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ABSTRACT

In this paper we propose discriminative training of hierarchi-

cal acoustic models for large vocabulary continuous speech

recognition tasks. After presenting our hierarchical modeling

framework, we describe how the models can be generated

with either Minimum Classification Error or large-margin

training. Experiments on a large vocabulary lecture transcrip-

tion task show that the hierarchical model can yield more than

1.0% absolute word error rate reduction over non-hierarchical

models for both kinds of discriminative training.

Index Terms— hierarchical acoustic modeling, discrimi-

native training, LVCSR

1. INTRODUCTION

There has been much effort devoted to improving the acoustic

modeling component of automatic speech recognition (ASR)

systems for large-vocabulary continuous-speech recognition

(LVCSR) tasks. In recent years, discriminative training meth-

ods have demonstrated considerable success; these methods

seek to reduce model confusion according to an objective

function that is related to the error rate. Several kinds of dis-

criminative training criteria such as Maximum Mutual Infor-

mation, Minimum Phone Error, and Minimum Classification

Error (MCE) have been proposed in the literature and have

been shown to be effective in reducing the word error rate

(WER) on a variety of LVCSR tasks.

Another approach to improve the acoustic modeling com-

ponent is to utilize a more flexible model structure by con-

structing a hierarchical tree for the models. A hierarchy par-

titions the classification problem into smaller sub-problems

that may be easier to model. In addition, a hierarchical model

may be more robust, as non-terminal nodes in the hierarchy

are less likely to suffer over-fitting since there are more train-

ing exemplars. Hierarchical models have been shown to be

effective for the task of phonetic classification. In [1], the
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hierarchy was used to combine different acoustic measure-

ments to improve the classification performance; in [2], a

manually constructed hierarchical model was integrated with

large-margin training [3] and shown to have better classifica-

tion performance using fewer parameters than a conventional

flat acoustic model. Since hierarchical modeling has shown

significant benefits for phonetic classification tasks, we were

interested to explore whether these methods could be applied

to LVCSR tasks as well.

In this paper, we propose a hierarchical acoustic modeling

scheme that can be trained using discriminative methods for

LVCSR tasks. A model hierarchy is constructed by first using

a top-down divisive clustering procedure to create a decision

tree; hierarchical layers are then selected by using different

stopping criterion to traverse the decision tree. Parameters in

the hierarchical model are then learned using a discriminative

training method; in this paper we explore both MCE training

[4] and large-margin training [3]. The performance of the

proposed modeling scheme is evaluated on a large-vocabulary

lecture transcription task [5].

The organization of the paper is as follows. In section 2,

the method for constructing the hierarchical acoustic models

is presented, and the way to score the models is derived. Sec-

tion 3 briefly introduces the discriminative training algorithms

used in the experiments and we describe how to combine hier-

archical modeling with discriminative training methods. Ex-

perimental results on the lecture task are reported in section

4, followed by some concluding remarks.

2. HIERARCHICAL GAUSSIAN MIXTURE MODELS

2.1. Model Hierarchy Construction

Top-down decision tree clustering [6] is a sequential algo-

rithm that is often used for context-dependent acoustic mod-

eling on LVCSR tasks. The algorithm uses a tree structure

to represent the current status of clustering, and each node in

the tree represents a set of acoustic contexts and their corre-

sponding training data. The algorithm begins with a single

root node, and at each step of the algorithm, one leaf node of

the tree is split into two according to a context related ques-
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tion. In general, the node and the question are chosen such

that the clustering objective such as the data log-likelihood

can be optimized at each step. The algorithm continues until

some stopping criterion such as the maximum number of leaf

nodes is reached.

A hierarchical model can be constructed from a decision

tree by running the clustering algorithm multiple times using

different stopping criteria. Fig. 1 illustrates how to construct

a 2-level hierarchy. The lightly-shaded nodes A, B, and C

on the left side of Fig. 1 are produced by the first run of the

clustering; by using a looser stopping criterion, the algorithm

can continue splitting the nodes, and the dark-shaded nodes

D, E, F, G, and H can be generated. A model hierarchy can

thus be constructed by setting the lightly shaded nodes to be

the parent nodes of the dark-shaded nodes, as illustrated in

the right side of Fig. 1.
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Fig. 1. Example of constructing model hierarchy by running

top-down decision tree clustering multiple times with differ-

ent stopping criterion.

2.2. Model Scoring

The leaf nodes of a hierarchical model represent the set of

its output acoustic labels; during decoding, the speech recog-

nizer requires acoustic scores for these output labels. For each

non-root node c in the hierarchy, a set of Gaussian mixture

model (GMM) parameters can be used to model the training

data corresponding to c. As a result, the log-likelihood of a

feature vector x with respect to c can be computed by

lλ(x, c) = log(
Mc∑

m=1

wcmN (x, μcm,σcm)), (1)

where m is the index of mixture component, Mc is the to-

tal number of mixture components of c, wcm is the mixture

weight of the mth component of c, and N (x,μcm,σcm) is

the multivariate Gaussian density function of x with respect

to mean vector μcm and standard deviation σcm. For each

output label p in a K level hierarchy, let Ak(p) denote the

parent of p at the kth level of the hierarchy (AK(p) = p). The

output acoustic score of p can be computed with a weighted

average over the log-likelihoods of its parents:

lHλ (x, p) =
K∑

k=1

ωklλ(x,Ak(p)), (2)

where ωk denotes the relative weight of the kth level.

3. DISCRIMINATIVE TRAINING

The following sections describe the two discriminative train-

ing algorithms, Minimum Classification Error (MCE) training

[4] and Large-Margin (LM) training [3], used in our experi-

ments in more detail.

3.1. MCE Training

MCE training seeks to minimize the number of incorrectly

recognized utterances in the training set by increasing the dif-

ference between the log-likelihood score of the correct tran-

scription and that of an incorrect hypothesis. Let Lλ(Xn,S)
denote the log-likelihood scores of the hypothesis S given the

feature vectors Xn of the nth training utterance. Note that

Lλ(Xn,S) can be computed by summing the acoustic model

scores of all p as in Equation (2) related to S with correspond-

ing pronunciation and language model scores.

The loss function of MCE training is often smoothed by a

differentiable sigmoid function �(d) = 1
1+exp(−ζd) , where ζ

is a positive constant determining the sharpness of the func-

tion. In our experiments, an N-Best version of MCE training

is implemented; that is, given a training set of N utterances,

the loss function can be expressed by

L =
∑N

n=1 �[−Lλ(Xn,Yn)+
log([ 1

C

∑
S∈Sn

exp(ηLλ(Xn,S))]
1
η )],

(3)

where Yn denotes the transcription for the nth utterance, Sn

denotes the set of N-Best incorrect hypotheses, C denotes the

size of the N-Best list, and η is set to 1.0 in our experiments.

Given the loss function, the model parameters are updated

using a gradient-based method call QuickProp[4].

3.2. Large-Margin Training

Large-margin (LM) training proposed by Sha and Saul [3]

has been shown to have good performance for the task of

phonetic recognition. In LM training all the likelihood scores

Lλ(Xn,S) are transformed into a set of distance metrics

Dλ(Xn,S). For each incorrect hypothesis S, the LM con-

straint requires the distance metric Dλ(Xn,S) to be greater

than Dλ(Xn,Yn) by a margin proportional to the Hamming

distance H(Yn,S) between the hypothesis and the transcrip-

tion. For each violation of the constraint, the difference

Dλ(Xn,Yn) − Dλ(Xn,S) + γH(Yn,S) (4)

is considered to be a loss, where γ is a positive constant. By

relaxing the above constraints for all S in the N-Best list of

each training utterance, and summing over the loss across all

utterances, the loss function for LM training can be expressed

by

L =
∑N

n=1 αn[Dλ(Xn,Yn)+
log([ 1

C

∑
S∈Sn

exp(γH(Yn,S) − Dλ(Xn,S))])]+,
(5)
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where αn is an utterance weight used to prevent outliers. The

values of αn and γ need to be specified before the training,

and some heuristic approaches for selecting appropriate val-

ues can be found in [7]. Note that if we transform the GMM

parameters appropriately [3] and further relax the distance

metric Dλ(Xn,Yn), the loss function can be convex to the

transformed parameters. In our implementation, given the

loss function of the training data, the model parameters can

also be updated by the Quickprop algorithm.

3.3. Discriminative Training with Hierarchical Model

Here we show how to combine a hierarchical acoustic model

with discriminative training. Given the loss function L, the

gradient ∂L
∂λ can be decomposed into a combination of the

gradients of the individual acoustic scores, as would be done

for discriminative training of non-hierarchical models:

∂L
∂λ

=
N∑

n=1

∑

x∈Xn

∑

p

∂L
∂aλ(x, p)

∂aλ(x, p)
∂λ

, (6)

where aλ(x, p) denotes the acoustic model score for feature

x and output label p. Since the acoustic score of a hierarchi-

cal model can be computed by Equation (2),
∂aλ(x,p)

∂λ can be

decomposed into
∑K

k=1 ωk
∂lλ(x,Ak(p))

∂λ . As a result, the train-

ing on a hierarchical model can be reduced to first computing

the gradients with respect to all acoustic scores as would be

done in the training for a non-hierarchical model, and then

distribute the contribution of the gradient into different levels

according to ωk.

4. EXPERIMENTS

4.1. MIT Lecture Corpus

The MIT Lecture Corpus contains audio recordings and man-

ual transcriptions for approximately 300 hours of MIT lec-

tures from eight different courses, and nearly 100 MITWorld

seminars given on a variety of topics [5]. The recordings were

manually transcribed in a way that disfluencies such as filled

pauses and false starts are labeled.

Among the lectures in the corpus, a 119-hour training set

that includes 7 lectures from 4 courses and 99 lectures from

4 years of MITWorld lectures covering a variety of topics is

selected for the acoustic model training. Two held-out MIT-

World lectures (about 2 hours) are used for model develop-

ment such as deciding when to stop the discriminative train-

ing. The test lectures are composed of 8 lectures from 4 dif-

ferent classes with roughly 8 hours of audio data and 7.2K

words. Note that there is no speaker overlap between the three

sets of lectures. More details of the lectures can be found

in [7].

4.2. SUMMIT Recognizer

Instead of extracting feature vectors at a constant frame-rate

as in conventional Hidden Markov Model (HMM) speech

recognizers, the SUMMIT landmark-based speech recognizer

[8] first computes a set of perceptually important time points

as landmarks based on an acoustic difference measure, and

extracts a feature vector around each landmark. The landmark

features are computed by concatenating the average values

of 14 Mel-Frequency Cepstrum Coefficients in 8 telescoping

regions around each landmark (total 112 dimensions), and are

reduced (and whitened) to 50 dimensions by Principal Com-

ponent Analysis. The acoustic landmarks are represented by

a set of diphones labels to model the left and right contexts

of the landmarks. The diphones are clustered using top-down

decision tree clustering and are modeled by a set of GMM

parameters. All the other constraints for LVCSR, includ-

ing pronunciation rules, lexicon, and language models are

represented by Finite-State Transducers (FSTs), and speech

recognition is conducted by performing path search in the

FST [9].

4.3. Baseline Models

There are total of 5,549 diphone labels used by SUMMIT. For

the baseline models, the diphones were clustered into 1,871

diphone classes using a top-down decision tree clustering al-

gorithm; initial GMMs for the diphones were created from

the training data using the Maximum Likelihood (ML) crite-

rion. To see how the number of parameters affects the model

performance, three ML models were trained with different

numbers of mixture components. Figure 2(a) summarizes the

performance of the ML models. As illustrated in Figure 2,

the WERs were reduced as the number of mixtures was in-

creased, showing that increasing the number of parameters

provides better fitting under the ML training criterion.

MCE and LM training were applied to the ML models,

and two discriminative models were generated for each initial

ML model. Figure 2(b) summarizes the WERs of the dis-

criminatively trained models. Although discriminative train-

ing always reduced the WERs, the improvements were not

as effective as the number of mixture component increased.

Comparing the MCE loss function of the models on both the

training and test data, we found that although the training loss

decreases as the number of mixture components increases,

the test loss increases. This fact suggests that discriminative

training has made the model over-fit the training data as the

number of parameters increases.

4.4. Hierarchical Models

By using a different stopping criterion for the top-down de-

cision tree clustering, another diphone set with 773 diphone

classes was generated. Although we didn’t show the results,
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Fig. 2. Test set WERs of non-hierarchical models. The WERs

of ML models reduce as the number of mixture components

increases, but the gain is not translated after discriminative

training.

an MCE trained model with these classes show the same

WER trend found in Fig. 2(b) with about 0.5% higher error.

As described in section 2, the 773-diphone cluster and the

original 1871-diphone cluster can form a 2-level model hi-

erarchy. A ML model with about 22K mixture components

was trained for the 773-diphone cluster, and the model was

combined with the baseline ML model of about 32K mixture

components to form a hierarchical model with a total of ap-

proximately 54K mixture components. The ω1 (for the 733-

diphone cluster) and ω2 in Equation (2) were set to 0.4 and

0.6 respectively.

Table 1 summarizes the WERs of the hierarchical model

before and after discriminative training. Before discrimina-

tive training, the hierarchical model has a higher WER on the

test set than the non-hierarchical model with a similar num-

ber of parameters. However, for both discriminative training

methods, the hierarchical model yields more than 1.0% WER

reduction over the best non-hierarchical model, i.e. 32.7%
for MCE training and 32.2% for LM training from Fig. 2(b).

The McNemar significance test [10] shows that the improve-

ment of the hierarchical model over the non-hierarchical ones

is statistically significant (p < 0.001). To understand why the

hierarchical model generalize better, we measured the log-

likelihood differences between the ML models and the dis-

criminatively trained models. The statistics of log-likelihood

differences show that the hierarchy prevents large decreases

in the log-likelihood and can potentially make the model be

more resilient to over-fitting.

ML MCE LM

WER 37.4% 31.2% 31.0%

Table 1. Test set WER of the hierarchical model before and

after discriminative training.

5. CONCLUSION AND FUTURE WORK

In this paper, we have described how to construct a hierar-

chical model for LVCSR task using top-down decision tree

clustering, and how to combine a hierarchical acoustic model

with discriminative training. In experiments using the MIT

Lecture Corpus, the proposed hierarchical model yielded over

1.0% absolute WER reduction over the best-performing non-

hierarchical model. In the future, we plan to further improve

the model by applying a more flexible hierarchical structure,

where the nodes at a given level can have an automatically

learned weight using techniques similar to the generalized in-

terpolation described in [11].
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