)?—¢? ((y’ +ax)r—(y + oz:c)Q)

(1 Oé 1
— d 2.81
16772/ x/ yM2+q2y’2—(2M2+q2(1—2a)y’)$ (2.81)

Next change the order of integration, which can be done without complication, since there are no

singularities in the entire region of integration:

) —a —y' /o e 1
JY (pr,q) = / dy’ / dac—i—/ dy’/ dx
167T2 y/(l a) —a v'/(1-a)

2.82
T s (=S TIIE (252)
Performing the x integration one finds
P 1
J» _ / d
(p1.4) 1672 J, Y TEMEr@(1-2a)y)
—_a
) <1og ( + ¢y — (2M? +¢* (1 —20)y/) O‘zj )
/
—log (M2 +¢*y? — 2M* +¢* (1 -20a)y) i ))
11—«
. -«
—1 1
" dy'
lon? /_ Y@My (1-2a)y)
(log (M? + ¢*y” — (2M? + ¢* (1 — 2a) '))
/
—log ( +¢%y? - 2M? +¢* (1 —2a)y) . g a)) (2.83)

2
Add and subtract a term log <M 2442 (%) ) log W inside the parentheses in each

integral, which removes the poles from the integrands, and then regroup the resulting terms:
—i /1 o« 1

v dy .

1672 J_, —2M?2+q¢2(1-20) ')

log (—M2 —¢*(1-2a)y + ¢°y?) —log ﬂ
4M? — g2

JY (p1,q)

- l—«
) 1
T T6m2 /0 —CM2+ 2 (1-20)y)

log MQ—(2M2+q2(1—2a)y’) v +q2y/2 —lgﬂ
1-— AM? — ¢2

i /*“d , 1
1672 J, Y —(2M2+¢2 (1 —2a)y")

+
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Y 7M2 2
<log <M2 —(2M?*+¢* (1 -2a)y) Ty + q2y/2) —log _qu) (2.84)

4M?
Make the change of variables y = ¢ + «, y = ¥'/(1 — @), and y = 3’/ — « in the first, second, and
third integral, respectively, and simplify, again using (2.79),
]
— 1
Jo S — / d
(P1,q) 1672 J, Y =2M? — 2 (1 - 2a) (y — a)

_M2q2
: (log (—M2 —¢(1-20)(y— ) +¢* (y - a)2) —log 4quz)

n i /1d 1—«
1672 J, VoM — g2 (1—2a)(1—a)y

2 2 2 2 2 2 —M?¢?

1
+— / dy e
1672 Jo 7 —2M?+ ¢ (1 — 20) you
9 2 o 2 2 2 —M?¢?
-(log(M - (2M?* —¢q (1—2a)ay)y+qay)—10g4M2_qz>
R 2 2
—1 1 —M~=q
_ d loo (—a? 2,2\ _ oo — 2 4
167T2/0 y—q2(1—2a)y—q2a(og( @y + *y°) Iy

+/1d 11—«
1672 J, V@1 —20)(1—a)y— 2M?

_M2 2
. (log (M2 — 2M2y+M2y2) — log q2)
—4q

402
_|__i/1d @
1672 J, yq2(172a)ya—2M2

: <log (M? — 2M?y + M?y?) — log _]‘242‘122) (2.85)
4M? — q

Factoring the arguments of the logarithms into positive quantities,

. 1
M - - YW (log g2y (1 — y) — log —q?y (1 —
I (p1.q) 62 (1 20) </0 — (log —¢°y (1 — y) —log —¢°y1 (1 — y1))

1
dy 2 2 2 2
— log M* (1 — —log M~“ (1 —
/Oy_yz( g M? (1= y)* ~log M* (1 - 1)°)

+ /01 y iny (10% M (1 —y)* —log M? (y5 — 1)2)) (2.86)

where

-« 1 ¢ 0<y <2

YoT a1 2 we—g) =2
2M? —q?

—¢?(1-2a)(1—a) AM? — g2
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202 —q2

= — =14+ X - 1<y;<2 2.87
b3 —¢*> 22— 1)« * AM2 — 2’ == (287)
Note that
l-a 1 al 1
I =14 —=2X—=—),2<1-y <1 2.88
=12 2(+ 4M2—q2>’2_ e (259

Expanding the logarithms, the first term in parentheses in (2.86) is

1
dy
/ (log —¢*y (1 — y) —log —¢*y1 (1 — y1))
0o Y— W%

L g L g
- / Y (logy — logy) + / Y (log (1~ y) —log (1 — 1)) (2.89)
0o Y—uy1 o ¥Y—Uhn

Making the change of variables ' =1 — y in the second integral and using (2.31), this becomes

1 1
dy dy
logy — logy —/ ——— (logy —log (1 -y
/0 = D v (=)

1 1
= Liy (1— )— Lis <1—>
11— Y1

L, (q —2M? 4+ \/—q2\/AM? — g2 > Lis ((]2—2M2  —q?\/AM? — g2 ) (2.90)

2M2 2M2

Similarly, the second term in parentheses in (2.86) is

/0 y fny (log M2 (1= )” — log M2 (1 - 1)° ) = 2/0 J iyyz (log (1 = y) —log (1 - y2)) (291)

Changing variables again to y’ = 1 — y this becomes

1 /
d
_2/0 % (logy/ — log (1 — yg)) = -2 ( Lis1 — Lig ( 1

— (-
2L12<1 )7; (2.92)

The last term in parentheses in (2.86) is

/ y (logM2 (1—y)* —log M?(y 3—1)2)
0

y) —log (ys — 1))

) — log (1 — y3) + mi)
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- /01 dy (log(ly)log(lyg))+27rilog(y31)

Yy—UYs Ys

1 !
dy ; ys —1
:,2/ — YW (logy —log (1 —y3)) + 2milo <) 2.93
0 y’—(l—yg)( g g( y3)) g s ( )

where again y' = 1 — y. Using 2.31 this becomes

1
d
/ Y <log M2 (1 - )% —log M2 (y — 1)2)
0

Y—Yys
2
:_”+2Liz< vs >+2m'log &
3 ys —1 Y3 —
2 AM? — 2 4M?2 — g2
:_£+2Li2 1+7q + 2milog 1+7q (2.94)
3 ard V-

Note that the explicit imaginary term cancels the imaginary part of the Spence function.

Finally, substituting (2.90), (2.92), and (2.94) in (2.86),

J(l)( ) = —t Li ¢° = 2M* + \/—¢*\/4M? — ¢?
pra = 1672/ —q%\/4M? — ¢ ? 2M?
[ ¢®—2M?% — \/—q2\/AM? — ¢2 ) AM? — ¢
~ Lis ! 2L (1- Y=L
2M /—q?
IMZ = g M2 — 2
42 Lin (14 YT ) opilog (14 V=0 (2.95)
/—§2 /—2

2.3.4 Four-Point Integral

The result for the four-point integral is taken from [28]. In the region ¢*> < 0, s > (M + m)z,

o . dPk
K (p1,p2,9) p' D/ (k2 — \2) ((p1 —k)? - M2) ((k —q)?° - )\2> ((pz +k)? - m2) (2m)”

87r2q2\/52 —2s(m?+ M?) + (m? — M2)2

s—(‘Mer)Qf\/52—2,9(7712+M2)+(7712—M2)2 —¢?

log
2 2 2 2 2 2)2
s—(M+m) +\/s —2s(m? + M?)+ (m?2 — M?)

2

where s = (p1 +p2)2, t=q* M?>=p? = (; —q)2, m?

= p2 = (p2+¢)°. In case m ~ 0, this

becomes

1
1672 (s — M?) ¢?

s — M? s — M? —q?
K (p1,p2,9) <log T log —— ) log (2.97)
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If dimensional regularization is used instead of a photon mass, the result is the same after the

substitution log A2 — log 47 p? + % +7-

2.4 Bremsstrahlung Integrals
In addition to the covariant integrals listed above, it will also prove necessary to calculate non-

covariant integrals of the form

k D—-1
mos qP1p g 1
B, = 4P / 1 2.98

ISR e T R (g R (2.98)

where p; j are future-directed timelike vectors on their mass shell, p? = M?, p? = m?. These contain

soft and, if m = 0, collinear divergences. Introducing Feynman parameters,

B = u*” D/kwdD * 1/dx !
K (2m)” " ko ((pi - k) + (p - ) (1 — 2))°

_ 4 D/ dw/ max dD 1k 1 1
D—-1 k, . . =
@m0 (B + By (1= ) o — (B + 55 (1 — @) - )

£2.99)

Introducing polar coordinates in D — 1 dimensions [17] with polar axis along the vector p;z +

p} (1 - 33),

D-2 q

0

k

1 D/2-1 kmaa
2 .
B, = u‘**D/ dz i Dfl/ i
o I'(D/2-1)(2n) 0

! | 2\D/22
/ ds (1=2?) _ (2.100)
(B By (1= ) ko — [ + 75 )

Again, the order in which to proceed depends on the regularization method used for the IR diver-

gences.

If A 75 0, €IR = 07 then

47'('2/ / ‘/k_é_’_AQ

1

/ dz 5
(B By (- @) VI2+ 22 = i+ 55 (1 - o) ’k‘ )

(2.101)

Performing the z integration,

2772/ / ‘/k_é—l—/\Q
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1

— (2.102)
(Biw+ B; (1—2)° A2 + ((Biw + B, (1 - 2)) = (i + 75 (1 - 2))°) 12
Decomposing the integrand in partial fractions in k2 and letting A2 approach 0,
1t 1
B” = 272 dx 2 _ _ 2
™ Jo (Bt B (1 - 2)) - (e + 55 (1 - 2))°)
kmae  d |
0 k2 + A2
1- (B + B; (1— )" \?
(Biz + E; (1—2))" A2 + ((E,»x +Ei(1-2) = Gz +p; (1— x))Q) k2
1t 1
Sl R T ——— p
™Jo  (Bix+E;j(1-2)" —(piz+p;(1-1))
1. 4k2,. /00 dy
2 A o Vyr+1
Ex+E; (1—1))°
(Eiz+ B ( x)l (2.103)

(Bix+ B (1= )° + (B + B, (1 - 2))° = (Fiz + 55 (1 - 2))°) 2
where y = |E|//\ Performing the y integration,

1 [t 1
12 da 2 = S 2
At Jo (B + E; (1 — )" — (piz +pj (1 — )
2 E E:(1-— FE; FE;(1—- s 75 (1 —
(10g4k77;a1_ _‘J,‘—f— _‘]( Jf) Og .I‘+ ]( x)+|p_’m+p_j’( ]J)|>(2104)
A lpiz +p; (1 —2)| 7 Ez+ Ej(1—2z)—|piz+p;(1—2)

Bij =

On the other hand, if A = 0, e;p # 0, then, performing the k integration in (2.100),

S| | »|€IrR—1

1 1 kmax
/ dx 73 / d
0 4Am2T (1 + €rg/2) (4mu?)"" = Jo

1 1— 2\ €IR/2
/dz (1-2%)

-1 (Bix+ E;j(1-2) - |piz +p; (1 —2)|2)

2

1 K2 €rr/2
T 1T (1 +en/2) e <47w2>
1 1 1 — 52)1r/?
/ dx/ & ( )ﬁ _ i (2.105)
0 -1 (Biz+Ej(1—2)—|pz+p;(1—2)|2)

If both M?,m? # 0, expand in powers of €;p:

1 YEIR €IR k‘mQ
B;: = (1 + ) 1+ —1 ax
7 2 ( 2 8 4 p?
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! ! 14 S log (1 — 22
/d:z:/ dz * Sgtlog (1= . (2.106)
0 -1 (B + E; (1 —2) = |piz +p; (1 - 2)| 2)

Performing the z integration,

1 VEIR €rr, k2
B = (1 ) 14 IE |og Pmaz
/ dm2erp + <+ 2 Og47r,u2

-/1dx 1
o (Bix+E;(1-2)° = (i +p; (1 —x))*

Ex+ B (1— B+ E(1—x)—|pz+p (1—
-(2+€1R(log4—|— A%+ j( z) Og( iz + B (1—x)) ijx+pj( x)l))
lpiz +p; (1 —2)| ~ (Bix + Ej (1 —2)) + |piz + pj (1 — 2)|

1t 1
= 72 dl‘ 3 = = 3
A Jo (B + B (1 - 2))” = iz + 95 (1 - x))
2 k2 Ex+E;(1-x Ex+E;(1-2)—|piz+p;(1—2
-<+’7+10g i+ _,]( )og( i ( ) “i pj( )|
€IR U lpiz +p; (1 —z)| ~ (Eix + Ej (1 —2)) + [piz + p; (1 — z)]

(2.107)

Comparing this to (2.104), one once again observes the substitution log A> — log 472 4+ -2 + ~.

€IR

Simplifying (2.107) using

Wiz +9; (1 —2)? = (B} —M?*)a?+2p; - pjz (1 —2) + (B2 = m?) (1 — 2)°
= (B + E;(1—2)° —2EE;z (1 - 1)
2

+2p; - pia (1 — x) — M?z? —m? (1 — z)

= (Biz+E;j(1—2))=2p; -pjz (1 —z) — M?z? —m? (1 — 2)*(2.108)

one obtains

I 1
Bi]‘ = 72 dI 3
4r* Jo  2p;-pjz (1 —2) + M222 + m2 (1 — x)
2 k2 Ex+E; (1—x Ex+E (1-—2)—|piz+p;(1—=z
(2 g B Bt Bl =) (P Py =)t 5 =)
€IR mu? o piw+p; (L) 7 (B + Ej (1 - 2)) + |pix + p; (1 — )]

(2.109)

Finally, performing the x integration,

1 1
An? (M2 +m? = 2p; - p;) (w4 —x_)

ry —1 r_—1 2 k2 ..
- | log — log — +7+log —5-
Ty T €IR vy

37

Bij =




+bi (2.110)

where 1 are the two roots of 2p; - pjz (1 — ) + M2z2 + m? (1 — z)* and

e 1
) dx D)
ar* Jo  2p;-pjr(1—x) + M222 +m?2 (1 —x)
Bz + E;j(1—2), (Bw+E;(l—2))— |piz+p; (1 -2)
pix +p; (1 =) 7 (Biz + E; (1 - 2)) + [pix + pj (1 - z)]

bij =

(2.111)

is convergent.

The result for b;; is taken from [28]. In the case m? ~ 0, M? # 0

1 1 2p; - p; 2p; - pj k2, 0s
B, = — (-1 I 4 log i) (= 1
j p 1, <2 <og 2 + m2 n + v+ log g

M? 1

1 E; E;
+olog? ———— — log? I 4 Li <1+2<Ei+|m|)( 4 ))
B 4T AR iy M2

M?E; E;
— Lip | 1+4E, i
4 (pi -pj) 2]% *Pj

. FE; Ez 7T2
+ Lig (1 +2(E; — |pi]) (Qp .Jp, + MQ)) - 6) (2.112)
g J

In the case M? = m? =~ 0 this becomes

1 2 k2 2pi - pj
Bi' _ 1 mazx | z J
J 47T2pi >y ((QR + v + log ’ug ) og m2
1, 5 m? 1., 5 m? . 2E,E; 72
—Zlog? — — —log? — — Lip [1 -2 ) — — 2.113
Y A R Y e N (2.113)

Finally, to compare the regularization of collinear divergences by a mass or by dimensional
regularization, consider (2.105) in the case M2 = m?® ~ 0, E; = E; = E, p*> = p;° = p;° =
E? —m? ~ E2:

€ €rr/2
1 k2 )IR/2/ / 1—2 ) IR
B, = mar dz dz 2.114
J 42T (14 €1r/2) €1R (4w Ipzx+pg(1—£v)| 2)? 2 )

and there is now a collinear divergence. To treat this, break up the = integral into three regions of
integration. Expand in €;p in the middle region and expand the denominators in z in the other two

regions:

1 kz EIR/Q 8o EIR/2
Bij =~ 252 ( maw) / dx/ - 2
4Am2E2T (1 + €1r/2) 1 \ 4mwp? 1—|—b— (1—azx)z)

38



1 1-62 1+ &L log (1 — 22
+427 (1_’_762]12) (1+61R1 maaj)/ d.’l?/ dZ 2 g( ) 3
ToCIR d2 - E— VE?+ ¢z (1 —x)z)

1 2 €Ir/2 1— €IR/2
+ 5 5 (]f'rﬂ(lub) / dx/ dZ ( ) 5
Am?E?T (14 €1r/2) err \ 4mp? 1-6, (14b-(1-a(l-2)2)

(2.115)

where here ¢ = (p; — pj), a = 55, b= % N o (2.115) is equal to the first:
1 £2 €rr/2 . )EIR/2
max dx/
4m2 B2 (1 + €1r/2) €1r (47TM ) /1 82 +b— 1—@(1—91:))2)2

1 i2 €IR/2 15, o )FIR/Q
= mat dx / dz 2.116
Am2E’T (1 + €1r/2) €1r <47ru ) / ? 1+b7 (1 —azs) 2)° ( )

where o = 1 — 2. Performing the z integration in the first integral in (2.115),

1 12 €Ir/2 . 8 1
X < m“) / dz (1722) IR/2/ dx 5
4m2E2T (1 + €1r/2) 1 \ 4mp? 1 0 (14+b— 2+ azx)
1 k‘2 cir/2 €rr/2
— max d 1— 2\€IR
A2 E2al (1 + e1r/2) €1m <47m ) /_1 (127

L L L ! (2.117)
z14b—2 z14b—(1—ads)z '

Decompose this into partial fractions and let b and d> go to 0 where allowable:

1 k2 €rr/2
4m2E2al’ (1 4+ €1r/2) €rr <47ru )
! 1 /1 1 1 /1 (1 — ady)
. d 1 2 6[R/2 L _ + 2
/_1 2(1-49) 1+5b z+1+bfz 1+5b z+1+b7(17a52)z

1 g2 N\ R/ A 1 1
~ mag dz (1 - 2%)° -
AT E2al (1 + e11/2) e1n <4w ) /,1 2(1-7) <1+b—z 1—(1—a52)z>

(2.118)

The next step depends on the regularization method used for the collinear divergence. If m? # 0,

expand in €rg:

1 kgna:v 61R/2/ d (1 Q)EIR/2 1 1
Am2E%al (1 + e1p/2) ern \ A2 I 1+b—2 1-(1—ad)z

1 76[}{) €IR k2 /1 €IR 2
S — 1 4 IR jog Fmas d (1 IR Jog (1 — )
47r2E2aelR( T T2 ) ) U og (1-7)
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(1+2—Z_1—(1ia52)z> (2.119)

Performing the z integral, substituting for a and b, and simplifying:

1 YEIR €IR k2
1 ) 1 71 max
47T2E2a61R ( + 2 + 2 8 2 4

1
6]73 2 1 . 1
[ldz(1+ 2 log (1 Z)> <1+b—z 1—(1—a(52)z>

-1 2 k2o —-¢* 1 m?
= (( + v+ log /% ) log —qQ — ~log?
T? m

An2q2? 2 4F?
2 k?naz 1 2 _q262
+ <€IR + v+ log . ) log o + 3 log 152 (2.120)
Continuing from (2.118) if instead m? = 0,
1 “an/2 1 e 1 1
max d 5 _
4m2FE2%al (1 4 €1r/2) €1r <47m ) /1 : <1+b—z 1—(1—a52)z)
1 €IrR/2 1 1n/2 1 1
— max d 5 _
4m2E2al (1 4+ €1r/2) €rr <47ru ) /1 ‘ (12 1(1a52)z>

(2.121)

For the first term in the integrand, break up the z integral into two regions:

1 12 €rr/2
~ 4m2E2al (1 + €¢7r/2) €1r <47T,u >

(/51 dz (1 — ZQ)EIR/2 + ! dz (2 (1 - Z))SIR/2 _ /1 dz (1 — Z2>€IR/2 > (2.122)

_1 1—2z 5 1—2 1 1—=-(1-=ady)z

(Note that (1 — 2%) ~ 2 (1 — z) when z &~ 1.) Perform the z integral in the middle integral and then

expand in €;p:

1 k200 \
An2E2%al (14 €1r/2) €rn (47m )
01 1— 22 €rr/2 9 1 1 — 22 €rr/2
/ dzi( : ) +—(2- 251)611%/2 ,/ dz—( c )
1 1—=z €IR 1 1—(1—ads)z
1 2 q? 2\ 1
22<1+ m*(v—ﬂ) (eﬂ) )
42 E%q 2 2 " 12)\ 72 IR
€IR k‘Q - 1 €IR 2 ]4}
1 2210 max - (7) lo max
<+ 2 Bare T3 g) % g

0 14 “ilog (1 — 22 2
(/ dz + 5 log ( Z)+f+log(2—251)
1 1—=z €IR
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lerg D14 <R log (1—22)
~ B 0g?(2-20,)— [ 4 2.12
5y 08 ) /_1 I (1—ad) e (2.123)

Performing the remaining z integrals, substituting for a, and simplifying:

2 2

12 2 R ) e L (2 g R 2+7r
= — | = i og —Mar ) oo ——_ 4 — [ og —mazx —
4m2q? \ €35 €IR i & T2 S1E? T2 €IR i & T2 12

2 k2 1 —q%6
+ ( + v+ log ma”) log &5 + = log? a 2) (2.124)
€IR ,u 2

Comparing this with (2.120), one sees that it can be obtained by substituting logm? — log E? —
2/e;p — 7y — log Fmax/amp? and adding an additional term —1/4r242 (2/5§R + 71%)

Performing the z integration in the middle integral in (2.115),

2 1-46 €IR .2
! <1+7€IR)(1+6“?‘10gkm”>/ de/ o Lt loa (1-2%)

2 2
4merp E—\/E2+q2x(1793)2)

1 YEIR €IR kz /1 %2 1
= 1 ) 14+ =" log -2z dep—s———
Am2erp ( + 2 + 9 08 drp? ) Js, x—q%‘ (1-2x)

E E—E>+q¢*x(1—
.<2+61R<log4+ log \/ il x)))

VE2+@x(1—2) " E+VE>+¢*x(1—x)

1 102 1
—4m2q? Js, x(1—x)

2 k2. E E—JE?
<+7+log maz log VE + gl x>> (2.125)
€IR TH

VE?+ @z (1—1) E+\/E2+q:13( — )

Performing the z integration,

1 2 k2
= ———(—log2ds + log2 — 26 — log —R4x b;i
“onig (—log 262 + log 2) (GIR + v+ log e ) + bi;

1 2 k2 1
~ log ~maz ) |, b, 2.126
_%q( +v+ogu)og5+g (2.126)
where
1 1-2 1 1 2F 2F — \/AE? 1— 22
—2m2q* Jy l—zy  1+w2) \JAE? 4+ ¢ (1—x2) 2F + \/4E? + ¢% (1 — x3)

1 1. 5 —q% . AE?\ w2
- (-2 S Lb(1-2 )T 2.12
—2m2q2 < 298 4p2 2 —q2 3 (2.127)

Inserting this and (2.120) into (2.115) cancels the 3 and reproduces (2.113).
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2.5 Asymptotic Limits
Finally, the asymptotic limits at high and low energy of the scalar integrals in some commonly

used cases are collected here for convenience.

2.5.1 Low Energy Limits

The low energy limits, where ¢ < M?, are:

_ 2 2M
S O T SO
(P1,9) s \ 82 T N
9 N 1 2 M? q?
I® (p1,pr—q) =~ = (mvlog4ﬂu2+6M2
i 2 M?
I® (p) =~ T (er — v —log e 2) (2.128)

The low-energy limit of J() (p1,p1 — ¢) in the different regularization schemes is:

a) Using a photon mass,

. 2 2 2 2
2 N —1 q M q M
A e <6M2 o8 35~ Gapz T1o8 XZ) (2.129)

b) Using zero photon mass but a nonzero electron mass,

: 9 ) )
2 - —1 q M 2 q
R (6M2 (log T an ”) e
M? 2
log 7 —5 + — 2.130
+ log A2 + - + ’y) ( )

2.5.2 High Energy Limits

The high-energy limits, where ¢ > M?2, in the three different regularization schemes, are:

a) Using a photon mass,

I® (p1,pr—q) =~ 16;2 <log 412/;22 +2-7+ 65‘/>
I®(p) ~ —# (logj:f;2 - % +7—2)
J? (pr,p1—q) =~ —qug <; log” (;jj) — log (;%2) log (;jj) + 7:)
TV (p1,q) ~ ﬁ (; log? _ﬁqj + 27;2) (2.131)
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b) Using zero photon mass but a nonzero electron mass,

Q

i Ay 2
1 (p1,p1 — q) <log al +2—v+>
—q cuv

. 2
3) ~ 1 M~ 2 _
I () =~ —16-3 (log yr i +y-2

2 N { 1. 5—¢ 2 —¢? —® w2
J( )(pl,pl—q) N Tong (—210g W+ <7+€IR+1Og proy: IOgW_F
j 1 —¢*  2r?
T ~ s (5 log? T+ T 2.132
(p1,9) 1672¢% \ 2 og 2 + 3 ( )

Q

1 A2 2
I® (p1,p1 — q) (10g " +2—7+)
T —q €uv
v 1 i1
871'2 €IR 871'2 €UV

JD (prpr—q) = JY (p3,q)

i 1 —¢? 2\ 2 =
~ — (-1 St I E 2.1
1672 (2 (Og a2 T €IR> taoT) 21

Note that J® (p1,p1 — ¢q) can be obtained from case b by substituting log M? — log 4mu? —

2/e;r — v and adding an additional term /167242 (2/E§R + 7{—;)
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CHAPTER 3
IR DIVERGENCES IN QED

In order to illustrate many of the features of the gravitational calculations of chapter 4 in a more
familiar setting, analogous calculations in QED are first performed in this chapter. The lowest-order
quantum corrections to electron scattering in a Coulomb potential are calculated below following [17].
Here the same IR divergences occur as in the gravitational case. Soft divergences arise because of the
masslessness of the photon, but can be treated by the inclusion of bremsstrahlung in cross sections.
Collinear divergences also arise in the ultra-relativistic limit, where energies are large compared to
the electron mass m. Although it will be shown in the next chapter that all collinear singularities
cancel in cross sections for gravitational processes in which all external lines are on-shell, this will
not be the case for the matrix elements of the energy-momentum tensor and the gravitational field,
where the external graviton line is not on shell. To examine the dependance of the results on the
regularization method used for these remaining singularities, the integrals are evaluated using the

three different IR regularization methods of chapter 2:
a) regularization by using a photon mass A and an electron mass m,

b) regularization by dimensional regularization in D = 4 + ¢;g dimensions and using an electron

mass, and
c) dimensional regularization alone.

Since the purpose is to illustrate the treatment of IR divergences, only the IR-divergent pieces are
computed here. Also, since QED is renormalizable and not usually treated as an effective field
theory, in this chapter all analytic parts are explicitly retained in order to compare the results to

the literature.

3.1 Lagrangian and Feynman Rules

The spinor QED Lagrangian is
1 o _
Lorp = _ZFWFW + 1yt (10, + eAp) b — mapy (3.1)
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(a) Coulomb potential. (b) Vertex correction.

Ea

(c) Self-energy diagram.

Figure 3.1. Feynman diagrams for the corrections to the Coulomb potential.

plus a gauge fixing Lagrangian which in the Feynman gauge is

Lyp = —5 (0"A,)° (3.2)

1
2

where 1 is the electron field, A* is the photon field, and F*¥ = 9*A¥ — 0¥ A" is the field tensor.

These result in the photon propagator

g
the electron propagator
Y p+m
G():ng_m2 (3.4)
and the lowest-order photon-electron vertex
ieFé‘O) = djey" (3.5)

The Born approximation for the scattering of an electron with incoming momentum p; and
outgoing momentum p, by a Coulomb potential of charge Ze is generated by the diagram in figure
3.1a, which evaluates to

Mo = @ (p2) °u (p1) % (3.6)

(Here ¢ = p1 — p2 = (0,q) and of course p? = p3 = m?2.) The IR-divergent corrections in M to the
vertex part and electron lines occurring in figure 3.1a are given by figs. 3.1b and 3.1c. The cross

section is given by
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1 d’py

doe = 216 (By — B) IM? - ——2— 3.7
l ( 2 1)‘ | 2|p1| 2E2 (277)3 ( )
Integrating with respect to |pi] to eliminate the delta function,
do B 1 2 1 2 [do do
(dQ)el = 1o MI = g Mot Mit = (dQ>0+ (dﬂ)1 o
do 1 2
<dQ>O 1672 Mol
o) L MM MEMY) = -1 Re[MoMy] (3.8)
Q/), — lepz LTI T g o '
3.2 Vertex Function
The integral for the correction to the QED vertex function, fig. 3.1b, is
)
Ll (1) = Fi(@*) 9"+ 5-Fo (6*) 0"a
_ (e / Vi ((p2— k) -y +m)y"i ((pr — k) - v+ m) 17 (—igps) dk (3.9)

(02 =0 =m2) (@2 =0 =m2) k2 (207

where F; and F; are two form factors. The numerator of the integrand simplifies to
Nr =" [4p1 - p2 + (D — 2) k* — 4 (p1 + p2) - k] +4 (p1 + p2)"' v-k—k* [4m + 2(D — 2)y - k], (3.10)

Using the tensor integral reduction methods of chapter 2, contracting with external electron spinors

and letting D — 4 where allowable, (3.9) becomes

Dy oupn) = —ie? ((4m20 () — 2025 (py.2) 4 41 (m%) =31 (o1, ) ) 7
2m 3) (, 2 2
T —— (19 (m?) = 19 (o1, p2) ) (0} +p‘2‘)) (3.11)

Using the Gordon decomposition @ (p2) (p1 + p2)"* u (p1) = @ (p2) (2mA* + i q,) u (p1), [17], (3.9)
and (3.11) give

F = —ie? ((4m2 — 2q2) J® (p1,p2) + 41) (m2)
4m?
=31 (p1,ps) — mr—g (1(3) (m?)z — 1® (pl,Pz))> (3.12)
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3.3 Self-energy

The self-energy diagram 3.1c is

i — (ie)? ik -y +m)y* (—igu) dPk _ 2 Ny, dPk
=)= () / (K2 —m2) (p—k)°® (20" / (k2 —m?) (p— k)* (2m)" (319

where now p can be p; or po and

N =" (v - k+m)y, (3.14)

Using the anticommutation relations y#v” + y*~* = g"¥, the numerator becomes

Ny = (2-D)y-k—e*Dm (3.15)

After the tensor integral reduction,

—e* (2= D)1tV (p) — 2 DmI™ (p)

5 1 1 L,om*\ 2 @
—-e“(2—-D) Hy+ s Hot ( 5+ 55 |17 (p) )7 p—eDmI™ (p)3.16)

22 2p 2 2p?

—iX (p)

Since the external electrons are on-shell, the only part needed is the contribution to the electron

wave-function renormalization [17]
dy
= (3.17
d(v-p) hr )

which in the case m # 0 evaluates to

d 1 1 1 m?
Y, = — (—ie?(2-D)| -——H, + —H 1@ :
' d(v-p)( ie”( )( 2p? 1+2p2 2+(2+2p2) ®) )7

i Dt )

a
= —ie? [2m?* (2 - D)

1 1 1 m?
+0=D) (<t + gt (54 532 ) 190 e

dI (p)
+2m2DW |p2_m2)
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since

dI™ (p)

e (2 (I(3> (m=0)—I® (p)) +(2-D) 2722111) (3.18)

apt dI™ (p)

op?  dpm

opt / - 1 "k

op* J dpt (k2 —m?) (p — k)* (2m)"

p* -1 dPk
— | 2 —k

e (k2 —m?) (p— k)* (p — k)* (2m)"

_/ 1 dPk +i/ 2p - k dPk
(k2=m2) (p—k)* (p—k)* 2m)”  20* ) (K2—m?) (p— k)" (p— k)* (2m)"
(1 - m) / : kL )+ L@ m=0)

In the case m =0,

2 22) ) (R2=m?)(p—k)’(p—k)* 2r)” 27 2p?
(3.19)
d 2-D
¥ = —ie2=———1W (p 'y-p> p=
= (0 ) e
,2-D ,2-D dI™ (p)
= —16271(4) (p) lp2=0 — i€*—; (2172 2 > lp2=0
,2-D
= et W (p) lp2=0
,2-D
=222 () ) - 19 () 19 (m = 0)) |y
e? 1 1
— _ _ 1 3.20
87T2 ( €IR UV + ) ( )

3.4 Bremsstrahlung

The form factor Fy (¢%), and the self-energy ¥ (p), contain soft infra-red divergences. These

can be regularized by introducing a small fictitious photon mass A, or alternatively by dimensional

regularization, but then the results depend on the non-physical parameter A or €;z. Furthermore,

the form of this dependence, as coefficients of non-analytic terms such as log (\/ —q2 4+ \/4m?2 — q2>,

is such that it can not be absorbed into renormalized parameters occurring in the Lagrangian, and

the results are therefore meaningless as they stand.

This occurs because, as is well known [30, 2, 23, 17, 19], soft bremsstrahlung must be included

in the cross section for physically measurable quantities. As explained in chapter 2, soft divergences

arise from integration over the momentum k of some virtual photon in the range where k is arbitrarily
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(a) (b)

Figure 3.2. Bremsstrahlung diagrams for scattering in the Coulomb potential.

small. However, such virtual low-energy photons can not be distinguished from real low-energy
photons emitted as bremsstrahlung during scattering, because any detector of finite size can detect
radiation only with some finite energy resolution. The cross section for ’elastic’ scattering, without
the emission of bremsstrahlung, is therefore not a physically measurable quantity. Instead, it is
only the cross section for the elastic process together with the emission of any number of soft
photons, having a combined energy less than the detector resolution, which is measurable. The soft
divergences in the elastic cross section are canceled by corresponding terms in the bremsstrahlung
cross section, and the physical cross section is finite.

To the order considered, the bremsstrahlung amplitude is just the lowest order elastic amplitude
Mg corrected by the emission of only a single photon either from the initial or from the final
electron. (See fig.3.2.) However, for comparison with the gravitational calculations, the general case
of a diagram with an arbitrary number of external lines is considered. The correction for emission of

a photon with momentum k& from outgoing electron line ¢ with momentum p; consists of an electron

propagator with momentum p; + k, a vertex factor, and the photon polarization vector €}, inserted
between the outgoing spinor @ (p;) and the rest of the expression for M:
_ . A (o + k), +m
M out = @ (pi) €}, (iey") i (i + k), My (3.21)

(pi +k)* — m?

where M is the expression for M without the external spinor @ (p;), Mo = @ (p;) My. In the limit

where k is soft this becomes

2 (i), +m

M, 3.22
P My (322)

Mbr,out = —eu (pz) 6;7

Using " + y"+# = 2nt,

49



) ., B
rout — i L M, 3.23
Mr,out eU(P)( ok nT +pi-k 0 (3.23)

Then using @ (p;) (7" (pi), —m) = 0, one finds

Mk M*

i€y Di €y
a(p;) My = —e
pzk <’L) 0 Di-

Mb’r,out = —¢€ M (324)

Similarly, the correction for emission of a photon with momentum & from an incoming electron line
with momentum p; consists of an electron propagator with momentum p; — k, a vertex factor, and

the photon polarization vector €, inserted between the incoming spinor u (p;) and the rest of the

J73

expression for Mg, and in the limit of soft k

p“ €,

Mbr,in = MO (325)

i

The total bremsstrahlung amplitude is the sum of (3.24) and (3.25) over all external lines

pie,
- Lin 3.26
My 628 P ka (3.26)

with s; = —1 for outgoing lines and s; = +1 for incoming lines. Although the exact form of the
correction inserted into M differs for particles of different spin, the limiting form (3.26) for soft k,
and all subsequent results, are valid for any spin [19].

The cross section corresponding to (3.26) for the emission of a soft photon with momentum in

the range d3k is

d3k= |p eul’ pz eup e A3k
doy, = My, |? ——— AT AP L dog (327
Mor 2|k[ (2w Z k)® 2 e TR (i k) | 20k (2m)° :

1<j

This must be summed over all possible polarization and momentum states of the undetected soft
photon.

The sum over polarization states effectively converts the product of polarization vectors ¢,e;,
occurring in (3.27) into the unpolarized density matrix —n**. More precisely, since in an appropriate

gauge the two physical polarization states of the photon,
e =(0,1,0,0),€? = (0,0,1,0) (3.28)

form a basis of the two-dimensional subspace of spacelike vectors orthogonal to k* = (k:o, 0,0, ko),

summing €€, over these two states produces the projection onto that subspace:

50



S el = g, (3.29)

where 9, is

0 0 0 O
a5 01 0 0
O = 77“,,—1—15 i, —k k= (3.30)
0 01 0
0 0 0 O

However, by electromagnetic gauge invariance, one can add to d,,, an arbitrary multiple of k,, without

changing the cross section (3.27),

v = Oy = Opw + KXo + ko (3.31)

Choosing x, = 3 (—1/k, 0,0, 1/ke) one obtains

1.0 0 0
/ 0 100
8y =~ = (3.32)
0 010
0 00 1

(Note that this is the same expression which occurs in the numerator of the photon propagator.)

Therefore,

Zp? eMprel)t —»  —pi=-m’

pr Mprems - —p;p; (3.33)
and (3.27) becomes
doy, = —e? Z + QZSZSJ P @k ~dog (3.34)
= (i k) = : pj'k) 2|k| (2m)°

The sum over photon momentum states is an integral up to some maximum magnitude, kpax,

determined by the resolution of the experimental apparatus. So, finally,

Bk 1
dove = _62/ o \3 9L + 2 8i5; do
K <hmas (27)° 2K0 Z o1 W2 > i o (e | 90

i<J
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2

m
= —62 Z TB“ + Z S$iS;iDi 'ijij dO’o (335)

g 1<j

where B;; is listed in chapter 2. For the case at hand, fig. 3.2, (3.35) becomes

2 2 2
doy, = &> (—T;BH + <m2 — (12) Bis — TZBQQ) dog (336)

It can similarly be shown that higher order bremsstrahlung corrections cancel with higher order
elastic radiative corrections, and further that the low-energy contributions exponentiate in the sum
of the perturbation series, converting the the arguments of the logarithms in B;; into exponents

19, 17).

3.5 Cancellation of IR Divergences and Total Cross Section

The infra-red divergent pieces of Mgy + M are

1 1 Ze?

Mo+ Myp = <1 + 221) a(p2) (L4 Fi (¢*))~° <1 + 221) u(pr) —(;
oy 0 Ze?

(1+ 31+ Fi (¢%)) a(p2) 7"u (p1) 7

(1+ 31+ F1 (¢%) Mo (3.37)

The total cross section is given by the sum of the elastic cross section (3.8) and the bremsstrahlung

cross section (3.27). The infra-red divergent pieces of this sum are

doiot, iR = doe iR + doyr IR
m2 2 m2
= (1 + 221 <p2) + 2F1 (q2) — 627311 + 62 (m2 — q2) Blg — 622322) dO’O
= Xdoy (3.38)

the factors of 2 multiplying ¥, and F; coming from squaring Mg + M ;g to produce doe; rr. X is
evaluated in the three different IR regularization schemes a, b, and ¢ below.

In method b, dimensional regularization with m # 0: 2F} is the sum of UV-divergent terms
2F yv and soft-divergent terms 2F7 4, f¢, and likewise 2%, = 23 yy 4+ 231 40p¢. The UV divergent

terms in 2F; are

. 4m?
2R py = —2ie? <4J<3) — 31 (py1,pa) — yes B (I<3> —1® (pl,p2))>
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2
e? 2 m? 4m? — g2 ( —¢* + /Am? - q2)

= —|— —log——+2+3 1
572 | v + v — log I +2+ qu 0og A2
2
dm? 1 ( OtV q2> 3.39
NN 08 a2 (3.39)
When ¢? = 0 this becomes
e? 2 m?
2F =—|——-v—-log—— +2 3.40
LUV = o3 (GUV v —log 2 + ) (3.40)
which cancels with the UV-divergent term contained in 2¥,
e? 2 m?
2% =—-—— 1 —4 3.41
LUV = 25 ( p— + 7y + log 2 ) (3.41)
as it must, by the Ward identity. Therefore the sum of these two parts is
e? 4m?2 — ¢2 (v —q* + /4m? — q2)
2oy +25%0v = S5 |3 log 5
’ 8T A 4m
2
A2 ( —q% 4 /4m? — q2)
— 1 -2 3.42
4m? — g2/ —q? o8 4m? (3.42)
The remaining terms in (3.38) are IR-divergent. 2F; contains the soft IR-divergent term
2F‘l,sofit = 71‘624 (2m2 - q2) J(z) (p17p2)
B e? (2m2 - q2)
An2\/—¢?\/4m? — ¢?
9 /—@2\/Am? — ¢2 @+ /=@ Am? —
=1 — +7+log 5 log | 1+ 3
€IR aTp 2m
1. 5 1 4m? — ¢ 1. 51 4m?2 — ¢?
+log’ |~z +—F7——] —zlog" | s+ —F7—
2 < 2 2v/—q> 2 2 2\/—¢2
1 v/ —q? 1 /2
+ Lix [ =+ S . B Lis | = — S (3.43)
2 2,/4m? — ¢2 2 2,/4m? — ¢2
while
2 2 2_ 2 2
2 2 q € (2777, -4 ) < mam)
e“{m*—=|B = — +7+log
< 2) - 4m2\/—q%\/4m? — ¢% \€IR 7 2



2m?2

) /— 02 JAm2 — o2
log<1+q+ q”/4m q)

2 (2m2 - q2)
2

+e b12

(3.44)

where the convergent term b5 is defined in chapter 2, and thus these terms combine to form

2

2F soft + e? <m2 - q2> By

e? (2m? — ¢?) [4@1](2) (p1,p2) + ;Bm}
_e? (2m2 - qz)

I A —
. <log /O AmE ¢ log <1+ SRRV _q2>

4k2

max 2m2
1 1 4m?2 — ¢ 1 1 4m? — ¢?
gl [ VAT AT | 2 (2 g VAT TG
20g<2—|— 2/~ )+2°g (2+ 20/ @
/2 /2
—Lis [ = + d + Lig [ — 1
2 2/4m? —¢? 2 2/4m? —¢2
2 2 _ 2
+€2(m2 q)blg (345)

Similarly 3; contains the soft IR-divergent term

e? 2 m?
Yisoft = —= | — 1 3.46
1,s0ft 82 (€IR + v+ log 47TM2> ( )
while
11 (2 k2 E. (E-p)?
B = Bypy=-——|— log ™% + — log ————*— 3.47
11 27 55 <€IR + 7+ log > + » 08— 5 (3.47)

and thus the remaining soft IR-divergent terms in (3.38),

m
2 1z (18—~ e

max p m

2 2 2 2 E E— 2
Brogs — By Py = <1 E-pt) )

All of these results are the same under method a, with a photon mass A, after the substitution

% + v+ log4mpu® — log A2. Adding all these terms, the final result for X with a nonzero electron

mass, with or without a photon mass, is

2
e2 4m?2 — ¢2 ( —q% ++/4m? — QQ)
X 1+ — 1
+ 872 3 " 8 4m?2
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2
4m?2 ( —q2 4+ \/4m? — q2>
log -2
Am? — @2\/—q2 4m2

o eem—¢) (VeI - - e -
I =P A — @ \ o 4k o8 2m?

1 1 4m?2 — ¢ 1 1 dm? — ¢?
—Zlog? [ =2 Zlog? | =
20g<2+ 2/~ >+20g <2+ 20/~

(b ) ()

2 2y/4m? —q

e? m? E (E —p)*

and is IR finite. The asymptotic limits of (3.49) are

2 112 ¢ m2
X~ (1 1 3.50
A2 < T 36z T g 8 4k,2m) (3:50)

at low energy, where ¢2 < m?, and

2 /3 ¢ 2
*R e (gbgmz i tlos g
2 2 2 2 2
—q E 1. 5 —q . 4F T
— log W log k?naz — 5 log E — LIQ (1 — Tq2 - E (351)

at high energy, where ¢? > m?2. In the latter case, there are collinear singularities regularized by m.
These results agree with the standard results in the literature, for instance, [23, 30].

Note how the IR divergent piece from each elastic diagram cancels with the interference term
between the two bremsstrahlung diagrams obtained by cutting the virtual photon line at each of
its vertices. Diagrams 3.2a and 3.2b can each be obtained by cutting the photon line at one of the
vertices in diagram 3.1b, and it is the cross term Bjo between diagrams 3.2a and 3.2b that cancels
the soft divergence in F; from diagram 3.1b. Effectively, the virtual photon in diagram 3.1b is cut
off at low energies by the finite resolution of the detector. Similarly, diagram 3.2a can be obtained in
two different ways by cutting the photon line at the vertices in diagram 3.1c on the initial electron
line, and the soft divergence in 3 is canceled by By and Bss. Similar cancellations can be proven

to all orders [19, 17].
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In method c, with a zero electron mass:
e
X = 1425 (p") + 2R (¢°) = e* 5 Bua (3.52)

2F; contains the UV-divergent terms

SRy = —2ie? (4I<3> —31® (phpz))

e2 [ 8 2 —q?
= —|—+—+4+3 31 —6 3.53
82 (QR M vy + oy 3log dmp? ) (3.53)

while 23, is
2 2 2
p) DN G S SR (3.54)
871’2 €IR (Soave

Both of these terms now also contain collinear divergences represented by 1/e;z. The sum of these

two parts is
2 2

e 6 —q
2F 2% = — | — 1 —4 .
Lov + 2% = o (em + 37+ 3log yr: ) (3.55)

The remaining terms in (3.38) are soft-IR-divergent. 2F} contains the soft IR-divergent term

2F sorr = 4€%¢%iJ® (p1,ps)
2
_ _% (;R + % (log 4;‘52 +v+ ;) — 7{;) (3.56)
while
elp, _ 2 (2 (2 ﬂﬂog%)ﬂ
2 a2 \ 2, 2 \err T2
(6123 + v+ log ]f';f;) log 4_—;; — Liy <1 - 4_32) - 75) (3.57)

and thus these terms combine to form

1
¢’q’ [4u<2> (p1,p2) — 2312}

&2 ([ 2 k2 K21, ., —g? AE2\ 72
- (= log “maz | g Mmaz _ 2 S (1o ) ST
Am? ((UR s 7w2> %TE T2 n 12( —q2> 6 >(3 =

max

Adding all these terms, the final result with a zero electron mass is

e2 (3 2 —¢?
X = 1+ (2= log —4 ) —2
T (2 <EIR s 47WQ>
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max max

2 g E* 1., B2 1., AE?\ w2
(= log —L )1 | CClg2 L, (1-2 )
<€[R oyt log 47Tu2> %8 12 o8 k2 2 %% B2 2 —q? 6

In this case also, the soft divergence in F is canceled by the soft divergence in Bys, while the soft
divergent terms in i, B11, and Bys have disappeared due to a factor of m? = 0. The collinear
divergences remain.

Compare the results of the two regularization methods for the collinear divergences. After the
substitution logm? — log4mu® + 2/e;r + 7, (3.51) is nearly, but not quite, identical with (3.59).
The difference is only in the analytic terms, which in any case are divergent and therefore physically
meaningless. Since there are no massless charged particles in nature, this divergence is of no practical
concern. Note that the coefficients of the non-analytic terms are the same in both cases and are
independent of the regularization parameter m or €;g.

In the following chapters, analogous calculations will be performed for gravitationally interacting

massless particles, as well as the calculation of the scattering cross section of two particles.
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CHAPTER 4
IR DIVERGENCES IN QUANTUM GRAVITY

The same IR divergences which occur in QED also occur in quantum gravity, including collinear
divergences in the case of massless scattering particles. Although massless charged particles do
not occur in nature, so that the collinear divergences which arise in QED are purely academic,
all particles interact gravitationally, and collinear divergences represent a serious challenge to the
theory. Below, it is demonstrated explicitly to first order that these collinear divergences cancel in
the final results for scattering cross sections, and the reasons why are examined. The cross section
for scattering of a massless scalar particle by a scalar particle of arbitrary mass is calculated first,
because all the essential elements are present and the calculation is algebraically much simpler.
Then the cross section for photon scattering by a massive scalar source is calculated. Since the
analytic parts of the results only renormalize parameters in the Lagrangian, and are meaningless by
themselves, only diagrams which contribute non-analytic pieces are shown, and the analytic pieces

are truncated.

4.1 Lagrangian and Feynman Rules

As described in chapter 1, although in an effective field theory all terms respecting general
covariance must in principal be included, it is known empirically that after renormalization the
gravitational Lagrangian,to good approximation, is effectively just the usual Lagrangian of general
relativity

2R
Ly~ 95 (4.1)

plus a gauge fixing term. This effective Lagrangian is quantized using the background field method

of [13]. The full metric is expanded about a background metric g as

g;w = guu"‘ﬁhuy (42)

(All further indices are raised and lowered with the background metric g.) The expansion of the

gravitational Lagrangian to second order in A is then
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2 _
L, = \/Tg{ﬁzR+/:§1)+£§2)+-~-}

h — _
(1) —  ZHV (o R 9 RHY
L, " [g R-2R ]
1 1
L? = 5 Dadyu DN — S DahDh + DohDgh®® — Dyh,5 DP h#
D, 1 1 v DUV
+R <2h2 = b ) + R (203, hye — hhyy) (4.3)

where R and D are the scalar curvature and covariant derivative of the background metric [22]. This

must be augmented by a gauge fixing Lagrangian, which for harmonic gauge is

1 1
L‘gf = \/jg { (Dyh/w - QDMh)\)\) <Dah“a - QDMhao—> } ’ <4'4)

and a ghost Lagrangian
Loh = V/=gn" [DAD g, — Ry 1. (4.5)
Because the background field satisfies Einstein’s equation, the linear terms in (4.3) will cancel in all

matrix elements with the linear terms from the matter Lagrangian. The quadratic terms determine

the propagator, which in flat space .., = 1., in harmonic gauge, is

1 Pop ~s
Dag s (k) = =257, (4.6)
where
1
Papas = lapas = Slaplhe, (4.7)
1
Iaﬂ,’y& = § (ncwnﬁé + naénﬁ'y) . (48)

Expanding (4.3) to second order in h and to first order in the background field yields the three-

graviton vertex, which in flat space is [12]:

v R v v v 3 v
s (k) = ig {Pams [lwk +(k—a)" (k=q)" +q"¢" - 50" QQ]
P20 (D5 T + DP 1 = D15 — 17500

A A A A
+ [qw“ (ﬂaﬁffyg’ + w%é’) + " (naafyfs" + wfaﬁ’)
uy o\ o

- ¢ (naﬁl%”’ + WIZE’) = 1"q"q7 Naplysne + WIaﬂ,Ao)]

+ [2qA (IZZ’L,&,\U (k—q)" + 15 Lo (k— q)"
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— I Tap okt — Ijg"faﬁ,mku)

¢ (I W + 15 I8 ) + 1000 (Tappo 15 + Lo 125
(e v oV 1 14

+ {(kQ + (k- ‘1)2) (Iag’ S " Paﬂ,v5>

— (WBmatt + (k= 0 masl?y’) ] } (4.9)

The full Lagrangian consists of the gravitational Lagrangian plus the matter Lagrangian. The
two types of matter considered are a spin 0 field and the electromagnetic field. The spin 0 Lagrangian
is:

Ls= @ (9" D,¢D, ¢ — m*¢?) (4.10)
where D is the covariant derivative associated with g, which for a scalar is just the same as the
partial derivative. Expanding (4.10) about flat space to second order in h determines the lowest-

order 2-scalar 1-graviton and 2-scalar 2-graviton vertex factors:

KR
Tap (p,0) = —ig (PPl +Paps — (PP = m?) Nag) (4.11)
. o o 1 o
TaB~ys (pvp/) = ZH2 (Iaﬂpﬁlgfyé (ppp/ _|_p/pp ) - 5 (naﬂlpawé + 7]’)/6Ipaaﬂ)p/pp
1 I 1 ! 2 4.12
_5 afys — 5”&67]75 (p'p -m ) ( . )

The scalar propagator in flat space is

The electromagnetic Lagrangian is:
Lo, = V;gglngua (D,A, — D,A,) (DyA; — D: Ay) (4.14)
where
1
Dy A” = 0, A” + 59" (Ougor + Orgou = Dogun) AN (4.15)

From (4.14) it follows that the lowest-order photon-graviton vertices in flat space are[12]:

1 R
T (prp2) = i5 A(Prup2e + Prob2u) Nap + N P1sP2a

—p18 (P2p"va + P2uNap) — P2a (P1uMvs + P1uMBw)

+p1 - P2 (nuanub’ + NusMva — 77#1/7704[3)} (416)
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2

2 K
> —ir {[P1sP200 = N0 (P1 - P2)] MppMvo + MpoMup — N Mpo)

Tﬁa%lw,pa (plap2)

FNup [Nap (P10D20 + ProPav) — NawP1pD20 — NsvDioD2a
— NBoP1vP2a — NacP1P2v + P1 - P2 (NawNo + Naotpy)]
1o [Map (Prub2p + P1pP20) = NawP15P2p — NpwP1pP20

— NBpP1P20 — NapP18P2v + D1 - P2 (NavNsp + NapTpy)]

+1up Nap (P1uD20 + ProP2y) — NapP18P20 — N3uP1oP2a
— NBoP1pP2a — NaocP18P2u + P1 - P2 (NauNso + Nacpu))
Mo Nap (PLuP2p + P1pP2u) — NapP18P2p — NauP1pP2

— NBpP1uP20 — NapP1P2u + D1~ P2 (MapTsp + Naptpu)]
N Map (P1pP20 + P1oP2p) — NapP18P20 — NepP1oP2a

~ NBoP1pP2a — NaoD1P2p + P1 * P2 (NapNpo + NgpTac)]

—Npo [Nap (P1pP2v + P1uP2u) — NapP18P20 — NBuP1vP2a

— NpuP1uP2a — NawP1aP2u + P1 - P2 (NapNpy + Npulav )]
+ (NapP1y — NeauP1p) (NpoP2v — N uP20)

+ (NaoP1v = NawP1o) (MpP2u — NpuD2p)

+ (NaoP1y — NapPic) (NapP2v — NavD2p)

+ (napplu - nauplﬂ) (7750172” - nﬁ/JPQU)} (417)

Finally, the photon propagator in the (electromagnetic) Feynman gauge is

Dy (k) = (4.18)

4.2 IR Divergences in Quantum Gravity
The results for the cross section and for the metric may be expected to contain infra-red di-
vergences arising from the masslessness of both the graviton and the photon (or massless scalar
particle). Since these arise from low-energy regions of virtual momenta, they can not be ascribed
to the integrated degrees of freedom of the underlying high-energy theory, and since they are non-
analytic, they can not be removed by renormalization of parameters in the Lagrangian. Therefore

they are not resolved by effective field theory.
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Just as soft divergences occur in QED because of the masslessness of the photon, they occur in
quantum gravity because of the masslessness of the graviton. By the same reasoning as presented in
chapter 3 for QED, they can be treated in gravity in the analogous way, by including soft gravitational
bremsstrahlung in the final state of the system, and they present no additional difficulty. However,
as described in chapter 2, there may also be collinear divergences in diagrams with more than one
massless propagator. Such divergences occurs for hard virtual gravitons as well as for soft, as long
as they are on-shell, and can not be removed just by the inclusion of real soft bremsstrahlung in the
final state.

Collinear divergences are known from other quantum field theories, wherein they are treated in a
number of ways. However, none of these ways seem physically relevant to the case at hand. As seen
in chapter 3, these divergences occur in the theory of massless QED, but are physically irrelevant,
since there are no massless charged particles in nature. However there do exist massless gravitating
particles, namely photons. Collinear divergences also occur in QCD [16, 1, 17]. There they are
treated by the inclusion of jets of particles in cross sections, but jets are not expected to occur in
gravitational scattering. Alternatively, the KLN theorem [18] proves that collinear singularities in
the elastic cross section do cancel with singularities in the cross sections for processes that include
additional real, collinear gravitons. However, these real gravitons must include hard gravitons as well
as soft and must appear in both the final and initial states. The physical meaning of this is unclear
in this case [19, 1, 17]. While it is impossible to detect a graviton of sufficiently low wavelength with
a finite detector, it is unclear that a hard collinear graviton could never be detected. In particular,
if a significant amount of the energy of the system were carried by the graviton, it does not seem
obvious that a photon detector would be unable to discriminate between the energy carried by the
graviton and the energy carried by the photon.

Thus, the occurrence of collinear divergences could present a serious problem for quantum gravity
of massless particles, even in the energy range where effective field theory is expected to be valid.

However, Weinberg [19] shows that, at least in the region of soft virtual graviton momentum, the
collinear divergences that appear in individual diagrams of quantum gravity actually cancel between
different diagrams for any process in which all external lines are on-shell. He traces the reason to the
fact that gravity couples to the energy-momentum tensor, which in the massless case implies that
each vertex contains factors of momentum. Consider a diagram M,¢; formed from a lower order

diagram M by adjoining a soft, on-shell virtual graviton to two external particles with momenta

bi, Dj:
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1

d4k Z v 7’Pl/ o o
Meosr = / 2 ™ (pi,pi — k) —45E ST (pj,pj + k) Mo

@m)* (pi —k)* — m? k* (pj+ k)? — m?
_ / d*k i —ir (0} (pi — k)" + 1Y (pi = F)" + i - k™) iBu,po
@2m)! (pi — k)? —m? 2 k2
' —ik (pf (pj + k)7 + 0% (p; + k)" —pj - knP°
. i (0] (pj + k)7 + 0] (0j + k)7 —pj - kn )/\/10 (4.19)
(pj + k)" —m7 2

In the region of soft k,

d*k  plpr P g
Mso ~ . 2/ ) Hv,po It M
S e kR 2p kT

. Ak (piopy)? -
2 j 2
- / (2n)* (2p; - k) k? (2pj~k)M0 (4:20)

If a collinear divergence is also to be present, then at least one of the m; must be zero, and

d'k (pi - py)°

~ g2
Mope = —ik / @n) @pi k)2 (2, k)MO (4.21)

The integral over kg leaves a residue from the pole in k2

2

3 . _2
Maos =~ %/ dk3 — (p: f%) — Mo (4.22)
(27)" o |E (2pi-k‘> (2pj-k)

Comparing the similar integral (2.22), one sees these contain an IR-singular term of the form

2
Moost  ~ W%Pi - pj logm? log A* Mg (4.23)

for each of the m; equal to zero. But each p; will be joined by the soft photon to each other p; in

some diagram, so summing over all diagrams gives

2
K
Msoft,total ~ 7T§p1 . Zp] IOg m? log >‘2M0
J#i
2
= W%pf log m? log A2 M

2
= W%m? log m? log A> Mg (4.24)

As a result of this, the logm? singularity occurs in the combination m?logm?, which goes to zero

79

smoothly with m;. Note that each term has an additional factor of p; - p; compared to the QED
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case, originating in the momentum in the matter-graviton vertex, and it is these additional factors
which are responsible for quelling the collinear divergences. It is shown in (4.90) below that the
contribution from the soft real gravitons to the bremsstrahlung cross section also has the form
shown in (4.24), so that when the contributions from all diagrams are added, the corresponding
collinear divergences vanish.

Weinberg [19] considers only soft collinear gravitons, but there are no further collinear divergences
from hard collinear gravitons either, also for the reason that gravity couples to momentum. Collinear
divergences occur whenever an on-shell virtual graviton becomes collinear with an external massless
particle to which it is coupled. Since gravity couples to energy-momentum, any such virtual graviton
line occurring in any diagram is multiplied by the four-momentum of the massless particle to which it
attaches. For example, in fig. 4.2, every term in the numerator has two factors of the momentum py+
k, one from each of the graviton-scalar vertices. These factors remove the troublesome singularity.

To see this, consider that when evaluating the diagram, each of these factors of ps + k is either
contracted with one of the momenta po, k, or g, either in the diagram itself or in the tensor reduction
process. In either case the integrand reduces to a two-point form free from collinear divergences.
For example, consider the integral
I = / (ki pa) b gy

(k+p2)” (¢ — k)" k?
_ / k-pa+pi
(k+p2)* (g — k)" k2
3 (ko) + 03— 2)
B / (k+p2)* (q — k) k2

d*k (4.25)

But in the massless case p3 = 0, and the remaining two terms in the numerator each cancel one of

the propagators, leaving the IR-convergent integral:

1 d*k
I=—— / —————— + analytic terms 4.26
2 (q— kK ' 20

In the massive case, p3 = m? # 0, the integral

1 m? 4
5/ (E SR (427

containing collinear divergences, would remain. Similarly, the integral

_ (k‘ —|—p2) -k
= [ e 2
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is equal to

l((I‘CJH'Dz)erkQ—10%) 1 1
I:/2<k+p2>2<q—k>2kz =3/ (4.29)

= + analytic terms
(q— k)" k2

Finally, the integral

_ (k+p2)-q
_ / (P2 d (4.30)
(k+p2)” (¢ —k)"k
is equal to
L( = (a= R+ (g +p2) ~ 13)
I= / . . (4.31)
(k+p2)” (¢ — k)" k?
(q+p2)® = p2 = 0, and the result for this integral (4.30) is
I = 0+ analytic terms (4.32)

As a result of these cancellations, the diagram of fig. 4.2 is completely infra-red convergent.
Similar cancellations can be seen in other diagrams. For instance, the box diagram fig. (4.5), in
the case that both scattering particles were massless, would contain an additional massless propaga-
tor, but would also contains two additional graviton-scalar vertices, and these vertex factors cancel
the additional collinear divergences produced by the additional propagator in exactly the same way.
Indeed, anytime an additional massless propagator appears, an additional vertex carrying factors of
momentum appears with it. The only collinear divergences which do survive in individual diagrams
are those that occur together with soft divergences, and these are exactly the ones that were shown
to cancel between diagrams in total cross sections for on-shell processes by [19]. Thus, after the
inclusion of final-state soft bremsstrahlung, the scattering cross section will be free of all infra-red

divergences.

4.3 Elastic Cross Section

Turning to the problem of the scattering of two scalar particles of mass m and M respectively,
the Feynman diagrams which contribute to the scattering cross section to order k% are those shown
in figures 4.2 through 4.10, where the heavy solid lines represent a scalar of mass M, the thin solid
lines a scalar of mass m, and the double wavy lines a graviton, as well as the “mirror images” of figs.
4.2, 4.3, 4.4, and 4.7, where the radiative corrections are on the side of the heavy scalar particle.
The integrals in these diagrams are extremely complicated, even by the standards of quantum field
theory, because gravity is a rank-two tensor and because it couples to the momentum of the matter

field. Each graviton propagator is a tensor of rank four, and each vertex is a tensor of rank two per
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graviton line, involving the momenta of all the lines entering it symmetrized appropriately. Each
diagram contains several vertices and propagators, and as the tensor rank and number of lines in a
diagram grows, the number of different terms in the diagram becomes enormous. Evaluation of the
diagrams is therefore a considerable part of the total effort.

To accomplish this, the diagrams are evaluated largely by computer. All the scalar products are
evaluated using the Mathematica [34] program FeynCalc [15] and the results simplified in Mathemat-

ica using the kinematic relations between on-shell external momenta: p? = p3 = M?, p2 = p? = m?,

P1+P2 = D3+Pa, § = P1—ps = pa—p2, s = (p1 +p2)° = M>+m?+2py-pa, t = ¢* = 2p1-q = —2pa-q,
u=(p1 — p4)2, s+t+u=2M?+2m?. The integrals are then evaluated by the methods of chapter
2 using FeynCalc and proprietary Mathematica programs written by the author for this purpose.

The elastic (non-bremsstrahlung) cross section is determined from the elastic matrix element by

[23]
M|? dPpsd®
dog = (27T)4 0 (p1+p2 —p3+pa) M| 3 ps p43 (4.33)
4\/(p1 po)? — M2m2 (27)° 2E5 (2m)° 2B,
Eliminating the delta functions in the center-of-mass frame, this becomes
2 -
dog = |M|2 - P3| 5 (4.34)
647= |pi| (E1 + Ea)
Using dt = 2 |p1] |p3| d cos 8, this becomes
2 2
d(-t)d d(-t)d
oy = MP_d(=nds M) (=) do s

64m pi* (By - Bo)*2m 16T (2 — 9 (M2 4+ m2) + (M2 — m?)”) 27

If the cross section is azimuthally invariant then in a frame where the center of mass is moving either

parallel or perpendicular to the relative motion of the two particles,

do Mo+ My + .7 do do
(d(—t))el 16r (27— 28 (M7 4 m?) + (7 - m2)?) (dH))o " <d<‘t>>1 o
(), - o
d(=t)/, 167 (52 —25(M? +m?) + (M? — m2)2>
(=) - MoM; + MiM,
d(-t)/, 167 (32 — 25 (M2 +m2) + (M2 — m2)2>
Re [MoMj]

- (4.36)
8T <52 —2s (M2 +m?)+ (M? — m2)2>

The contributions to the elastic matrix element from the individual diagrams are given below in

terms of the scalar integrals I, J, and K listed in chapter 2. The results are first given for arbitrary
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Figure 4.1. Lowest order gravitational scalar-scalar scattering.

values of m and M and then examined in various limits. Since the results for the non-relativistic limit
have previously been computed [6, 7], these are compared to provide a check on the calculations.
Finally, results are given for the massless case m = 0 (or for m infinitesimal to regulate the collinear

divergences).

4.3.1 Lowest Order

The lowest order matrix element is given by the tree diagram fig. 4.1:

—iMy = 7 (p1,p1— ¢, M) iP,;#TW (p2,p2 +q,m)
(e ),
In the non-relativistic limit where s = (m + M)27 t <« m2, M2, this becomes
Mo ~ w (4.38)
which agrees with [7] while in the case m = 0 it becomes
Moznz (s — M?) (s — M?+1) (4.30)
4t
(4.39) results in the lowest-order cross section
( do ) = #M (4.40)
d(-t)/, 25672
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Ps=p1—q Pa=p2tq /

Figure 4.2. Gravitational vertex diagram.

4.3.2 Vertex Corrections

Those matrix elements which produce corrections to the vertex part fall into three categories.
One, fig. 4.4, has a structure familiar from QED. The other two, figs. 4.2 and 4.3, are new to
gravity. For each of these, there is also a mirror-image diagram correcting the heavy scalar vertex.

The results are:

Fig. 4.2:
. " 1P
_ZMl = /Tl)\(phpl_QaM)%
THPTC (k, —q) iPecap T (D2 + ¢, p2 — K, m) im0 (D3 — ki pa,m) iPys ps Ak
(k2 = 32) ((k +4)” = 22) (2 — ) = m?) (2m)"
o [(9mE (s +m2 — M2)®  13m® + 20mPs — 14mC M2 + m* (s — M?)?
= K 2 + 2
4(t — 4m?) 8(t — am?)
2mS +3m* (s — M?) —m? (s — M?) (s — M? +1t
. (=) (s M) 63 ) g,

n 4<9m4 (s+m2—M2)2 5mS — Am* M2 + Tm*s — m? (S—M2)2
K

Jr
8 (t — 4m?)” 8 (t — 4m?2)
4 2M2 _ 2. 2 2 2 4M2
+9m 8m 6m=s — Tm*t + 2t* + t 7 (q) (4.41)
48
In the nonrelativistic limit, this becomes
44 02 402 \f2
My & =TT (o) + T (g) (4.42)
4 48
which agrees with [7] while in the case m = 0 it becomes
t(2M? +t
—iMy = At CME ) () (4.43)

24
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P3s=p1—q pi=p2tq

Figure 4.3. Gravitational vertex diagram.

The result for the mirror-image diagram is given by interchanging m and M in (4.41). In the

nonrelativistic limit, this becomes

—'LM1 _ / iPe(,aBTaB (pl —4q,p1 — ka M) iT’Y& (pl - kvpla M) iP’Y&,pGTngC,,{)\ (kv Q)
(k2 = 22) (o1 = B)” = M2) ((k— @) = 2?)
PP dk
Y Y (D) Py + g, M)
(2m)
4M4 2 4M2 2
v =T O (py,g) + 21D (g) (4.44)
4 48
In the case m = 0 it becomes:
v = [MO (s M2)%  13M® 4 20MSs + M4s?
b 4 (t — AM2)? 8 (t — 4M?)
OMS + 3M*%s — M?s(s+t
i [(OM (s + M) 5MS 4 TMAs — M2s?
8 (t —4M?2)* 8 (t — 4M?)
M* — 6M2s — TM?t + 2t2
| OMT — 6M7s — TMt + ) 1 (g) (1.45)
48
Fig. 4.3:
‘ I iPox uw
—iMy = 5/71)‘(1717171 —q, M) %
PNk, —q) iPec,apTs " (P2 + 4, P2,m) iPys o dlk
(k2 = 32) ((k - g)” - 22) (2m)*
13m? (2M? + ¢t

- ,{4M[(1) (q) (4.46)

48
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Figure 4.4. Gravitational vertex diagram.

In the non-relativistic case this becomes

4137712]\42
P Sl

—iM 24

1% (q) (4.47)
which agrees with [7]. In the case m = 0 it becomes

—iM;=0 (4.48)

The mirror-image diagram in the nonrelativistic case is also

_ 1 [Pt asT®7 (p1 — ¢, p1, M) iPrs po 7oV (K, q) iPox o d*k
—iM, = 5‘/ ¢Gaf’2 (pl 4,1 ) 276,/) 3 ( q) );lt FHY (p2’p2+q’m) .
(k2 — \2) ((k . /\2) q (27)

13m2M?2
~ ,#”;TI(U () (4.49)

and in the case m = 0 is

13M2t

—iM; = r? 8 W (g) (4.50)

Fig. 4.4:

Z.PHA,HV T{“j (p2 + q— kap2 - kam) 7;7-’76 (pQ - k1p27 m)
¢ (2 +a k) = m?)

—iMy = /Tf/\(]?hpl—q,M)

_iPA/(?,aﬂT{lB (p2+q,p2+q—k,m)i d*k
(k2= 32) ((p2 = 1) = m2)  (27)"
2m* — 4m?t + 2 m2—s)(m2—s—t)+M*—M2(2s+t
ol TR ) ) o
m? (=2M2 (m? + 95) + 9 (m? — 5)” + 90"
96t

+rt [ -
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L 6m? (M =35 +1) +9 (s - M2)® 4 9st + 2 — TM2t
18

) >1(2) (p2,4 +12) (4.51)

3m? (m2 —M?+s
32 (t — 4m?)

Just like the analogous diagram in QED, this diagram has only a threshold singularity at ¢ = 4m?.
It therefore reduces to analytic terms when expanded about ¢ = 0 in the non-relativistic case, while

in the case m = 0 it becomes

M? —s5) (M? —s—t)t
—iMy = /@4( *) (16 > )J(Q)(pz,—pz—q)
49(3—M2)2+7tM2+93t+t21(1)

48

+K

(9) (4.52)

The mirror-image diagram also reduces to analytic terms in the nonrelativistic case and in the case

m =0 is
LM, — /T{W(m—q—k,pl—k,M)iT”‘S(pl—k,pl,M)iPw,ang“ﬂ(pl—q,p1—q—k7M)i
(= a= k)" = 22) (k2 = 22) (01 = B)* = M?)
iPyrx ox A4k
: — T ) +q,m
e 17 (p2,p2 +4 )(27T)4
2M* — AM?t +12) (s — M?) (s — M? +t
_jal ) ( ) )J(z)(pl,qul)
16t
L (3 (s+M2)*  3M2 (s — M?)?
"\ T2t — a2 32t
14M* — 18 M?s + 9s% + 9st + 6 M2t + t2
+ i 58+ i - )1(2) (p1,p1 — q) (4.53)

4.3.3 Box Diagrams
The matrix elements for the box and crossed-box diagrams, figs. 4.5 and 4.6, are:

Fig. 4.5 (box):

LM, = /TQB (pr — a,p1 — k, M) i1{° (p1 — k, p1, M) iPag.cc
(1 = k) = M2) (k2 = 22)

.ipwé,panC (p2 + q,D2 + ka m) Z.7—1[)(7 (p2 + kap27 m) d4k

(k=0 —22) (2t 0 —m2) (20’

2
((3 - M? - m2)2 — 2M2m2)
= & T K (p1,p2.q)

L <M2 (s —m2— M?)? (s — m2 + M?)

4(t — 4M?)
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\p.s:prq pi=p2tq /
AAAAMANANMAAAMAAMAMANAAANN,
MAAMAAMAAAAAAAANN,
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Figure 4.5. Box diagram.

M2 2\3 M2 (s — M2 —m?2 _ M2 2
b 16m) AL ms)(s +m)>J(”(p1,q)

et m?2 (sfM2 fm2)2 (sf]\/[2 +m2)
4(t —4m?)

3
_(S*MIQG* m?) + m? (s — M? *m;) (5m2+M2)> JD (pa, q)

((s —m2— M2)2 — 2M2m2) (s —m? - M2)
3 J@ (p1,po)

+r? (sfmszz)2 <1+ (s & m? — M7) (3_m2+M2)> 1% (q)

+r?

Y o) Y Y V)

L (s—m?—M?

2
+K 16 ) 1@ (p1,p2) (4.54)

In the non-relativistic case this becomes
474 3173

m=M m> M
4 K(pl,PQ»(I)_Ffli

m3 M3
+%4TJ(2) (phpz) + K4TI(2) (Phpz) — K

—iMl ~ 1434

m3 M3
JW (p17Q) - “4TJ(1) (PQ»(])

4WI(1) (q) (4.55)

while in the case m = 0 it becomes

— M? 3
—iM; = 54% ((s—M2)K(p1,p2,q)_J(1) (P2, q) +2J@ (pl,pz))
3 2
4 (s = M) 2M?(2(s = M) + 1) ) (5= )
16 ( G- @e o )’ S T

—K

o (s = M2 ((2M2 — 1) (s — M2 +t) + M2t)
4(4M2? —t)t

ke 7 (q) (4.56)

(For later convenience the collinear divergent terms have been grouped together in the first line.)
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\px:m—q pa=p2tq /

L A

Figure 4.6. Cross box diagram.

Fig. 4.6: The cross box diagram is given by interchanging ps and —p4. In the non-relativistic

case this becomes

—iMy =

/ 7_1015 (pl —4,P1 — kv M) i’riyg (pl - kapla M) Z.P'yé,ec
(o1 = 1) = M2) (B2 = 22)

.Z.-Pozﬁ,pa'rfC (P2 + q,DP2 + q— kvm) Z'Tlpo- (pQ + q— kanm) d4k

4
((k —q)° - )\2> ((p2 +q—k)’ — m2) (2m)
m3 M3 m3 M3 m2 M3 m*M3
H4TJ(1) (plaQ)“""i[liJ(l) (anQ)_’f‘liJ(g) (P1,P2)+ 1 K
mM m2M?
‘*"‘4347[(1) (q) (m+ M)* + H4TI(2) (p1,p2) (4.57)
while in the case m = 0 it becomes
— M2 +1)°
—iMy = ,{4(81—6)
(J(l) (—p2 — ¢,0) = 2P (p1,—p2 — @) + (s — M* +t) K (p1, —p2 — q,Q))
s— M2 +1)° OM2 (2 (s — M?) +t
CER YY) Y A VLTS TO R R RO
16 (s — M2 +1t)(4M?2 —1t)
s—M?+t 2
+“4%I(2) (p1,—p2 — q)
(s £)* (2M2 —t) (s — M?) — M?1) 10 (.58)
A(AMZ— 1)t ¢ '

The sum of the box and cross diagrams agrees in the non-relativistic limit agrees with [7].

73



Ps=p1—q pa=p2+ }/

Figure 4.7. Triangle diagram.

4.3.4 Triangle Diagrams

There are two non-vertex triangle diagrams. One, represented by fig. 4.7, has the radiative
corrections on the light scalar side and the other, mirror-image, diagram has them on the heavy

scalar side.

Fig. 4.7:
iPeC,aﬁT{lﬁ (p2 + q,p2 + k,m) ”175 (p2 + k,p2,m)iPys e d*k
(= =22) (2 + 0 —m2) (k2= n2)  (20)°

y <m2M2t +m* (14s + 2t — 12M?) + 4m®
K
8

—'LMl = /TQP(LEC (p17p1 - q7M)

+15m8 +mS (~22M2 + 265) + Tm* (s — M?)°  3m® (m? + 5 — M?)” TD (ps, )
4(15747712) (t—4m2)2 b2,q

L <2m4 +m2 (325 — 36M2 4 6t) — 6 (s — M2)” — 65t + 8M2¢t — t2
K

32

) 2
S (5 = MF)” | 13m® — 18MPm 4 22m’s + 5m? (s = M) ) 4 50)
2(t — 4m?)? Bt~ dm)

In the nonrelativistic case this becomes

5
—iMy ~ =k M*mA W (pa,q) — 1ﬁ4m2M21(1) (q) (4.60)

which agrees with [7] while in the case m = 0 it becomes

L6 (s — M2)* 465t —8M2 £

—iM; = -k = D (q) (4.61)

The mirror-image diagram is given in the nonrelativistic case by
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pP3=p1—q Pa=p2tq

Figure 4.8. Double-seagull diagram.

. ZPe aTaﬂ pP1—4,p _kaM iT’Yép _kapaM iP. g _po,e d4k
—iM; = / casTi (P2 - 1 ) 12(1 1, M) iP5, Tg’c(pg,pg—i—q,m) -
((p1 k) M2) ((k L )\2) (k2 — \2) (27)
~ =&t MAIW (py,q) — ZH4M2m2I(1) (q) (4.62)

and in the case m = 0 by

‘ TM4s + M*% +2MS  15M8 + 26MSs + 7TM*s2  3MS (M2 + 5)°
—iMy = & ; + e 4 30 ; 2) JW (p1,q)
(t — 4M?2)
4 <2M4 + M? (325 + 6t) — 65? — 6st — t2
+K
32
6 4 2.2 4 2 2

13M© + 22M*s + 5M2s?  3M* (M? + 5) 10 () (463)

8 (t —4M?) 2 (t — 4M?2)*

4.3.5 Double Seagull
The double-seagull diagram is:

Fig. 4.8:
—iMy = 1/750’“; (PLsP1 — 4, M) P51 Pys po3 """ (p2,p2 + q,m) d*k
2 (k2 = 32) ((k = g)” - 22) (2m)*
4
- % (4m4 +m? (14M? — 85— 2t) +4 (s — M?)” + (4s — 2M> + 1) t) 1M (g)(4.64)
In the non-relativistic case this is
. all 50 o)

—iMi =K -m M=I'" (q) (4.65)

which agrees with [7] while in the case m = 0 it becomes
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pP3=p1—q Pa=p2tq

Figure 4.9. Scalar loop vacuum polarization.

My ((s 7;\42) . (45 — 2];42 +1) t> 1) (466)

4.3.6 Vacuum Polarization
There are two gravitational vacuum polarization diagrams figs. 4.9 and 4.10, one with a scalar
loop and the other with a graviton loop. The results are:

Fig. 4.9 (scalar loop):

‘ iPixo 798 (3) (3) 77°
—iMy = /Tf"\(PhPl—Q»M) /\2 5 (3) (9 12
2= m?) ((k+0)’ - m?)
PPy d*k
—a 711 (P2, p2tg,m
¢ (2. 2 )(27r)4
L (19m* £ 16MPm? 4 m? (3t — 108) + (5 — M?)? + st + Mt + 2
- " 480
3mb — M2m?* — 8m?s + 2m? (s—M2)2
120t
3M2mS + 2m® — 4mSs + 2m* (s — M?)?
n m” +2m ggt;—k m (S ) 70 (q2’m2,m2) (4.67)

Just like the analogous diagram in QED, this diagram has only a threshold singularity at ¢? = 4m?2.
It therefore reduces to analytic corrections to the graviton propagator when expanded about ¢ = 0

in the non-relativistic case, while in the case m = 0 it becomes

_ar2)\2 2 2
LM, = (s — M?) +4(880+M Jt+t 0 (g (4.68)

Fig. 4.10 (graviton loop):

1Py 1Pys i
My = 7 = 0 b) TR0t ) ot 5, 1 m)
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p3=p1—4q pa=p2t+gq

Figure 4.10. Graviton loop vacuum polarization diagram.

21 (s — M2)* + tM2 + 1142 + 215t log (—
o (s )+ + + 21st log (—t) (4.69)
480 1672

where the graviton polarization operator I1%#7% (¢) is taken from [7], and includes the effect of the

diagram like 4.10 with ghost lines comprising the loop.

4.4 Bremsstrahlung Cross Section

To the elastic cross section (4.36) must be added the bremsstrahlung cross section, computed
analogously to QED [19].

To the order considered, the bremsstrahlung amplitude is the lowest order elastic amplitude My,
(4.39), corrected to first order by the emission of only a single soft graviton either from one of the
initial or from one of the final matter particles. (See fig.4.11) For simplicity, consider massless scalar
particles. The correction for emission of a graviton with momentum &, from outgoing scalar line ¢
with momentum p; and mass m;, consists of a scalar propagator with momentum p; + k, a vertex
factor, and a graviton wave function €, multiplying the expression for Mo:

] —iK

- v T VooV B VY 4.
Mbr,out (pi + k)2 _ mg 2 (pz (pz + ]f) +pz (pz + k) Di k’l] )GMVMO ( 70)

In the limit where k is soft this becomes

Mo vk
pripiGHV

Mrou:
brout 2 pi-k

Mo (4.71)

Similarly, the correction for emission of a graviton with momentum k from an incoming scalar line

with momentum p; is a scalar propagator with momentum p; — k, a vertex factor, and a graviton
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wave function €, multiplying Mo:

7 —1K v y N s
—— (0 (pi = k)" + 07 (pi — )" +pi - k™) €/, Mo (4.72)

Mbr,'r = 2 5
in (pi—k)Q_miQ 2

which in the limit of soft & becomes

(28 7
K P; P; E/LV
Mppin = —— ——— 4.73
br,in 2 i - L ( )
The total bremsstrahlung amplitude is the sum of these over all external lines
no v *
K p; pz Y
My =23 ;=M 4.74
br 9 i Sq pi k 0 ( )
with s; = —1 for outgoing lines and s; = +1 for incoming lines. As in the electromagnetic case,

although the exact form of the correction multiplying M differs for matter particles of different
spin, this limiting form for soft k, and all subsequent results, are valid for any spin [19]. For instance,
the correction for emission of a graviton with momentum k, from outgoing an photon line i with

momentum p; and polarization vector €* (p;), consists of a photon propagator with momentum p;+%,

*

a vertex factor, and a graviton wave function €,

inserted between the photon polarization vector
and the rest of the expression for M:
U

Mbr,out = EZ (pi + k) T 245 {((piu + ku)piu + (piu + ku)piu) Nsp + Nuv (pzﬂ + kﬁ)pzﬁ
(pi + k)" 2

— (pig + k) (Diptvs + Pivnop) — Pis (P + ku) up + (Piv + ku) M5,)

k- pi (Nusup + Nupnvs — Munsp)y €4 (k) M° (4.75)

where M? is the matrix element without the photon polarization vector: Mg = €5 (i) M %, Using

€ (pi) p¢ = 0 and psM? = 0, in the limit of soft k this becomes

K IL 5 * * K H ;/ *
Moo = 5 el (0) €5 (i) M* = 57070, (1) Mo (4.76)

and similarly for emission from an incoming photon.
The cross section corresponding to this for the emission of a soft graviton with momentum in

the range d°k is:

2 PO % 3
K ZS' PiPY € PiP5 G A7k
197

4 (pi- k) (pj-k) 2k (27T)3d

(2%

doy, g0
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§=<>=€

Figure 4.11. Gravitational bremsstrahlung diagrams.

p Py €upfpf e d’k
= Z |p7 pie “”l + 2Zslsj L - o] sdog  (4.77)
= k) (p; - k) 2k (27)
This must be summed over all possible polarization and momentum states of the undetected soft
graviton.
The sum over polarization states effectively converts the product of polarization tensors €, €,

occurring in (4.77) into the unpolarized density matrix Py p0 = /2 (Nuolvp + Mupllve — Muwlop)-

More precisely, since in an appropriate gauge the two physical polarization states of the graviton

00 0 0 0000
01 0 0 0010

en) = e = (4.78)
00 -1 0 0100
00 0 0 0000

form a basis of the space of all traceless, symmetric, spacelike tensors orthogonal to k* = (k07 0,0, ko)

24|, summing €, €*_ over these two states produces the projection onto that space:
g €u

po

) (n)x _ % (rOup + 000 — Oy Brp) (4.79)

,uu po
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where 9, is

0 0 0O
- 5 3 0 1 00
6;},y = N + t,utu - kp.kl/ = (480)
0 010
0 0 0O

However, by gravitational gauge invariance, on can add to d,, an arbitrary multiple of k,, without

changing the cross section (4.77),

5/“’ - 6:;1/ = 5/W + k,uXV + kVX,lL (481)

Choosing x, = 3 (—1/ko,0,0,1/ke) one obtains

-1 0 0 0
, 0O 1 0 O
(SHV =N = (4.82)
0O 0 1 0
0O 0 0 1
and
n n 1
Z /(u/) E)a) — ) (mwnup + NppNve — 77;“/770;3) = Puvpo (4.83)

n

(Note that this is the same expression which occurs in the numerator of the graviton propagator.)

Therefore,

1 mi
Zplpl e Pl eyt = i(Prpi)z:?Z
o _(n)* 2 1 ) m?mQ
sz pz HV pfp] E)a') = (pi -pj) — 5 (pi 'pi) (pj 'pj) _ (pi ‘pj) B . ; (484)
and (4.77) becomes
d*k
doy, = Z si8i p;)” doo (4.85)

) (i - k) | (27)° ko

i<j

The sum over graviton momentum states is an integral up to some maximum magnitude, k.4,

determined by the resolution of the experimental apparatus. So, finally,

K2 / Bk 1 mi 2(pi - pj)° —m2m?
doy, = — [ —=-— — =+ ) 585 ' J ) do
' 8 J (2m)* ko Z 2 (pi - k)* ; 7 (pi k) (py - R) ’
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Ii2

- 3 Z i —B;; + Z Si8; ( pj)2 - mfm?) B;; | doo (4.86)
i<j
where B;; is listed in chapter 2.

As in QED, it can be shown that soft divergences in the higher order bremsstrahlung corrections
cancel with higher order elastic corrections, and that the low-energy contributions exponentiate in
the sum of the perturbation series, converting the arguments of the logarithms in B;; into exponents
[19].

If one of the m; = 0, then the corresponding terms in (4.86) are

HQ

2
doprcor  ~ 3 Z 585 (pi - ;)" Bij | dog (4.87)
J#i
and the B;; contain collinear divergences. Note that each of these terms has an additional factor of
p; - p; compared to the QED case, originating in the momentum in the matter-graviton vertex, and

it is these additional factors which are responsible for quelling the collinear divergences in the total

cross section. The collinear divergent terms in B;; are

1 47 1 4k? 1 m?
Bi; ~ —— [ —=logm?1 maz _ og? 4.88
ij,col (271_) 2]?2 ; < 2 ogm; 10g 22 4 0g 4E12) ( )
Thus
K2 ak2,.. 1, 5 m?
doprcor  ~ T %;s iSj 2pz Dj ( — logm? log —maz e Zlog 4EZ2> dog
Ve
K? 4k%.. 1. 5, m?
= I( Sip; - ;s]pj ( —logm? log e Zlog 4EZQ> doy  (4.89)
VE)
By conservation of momentum, i SiPj = —Sipi, and s0
K2 1 4k2 1 m?
d .CO = —— 2 ——1 1 mar 7 2 7 d
Obr,col 4 (27T)2pz ( ogmy; 10g \2 1 og 4E3> oo
HQ 1 2 4k2 1 2 m2
= 5 2 (—Zlogm?log —mez _ _] L )d
4 (2n) ( g OBTIOE T T8 4E§> 70
~ 0 (4.90)

Thus the sum of all the collinear divergences in the bremsstrahlung diagrams vanishes. As shown

above, the contribution from the region of soft virtual photons to the corresponding elastic cross
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section also has the form shown in (4.88), so that when the contributions from all diagrams are
added, the corresponding collinear divergences vanish. This is illustrated in the present case below.

For the case at hand, fig. 4.11, (4.86) becomes

K2 [ M* m* M4 m*
dop, = —(—Bi1+ —Bax+ —Bs3s+ —DBu+ (2 (p1-p2)’ — M2m2) B
8 2 2 2 2
2 4 2 2 2 2 2 2
- (2(191 “p3) =M )Bls— (2(101 -pa)” — M"m )314— (2(192 -p3)° = M"m )323
- (2 (2 pa)” — m4) Boy + (2 (p3-pa)’ — M2m2) B34) dog (4.91)

and if m =~ 0 this becomes

K2 ([ M* M4
doy, = = (2 By+—B
Loy 3 ( 5 bu + 5 D33
+2(p1 - p2)” Bia — (2 (p1-p3)” — M4) Biz —2(p1-pa)’ Bua
~2(pa-p3)” Baz — 2 (pa - pa)° Bas + 2 (p3 - pa)” B34> dog (4.92)

and Biys, Bi3, B4, Bas, Bays, and Bsy contain collinear divergences.

4.5 Cancellation of Infrared Divergences

Just as in QED, the soft IR divergent piece from each elastic diagram cancels with the interference
term between the two bremsstrahlung diagrams obtained by cutting the virtual graviton line at each
of its vertices. For example, the bremsstrahlung diagrams figs. 4.11d and 4.11b can be obtained by
cutting the graviton line on the right side of fig. 4.4 at one of its vertices, and the soft term from the
vertex diagram fig. 4.4 combines with the interference term Bjs between those two bremsstrahlung
diagrams. Similarly, figs. 4.11a and 4.11b can be obtained by cutting the upper graviton line in the
box diagram fig. 4.56, and figs. 4.11c and 4.11d by cutting the lower graviton line, and the soft
term from fig. 4.56 combines with Bis 4+ Bs4. Finally the soft term in the cross-box diagram fig.
4.6 combines with the interference terms B4 + Bs3 obtained in a similar way from fig. 4.6.

However, as in massless QED, the collinear divergences which multiply those soft divergences
still remain in the limit m — 0. While this is a fundamental problem in QED, as explained above,
in quantum gravity these collinear divergences will also cancel, after all the corresponding diagrams
are added together [19]. In the intermediate results they may be regularized by maintaining an

infinitesimal mass m.
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The collinear divergent part of the vertex cross section is, by (4.52) and (4.36)

My <f€4 (s = M%) (s = ME 1) tiJ@) (P2, —p2 — @)]

( do ) B 1 Re
d(=t) /4, 87 (s — M?2)? 16

kSt [s—MZ4t\ (1. o —t -
= £ ~log? — —log — log — 4.93
167 3272 ( 4t ) (2 8 T B8 m2) (4.93)

The corresponding term in the bremsstrahlung cross section (4.86) is

(at),., = 5 (3) o (a),

B kSt <s—M2+t)2

167 3272 4t
4k,r2na1 _t ]. 2 m2 1 2 m2 . 4E2E4
<log 2 log e log 151 log 15 Lip (1 - 4.94)
The sum of these two terms is
do do kS (s—M24+t\? /.1 1
— — = — ([T—=) (2=%J@ —po) — —t°B
(d(_t))l,v " (d(_t))br,v 167 < 4t ) < 4 ! (p2 e p2) 16 o
L (s 1
~ 1673212 At 1% 4E2 T 1% 1
1 E2 E3? —t . 4E>Ey
+§ (log =3 + log =3 log e Lio (1 — —

The log A\? and log2 m? terms cancel, and only single logm? terms remain. Note that the same
combination of the integrals J?) (ps 4 ¢, —ps) and Bjs occurs in (4.95) as in (3.45). Just as in
QED, the result is the same using m = 0 and dimensional regularization after the substitution
logm? — log 4mp? + 2/e;r + 7y, except for analytic terms.

The collinear terms in the elastic cross section from the box diagram are given by (4.56):

().,

1
B 87 (s — M?2)?

Re

s — M?)°
Mo (/{4(1](\34) ((8 — M?)iK (p1,p2,q) — iJY (p2, q) + 2iJ @ (phpz)))]

B K (S—MQ) s— M2+t 2
T 16w 32m2 4t
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lo 37M2+10 s — M lo 87M27110287M2
&8 T2 SN VE S 2% T2

K6 (s —M2)% (s — M2 +1) s — M? —t 1. 5, —t
log log — —log” ——
T 16w 3272 1612 M? s—M2 2°° s—M?
KO (s—M?%) (s=M?+t) (1, 55— M? s — M? 5 S
- -1 —2Li —1 4.96
Tl6r 3202 16t (2 Ve 2T ©8 5M2> (4.96)

There are two corresponding bremsstrahlung diagrams in (4.86):

(at%)..
) e (55) ) (58),

KO (s—M?) (s— M+t 2 s — M? s — M? 4k 1. 5, m?
= — log 5 — +log log — —log” —
m

16m 3272 4t M? X 4° 4B
7ilog E*%l 1M|2|)+ Liy <1+2(E1+|p*1|) <S_E]2\42+Z§12)>
JM@H@@FW ) )+ e (- (2 - £2))
+Zlog m+ Liz <1+2(E3+|p§|) (S_E?W +J§B’z>>

M2E4 E3 E4 E3
— Lis | 1 +4E — Lig (1+2(Es—|p3]|) | ——= + —
12 ( + 4 <(8_M2)2 SM2>) + 12 ( + ( 3 |p3|) (SM2 + M2

The sum of these comes out to

(d?jw)l,b * (d?ft>>bT,b

K5 (S—MQ) (s—M2+t>2
1

167 3272 4t

28—M2 1 1 E2 1 E? 1 s — M?
2 ng2 +ng2 og 2

1 1 28— ]\42 + 1
— 10 — 10

s—M? 1., 2 Es Ey
1 — 1 —_—_— Lira [14+2(F ] _ —
W, T T G o (120 (1

. M2E2 El . N EQ E1
— Lis <1+4E2 ((5M2)2 - S—M2>> + Lis <1+2(E1 - |p1|) <S—]\42+]\42>)

1 M? E, Es
o2 (12 ()
477 (Bs+|p))’ e tar

. M?E, Es . - Ey Es
— Lio <1+4E4 ((5M2)2 - s—M2>> + Lis <1+2(E3 Ip3) (s—]\/l2+]\42>)
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6 (o— M2)? (o — M2 _ A2 _ _
kS (s —M?)" (s M—l—t)(logs Mlog t 1. t )

A — Zlog? —
167 3272 16¢2 M2 s— M2 2% S
KO (s—M?) (s=M?*+1t) (1, o5 M? s — M? s S
S 1 — 2 Li —log? —>— 4.98
T l6r 3202 16t (2 Ve 2T ©8 5M2> (4.98)

Again, the log A2 and log® m? terms cancel, leaving only single log m? terms, and after the substitu-
tion logm? — log4mu? + 2/e;r + v , the results are the same if m = 0.

This result can be applied to the cross box diagram by permuting p, with —p4 in the radiative
corrections. Under this transformation, s — M? becomes u— M? = M? —s—t = — (s - M?+ t) and
s — M? +t becomes M? — 5 = — (s - M2). Thus the final result for the crossed box cross section

plus corresponding bremsstrahlung is

kS (s—M?+1) <s—M2+t>2

- 167 3272 4t
1. o 4E2 1. o 4E? 1 E2 E3? s—M?*+1t
A =log? ———2— + —log? —— = — 4+ (1 1 1
(4 i yEr R Sy A A G BN T
s—M?*+t  s—M>+t 1. , M?
+ log log 4+ —-log" ———
4k2 00 M2 477 (B + Ipi))?

. . E, Ey
+ Liy (1+2(E1 + |p1|) (u—MQ + W))

. M?E, FEq . . Ey FE
— Lis <1+4E4 <(U—M2)2 Y YE + Lis <1+2(E1—|p1|) (u—]\/[2+]\42

1, 5 M? . < . Es E;
+—log® —— = + Lix (1 +2(E3 + [p3]) + —=
4 (B3 + |p3])° u— M2 M?

. M?E, Es : . E, E;
— Lis <1+4E2 <(u—M2)2 - u—M2>> + Lis <1+2(E3—|p3|) (u—]\/[2+]\42

K6 (s— M2 +1)" 1 s— M2+t —t 1, —t
+— log log ——log” ——
167 3272 16 (s — M?) 2 M? s—M2+4+t 2 s— M2+t
K6 (s — M2 +1)° 1 1, ,8— M2+t s—M2+t 5, u
S S LR ) 5 P L 17 U —
Ter 3202 16(s— M)t <2 & T 2Ty 8 s—M2—|—t>
(4.99)

The sum of the vertex terms (4.95), the box terms (4.98), and the cross-box terms (4.99) is

(@), (@),

kSt [s—M24t\° , 4By E,
- —— - L12 1—-—
167 3272 4¢ —t
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kS (s — M?) (S—M2+t>2

S 16m 3272 4t
1. 5 -t s— M? —t - M? s — M?
_ilog I log =3 log — e + log =3 log e

1 M2 E E,
+=log? ————— + Li, <1+2(E1+|p*1|)< +>>
4 (E1 + [pi])? s— M2  M?

: M?E, E, . . Es E,
— Lis <1+4E2 <(3M2)2 - 5—M2>> + Lis (1+2(E1 - ‘pl‘) <5—Z\42+Z\42)>

1. o M? , q E4 Es
+710g )2+L12<1+2(E3+|p3|)<8—M2+W

4 (B3 + |p3|
MZ2E, Es E, Es
— Liy [ 1+4F - Lis [ 1+ 2(E3 — |p3 _— 1t —
12<+ 4<(5M2)2 YT + 12(+ (s p3)<s—M2+M2
K5 (S—M2)2(5—M2+t) s — M? —t 1. 5 —t
—— log log — —log
16m 3272 16¢2 M?2 s—M? 2 s— M?
6 (s —M? —M?2+1t) (1 — M? — M?
+L(8 )(S ) flogQS —2Ligs — log? 5
16m 3272 16t 2 M? S s— M?
+L6(S—M2+t) s— M2 +t\°
167 3272 4t
1lo 2t +lo t lo S_M2+t—|—lo S_M2+tlo s M:+i
2% soMEit %Rz, BT ¢ 8 k2, BT

1 M , E, Ey
ot (1vagm ) (i + £2))
4777 (B + |pi))? u— M2 M?

. M?E, FEq ) R Ey E;
— Lis <1+4E4 <(u—M2)2 - u—M2>> + Lis <1+2(E1—|p1|) (u—W—’_W

1., M2 , . Es By
+110g 7)24' L12 (1—|—2(E3—|—|p3|) (’IL—W+W

(E3 + [p3]
. M?E, E; : - Es E;
K6 (s— M2 +1)" 1 s— M2+t —t 1o, —t
+— lo log — —log” ——
167 3272 16 (s — M?) 2 M? s—M?2+t 2 s— M2+t
6 (s— M2 4+1)° 1 1 — M? — M?
P Gt ) Ly 8= Midt o s= M4t g 0w
167 3272 16 (s — M?)t \ 2 M? u s—M?2+1t

(4.100)

The log m? terms (or /e, terms if m = 0) cancel, as they should, leaving only an IR finite remainder.

4.6 Final Result
Adding to (4.100) the remaining, IR convergent, pieces from the elastic diagrams (4.43) to (4.86)

substituted into the cross section formula (4.36), one obtains the total cross section. The general
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result is very long and not very enlightening, but in the case m = 0, in the limit of small ¢, the result

becomes simply

do KT (s- M7 1 oy =t KO 1T(s—M)* 1 M
d(—t)),, = 16z 192t 162 °u2  16m 128t 321
K5 (S—M2)2 g —t k2 s— M?
— 7 [ =21 41 maxr 1
167 102472t ( 8 ST TR AR BT

+61 s M2t
BT B T

—1 —1
—2log 2 log p—

mazx
2

k —t
—210g m}l&z +410g s—W)

=
K5 (8—M2)31 9o —t
167 10247212 8 s — M2

(4.101)

This is free of all IR divergences. The log ;2 term originates in the UV divergences, and combines

with terms in the effective Lagrangian as described in chapter 1. Of (4.101), an amount

(4.102)

pIEn) tog

do R 9(s-M) 1t S 1T(s-M2)P 1 M
d wotheavy 16w 32t 3272 ° 42 T6m 128t 32—t

comes from the triangle and vertex diagrams which involve only the heavy scalar in internal lines.
These terms are essentially the same as the corresponding terms found in the massive case in [7].
There it was shown that some of these terms could be interpreted as corrections to the energy-

momentum tensor of the massive particle. An amount

do KO (s—M241)° [, 4E? AE? | —t
=BT T (g2 2 421 log —& 4103
(d(—t))toty“ght 16n  1024n%t <Og —p T8 e m2) (4.103)

comes from the triangle and vertex diagrams which involve only the massless scalar in internal lines,
and in the next chapter it will be explored whether these terms can be interpreted in an analogous

way. An amount

do RS (s—MPt)” o2 4B 1 4B )
d(=0) ) rorpoe 16m 1024720\ 0 ¢ %Rz w2
KO (s — M2)? - 2 s — M?
AN Gl A ()} 4log —maz_
167 1024n2t ( Ry Ve i VR I Ve
—t —t s — M? —t
—2log 2 log YT + 6log 2 log P

21 Finaa +41 -t
210 oo 1
& s M2 &S M2

s —
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_LG (S — M2)3 log> —t
167 10247212 8 S— M2

(4.104)

comes from the box and cross box diagrams, which involve both the massive and the massless matter

particles in the internal lines, and

do kS 11 (S—M2)2 1 —t
99 - log — 4.105
<d(—t)> 16m 48t 16m2 o2 (4.105)

tot,pol

comes from the polarization and double-seagull diagrams, which don’t involve any of the initial or
final particle lines in the propagators. (4.101) will be used in the next chapter to calculate the

deflection of a beam of scalar particles around a massive object.

4.7 Photon-Scalar Scattering
Next consider the gravitational scattering of a photon by a scalar particle. The matrix element

for photon-scalar scattering can be written
—iM = H" ¢, (p2) €, (ps) (4.106)

where €, (p2) and €, (p4) are the polarization vectors of the initial and final photons. By Lorentz
invariance, H must be expressible in terms of the momenta p; and ps of the initial and final scalar
and p, and ps of the initial and final photon, respectively, and the metric tensor 7. €, (p2) and
€ (ps) each have two linearly independent components, and by an appropriate (electromagnetic)
gauge transformation, both can be made orthogonal to both ps and ps. H is thus effectively a
linear operator over the two dimensional space-like surface orthogonal to ps and p4, and there are
therefore four linearly independent components of the tensor H. But M must be invariant under
parity transformations, which reverse helicities, so these four components must be related in pairs,

bringing the number of independent components down to two. Let

(p1+p3)- K

P = pi+ps— 2 K
K = pi+po
g = P1—DP3=DPs— P2 (4.107)

P is orthogonal to both K and ¢, and so also to both ps and p4. It therefore can be used to define

one of the directions of polarization. The other direction of polarization must be orthogonal to
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Figure 4.12. Lowest order gravitational photon-scalar scattering.

q, K, and P, and therefore must reverse sign under parity transformations, since P, K, and ¢ do
not. Thus by parity invariance there can be no cross terms between the two directions in H, which

therefore must be of the form

prpv
P2

H"™ = H, (4.108)

+ Hy (mtu _prpr KPRV q”Q”)

P2 K2 e

PHPY/P? is the orthogonal projection operator onto the direction of P. By contracting the expres-
sion for H* with P*PY/P?, one obtains an expression for the scalar Hy, which can be evaluated
independently of Hs. Similarly the other tensor form in (4.108) is a projection onto the other
direction of polarization, and contracting H*” with this form determines an expression for Hs.

In either the center-of-mass frame or the rest frame of p;, P lies in the plane of scattering. Thus
H; is the amplitude for scattering of a photon polarized in the plane of scattering, and Hy the
amplitude for a photon polarized in the perpendicular direction. The cross section in either case is

still given by (4.36) with m = 0:

( do > _ |H,|?
d(—1)) . 167 (s — M2)?

do B |Hy|?
(d(t))m = or- ) (4109

The diagrams determining the matrix element are entirely analogous to the scalar case, including
mirror images of figs. 4.13, 4.14, 4.15, and 4.18, where the radiative corrections are on the side of

the scalar line. Results for H; and Hs individually are given below.
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Ps=p1—q Pa=p2tq

Figure 4.13. Gravitational vertex diagram.

4.7.1 Lowest Order
The lowest order matrix element is given by the tree diagram fig. 4.1, where the heavy solid line

represents a scalar of mass M, the double wavy line a graviton, and the single wavy line a photon:

a K iPI{)\, v _a,B,uv
H = 7 ’\(P1,P1*q,M) qgu 1 P (P2, P2 + q)
s — M?)? 4+ st
H, = _'2(—
1 (2 o
2
s—M?)" 4 st
Hy, = m2% (4.110)

This results in the lowest order cross section

5 2
do p ((s—M2) +st)
= 5 5 (4.111)
d(=t) /4 2567 (s — M?2) t
independent of the direction of polarization.
4.7.2 Vertex Corrections
The result for the vertex diagrams are:
fig. 4.13:
iPm v
H¢w = /Tf)\ (plapl 7Q7M) q);#
HV,po,eQ k. —q)iP b, x,aB k) (—i )W,y _k P d4k
T3 (k,—q)i e¢,aBT1 (P2 + ¢, D2 ) ( anw) 1 (p2 D2) 1 v8,po
1
(k2 = 22) ((k +a)* = 22) ((p2 = B)* = m?) (2m)
it 1 1
H = - (41 (s — M?)° + (415 - 47M2> t+ 27152) il' (q)
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P3=p1—q Pa=p2+tq

Figure 4.14. Gravitational vertex diagram.

T 17 137
H, = —% (36 (s— M?)° + (365 - 4M2) t4 8t2) i (q) (4.112)

mirror image:

H(bw _ / iPeC,aﬁTaﬂ (pl —q,p1 — kv M) Z’T’Y(S (pl - k7p17 M) iP’y5,poT?’,)U,€C7K)\ (ka Q)
(k2 =22) (o1 = B = M2) (k= @) = 2?)

1P LY _pw,uv d*
. Y G, Do+
2 1 (P2, P2 +q) (277)4
RAMZ (2000 = 902t 4 12) (s = M?)* 4 st
Hl = - 2 '](1) (p17Q)
8 (t —4M?)

KAM? (t — 13M?) ((5 —M2)% ¢ st) )
— I
8 (t — 4M?2)? @
FAMZ (200 = 902t 4 12) (s = M?)* + st
Hy = P} J(l) (plaq)
8 (t — 4M?)
KAM? (t — 13M?) ((s - M2)% st)

8 (t — 4M?2)?

I'(q) (4.113)

fig. 4.14:

1 1Py
H¢w = §/Tf)\(plap17an) ’;2’#V
pposeC (i P dw,aB,76 P d4k
T3 ( 5 Q) 1Le¢,afTo (pZ + Q7p2) LLy8, po

(k2 = 22) (k- g)” - 22) (2m)*

: 11
H = = (12 (s — M?)* + (125 — M?) t + 2t2> il* (q)
ir 1,

H = = (12 (s — M?)* 4 (125 — M?) t + 5t > iI' (q) (4.114)
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ps=pri—q Pa=p2+q

Figure 4.15. Gravitational vertex diagram.

mirror image:

H¢W — 1 / iPEC:a,BT;ﬁ7’Y§ (pl — 4, P1, M) iP’yﬁ,paTg)\7ec,pa (k, q)
? (k2 = 32) ((k = 0)* = X2)
in-@)\,uu bW, v d*k
— M (p2,p2 + q) o
H = 0
H, =0 (4.115)
fig. 4.15:
iPK ng TG’L’MV +q— If, - k' —Z L TX’¢’75 — ]{;,
H™ = / A (pr 1 — g, M) e I P2+ 4= Ropr = B) (2P0 (P2 = k. p2)
¢ ((p2+q—k) —m2)
iPysapty ™ (P2 + q.p2 + q — k) (—inge) d*k
(k2 = 22) ((p2 = k) = m?) (2m)”
25k 2 1 1
H = - M? —=M?)t+ —t?)il!
o B (e (- ) e g )i )
’i/€4 2 i
+1 ((s ~ M*) "t + st2) iJ@ (p2, —p2 — q)
25ikt [ 1 1
H = _*M2t *t2 'I]_
? 96 \ 1 'T3§ > i (a)
it 2)2 2\ ; 7(2)
— (= M%) t 4582 0T D (pg, =p2 — ) (4.116)
mirror image:
H = / i (= g = ko1 — i, M)iT (pr = ko p1, M) iPys.api” (01— g0 — g — k, M)
(= a =8 = a2) (k2 = 22) (01 = B)” = M2)
Z.P},LV KA _¢,w,kA d4]€
PR sdet ol T Lhadt] , _|_
q2 1 (p2 D2 q> (27‘(‘)4
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H,

\p;; =pi—q Pi=p2tq

/pl

Figure 4.16. Box diagram.

Rt M =AM+ 82) (s — M2)" 4 st)
J® (p1,q —p1)

16t
3t (2004 =AM+ 82) ((s = M2)" + st
+ I (p1py — q)
16t (£ — 4M?)
Rt (M =402t 4 12) (s = M?)” 4 st o
- 16t J (p1,q — p1)
3t (201 — AM2t+ 2) ((s = M2)” 4 st o

4.7.3 Box Diagrams

The result for the box diagrams are:

fig. 4.16 (box):

H*

H,y

/ 7% (1 —q,p1 =k, M) i) (p1 =k, p1, M) iPap.cciPrs po
2 o (a5
T (P24 g p2 ) (i) TP (pa + kypa) Ak
((p2 -+ k) = m2) (e’
4

Ll ((3—M2)4—|—3t (5—M2)2—|— —(S_M2)6 > K

32

4

al ((5M2)3+st(sM2) +

32 (s — M2)” + st

K 2 (s —M2)4s
+— — M? I G A, Ny (€ ,
16 ((S ) s (S ) r2)2 T st (pl p2)

2MP 4 5Ms + 10M2%2 — & s(s—3M%)t  (s— M?)" (s + M?)

IS

o 32 B 32 32 ((s — M2)* 4 st)

3MO (M2 +5)° M2 (2M° 4 8M4s + 3M2s2 + %) D (pr.)
2 (t — 4M2)? 4(t —4M?) b4
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Figure 4.17. Cross box diagram.

, (3MA—10M2%s + 1552 3st (s — M?2)°
+r o
64 32 8t

MO+ 6M*s + 2M°5 + 5° 3M4(M2+8)2>1<1>(q>

8 (t — 4M?) 4(t — 4M?)?
4.2
+H12 ()(phm)
_ Kt 24 212 (5_M2)6
Hy, = —32<(5—M) + st (s — M?) +m K
K 2\ 3 2 ( _M2)5 (1)
+32<(S_M) +(8_M)St+(S_M2)2+t (pZ;Q)
K 2 (5*M2)45
v _M2 + ( ) ,
16 <(s )’ (s — M2)* + st vrp2)
(3M* — 8M?s +s2) s (s+M?)t
+K
32 32
(s—M2)4 (M2 + 5) M? (M2 (s—MQ)2 —253)
+ B} ‘]( )(plaq)
(( ~ M2y’ +st) 8(t - 4M?)
3M* — 14M2s+15s M® —2M*s — M?s® — 25° n (s — M?)° 1M (
16 (4M?2 —t) 8t ?
4.2
ﬂlg ) (p1,p2) (4.118)

fig. 4.17: The cross box diagram is given by interchanging p, and —p4 in the box diagram.

H(pw _ / 7_1045 (pl —4q,p1 — k7 M) iTiY6 (pl - k,Pl, M) iP’y(?,eCiPaB,pU
(01 = 0 = M2) (12 = 22) ((k = 0)” - 22)
P2+ q,p2 + g — k) (—inpy) TP (p2 + q — k,pa,m) d*k

(02 4+~ b)* —m?) (2m)*

e
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_ K 2\ 4 2\ 2 (U_Mz)ﬁ
H, = 32<(u—M) + ut (u— M?) +m K (p1,—p2 —q,9)
KA 3 (U_MQ)S
e (M e b ) T )
4 (u—M2)4u

2
(u—]\42)2—i—wt> Jt )(p17—p2 —Q)

ut (BM? —u) | 2M° 4 5M u + 10M*? —u® (v M2)* (M2 4 u)

32 32 32 ((u— M2)? + ut)

3MO (M2 +u)® M2 (2M6 + 8M4u + 3M>u2 + u?) O (o)
o [ 3MY = 100M2u 4 1507 (u— M2)° But
64 8t 32

MO + 6M*u + 2M2u? + 4 3M* (M2 + u)2> 10 (g

8 (4M2 —1t) 4(t —4AM?)?
khu?
+?I(2) (p1,—p2 —q)
KZ4 4 2 (U—M2)6
H, = ~33 ((u—M2) +ut(u—M2) +m K (p1,—p2 — q,9)
K 3 u— M? ’
+§ ((U—M2) +(u_M2)Ut+(u(—]\42)2?l-ut Ju)(‘]b“]#])

K 2 (u—M2)4u
_ — M2 + =7 ) JD(py, —ps —

16 <(u ) u (u _ M2)2 Tl (pl D2 Q)

4 u(3M4—8M2u—|—u2) u(M2+u)t
AT 32 - 32

(uinz)‘L (M2 + u) M? (M2 (u—M2)2—2u3)

- + IV (p1,q)
32 ((u—M2)2+ut) §(4M2 —1)
A 3M* — 14M?u + 15u? N MO — 2M*u — M?*u? — 2u3 n (u— M2)3 10 (g)
64 16 (4M2 — 1) 8t
I{4U2
716 @ (p1,—p2 — q) (4.119)

4.7.4 Triangle Diagrams
The result for the triangle diagrams are:

fig. 4.18: The result for the triangle diagram is

H% = /7'2/)07€C(p17pl_QaM)
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ps=p1—q pi=p2+q

Figure 4.18. Triangle diagram.

. / . Ko7 .
iPe¢,apmy " (2 + q,p2 + k) (—ingpy) 7097 (po2 + b, p2,m) iPys oo d'k

4
(= a)® = 22) (02 + B)* = m?) (k2 = 22) (2m)
M2t
Hy = *?MTI(D (q)
M2t
o o= M) g (4.120)
Mirror triangle:
iPet 0T (01— q,p1 — ke, M) it° (01 — Ky p1, M) iPos vor 0 0rc d*k
v  — / ¢aBT1 (p1 2(] D1 ) 12(]91 P1 ) 7,p Tf’ P ’C(pz,ngrq) .
(o1 = 1) = 22) (k6 = @) = 22) (k2 = 32) (2m)
4
Hy = o (=M? (5M" +2M% + %) — M (3M° + )
1 4M4 (5M4+2M25+s2)
M2 — J
+2 i 4M2 (pI,Q)
+i4 ! (OM* — 6M?s + 55%) — % (M?+ )
16 \ 2 2
3t2 2M? (5M* 4+ 2M3?s + s
4 t—4M
o [ M?(BM* +14M?%s + s*)  M? (3M? +s)t  M?t?
H2 = —K + —
16 16 32

2
M (M4 5M%s + %) MO (M2 +5)° ) .0
t — 4M? (t — 4M2)>? b

gh (5t (M2 —s)  (M*—18M?s+5s2) M2 (3M* +8M?s + 5?)
2\ 16 + 16 + SM2 — 2t

3M* (M2 +5)° 32
SN A P 4121
()P 32 @ (4.121)

4.7.5 Double Seagull

The result for the double seagull diagram fig. 4.19is:
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P3s=p1—4q Pa=p2+q

Figure 4.19. Double seagull diagram.

Figure 4.20. Photon loop vacuum polarization.

o I/TQP"’E< (p1,P1 = @ M) iPe apiPrs pory " (p2,p2 + @) d*k
2 (k2 = 22) (k- 0)” = 22) (2m)*
s — M?)? 3M? +2s)t
— M2 (3M2 - 26t
H = & (— (s ; ) ! < ) ) 1 (g) (4.122)

4.7.6 Vacuum Polarization
The result for the vacuum polarization diagrams are:

fig. 4.20 (photon loop):

. . . 6,76
@Pm\,a,@ Tlpao,aﬂ (_an_r) (—277[,.9) 7{7 Y

T —m?) (k) - m?)

iP’y&uV ¢,w, v d*k
T (P2, P2t g

2 1 ( ) (271')4
}4;4

H = 0 ((s - M2)2 +st> W (g)

H? = /T{”(phpl—q,M)
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P3=p1—4q

Figure 4.21. Graviton loop vacuum polarization.

4
Hy = -5 ((s= 22+ 5t) 1D (g) (4.123)
fig. 4.21 (graviton loop):
w K iPK)\,Ot o iP. S, v W,
H* = Tﬁ(phpl—q,M)TBH P70 (q) %Tf’ M (pa,pa +q)
7 2 ilog (—t)

im0

! 0" (8 )t st) g

7 2 tlog (—t)

Hy = —— 4( M2 t)i 4124

2 0" ) tst) e (4.124)

Where the graviton polarization operator is again taken from [7], and includes the effect of the

diagram like with ghost lines comprising the loop.

4.7.7 Bremsstrahlung

As demonstrated above, the bremsstrahlung cross section has the form (4.86) of the lowest order
cross section times a correction independent of the spin. Just as in the scalar case, each soft divergent
piece in the elastic cross section is canceled by a corresponding piece in the bremsstrahlung cross
section. Collinear divergences still remain after this, but again these vanish when the contribution
from all diagrams is added together.

The collinear divergent terms in the vertex diagram are

4

H =-H, = %((S—M2)2t+8t2) iJ@ (pa, —p2 — q)
2
B o (s=MH st -k (1. 4 —t —t, —t
N <_W 4t 6472 \ 2 log m2 log A2 log m2 (4.125)
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and their contribution to the elastic cross section is

2)2 2
do KO t [ (s—M?)" +st 1, 5 —t -t —t
Y = - 2352 5 log” —5 —log 5 log —
d(—t) 1o 167 (s — M2)* 327 4t 2 m A m

The corresponding bremsstrahlung terms are

()., = 5 (3) = (),
KO t ((S—M2)2+St>2

167 (s — M2)? 32m2

4k2 —t 1 2 m2 1 2 m2 4E2E4
(1og maz 1og =0 2102 T Z10g2 U L, (1
(Og N B2 T %% qpz T % uEpr T t

(4.127)

and thus the sum is

<d?jt>>1,,, " (d?:f))b,.,v

16 ¢ ((5M2)2+5t>2

~ 16m (s — M2)° 3277 4t

1 E2 E? -t 1 o’ 1 —t AR E;
A Z(1 2 1 4 Voo — + —1log? — + Zlog? — + Li, [ 1 — =22
(2 (og k2 o8 k2 > o8 m2 4 o8 4F2 4 & 4E3 2 —t

(4.128)

independent of polarization.

For the collinear divergent terms in the box diagram,

_ _ k! 2\4 2\2 (5*M2)6
Hl——H2 = 32<(S—M) +St(8—M) +m K
I€4 S*M25
(b ar e D)0y
KA s—M2)*s
+15 ((S—M2)28+ (s(_ M2)2)+ t> @ (p1,p2)
4 2\2
_ K 9 (S M) + st
_2567r2< — %) t
o S—M21 5 M2_11 98— 1 S—M21 s — M?
g5 log—3 5 log 7 Tlog — 5 log —3
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R (s
51272 t
s — M? —t 1, o —t
1 1 — —log® ——
(Og I VER R s—M2>
. 4 —_m2)? 1 2 _
__w s (s — M?) s (s 2) ~ L og? 9 Liy——°
5122 (s — M2)* + st 2 — M2 WE
(4.129)
Thus
2
( do ) B o (s —M?) [ (s—M?)" + st
d(=t)) 14 167 (s — M2)* 3272 4t
s—M?*  s— M? s—M?* s—M? 1.  ,s—M?
- | log - log 2 + log e log 2 —21 -
—|—110 S_M2lo —t log? t
2 8Tz ST 1% s
(s — Mm2)" (1lgs—M21g A )
2\5%° 2 98 8 Tz
((57M2)2+st) 2 M s—M 4 M
(4.130)
The corresponding bremsstrahlung terms are
do K2 [ (s —M2\* s — M2\? do
(d(—w>mw i (( 2 ) ”’k< 2 ) 34 (d(—w>o
2
B —K0 (S—MQ) (s—M2)2+st
© 167 (s — M2)? 3272 4t
L S—M2+l s— M? ) 4k%,.. 1. 5, m? L 5 m?
BT TR T2 )8 T T %% qE T 1 %% 4E?
2
. . B, o8
5 + Lis <1+2(E1+|P1|) (s]\/[2+]\42>)

+11 2
log? —
4 (E1 + |pil)
. MZ2E, Eq
(e 20 )
Srtae)))

s— M2 M2

+m4uua|m(

1. 5 2 .
+-log® ——— + Liy (1 +2(Es+ |p3]) (
4 (Es + |p3])°

Ey Ej
Sﬂw+w»

M2E, By
s— M?2

— L12 <1 + 4E4 ((s _ M2)2
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+ Liy (1 +2(B5 — |p3)) (S_E;‘W + f;é))) (4.131)

and the sum is

(0),. " (aCo)..

3 K0 (s — M?) <(5M2)2+5t>2

167 (s — M2)? 3272 At

1 sf]\/.l'Q1 .97M2+11 E2 41 E? 1 s — M?
0 — 108 s 5 | log og og

k2az k?ﬂa[l) m2
1, ,8—M?> 1. ,s—M?* 1 s — M? —t 1. 5 —t
| =] | 1 — Clog? ———
TIO8 TgEz 1% TaqEr Tt T BT Tapr 1% soap
(s — M2)* (11 s—MP ot 1,
2 | 5108 3 8 T T 1% T s
((S—M2)2+St) 2 M S M 4 S M

2

1 M . B, Ey
+-log? ——— + Li, (1 +2(E; + |pi)) ( + ))
4 B+ 1) s M2 M

. M?FE, £y . - Ey £y
— Liy <1+4E2 <(S_M2)2 - 8_M2>> + Lis <1+2(E1 — [pil) (S_MQJrMQ
2

1 M . Ey E;
+-log? ————— + Li, (1 +2(Es5+ |p3l) ( + ))
4 (Es + |p3))? s— M2 M?

M2E, F; E, F;
— Lip [ 1 +4F — Lis (1+2(Es—|p3|) | ——— + —
12( : 4<(8—M2>2 8—M2>>+ 12( A 'p3')(s—M2+M2

(4.132)

again independent of polarization.
The collinear terms in the cross box diagram are obtained by replacing ps, with —p; and s

with u in the radiative corrections (note that the quantity (s — M 2)2 + st is invariant under this

transformation). Thus

(@), (@)

o <u—M2><<s—M2>2+st)"“

16w (s — M2)° 322 4t
) u—M21 u—M2+1 | E3 | B} lo u— M?
. o) [0) — O, (0]

ST Tz T2\ %k R, ) T
+11 2u—Mg_i_l1 2u—M2+11 u—M21 —t 11 2 —t
— — — o og ———5
1% Tapp 1% Tapp T2 % PuoaE 1w

(u— M2 Lou—M* ot 1,

slglos e e — 8 e )

((s — M?)* + st)
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+ Lip (14 2(By + i)

+ Liy

+ Lip ( 1+ 2 (E5 + |p3])

e N R

(+F5e )

ve2(B =) (4 ) )+ 18 e
( ))- v
< )

© Lip (1+2<E3 73)

independent of polarization.

The sum of the collinear terms in all these diagrams is therefore

(d?jw)l i (d?:f))br

2
K0 1 (s— MQ)2 + st
167 (s — M?2)? 32n2 4t

oy

2 2 2 2
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1. 5 M . . Ey FEs
+-log? ——— + Li (1 +2(Bs + |p3)) ( + ))
2" (B +Iml)’ s— M2 T

M2E, Es E, Es
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. . E E . R E E
+ Lip <1+2(E1 —[pil) (s—j\ﬂ + Mg)) + Liy (1+2(E3+ 73)) (s_jm + Mi))

. M?E;, E3 . - Ey Es

(4.134)

This is free of all IR divergences.

4.7.8 Total

Adding to (4.134) the remaining pieces from the elastic diagrams (4.112) to (4.124), the total

cross section at low t is

< do > K0 —(S—M2)2(217 M 76,
= 7r —_— —_— — —_—
d(—1) ) o (1677 4t 1y 15 % ame
5 =t M? —t s— M? —t
—4log TR 6 log Py log pun i 2log =3 log T
s — M? M? —t s— M?
—2log R log p—y + 5log P + 4log o ) (4.135)
for polarization in the plane of scattering, and
do K —(s—M2)?/ 17T M 8. —t
- = 3 ™ — + clog —
d(=1) /) 11,1 (167) 4t 4=t ' 5 “dmpu
s ot M? -t s — M? —t
4log p— 610g(9_}w210g;8_]w2 2log =N logs_]w2
s— M? M? —t s— M?
—210g k?nam IOg 5 _ M2 + 510g m + 410g k?nax ) (4136)

for polarization perpendicular to the plane of scattering. Note that the total classical correction,
the term proportional to M/,/—%, is independent of the direction of polarization, while the quantum
term proportional to log —t is polarization dependent. As can be seen by adding the J™) terms in
(4.112) through (4.124), this is true to this order of perturbation theory, not just for low ¢, but for
arbitrary values of .

Just as in the scalar case, some of these terms can be interpreted as corrections to the metric
surrounding one of the particles. In the next chapter this possibility will be examined and the full

cross section will be used to calculate the bending of light around a massive object.
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CHAPTER 5
INTERPRETATION OF RESULTS

The results of chapter 4 are now interpreted and applied in several ways. As pointed out below
(4.101), the results can be broken into pieces involving the different particle lines. Those pieces
which come strictly from the massive side of the diagram have already been treated in [7]. As
was pointed out in [6], the vertex corrections represent corrections to the energy-momentum tensor,
and therefore the metric, surrounding the massive particle. It is examined here whether the vertex
diagrams from the massless side can be interpreted as corrections to the energy-momentum tensor
and metric surrounding a massless particle. When expressing the metric it is more convenient to
write A for the soft IR regulator, but as always this can be changed to dimensional regularization
via the substitution log A2 — % + v +log4mu?. Finally, the total cross section is used in order to

calculate an actual physical observable, the deflection of light by a massive source.

5.1 Metric
5.1.1 Summary of Massive Case

In the limit where the mass of one of the particles in fig. 4.1 becomes very large compared to
the momentum transfer, the state of that particle will not be altered much by the interaction, and
it will behave as the source of a fixed external field in which the other particle moves. This field is
obtained by the cutting the graviton line of the diagram cut at the other particle vertex, as in fig.
5.1. The energy-momentum distribution of the source is given by its vertex part, and the field is
determined from the energy-momentum tensor by the graviton propagator.

The lowest-order energy-momentum tensor of a scalar particle is given by the bare vertex in 5.1a
[6]:

10T

il T @) ) = e (B = § (= m?)) 6.1

where py = (Ey,p1) and py = (Es,p3) are the momenta of the source particle before and after the

collision, P = %, ¢ = pa — p2, and the normalization (p;| p;) = 2E; (27r)3 83 (p; — p;) has been
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(b)

(c) (d)

Figure 5.1. The diagrams contributing to the energy-momentum tensor and metric.

—
)

used. In the case of a massive particle behaving as a fixed source at rest, py ~ ps = P = (M , 0)

q = (0,q), with ¢ < M?, and so
(pa Ty () [p2) = M P, P,e” 77 (5.2)

where P = Plv = (1, 6) Thus, transforming to the position representation,

. . d3 ..
T (z) = / MP,Pye 7% =9 — No3 () PrPY (5.3)
(2m)
as is appropriate for a point particle at rest.
The linearized Einstein equation is:

OypH (z) = —167GTH (x) (5.4)
where ¥, = hu, — %hﬁn,w, 9uvr = Muv — huy. The solution is determined in the momentum
representation by

y 167G

Y (q) = 7 (pal T (2) [P2) (5.5)

105



(This is equivalent to contracting the bare vertex with the graviton propagator.) In the lowest order

case these become

Oyt = —167GMS® (&) P*PY
167G -~ o o
Y (q) = _’;2 MP,P,e 77 (5.6)

Now,

—ig-Z 33 1
/ e d (5.7)

¢ (2n)® A
the Green function of the three-dimensional Poisson equation. So, Fourier transforming back to the

position representation,

AMG ~ -
w;u/ - r P,uPy
2MG (_~ -~
o == (2PHP,, — mw) (5.8)

which is the correct Newtonian form, as found by [6].

5.1.2 Aichelburg-Sexl Metric

When the source of the field is massless, it is obviously impossible to consider the limit where
the mass becomes infinite. Nevertheless, if the momentum transferred to the source particle is
small compared to its momentum and energy in some frame, it is apparent that the source will
still be unchanged by the interaction and generate a fixed external field in which the other particle
moves. The metric surrounding a massless particle has been given previously by Aichelburg and
Sexl [8, 9, 11]. Their result is reproduced here in a new way using Feynman diagrams, following the
method used by [6] for the massive case.

The lowest-order energy-momentum tensor of a massless scalar particle is still given by (5.1),
now with Ey = ||p2||, E4 = ||pa]|. For the particle to act like a fixed source, py &~ ps = P > ¢, and
SO

(pa| Ty (x) [p2) = EB, P, e’ (5.9)

where E ~ E4 ~ F> is the time component of P andP = P/E. Further,

By = HP2||=HP—q/2H: P2_~_P.q_,_Zz

P.q
2||P

P
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B~ 5 5 - T &l Pd
B, = Hp4||=HP+q/2H: ProPogr L~ ||B) ¢ L (5.10)
4
2| P
SO
P
G =Ey—Ey~ . q = 4, (5.11)

and ¢ -z = ¢y (t —x) — qyy — ¢.2, where the z-axis is taken to be in the direction of P. Thus,

transforming to the position representation,

A A~ . 3 A A
™ (z) = / EPHP,,e_"(’“(x_t)+ny+qzz)(;1753 =FEé(x—1t)6(y)d(z) PHPY (5.12)

which is Aichelburg and Sexl1’s form for the energy-momentum tensor of a massless particle of energy

E moving at the speed of light[8]. Inserting these into (5.5) one obtains

Oyt = —16xGES (x — )6 (y) 6 (z) PHPY
y 167G . ioow A i 167G o (o P
P (q) = Z EelaT prp ziqZ—i—qQEe (g2 (z=t)+ayy+9-2) pr p (5.13)
Yy z

since ¢q; ~ q,. Now,

—ige(e—t) Yz _ 500y 14
/e e (1) (514)
and
/ L -itayyrann 90dd: _logp (5.15)
a5 +¢2 (27)? 2

the Green function of the two-dimensional Poisson equation, where p = \/y? + 22 So, Fourier trans-

forming back to the position representation,

BV — ,l/};tl/ — 8EGS (.17 _ t) IOg (p) P#IA)V (516)

which is the form found by Aichelburg and Sexl [8].
For a photon, the lowest order vertex is

et(P2—p1)z

<p47 €4| T,uy |p2, €2> = ﬁ [ZP[LPI/€2 c €4

+P, (€462 - q— €2,€4 - q) + P, (€462 - ¢ — €2, €4 - q)

1
=5 (0w = Mwd®) €2 €4 = M - gea - q

q @ q @
+?“64,V62 (4t Geauce g+ 3“62,”64 (4t Geuea g
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2
~ L (eean + capezs) (5.17)

In the limit of p; ~ ps =~ P > ¢, this becomes
(pa, €a| Ty |p2,€2) = Feo- 64]5“1—:’,,61-‘1z (5.18)

which is the same as for a scalar, but with an additional factor keeping the initial and final polar-

izations the same.

5.1.3 Radiative Corrections

The radiative corrections shown in figs. 5.1b-d modify the energy-momentum tensor (5.1) and
the metrics (5.8) and (5.16).

The form of the corrected scalar energy-momentum tensor is restricted by several conditions: it
must be a symmetric second rank tensor, and it must be compatible with the coordinate invariance
of general relativity. The latter requires that it be orthogonal to ¢, just as does gauge invariance for

photons. For a scalar particle, the most general form compatible with these conditions is

iq-T

(0l To (@) 12} = =

2P, P Fy (6) + (9090 — *0) Fa (¢%)] (5.19)

Where F; and F, are scalar form factors depending on ¢2. The lowest order form (5.1) is given by
Fi (¢*) = 1 and F» (¢?) = —1/2. The corrected value of F; (0) must remain equal to 1 by conservation
of energy and momentum [6], but F» (0) is unrestricted. The corrected position space representation
is again given by the Fourier transform of (5.19).

In the massive case, the radiative corrections were found by [6] to be

G¢? 3 —q? 1 72m
2
ﬂ@)‘ﬁ<ub%m+m —
Gm? —¢¢ 7 mm
() = —2log —5 + = 5.20
2 (7°) T ( 08 2 + 8/—¢ (5.20)

Substituting these into (5.19) and contracting with a graviton propagator and another scalar vertex
reproduces (4.52). Substituting them into (5.19) and Fourier transforming produces both classical

corrections and quantum corrections to the energy-momentum tensor in the position representation

[6, 7, 21]:

3Gm? 3Gmh

Tolo) = %ot = 425
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I
S

TGm? riry 1 2G'mh
oy

Tij(z) = - P (73—2 i a5 i (5.21)

The square root terms produce classical corrections, which reproduce the leading order corrections
in the Schwarzschild solution, while by dimensional analysis the logarithms must have an extra
factor of i and therefore produce quantum corrections. The classical corrections were shown in [6]
to reproduce the next higher order term in the Schwarzschild solution.

In the massless scalar case, the corrections to the form factors are found to be

Diagram b: Fy

0

-39 2

)
3

0

0

—247G I (q) — 87Gq*iJ @ (pa, —p2 — q)
20mGq? )
=5 il' (q) — 4nGq'i @ (o, —p2 — q)

—247Gg?il? (q) — 87qu4iJ(2) (p2, —p2 — q)

—4rGg?ilt (¢) + 47qu4z'J(2) (p2, —p2 — q)

(5.22)

Substituting these results in (5.19) reproduces (4.116). Fig. 5.1d is infrared divergent. Unlike in the
cross section, this infrared divergence does not completely vanish, because the box and cross-box
diagrams are not included. The implications of this will be considered below.

Notice the absence of classical corrections in (5.22). Aichelburg and Sexl [8] demonstrated explic-
itly that the linearized solution (5.16) is also an exact solution to Einstein’s equation, by beginning
with the static Schwarzschild solution, and then applying a kind of improper Lorentz transformation,
allowing the rest mass of the particle go to zero as its velocity approaches c. It has in fact been
shown [10] that for a general null source the linearized equation is equivalent to the full Einstein
equation. Since the lowest order solution is also the exact solution, the classical corrections must
vanish. In the present case this can be seen from the Feynman diagrams. Classical corrections are
of the form m/,/—¢2, and require the presence of both massive and massless propagators [21].

The photon energy-momentum tensor depends on more quantities than that in the scalar case,
but it also must satisfy additional constraints. The form of the photon energy-momentum tensor

may depend on the polarization vectors es and €4 of the initial and final photon states, in addition
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to the momenta P and ¢. It is constrained by electromagnetic gauge invariance, in addition to the
gravitational gauge invariance already present in the scalar and massive vector cases. This requires
that when one of the photon momenta is substituted for its polarization vector, the result should

equal zero. The most general form of T' which satisfies these requirements is

(pa, €a| Ty (2) |2, €2) = \/%% |:2P/,LPV (62 €4 — 262.224.q> Fi (%)
+ (4.9 — N q?) <€2 ey — 262'324'q> Fy (¢%)
+ (4P, P, — quq,) 62';1#
+(— (PM—%H>€47V€2'61— (Pu—%/)&x,u@'q

+(Py+%>€2,u€4'q+(Pu“i’q?u)ﬁz,u@l'q

2
_% (€2,u€4,0 + 64,#62,1/)) F3 (qz)} (5.23)

where the form factors Fy, Fy, and Fy are functions of ¢?. (Note that although their are divisors
of ¢% present in the definition in order to keep the form factors dimensionless, they are canceled
by factors of ¢2 in the form factors, so that there are no poles in T, (g).) Electromagnetic gauge
invariance reduces the number of form factors from six for a general massive vector particle [12] to
three for a photon. From the bare vertex factor (5.17), the lowest order form factors are F} = 1,
Fy=—1/3 F3=1.

These are corrected by the same types of diagrams as in the scalar case. The results are:
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Diagram b: F (q2 = ?T(quifl (9)
55 .
Fy (q2 = gﬂGQQZII (q)
10 .
By () = SnGeil' (g)

Diagram c: F; (¢?) = —487Gq*iI' (q)

—

2

&

q = —20mG¢*%I (q)

)
)
)
)
)

) = 0
) 100
)

)
)

= —?qugﬂl (q) — 87Gq*iJ® (ps, —p2 — q)

25 . .
= ngq%Il (q) +47Gq*iJ®) (ps, —p2 — q)

2

2

5

q

2

I

q

(

(

(
Diagram d: F} (q

(

50 9.1 4, 7(2)
( = —?qu il" (q) — 87Gq*iJ\* (p2, —p2 — q)
(

80
Totals: Fy (¢?) = —gﬂqu’Hl (q) — 87Gq*iJ? (py, —ps — q)
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20 ) .
F (qz) = g’ﬂqulfl (q) + 47qu4zJ(2) (p2, —p2 — q)

40 . .
Fs(¢%) = —5nGqhil' (q) — 87Gq'iJ®) (p2, —p2 — q) (5.24)
Again there are infrared divergences in the diagram of 5.1d.

5.1.4 Fourier Transform and Metric
Substituting (5.22) into (5.19), using the values of J® (py, —ps — ¢) and IV (¢) from chapter 2,
and Fourier transforming, one finds the correction to the energy-momentum tensor in position space

is

. e~z (=) +4qyy+q:2) ) ) o, d3q
@) = [ AR @) ¢ () B ()]
_ _2§E il (=D ta,u+a:2) g2
7T
2 2 2 2 3
—q L. 2(—q —q q d’¢ 5 A
(31 ~1 — ) -1 1 PP,
(s () 318 (i) e (55 o () ) o
G —i(qz (z— 22 2 4
55 e~ gz (z—t)+ayy+q )(q#qu 77hwq)

(o(5) o () () 2 o

To lowest order in g (and therefore at long range), this is just

T (.T) _ _gE e—i(Qw(ﬂC_t)+ny+(Izz)q2

N 21
2 2 2 2 3
—q 1 —q q —q ¢ 5 2
(3 log (471_#2) 3 log? ( 3 ) log ( 32 ) log ( —3 )) (27r)3P”PV (5.26)

Remembering that —¢? = qy+qz and using log?

1og +210g ?\2 log 2 s +1og 22 this becomes

m2_

T (z) = 72£E/67iqw(w*t)iﬁ
s ™

2 2 1 /\2 d2 A
| eilayra=2) g2 (3] e\ _ 1 ,1 2 A 4 pp
/ ( Og(4 ) "3 g (2m)> "

G .
—%Eé (x_t)/e_l(ny+QZz)q2

2 2 2
—q Lo 2 ¢’ >\ d®q o =

The Fourier transforms are divergent but can be evaluated as follows. First consider
/ei(qyyﬂzzZ) log (¢)d%q = /eiqp 59 1og (¢q) dfgdq
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= 2r / OOqu (ap)log (q) dg (5.28)
0

where J, is the Bessel function of order n. The ¢ integral can be evaluated by using the Bessel

function identities

gjl (ap)

B = 5q(Jo(ap) — J2 (ap)) (5.29)
Ji(ap) = 5ap(Jo(ap) + J2 (ap)) (5.30)
SO
0 J1 (gp)
il = 31
ale (gp) + P ¢Jo (qp) (5.31)
But the integral
> ~ +log (2
/ J1 (gp)log (q) dg = _atls() (5.32)
0 p
is convergent. Therefore,
i(ayy+q:2) 20 = 0 -
ety log(q)d*¢ = 2m ErR J1 (qp)log (q) dq
0
27
= oz (5.33)
plus delta-function terms. Similarly
/ei(q'yy”z”) log? (¢)d%q = 27r/ qJo (gp)log® (¢) dg
= <a ) J1 (gp)log? (g) dg
_ %(a ) (y+10g8)*
0 p
4
= p—( +log = ) (5.34)

All the other transforms needed can be found from these by integrating or applying the derivative

operator in two dimensions V = (@ @):

dy’ Oz

/ —Z(ny-irqﬂ)qqq log (¢ )d2q

_vuvz/f (p)
o drf o 1df
_pupquQ - (6 Pupu) ;dp
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where

V£ (p)

f(p)

= ﬁuﬁuQWT -

log p

logp —1 N
(5xw - Pupu) 2 pg

V2 / eilayy+az2) 10g2(q) d2q

q

— / ey ta=2) o0 (¢) d2q

27
02
mlog® p

and p is the unit vector in the radial direction in the y-z plane.

/ ellavta2lglg” log () d*q =

/ e wvta=2) g2 log () d*g =

/ e!(wvti=2)gtlog (q) d*g =

/ e wvta=2)g? log? (q) d%q =

/ei(qyy+qZZ)q4 10g2 (q) d?q =

Using these results, (5.27) becomes

T () = GE&(m—t)84<1+27+10g
p

ViV, / ¢!t log (q) d*q
127 4

ﬁuﬁVF - (6;“/ - ﬁuﬁl/) 7,7

v2 / ey ta=2) 160 (¢) d%q
14 (2
pdp dp \ p?

v / el vta=2) g log (q) d*q
—1287

Pg
\V& / ey ta=2) 1602 (¢) d2q
16m p

F (’Y + log 5" 1)

v? / e 1yt a2 g2 og? () d?q

128
67T (27—&- QIOgB — 3)
p 2

2.2
p ~ ~
i > BB,

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

plus delta-function terms. Substituting (5.22) and (5.19) into (5.5) and Fourier transforming, the

long-range correction to the metric is
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P (x) =

Q

- G
E

e~ gz (z—t)+ayy+g:-2)

(2m)

F (¢? » d3
9P, P, 1q(2q ) 4 <q“g —mw> P (q2)] 1

_ 2 1 q2 1 )\2 ) d2q o
8G2ES (z — 1) | (3log L — Z1log? L 4 S10g2 O ) eilawta-x) T4 p p
v f/ﬁ< Bhm? 2% T ) (2m)*""
8G*FE 1 Ao\ o -
- S 1) (3 +2v + 2log 2") PP, (5.43)

plus delta-function terms. The factors of log'm? which appear in the momentum representation have

been absorbed into the local delta-function pieces in the position representation.

Substituting (5.24) into (5.23), the long-range results for the photon are:

(P4, €4 Ty D2, €2)

P (q)

Q

/ d3q e ila=(z—t)+ayy+q=2)
(27)° VAER Ey

.Pmﬂ(wfrgwﬂgﬂ)
q

_5Gq2 lo —¢* _G7q210 2 ;qQ _‘_quQlO ;QQ lo ;qz
3 08 drp? 4w &\ 'm? or B\ 2 &\ 2
€2-4€q - ¢
+ (4uq — M @”) (62 ey — 2q2>

5Gg* | ¢ N Gg*\ o=\ Ga (=, (O
[ —— 1o — 10 — | —— 1o — | 1O —

127 08 drp? 8w &\ m2 ar B\ S\ 2
(Pt 2 erver-a+ (P+ %) espea g

_<P,u_%>€2,u€4'q_<Pu_%>€2,#64'q

2
q €2-4¢4 - g
O eapens eapen) + (PP~ gua) D)

_5Gq210 —¢’ _%102 ;q2 —|—G—quo ;(12 lo ;qQ
6 g47r,u2 ar 08 2 or B\ a2 &\ m2
gE/efi(qx(r*t)thIywqﬂ)
m
5 2 1 — g2 1 —g? _g
2 2
'[62'64‘1 (‘31°g4wz‘41°g <mz IR ey Rl e
q

L 51 —¢*] a3
€2-qes-q= lo
2" q€q q3 g47T/~L2

(

G 321 4 4 X

7r2E(5(9t7—1§)[62-64(—3p4—i—'yp4—|—p410g )
1 10 Al]

10€s - peg - H— — C€4 — €5 - PEY -
+10¢3 - pes pp4 3 (€2 - €4 — €2+ pey - p) i

PP, (5.44)

16G2 1 11
_16¢ Ej(x—1t) [62-64 (5 ’Y—ZIOg)\p>
7r

3p2 p2 p2 T2
5 . o -1 5 ~ 1o . A
+ <362 - Peyg - p% ~3 (€2 - €4 — €2 - peg - P) i;p>:| PP, (5.45)
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5.1.5 Interpretation of Collinear Divergence in Metric

The metrics (5.43) and (5.45) still contain the arbitrary parameters A and m which regularize
the IR divergences. They are written in such a way that the m dependence occurs only in the
short-range, delta function terms, but the A\ dependence remains even in the long-range terms. In
this connection it should be noted that in principal the massive result contains A dependence too,
although only in terms concentrated in a distance of order !/m of the source. At energies well below
m, these terms could be expanded in ¢? and would appear like delta-function terms. The same thing
would even occur in the radiative corrections to the electromagnetic field of a charge in QED. Just as
in QED, the results remain the same using different IR regularization schemes after the appropriate
substitutions log A2 — % + 7+ log 4mp? or logm? — logdmpu® + 2/ern + 7y

If a cross section were computed using these metrics as an external field, and if bremsstrahlung
were included, the A dependence would also disappear, and the m dependence could still be written
as a short-range or analytic term, as inspection of (4.95) shows. However the analytic term would
occur in combination with F and k4., which are non-covariant or depend on the detector resolution,
and which could not be canceled by terms from the Lagrangian, since this is covariant and obviously
independent of the detector. It also may seem disturbing that the analytic terms, which correspond
to an expansion in ¢ and to the high energy degrees of freedom of the underlying theory, should be
affected by the low energy degrees of freedom responsible for the IR divergences.

Thus it may be questionable in the massless case how meaningful the quantum corrections to the
metric are. It should be noted that questions about the meaningfulness of the metric in a quantum

theory have been raised even in the massive case [20].

5.2 Deflection of Starlight

Although it may be uncertain how meaningful the metrics (5.43) and (5.45) are, the full cross
sections calculated in chapter 4, which contain the box and cross box diagrams, contain no infrared
divergences, and are perfectly meaningful. Here these are applied to a simple problem, calculating the
radiative corrections to the gravitational bending of light following the method of [32]. Classically,
the problem consists of calculating the deflection of a beam of radiation in the geometric optics
approximation, where light travels along null geodesics [24]. Here the same approximation is used.

Light rays in the geometric optics approximation correspond to photon trajectories in the semi-

classical approximation. A beam of semiclassical particles approaching the scattering target with
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impact parameter p and energy FE scatters at an angle 6 which is a function of p. The semiclassical

formula for the scattering cross section is [31]

do dp dp?
_ = _ = _— .4
8P T " ag (5.46)

Solving for p,

2 _ l/”dj

1 [ do
= — d(—t 4
T \[LE?' sin? % d (_t) ( ) (5 7)

since t = ¢% = —¢% = —4F?sin? %0.

5.2.1 Lowest Order

From (5.47) and the lowest order cross section in chapter 4, and using s —M? ~ (M + E)Q—M2 ~
2MFE, where E is the energy of the photon in the rest frame of the heavy scattering target, the
deflection to lowest order in & is

d(=t)

pT o= =
™

) 1 /4E2 167G M2 E?
4

E2 sin? g t2

1
= 4G*M? ( g 1) (5.48)
2

sin
In the small angle approximation,

16G%M?
2 & 1667 M7 (5.49)

4G M
p ~ 2GM (5.50)

which is the standard result [24].

5.2.2 Radiative Corrections

From (5.47) and (4.101), the correction to the deflection of a beam of scalar particles is

) AGEM2E? [P 34 —t  , 1T M
;= 57 log 4 + T ——
T apzsin2 42\ 3(=t) T p 2(=t) vt

+ ogz 8 ’2"“10—+410 ! og —

1) % 2ME~ (—t) ®2ME M T~ Br2,. ®oME
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———log — log + log —4% + lo — log

12 2B —t 4 2 8 —t 4ME. —t) -

(—t) M °2ME ' (-t) " 2ME ' (-t) S9ME (—t)? OME
G3M?E? (17 16E%sin? 6 17 M 1
= 4"~ (22 Nlog ——— ~ 4+ g2~ [~ —
T (3 og (sin” ) log 2 T2 E (sin(@) )

2 2E M? 2F 2F k2
(8 log? U + 12log —— =N log — i + 4log i +4log ]\?1296) log (Sin2 9)
k‘2

(4 log % —2log ]\Wf; + 4) log” (sin® 0) — glog?’ (sin? 6)

M 2F 2F 1 oM 2F 1 in%0
A (o2 21020 42) (lo+1)°g<m>

E M M sin2d E M sin? 6
Mlog® (sin®0) M. ,2E 2M 2E  2M
—— 4+ —1 — log — .51
E sw9 E M7 T E (5.51)
In the small angle approximation
G3M?E? (17 02 E402 M1
2 x4 1 lo 17—~
P 1) 8 "
2F M? 2E 2F k2 .. 62
(8log 5 +12]log — = log — i +4logﬁ + 4log 2172 ) log < 1 >
4FE? 5 [ 62 8 62
(<) )
92
M 2 2F ) 2F 1 M 2F log (z)
2(0
M log z) M 2F 2F

The first term represents the effect of higher order terms in the classical Schwarzschild metric.
The p? dependence combines with terms from the effective Lagrangian which must be determined
empirically. The logarithms of £/M, £/k.q., and *maz/M which occur in (5.52) are somewhat illusory
since they come from the soft-graviton terms in the cross section, which exponentiate in higher
orders of perturbation theory. Adding (5.52) to (5.49) and solving for § would produce a correction
to the scattering angle of order GE?, that is, the square of the Planck length to the wavelength, but
this is fantastically small.

From (4.135) and (4.136) the correction to the deflection of a beam of light (photons) in the

small angle approximation is

. 8G3M2E2 17M1+76 ) E21 92+11 5 62
r= ™ TOES T\ 2%y T2% Yy
4 L0 AE? B\, , 67
“1og® 2+ (10 ~ 2 ) 10g? =
tyoe 4+( B2 T 3)%®
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AE? , 2F 9B\ . 62
-+ (4 log % — 2 log ﬁ — log M> log 4) (553)

for polarization in the plane of scattering, and

2 — 8G3M2E2 WQH%1,§ lo izlo 9j+11029j
= - 2 E6 5\ 852 %y T3%® Yy
4 62 4E? 5 62
“10g® 2 (log = — 2 ) log? Z-
HE R (ngzgm 2) &
AE? , 2F 2B\ . 62
+<410g 2 — 2log MlogM) log 4) (5.54)

for polarization perpendicular to the plane of scattering. Again corrections are of order GE?. The
classical contribution (as well as the quantum contribution from the IR divergent pieces) is the same
for both polarizations, but the remaining quantum contribution containing p? is different. Thus
while the quantum correction is extremely small, it does make a qualitatively different prediction
than the classical result. A beam of unpolarized light incident on the scattering target would bent
by a small angle approximately equal to the classical prediction, but in addition it would be split

into two polarized beams separated by a very small angle, much as in a birefringent crystal.
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CHAPTER 6
CONCLUDING REMARKS

The previous treatment of quantum gravity as an effective field theory has been extended here to
massless particles. The lowest order classical predictions of general relativity have been reproduced,
in particular the bending of starlight and the Aichelburg-Sexl metric. Just as in the massive case,
quantum gravity predicts well-defined and unambiguous long-distance corrections. In agreement
with the classical results, higher-order classical corrections to the metric vanish, while quantum
corrections remain.

It has been shown explicitly to one loop order that the collinear divergences which usually occur
in massless quantum field theories do not occur in scattering cross sections for photons and massless
scalars in quantum gravity. An argument of Weinberg has been generalized to suggest that this
is due to the special nature of gravity, that it couples to the energy and momentum of its source.
The collinear divergences do not disappear from the expressions for the energy-momentum tensor
and metric by themselves. This suggests that the concept of the metric of a massless particle may
be ambiguous in the quantum case. It should be noted in this connection that it has already been
argued [20] for different reasons that the metric of a massive particle is ambiguous in the quantum
case, and the present results only compound this ambiguity. Any calculation using these results,
however, would also have to include the effect of bremsstrahlung and the radiative corrections to
the scattered particle, so all final, observable results would be finite.

As is usual for quantum gravity, the relative order of magnitude of the corrections is Gg?,
where ¢ is the energy scale of the scattered particles. Since G'/2 ~ 10735, these corrections are
imperceptibly small for any reasonable energy. In the case of the bending of starlight, the quantum
corrections predict a qualitatively different result than the lowest-order classical result, that the
angle of scattering is dependent on the polarization of the light. This might make verification of
the quantum corrections less difficult, since there is no background classical effect obscuring the
quantum prediction. Nevertheless the effect is so small that it is difficult to imagine how it ever
could be observed. Further, if one were to attempt such an observation, one would have to consider

other miniscule corrections, such as diffraction effects, and one would have to determine whether the
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classical predictions were truly polarization independent to higher orders. The higher order classical
corrections to the metric should certainly be polarization independent, since they depend only on
the source of the field, but the author is unaware of any argument why classical terms from diagrams
like the triangle diagram of fig. 4.18 should necessarily be polarization independent.

Although these results may remain experimentally inaccessible, they demonstrate that a con-
sistent theory of the quantum gravity of massless particles is possible. As emphasized in [4, 5, 7],
because the effective theory of gravity depends only on the low-energy degrees of freedom, it must
remain valid at low energies in any theory which reproduces the classical theory of general relativity.
Since the IR singularities result from the low energy degrees of freedom, they will still present a
challenge to any such theory. For the same reason, however, they will have the same coefficients as
calculated above, and hence will cancel in exactly the same way. Thus whatever the true underlying

theory of gravity, the results demonstrated here will still be applicable.
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APPENDIX
LIST OF CANCELLATION FORMULAE

Below is a list of all scalar product cancellation formulae used in the reduction of integrals:

k-q
/ (k2 =22) (1 = ) = 222) (k= ) = 22) (2 + B)* = m?)

1 / 1
20 (=07 = 222) (k= 0® = 2) (2 + 1)* = m2)
¢ 1
%/ (k2 =22) (1 = ) = 222) (k= )* = 22) (2 + B)* = m?)
1 1
_5/ (52— \2) ((p1 P M2) ((p2 T RE - m2) (A1)
/ k- pi
(k2 = 3) (o1 = > = 212) (k= )* = 22) ((p2 + B)* = m2)
1 1
2 / (o1 =107 = 22) ((k = 0)” = 22) (2 + 1) = m2)
1 1
=/ (k2 = 22) (k= 0)* = 22) (92 + B)* = m?) 2
/ k- ps
(k2 =22) (o1 = B)* = M2) ((k = @) = 22) (2 + ) = m?)
_ ! 1
2 / (o1 =17 = 222 ((k = 0)* = 22) ((p2 + 1) = m2)
Ly ! "
212 =02 (00 =0 = r2) (k= 0) = 22)

k2
/ (k2 =22) ((pr = ) = 222) (k= )® = 22) (2 + B)* = m?)
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/ kg dPk
(k2 =32) (U= 0)” = 22) (1 — k) = M2) (2m)"
_ 1/ 1 dPk
2 (k= =) (1 = 0 = m2) (2m)"
+£ 1 dPk

/ (k2 =) ((k = 0 = 32) ((p1 — )* - 012) (2m)"

7}/ 1 dPk
2 (k2 — \2) ((p1 —k)? - MQ) (2m)?

k-p dPk

/ (k2 =) (k= 0)* = 22) (o1 = 0)* = m2) (2m)"
_ 1/ 1 dPk
2012 = 22) (b= )* = 22) (o1 — B)? = 22 (2m)"

1 1 dPk

2 / (k2 = 22) ((k - q)” = 22) (2m)"

/ k? dPk
(k2 = 32) (k= ) = 32) (2 = B)” = M) (27)"

_ / 1 dPk
(= a” = 2) (o = )* = M2) 2m)”

/ p1k dPk
(k2 = 32) ((p1 = 1)” = M2) ((p2 + K)? = m2) 2)"
_ 1/ 1 dPk

20 (o =1 = 222 (2 + R)* = m2) 2m)”

1 1 dPk

2 / (k= 32) ((p2 + ) —m2) (2m)°

/ k2 dPk
(k2 = 32) ((p1 = 1)” = M2) ((p2 + K)? = m2) 2)"
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1 dPk
_/ ((p1 R M2) ((p2 R m2> (2m)7 (A.9)
/ k-q dPk _ 1/ 1 dPk _1/ 1 dPk
(2 =3 (k=g =x) @07 2] (—a =2 em)” 2SR 2n)”
7 1 dPk
e (SO
2 dPk 1 dPk
/ (k2 — \2) ((k B q)2 B /\2> (27T)D = / (k- q)2 Y (27‘[’)D (A.11)
/ 1 Pk
(01 = ) = 212) (2 + 1)” = m2) (2m)"
(p1 +p2)? — M2 +m? / 1 Pk
2 ((pl +py —k)* — M2) (k2 — m2) (2m)"
1 1 Pk 1 1 dPk
2/(171 +p2 —k)? — M2 (2m)" _2/k2—m2(27r)D (A-12)
/ 2 Pk m2/ 1 dPk
((p1 +p2—k)* — MZ) (k2 —m?2) (2m)" ((p1 +py— k) — M2) (k2 — m2) (2m)”
1 dPk
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123



[1]

[14]
[15]
[16]

[17]

[18]

[19]
[20]

[21]

BIBLIOGRAPHY

S. Weinberg, Quantum Theory of Fields, volume 1. Cambridge University Press,
Cambridge, 1996.

N.N. Bogoliubov and D.V. Shirkov, Introduction to the Quantum Theory of Fields.
Interscience Publishers, New York, 1959.

John F. Donoghue, Eugene Golowich, and Barry R. Holstein. Dynamics of the Stan-
dard Model, Cambridge University Press, Cambridge, 1994.

J.F. Donoghue Phys. Rev. Lett. 72 2996 (1994).
J.F. Donoghue Phys. Rev. D 50 3874 (1994).

N.E.J. Bjerrum-Bohr, J.F. Donoghue, and B.R. Holstein, Phys. Rev. D68, 084005
(2003).

N.E.J. Bjerrum-Bohr, J.F. Donoghue, and B.R. Holstein, Phys. Rev. D67, 084033
(2003).

P.C. Aichelburg and R.U. Sexl, General Relativity and Gravitation 2 4 303 (1971).
P.C. Aichelburg and R.U. Sexl, Lettre al Nuovo Cimento 4 26 1316 (1970).
Basilis, C. Xanthopoulos, J. Math. Phys. 19 (7) 1607 (1978).

C. Barrabes. C. and P.A. Hogan, Singular Null Hypersurfaces in General Relativity,
World Scientific Publishing, Singapore, 2003.

Barry Holstein, Phys. Rev. D 74 084030 (2006).

G. 't Hooft and M. Veltman, Ann. Inst. H. Poincare A20 69 (1974). M. Veltman, in
Methods in Field Theory Proc. of the Les Houches Summer School, 1975, ed. by R.
Balian and J.Zinn-Justin, North Holland, Amsterdam, 1976.

G. Passarino and M. Veltman, Nucl. Phys. B 160 151 (1979).
Available on the internet at HT'TP://www.feyncalc.org/

George Sterman, An Introduction to Quantum Field Theory, Cambridge University
Press, Cambridge, 1993.

Stefan Pokorski, Guage Field Theories, 2nd. ed., Cambridge University Press, Cam-
bridge, 2000.

J. Kinoshita, Math. Phys. 3 650 (1962). Lee, T.D. and Naunberg, M., Phys. Rev.
133 B1549 (1964).

Steven Weinberg, Phys. Rev. 140 B516 (1965).

G.G. Kirilin, Phys. Rev. D75 108501 (2007). N.E.J. Bjerrum-Bohr, John F.
Donoghue and Barry Holstein, Phys Rev. D75 108502 (2007).

J.F. Donoghue and B.R. Holstein, Phys Rev. Lett. 93 201602 (2004).

124



[22]
[23]

[24]
[25]

[31]

[32]
[33]

[34]

Donoghue, Intro to Effective Field Theory Gravity

V. B. Berestetskii, E. M. Lifshitz and L. P. Pitaevskii, Quantum Elecdtrodynamics,
2nd edition, Volume 4 of Course of Theoretical Physics by Landau and Lifshitz.
Butterworth-Heinemann, Oxford 1982.

Robert M. Wald, General Relativity. University of Chicago Press, Chicago, 1984.

C. P. Burgess, Quantum Gravity in Everyday Life: General Relativity as an Effective
Field Theory. Living. Rev. Rel. 7 5 (2004). arXiv:gr-qc/0311082v1

Hermann Weyl, Space-Time-Matter. Dover, Mineola, NY, 1952.
J. Simon, Phys. Rev. D41, 3720 (1990); 43 3308 (1991)

G. tHooft and M. Veltman, Scalar One-Loop Integrals. Nuclear Physics B153 365-
401 (1979)

Leonard Llewyn, Polylogarithms and Associated Functions. Elsevier North Holland,
New York, 1981

James D. Bjorken and Sydney D. Drell, Relativistic Quantum Mechanics. McGraw-
Hill, 1964.

L. D. Landau and E. M. Lifshitz, Mechanics, 3rd edition, Volume 1 of Course of
Theoretical Physics. Butterworth-Heinemann, Oxford 1982.

M. D. Scadron, Advanced Quantum Theory. Springer-Verlag, New York (1979).

I.J. Muzinich and S. Vokos, Phys Rev. D 52, 3472 (1995); H-W. Hamber and S. Liu,
Phys. Lett. B 357, 51 (1995); A.A. Akhundov, S. Bellucci, and A Shiekh, Phys. Lett.
B 395, 16 (1997); I.B. Khirplovich and G.G. Kirilin, Zh. Eksp. Teor. Fiz. 95, 1139
(2002); N.E.J. Bjerrum-Bohr, Cand. Scient. thesis, University of Copenhagen, 2001.

Wolfram Research, Inc., Mathematica Version 8.0. Champagne, IL (2011).

125



	University of Massachusetts - Amherst
	ScholarWorks@UMass Amherst
	9-1-2012

	Quantum Corrections to the Gravitational Interaction of Massless Particles
	Thomas J. Blackburn Jr.
	Recommended Citation



