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ABSTRACT: 
 

The decline of the woodland caribou population is a result of their habitat loss. To conserve the habitat of the woodland caribou and 

protect it from extinction, it is critical to accurately characterize and monitor its habitat. Conventionally, products derived from low 

to medium spatial resolution remote sensing data, such as land cover classification and vegetation indices are used for wildlife 

habitat assessment. These products fail to provide information on the structure complexities of forest canopies which reflect 

important characteristics of caribou’s habitats. Recent studies have employed the LiDAR system (Light Detection And Ranging) to 

directly retrieve the three dimensional forest attributes. Although promising results have been achieved, the acquisition cost of 

LiDAR data is very high.  In this study, utilizing the very high spatial resolution imagery in characterizing the structural development 

the of forest canopies was exploited.  A stand based image texture analysis was performed to predict forest succession stages. The 

results were demonstrated to be consistent with those derived from LiDAR data.  
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1. INTRODUCTION 

Woodland caribou (Ranifer Tarandus Caribou) is an important 

wildlife species ecologically and culturally in Canada. This 

amazing creature is now at risk and listed as a threatened 

species provincially and nationally (Ontario Woodland Caribou 

Recovery Team, 2008). The decline in woodland caribou 

populations is primarily the result of habitat loss and forest 

fragmentation which is caused by human interference including 

spread of agriculture, oil and gas exploration, and mining 

(McLoughlin, 2003).To protect them from the threat of 

extinction, it is critical to conserve its habitat conservation.  

 

To map the wildlife habitat, the basic idea is to establish a link 

between the organism’s characteristics and behaviors to the 

physical habitat (Guisan and Zimmermann 2000). 

Conventionally, the observation was conducted by field work 

which has the promising accuracy and generally been used on 

the local scale. For the past decades, remote sensing techniques 

played a key role in wildlife habitats mapping, when large 

spatial information becomes more favourable for broader area 

analysis while conventional field work is time and labour 

intensity. (Kerr and Dostoevsky, 2003). The forest inventory 

map and land use map which generated from lower resolution 

satellite imagery has been employed as the major data source to 

map the woodland caribou habitat (Hansen, 2001). In addition 

to land cover/use maps, other remote sensing products, such as 

NDVI (Normalized Difference Vegetation Index) images 

calculated from satellite data with medium to low spatial 

resolution have been used in other wildlife habitat mapping. 

However, the map was not usually up to date, and classes from 

products usually generated for other or generic applications are 

not best suited for woodland caribou habitat mapping. These 

products are not sufficient in characterizing caribou or other 

wildlife habitat at local (fine spatial resolution) scales and in 

characterizing sub-canopy vegetation structure relevant to 

wildlife (Brown, 2006) 

 

Forest vertical structure influences animal–habitat associations 

and biodiversity significantly (Brokaw and Lent 1999).  

Recently, studies have focused on the exploitation of aerial 

digital imagery and high spatial resolution satellite imagery in 

characterization of forest structure. Song and Woodcock (2002) 

characterized the sizes of tree crown using the sill of a 

variogram. Pasher and King (2010) used multivariate texture 

analysis to produce a continuous map of the structural 

complexity, which was based on the empirical relationship 

between the texture variables and field measurements. 

Kayitakire et. al (2006) used 1-m resolution IKONOS-2 

imagery to estimate the forest variables from the texture analysis 

of Grey Level Co-occurrence Matrix (GLCM). Their results 

showed that the structure characteristics including top height, 

circumference, stand density and age variables are correlated to 

texture variables. Ouma et al (2008) employed grey-level co-

occurrence matrix (GLCM) and wavelet transform (WT) texture 

analysis for the differentiation of forest and non-forest 

vegetation type using QuickBird imagery. Their results showed 

that with the combination of GLCM-mean texture (micro-

textures) WT- derived texture (macrotextures), the 

differentiation and classification of the overall vegetation types 

can be improved.  

 

At longer temporal scale, forest succession is more primary than 

the structure, as the structure only capture the forest at a certain 

time period while the forest succession describe the forest 

development dynamics (Shugart, 2000). In addition, accurate 
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classifications of forest succession stage at large spatial extents 

are critical to characterize wildlife habitat (Helle and 

Monkkonen, 1990). Current Studies have shown that a 

combined set of LiDAR derived height metrics which 

characterizing the three-dimensional structure of forest canopies 

is able to map forest successional stage with a high accuracy 

(Falkowski, 2009; van Ewijk, 2011).  

 

Although LiDAR data have the ability to reveal the succession 

stage of the forest stands, the data acquisition and processing 

take greater cost (Jensen 2005). High resolution remote sensing 

imagery comes at a greater availability, but no study has 

explored the relationship in between the image texture and 

forest succession stages. The objective of this study is to 

classify forest succession stage through very high resolution 

multispectral aerial imagery. Specifically, image texture 

variables which were derived from Gray Level Co-occurrence 

Matrix and shadow fraction were employed to classify the forest 

succession stages. In addition, to determine the reliability of the 

result derived from the image texture analysis, cross validation 

with LiDAR data was performed. Existed LiDAR metrics was 

adopted to predict the forest succession stages, and then 

compared with the classification result generated from imagery 

for accuracy assessment.  

 

 

2. STUDY AREA AND DATA SET 

The study area is located near the town of Hearst, Central 

Ontario, Canada (49.7°N, 83.7°W). Hearst forest falls within 

the boreal mixed wood region and covers approximately 1.23 

million ha; 1.00 million ha of which is productive forest. The 

study site contains of black spruce (picea mariana), white 

spruce (picea glauca), balsam fir (abies balsamea), trembling 

aspen (populus tremuloides) and black poplar (populus 

balsamifera). The optical imagery which was acquired using a 

Leica ADS-40 in the summer of 2007 has four spectral bands, 

blue, green, red and near infrared with a spatial resolution of 0.4 

m by 0.4 m. LiDAR data were collected using an Optech 

ALS50 sensor mounted in a Cessna 310 aircraft in summer 

2007 during leaf-on conditions. The LiDAR data were discrete 

pulse, with an average 1.677 pulses per square meter. Location 

of the study area is shown in Figure 1 below with a snapshot of 

the multispectral imagery. 

 

 
 

Figure 1. Research area of Hearst Forest, Ontario, Canada 

 

3. METHODOLOGY 

To differentiate the stages in forest development, a suite of 

variables were extracted from the imagery representing the 

variance within-crown, within-shadow, and canopy level 

spectral and spatial properties. According to the literature, two 

approaches have been popular to use, which are semivariograms 

analysis and Gray Level Co-occurrence Measure (GLCM). 

Semivariogram contain measurements that relates to forest 

structure (Lévesque and King, 2003; Treitz and Howarth, 2000). 

The range of the semivariogram is an indicator of the distance 

of spatial dependence, often related to the size or scale of 

dominant objects in the imagery (Curran, 1988; Johansen et al., 

2007), and the sill was proved to be an indicator of the total 

structurally dependent variance in the data that was expected to 

respond in a manner similar to the texture measures (Johansen 

et al., 2007). However, semivariogram calculation is complex 

and computation extensive, which is not suitable for large area 

mapping. Therefore, the semivariograms for imagery over the 

whole study area for forest succession stages were not 

calculated. GLCM approach is adopted for this study. The 

GLCM variables were calculated first, and used for classifying 

different forest developing stages. 

 

Shadow fraction, which indicates the tree canopy closure and 

tree densities, is also an important variable to measure the forest 

structure. Therefore, shadow fraction was calculated and 

introduced as an additional variable to the forest development 

stages classification to test the accuracy improvements. Details 

of variables extraction and analysis are given in the following 

paragraphs.  

 

In this study, four general stage of the forest development was 

adopted. The stand initiation stage indicates where new 

vegetation becomes established and fully occupies the disturbed 

site. The young multi-storey stage follows and is mainly 

characterized by competition among the dominant trees. After 

the time goes by, young trees start to regenerate and the stand 

enters the understory re-initiation stage. In the last stage, state 

as the old growth stage, autogenic and gap-replacing processes 

create patches large enough for stand initiation to begin (Oliver 

and Larson, 1996). 

 

From the entire study area, 20 test areas representing four 

different succession stages, with the size of 501 x 501 pixels 

(200m x200m) were subset based on visual interpretation. 

Example of each forest succession stages are listed in Figure 2. 

In this study, a size of 400 square meters is used to represent a 

stand. To capture the spectral and spatial variation within a 

stand, all 20 test areas are arbitrarily cut into numbers of blocks 

with a size of 50 pixels by 50 pixels and processed for the 

image texture analysis. 

 

 

3.1 GLCM Calculations 

 

For very high resolution aerial imagery, the gaps and shadings 

in between tree crowns are visible and shown as the spatial 

variability in image brightness. As the forest developed from 

young to mature, the amount of the gap and shadings changed 

as well. Therefore, texture measurements were performed 

through statistical calculated GLCM. 
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(a)                    (b) 

 
(c)                      (d) 

 

Figure 2: Description of the four forest stand development stages. From top to down and left to right: (a) stand reinitiation, (b)stem 

exclusion, (c) understory re-initiation, and (d) old growth stage. The false colour composite of the optical imagery covering the study 

area with the near-infrared band displayed as red, red as green and green as blue 

 

 

Since the spectral information was not employed in this study, 

principle component analysis (PCA) was performed to capture 

the most important information from the image. First 

component calculated from a PCA of four spectral bands was 

used for texture measurements. Haralick et al. (1973) first 

defined 14 texture features that were derived from the GLCM, 

and eight of them are commonly used GLCM texture measures 

for remote sensing imagery analysis (Mean, Variance, Contrast, 

Entropy, ASM, Homogeneity, Dissimilarity, and Correlation). 

As reviewed from the literature, homogeneity was more 

effective than the first-order variance in discriminating age 

classes of Douglas-fir forest stands from IKONOS 

panchromatic data (Franklin et al., 2001), others also found that 

the contrast , ASM, entropy and homogeneity measures should 

be used for forest attributes. (Pesaresi 2000, Cosmopoulos and 

King, 2004, Kayitakire et al., 2006).  

 

Three parameters controlling the statistics calculated from 

GLCM were considered in this study, moving window size, 

displacement and the direction angle. Various values of these 

parameters have been considered to cover the possible range, 

while maintaining a manageable number of texture cases. The 

four main directions (0°, 45°, 90° and 135°) and window sizes 

5pixels ×5 pixels, which was intend to capture the variation 

within crowns. The displacement values were set to 1. The eight 

texture measures were computed and then further averaged over 

a plot of 400 square meters, which is considered as the stand 

size in this study. 

 

Mean 

 
Variance  

 
Contrast    

 
Entropy 

 
Angular Second Moment 

 
Homogeneity 

 
Dissimilarity 

 
Correlation  
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Where is the th entry of the normalized GLCM matrix; 

, , and are the mean the standard deviation respectively.  

 

To investigate differentiating all four forest succession stage 

from the image texture variables, random forest classification 

was employed. The random forest classifier consists of a 

combination of tree classifiers where each classifier is generated 

using a random vector sampled independently from the input 

vector, and each tree casts a unit vote for the most popular class 

to classify an input vector (Breiman 2001). Recent applications 

have shown that random forest is good for classifying hyper 

spectral remote sensing data, and multisource geographic data 

(Ham et., al., 2005, Gislason et al., 2006, Lawrence et. al., 

2006).  

 

Eight texture variables, Mean, Variance, Contrast, Entropy, 

ASM, Homogeneity, Dissimilarity, and Correlation, at four 

direction angles are used together as the 32 parameters in 

random forest. After the classification, 1433 out of 1600 

samples are correctly classified, which is in a result of 89.56 % 

accuracy. The confusion matrix of the classification result is 

shown in Table 1. 

 

 

 
Old 

Growth 

Understory  

Re-

initiation 

Young  

Multistory 

Stand  

Initiation 

Old Growth 471 21 1 7 

Understory  

Re-initiation  
24 255 10 11 

Young 

Multistory 
1 21 366 12 

Stand 

Initiation 
11 28 20 341 

 

Table 1. Confusion Matrix from random forest classification 

 

 

3.2 Shadow fractions 

 

Different from the low resolution satellite imagery, shadows can 

be observed in high resolution aerial imagery. The amount of 

the shadow varied when the tree height, presence of understory 

and size of the overstory are different. The shadow fraction can 

be used as one descriptor to measure the structure difference of 

the forest. In our study, shadow fraction was calculated as the 

ratio of shaded area to total area within the window size 50 x 50 

pixels (20m x 20m). It was derived using the NIR band because 

it contained the highest contrast between shaded and non-

shaded forest areas among all four spectral bands.  

 

Based on the distribution of the histogram, a threshold value 

was defined to separate the pixels into shades and non-shades 

groups. The ration between the number of shaded pixel and the 

total number of pixels within the window is the shadow fraction. 

Averaged results are shown in Table 2. 

 

As shown in the table 2, each stage of the forest shows different 

percentage of shadow presences, while the difference in 

between forest stages is not significant to separate from one 

another.  To test the importance of this texture variable, the 

shadow fraction was introduced as an additional variable into 

the classification. Together with the variables derived from the 

GLCM, the random forest classification accuracy was improved 

to 92.18%. Also, among all the variables, the shadow fraction 

was ranked the third important variable in random forest 

classification. Overall, the shadow fraction does increase the 

classification. Specifically, adding the shadow fraction 

improved differentiate the old growth stage and understory 

reinitiation, and the stand initiation and young multi-storey. 

However, it does not improve classify the young multistory and 

understory re-initation. The confusion matrix of the 

classification result is shown in Table 3.   

 

 

 
Shadow 

Fraction 
St. Dev. 

Stand Initiation 0.002287 0.004092 

Young Multistory 0.091434 0.038452 

Understory Re-initiation 0.051546 0.029982 

Old Growth 0.018801 0.015353 

 

Table 2. Shadow fraction derived from NIR band from four 

forest succession stage 

 

 

 
Old 

Growth 

Understory  

Re-

initiation 

Young  

Multistory 

Stand  

Initiation 

Old Growth 482 14 2 2 
Understory  

Re-initiation  
17 267 10 6 

Young 

Multistory 
0 22 370 8 

Stand 

Initiation 
8 23 13 356 

 

Table 3. Confusion Matrix from random forest classification 

after shadow fraction 

 

 

4. RESULT VALIDATION  

To validate the result from the image texture measurements, a 

cross validation was applied against the LiDAR data. Since 

LiDAR data measure the three-dimensional forest structures, 

such ability makes it possible to classify the forest succession 

stages. Figure 3 shows the extracted LiDAR points and height 

distribution.  

 

 

 
(a) 
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 (b) 

 

 
 (c) 

 

 
     (d) 

 

Figure 3: Discrete return LiDAR points with height distribution 

for four forest succession stages.  From top to down and left to 

right: (a) stand initiation, (b)young multistory, (c) understory re-

initiation, and (d) old growth stage. 

 

 

All returns of discrete LiDAR point were utilized for mapping 

the forest stage. First, DEM which was provided by OMNR was 

used to normalize the LiDAR points to the ground. To analyze 

the forest stage at the stand level, the entire area of 5 km by 5 

km was arbitrarily cut into numbers of height bins in size of 

20m by 20m, and statistical indices within each height bins was 

calculated. The indices were selected based on the remote 

sensing and forest ecology literatures that have been popular in 

terms of analyze the forest structure and development. Such 

indices include average height, standard deviation of heights, 

Skewness and Kurtosis of height, the height percentile and 

height deciles, as shown in Table 5 below. 

 

 
H_Min Minmum Height 

H_Max Maximum Height 

H_Ave Average Height 

H_SD Standard Deviation  of Heights 

H_Med Median Height 

H_Cov Coefficient of Variation of Heights 

H_Skew Skewness of Heights 

H_Kurtosis Kurtosis of Heights 

H_P1 - H_P9 10th - 90th Height Percentile 

H_D1 - H_D9 1th - 10th Height Decile 

Canopy Canopy cover = number of 1st return/ Total returns 

 

Table 3: LiDAR derived indices 

 

 

Empirical model should be built to characterize the forest 

succession stage. Due to the lack to filed plot, no sufficient 

information was available to establish a statistical model of 

using LiDAR data representing forest stage. The model 

(Equation (1)) reported in van Ewijk et al (2011) to predict 

Lorey's height for forest succession stage was adopted. Based 

on their findings, the Lorey's height which is basically the stand 

tree height weighted by basal area was found to be a good index 

to separate the young multistory stage from an understory re-

initiation stage.  

 

Predicted Lorey's Height = 17.72 + 6.47 H_Skew +0.94 

H_Kurtosis +0.80 H_ P9 - 16.59 H_D6          (1)  

 

To validate the forest succession stage derived from the texture 

measurements, 400 samples are employed for the classification 

from random forest using the previous defined training data. On 

the other hand, the LiDAR points from the overlapped area 

from the samples are used to calculate the predicted Lorey’s 

height. Averaged result is shown in Table 4 below. The results 

demonstrate that the classification results and LiDAR derived 

predicted Lorey’s height agree with each other. 

 

 

Classified Stages Predicted Lorey’s Height 

 MIN MAX MEAN STD 

Stand Initiation 0.08 1.14 0.2563 0.2045 

Young Multistory 3.02 7.4 4.9705 0.8615 

Understory  

Re-initiation 
3.4 10.4 6.8701 1.4822 

Old Growth 5.89 12.32 9.1612 1.5271 

 

Table 4. Cross validation from the texture measurement 

classification result with the LiDAR derived predicted Lorey’s 

height. 
 

5. CONCLUSION 

This study shows that using GLCM texture measurements alone 

can differentiate stages of forest stands development with 

achieved classification accuracy over 89%. The reason account 

for that is, as the forest stands develop, the canopy surface will 

change from smooth to rough, which makes the variation in 

between canopies measureable from the textural analysis. 

Specific correlation is sensitive to capture the dependency, thus 

able to distinguish the homogenous area and the areas with 

greater variation. In addition, shadow fraction can measure the 

amount of tree and also the density of the tree crowns. It can be 

used roughly describe the forest development, but can not 

distinguish all four stages clearly. However, employed as an 

additional variable to the variables derived from GLCM, 

classification result accuracy can be improved to 92%. As the 

forest developed from young multistory to understory 

reinitation, the understories are still too small to reflect the 

sunlight, thus can be taken into account as shadows. Therefore, 

adding the shadow fraction cannot improve the classification in 

between these two stages.  

 

In addition, as the LiDAR data has the ability of viewing the 

forest stands vertically. It was used to statistically describe the 
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development of the forest. And to further test the accuracy of 

the classification from the texture analysis, cross validation was 

performed from the classification result and the LiDAR derived 

indices. As the class from young to mature corresponding to the 

predicted Lorey’s height from low to height, the result derived 

from texture analysis agreed with the LiDAR derived indices. 

Therefore, the ability of using texture measurements of the high 

spatial resolution imagery to derive forest complexity 

information was demonstrated.  

 

Future work will include analyze how GLCM parameters, inter-

pixel displacement and the window size influence the estimates 

of forest structures.  At different stages of the forest, the canopy 

openness, size of the crow/stands will be different. At the early 

stage of the forest, the trees are more isolated, while in the 

mature stage, the trees grow into each other, and the overlaps of 

the tree crown make multiple crowns clustered as one single 

object. Thus, one window size can not fit all forest stages. 

Although in this preliminary analysis, a standard window size 

provides promising result, further analysis will include 

segmentation process to extract canopy objects. The texture 

measurements will be processed within each object rather than 

predefined windows. 
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