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ABSTRACT 

RISK QUANTIFICATION OF MAPLE TREES SUBJECTED TO WIND LOADING 

SEPTEMBER 2012 

CIHAN CIFTCI. B.Sc., BOGAZICI UNIVERSITY 

M.Sc., BOGAZICI UNIVERSITY 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Sergio F. Brena and Professor Brian Kane 

Because of property damage and people injuries in, almost, every year in different 

locations of the earth, unfortunately the topic of understanding trees and their risk 

assessments under wind forces has not lost its importance since approximately a half of 

the last century. In contrast to loss its importance, the number of researchers or studies 

increases with time thanks to inter-disciplinary studies on that topic. In this Thesis, tree 

dynamics and their risk assessments subjected to wind forces were addressed by two 

different disciplines (civil engineering and environmental conservation).  

To mention includes of this inter-disciplinary study, first, a finite element 

modeling was developed for a real tree in Belchertown, MA. Then this modeling was 

compared with the experimental tests. After comparing the model and the tests of the real 

tree, same methodology of the modeling was, again, applied to a different tree in 

Amherst, MA. Second, a number of wind samples were generated randomly in order to 

apply to the models of the trees. Then, by comparing the moments at the stem of the trees 

and calculated maximum moments of the stems, the fragility curves of the failures of 

these trees was obtained with respect to mean wind-speed of the random wind samples. 

Third, the decay effects on the fragility curves were investigated by considering 
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decreasing moment capacity of tree cross-sections due to decays. Finally, crown structure 

effects on tree dynamics were examined by several parametric studies which were 

applied to the tree in Belchertown, MA. These parametric studies refer to separately 

changes in several physical (such as stem diameter, branch slenderness ratio etc.) and 

material property (MOE) of the tree. Thus, thanks to these parametric studies, tree 

dynamics were understood better and the complex relationship between the stem and 

branches of the tree was explained better. Those better understandings, off course, 

produced several important practical outcomes for the life of the trees and as well as 

human-being.  
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Trees have some important roles for human lives due to their environmental and 

sociological benefits (Nowak and Dwyer 2000). However, tree failure due to uprooting or 

breakage-failures of stems or branches may offset these benefits because of the 

consequences of damage including death, personal injury, cold-sickness due to power 

outage, traffic jams and economic losses (Kerzenmacher and Gardiner 1998, Gardiner 

and Quine 2000, Kane and Ryan 2004, James et al. 2006). Litigation associated with tree 

failures (Mortimer and Kane 2004) increases the economic cost of tree damage to higher 

levels than simply the cost of removing the tree and repairing the damages. To minimize 

the impact of tree damage and to understand the response of trees under wind forces, 

three main goals were chosen for this dissertation, as discussed in Section 1.2. The 

research is limited to wind-induced tree damage since several studies have identified this 

environmental factor as the main source of uprooting or breakage failures (Ancelin et al. 

2004, Gardiner et al. 2008). 

Most of the tree risk assessment studies found in the literature based on 

mechanical models mainly focus on studying trees within forests subjected to wind 

forces. In contrast, no work has been done on open grown trees. Thus, the current work 

focuses on risk quantification of open grown maple trees subjected to wind loading to fill 

the gap in knowledge in this field.  
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1.2 Overall Goals of Research 

The overall goals of the current study are achieved by focusing on answering the 

following three main questions: (1) What is the likelihood of tree failures subjected to 

wind forces, quantified by construction of wind failure cumulative distribution functions 

(CDFs)? ; (2) What effect do tree decays have on the probability of tree failures?; and (3) 

How can we evaluate the probability of tree failures through a better understanding of 

dynamic response of trees and the dynamic response relationship between the stem and 

the branches of the trees.  

The different chapters in this dissertation present the methodology that was 

designed to answer these important questions. Section 1.3 provides more details of the 

methodology and content within each chapter. 

1.3 Scope of Work and Organization of Thesis 

The dissertation is organized primarily to answer the questions posed in Section 

1.2.  Chapter 2 contains a summary of the work past research groups have done in topics 

that are relevant to the goals of this research.  The literature survey contained in this 

chapter highlights information that helped identify gaps in the knowledge of wind-

induced tree failures where better understanding was needed. 

Chapter 3 focuses on the description of the finite element modeling needed to 

achieve the first goal as indicated Section 1.2. Before conducting the Monte Carlo 

simulations, a detailed calibrated model of a tree prototype is needed.  The basic 

assumptions in the model creation as well as the analysis techniques are presented in this 

chapter. A prototype finite element (FE) model was created from a tree located in 
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Belchertown, MA, USA that has been the subject of previous studies by Kane et al. (In 

preparation). The FE model and analysis was conducted using a general purpose FE 

analysis program, ADINA 8.5. The FE model was validated by comparing the modal 

frequency results with experimental values, which had been measured by Kane et al. (In 

preparation). Additional model validation is conducted by comparing the computed 

results with several empirical and numerical formulae.  

In Chapter 4 Monte-Carlo (MC) simulation techniques were applied to the FE tree 

model created in Chapter 3 to directly investigate the risk assessment of tree failures 

under random wind excitation forces occurring during different seasons (winter and 

summer seasons). For the application of MC simulations, a total of 1000 random wind 

samples (for each mean wind-speed value) were deemed appropriate. Wind spectral 

density of these wind samples was first generated assuming exposure conditions of 

continental areas. Ochi-Shin’s equation, which was developed for the wind spectral 

density in offshore regions, was modified by using time-history data and spectral 

densities of several experimental wind measurements for a selected land region in 

Amherst, MA. Using this new modified Ochi-Shin’s equation, wind samples were 

generated under the assumption that winds can be modeled using log-normal distributions 

(Luna and Church 1974, Kiss and Jánosi 2008, Carta et al. 2009, Morgan et al. 2011). 

The generated wind samples were applied to the loading scenarios of two different tree 

models of trees in Belchertown and Amherst, MA creating 3D-FE models using the 

assumptions described in Chapter 3.  Therefore, randomness was assumed to only apply 

to loading wind scenarios, and the trees themselves were considered deterministic. 

However, tree models were developed to capture the response during two seasons: winter 
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season and summer, because tree behavior may change drastically in each of these 

seasons.  Two modeling parameters were specifically varied for each season: wind drag-

forces and damping effects of leaves. These two parameters capture the differences in 

canopy architecture of the trees in the two seasons that were selected for this research.  

The maximum moments at breast height (1.4 m form the base) of each model as a result 

of the dynamic analysis of each model were compared. These moments are considered to 

be the governing actions that may cause tree failure. Finally, cumulative distribution 

function (CDF) curves were obtained for these two trees with respect to each season and 

the various wind scenarios.  

The FE modeling and Monte-Carlo simulations in Chapters 3 and 4 assume that 

trees have not experienced any decays or defects in their cross-sections. By using this 

assumption, it is known that all the probabilistic assessments on tree failures will 

overestimate the critical wind forces for tree failures. For this reason, the effect of decays 

on the risk assessment of tree failures (the second question posed in Section 1.2) was 

investigated in Chapter 5. The methodology of this investigation is based on determining 

the moment capacity loss of cross-sections of tree stems with varying decay sizes and 

decay cross-sectional position. Bending moment capacity of trunk cross-sections in trees 

was calculated using an algorithm created in Matlab and computed with respect to size 

and location of any circular decays in these sections. Moment capacity loss was 

calculated by using the ratio of the bending moment capacity of a section with decay to 

the moment capacity of the same section without decay. For these computations, three 

important assumptions were used: (1) bending failure of trees is governed by 

compression failure; (2) axial load effects in cross-sectional flexural strength is 
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negligible; and (3) wood is a composite material so tension and compression behaviors 

parallel to the grain are not same (elastic moduli differ). The differences in behavior are 

captured using a linear model of a composite section, that is, the ratio of the modulus of 

elasticity in tension and compression was initially assumed to be 2.0 (      ⁄ ).  

Because tree moduli may differ substantially depending on species and tree age other 

ratios were investigated.  The modular ratio was varied to 1.5 and 2.5 to determine the 

effect of this parameter on moment capacity loss. The decay model was further improved 

by considering the possibility of other shapes of decay (noncircular).  In this way the 

methodology developed in Chapter 5 would be more generally applicable.  The 

methodology developed in this chapter was used to compare the results of moment 

strength with experimental data. The methodology developed in this chapter can be used 

to estimate the moment capacity of decayed sections given that the decay geometry can 

be identified through any method (e.g. visual approaches (Fink 2009), tomography 

(Gilbert and Smiley 2004, Wang and Allison 2008), radar (Butnor et al. 2009), and strain 

gauges and inclinometers (Sinn and Wessolly 1989)). Once the moment capacity loss is 

estimated, cumulative distribution functions of decayed tree failures are determined as 

several examples show in graphs contained in Chapter 4.  

As several past studies have indicated (Milne 1991, Moore and Maguire 2004, 

Sellier and Fourcaud 2005, Sellier et al. 2006, Castro-García et al. 2008, Rodriguez et al. 

2008, Moore and Maguire 2008, Sellier and Fourcaud 2009, Kane and James 2011), the 

dynamic response of trees is highly affected by the tree geometry and characteristics of 

stems and branches.  A widespread reduction of risk of failure requires that the dynamic 

response of trees be well understood. In Chapter 6 the relationship between stem and 
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complex design of branches when the trees are subjected to wind forces is studied in 

detail. A parametric study conducted to identify critical geometric properties that affect 

the dynamic response of trees, with reference to the base model used in Chapter 3, M100, 

was conducted as described in Chapter 6. Different tree models were created by varying 

selected properties of M100 using ADINA-8.5. Eight different parameters (stem 

diameter, slenderness ratio of branches, number of branches, damping ratio, branch 

attachment heights, branch attachment angles, branch azimuth angles, and the distribution 

of the modulus of elasticity in the members of trees) were varied to compare the sway 

motion of Maple trees in this research.  

To conclude with the final chapter in the current research, three main 

opportunities were identified for future works: (1) Decay effect on tree dynamic 

response; (2) Effects of all the pruning types in literature on tree dynamic response; (3) 

Likelihood of random tree failures subjected to random wind forces. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

For, especially, arborists and urban foresters, it is important to understand the 

behavior of trees under a variety of forces, especially wind forces (Ancelin et al. 2004, 

Gardiner et al. 2008), in order to reduce the risk of tree failures. Thus many experimental 

and theoretical research studies have focused on investigating tree response and tree 

failures under wind forces. For instance, the first study on trees subjected to wind forces 

began with Metzger in 1893 and continued respectively with (Tiren 1929), Fritzsche 

(1933), and Ylinen (1952). Then, the importance of these studies has been progressively 

increased up to now thanks to the encouragements of several countries (e.g. lastly, the 

countries in G20 have decided on encouragements on green growth 2012 in Mexico 

City), and forestry agencies within governments that are interested in determining how to 

minimize the loss of timber value due to storms.  

The studies on tree response for wind forces can be divided into three main 

groups such as (1) experimental, (2) theoretical and (3) computational or numeric studies. 

This thesis is a computational study, thus only the literature of the third group will be 

focused and presented in detail (Section 2.2). However, it is possible to see some 

information from experimental and theoretical studies as be separated into whole part of 

this chapter, because the results of these studies are inevitable to use as the inputs for the 

computational studies.  After mentioning the computational studies, two important topics 

(tree dynamic response under wind induced excitation, and tree mechanics and tree 
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failures) will be addressed in sections 2.3 and 2.4, respectively. Finally, this chapter will 

include a conclusion section at the end. 

2.2 Computational Studies on Tree Response Subjected to Wind Forces 

Computational studies on tree response subjected to wind forces will be presented 

by concerning two different approaches (static and dynamic methods). Using static 

approach stands to an earlier time than the dynamic approach. Metzger (1893), Tiren 

(1929), Fritzsche (1933), and Ylinen (1952) are examples for the oldest studies by using 

the static approach. Subsequently, by considering the possibility of underestimation on 

the response of trees, several researchers Papesch (1974), Forsching (1974), Holbo et al. 

(1980), and Amtmann (1982) started investigating tree response subjected to wind forces 

by using dynamic analysis approach. As these researchers, dynamic approach was chosen 

for this thesis as the type of the analysis approach, so this chapter will address this 

approach in much more detail than the static one.  

2.2.1 Static Approach 

This method is based on the static formula of     , which is commonly used 

by engineers. According to this equation, stiffness [N/m] and displacement [m] of the 

members of trees can be represented by k and u, respectively. F [N] corresponds to the 

wind force on trees as in the research of Mattheck and Bethge (2004). Stiffness in this 

static formula and the other properties (e.g. density, damping) of trees also exist in the 

formula which is used for the dynamic approach (section 2.2.2), thus the stiffness 

property of trees will be mentioned later, in detail, as the other properties. Additionally, 
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one of the most important differences between the static and the dynamic approaches is 

that static one does not depend on time. Thus, every symbol in the static formula is not 

represented as a function of time, thus static approach may not really simulate the sway 

motion of trees with time (Oliver and Mayhead 1974, Gardiner et al. 1997), and 

moreover static approach cannot consider the interaction of branches on this sway motion 

(James 2003). On the other hand, the advantage of the static approach is to have less cost 

and less time on which it is supposed to be spent. That is why, several studies (Peltola et 

al. 1999, Gardiner and Quine 2000, Ancelin et al. 2004, Schelhaas et al. 2007, Kane and 

Clouston 2008) use the static approach for risk assessment of trees subjected to wind 

forces.  

2.2.2 Dynamic Approach 

Dynamic approach on the tree response subjected to wind forces has been caught 

on by, especially, recent studies (James 2003, Moore and Maguire 2004, Sellier et al. 

2006, Moore and Maguire 2008, Sellier et al. 2008, Rodriguez et al. 2008, Sellier and 

Fourcaud 2009). This approach is based on a formula (Eq. 1) which is commonly used in 

engineering. To apply this equation for trees, one of the easiest ways is to use finite 

element methods (FEM) in a computer based package program. Thus, several recent 

studies (Moore and Maguire 2008, Sellier et al. 2008, Sellier and Fourcaud 2009) on 

dynamic tree response used FE methods.  

  ̈      ̇         (2.1) 
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where m is the mass [kg],  ̈ is the acceleration [m/s
2
], c is the damping coefficient [kg/s], 

and  ̇ is the velocity [m/s]. As mentioned in section 2.2.1, ku is the stiffness part of Eq. 1. 

Finally, F is the external force of this equation. The variables (acceleration, velocity, 

displacement, and force) in Eq. 1 should be considered as functions of time. It means that 

after each timing case (Δt, which is determined by researchers), the new position and the 

new velocity depend on the previous case (the previous position, velocity, and 

acceleration (Chopra 2007). To apply this dynamic approach successfully, all the 

computational studies on tree response need to know mass, damping and stiffness of the 

trees with the external forces, together. All these properties of the trees will be mentioned 

in the next sections, in detail.   

2.2.2.1 Mass Property of Tree Dynamics 

Mass can be represented by using density and geometry in 3-Dimension (volume) 

of tree elements (such as branches and stem). That is why the computational studies 

encoded the geometric properties (e.g. stem diameter, branch diameters, tree height, 

crown width and height) of trees from field measurements and their density values 

(depend on specific gravity).  

According to Niklas (1997), density changes within not only tree specious but 

also the cross-section of stems or branches, thus to determine the density of trees may be 

quite complex. As depicted in Figure 2.1, for example, Niklas found that a sudden 

decrease of the density occurred within the tree trunk near the center of the heartwood. 

Another drop also occurred in the boundary region between the heartwood and the 

sapwood of trees. Thus it can be accepted that the variance of the specific density with 



11 
 

respect to the cross-section is not so high except the places at which sudden decreases of 

the specific gravity exist.   

The density of trees can depend not only on formed layers of heartwood or 

sapwood in the stems but can be also related to the tree-age, because there may be a 

relation between the forming of layers and the age of trees. For instance, Niklas (1997) 

observed from his research that density of wood in black locust trees varied parabolically 

with tree-age (Figure 2.2). Density was high in young trees and then decreased to a 

minimum at an age of approximately 12 years. Then, this density increases again in older 

trees to values similar to those found in young trees (see Figure 2.2). But, increasing 

density of older trees may not continue up to the density value of young trees for all the 

species, as an example in Table 2.1 that the density (1100 kg/m
3
) of the 4 years old 

maritime is significantly higher than the density (850 kg/m
3
) of the 35 years old maritime 

pine. 

Although density is varying within the age of trees and the cross-section of trees, 

several studies in general have used one value to model the trees in their research. Table 

2.1 has several examples for the density values of the trees which were used in these 

studies.  
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Figure 2.1: Wood density layers with respect to the approximate age of samples isolated 

from the tree major trunks (Niklas 1997). 

 

 

 

Figure 2.2: Mean wood density plotted as a function of approximate age of trunk 

sections in Locust black trees (Niklas 1997).  
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Table 2.1: Density in tree models which were selected from several studies. 

Citation Tree Species Tree Age Density (kg/m
3
) 

Sellier et al. 2006 Maritime Pine 4 1100 

Rodriguez et al. 2008 Walnut Tree, Maritime Pine 20, 4 805, 1300 

Moore & Maguire 2008 Douglas-fir (Stem, branches) 20 1000, 1160 

Sellier & Fourcaud 2009 Maritime Pine 35 850 

 

2.2.2.2 Damping Property of Tree Dynamics  

Tree damping is an inherent mechanism that dissipates energy from the total 

mechanical energy of trees.  If a tree is deformed from its at-rest condition and released, 

the tree will oscillate with decreasing amplitude until finally coming to rest. Damping is 

responsible for generate a reduction in the amplitude of the dynamic response of trees. 

Some researches (Milne 1991, James 2003, Castro-García et al. 2008, Spatz et al. 2007) 

generally focus on three types of damping on the dynamic behavior of trees. These are (1) 

damping due to collision of branches with those of neighbors, (2) aerodynamic drag 

forces due to foliage area of the branches and leaves, and (3) viscous damping in trees. 

Milne conducted experiments to study damping differences between the cases of (a) 

selected trees with branch interference of neighbors, (b) same trees without branch 

interference (removed by pruning the neighbors), and (c) only stems of the same trees. 

When he compared these cases of the trees, he found that the ratios of the damping of 

each case to the overall damping are respectively 0.5, 0.4, and 0.1 (can be seen in Figure 

2.3). According to him, the first damping is not related only to the distance to neighbors, 
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but also to the sizes of the chosen trees and their neighbors. The second one in general 

depends on the canopy areas and the drag coefficient for the existing canopy. 

Furthermore, the direction of the oscillation of trees is important, because canopy areas 

depend on the varying of azimuth angles of the branches. For instance, Sellier and 

Fourcaud (2005) defined two perpendicular directions (x and y) in which the stem of 

trees was initially bent for their research. According to the definition of these directions, 

they stated that whereas the removal of the foliage area in the x direction causes to 

decrease the aerodynamic damping ratio from 12 % to 4 %, the removal of the foliage 

area in the y direction leads to decrease this damping ratio type from 8 % to 4 %. Thus it 

can be investigated that for the deciduous trees the aerodynamic damping ratio would be 

different in winter terms than in the summer terms (Kane and James 2011). For the 

viscous damping, however Moore and Maguire (2004) stated that there is no relation 

between the internal damping and tree diameter, it is related to stem diameter and the 

varying of water content in living trees, because it is about the self-friction at the 

medium, tree stem (Spatz et al. 2004).  

As another damping type in trees, James (2003) and Spatz et al. (2007) also 

introduced tuned mass damping in trees due to the vibration of additional masses 

(branches and leaves) to the main stem. According to James (2003), tuned mass damping 

reduces the overall swaying energy of the trees with the drag forces of the canopy 

(branches, or leaves masses) so that trees can be more stable against high wind forces. 
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Figure 2.3: Components of damping (due to branch interference, cross-hatched; 

aerodynamic drag, open; and stem damping, solid) in Sitka spruce expressed as a 

function of stem diameter at breast height (Milne 1991). 

 

The summation value of all damping types in trees is different for each mode, 

because the frequency of each mode-shape changes. Mayer (1987) and Peltola (1996) 

state that it is more useful to focus on the first mode damping. Their ideas can be 

explained by two reasons. The first reason is that the mode of dynamic behavior whose 

frequency value is the lowest one can dissipate the highest portion of the total kinetic 

energy. The second reason is that the second mode frequencies of the members in trees 

are higher than the first mode frequency of trees with respect to the dominant ones in the 

frequency distribution of wind spectra (as an example to wind spectra graph, see in 

Chapter 4).  
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To apply varying damping to the computational models of trees for each mode 

frequency of these trees, the resultant modal damping can be converted into an equivalent 

Rayleigh damping coefficients (α, and β) (Chowdhury and Dasgupta 2003). This method 

is a good effective way to approximate real damping in systems with a large number of 

degrees of freedom. According to the definition of Rayleigh damping, the resultant 

damping is broken down into two damping components such as α and β as in Eq. 2.2.  

[ ]   [ ]   [ ] (2.2) 

where the damping matrix [C] is linearly related to the mass [M] and stiffness [K] 

matrices in terms of the Rayleigh damping coefficients. To find these coefficients, the 

formula of Thomson (1993) can be used as below (Eq. 2.3). The coefficient (α) is 

basically proportional to the energy dissipation by aerodynamic friction. It is about the 

resonance phenomena for trees, because aerodynamic friction is related to the maximum 

speed of materials at the rest position of the dynamic behavior, thus to increase the 

maximum speed is about the resonance or greatest displacement or greatest potential 

energy when the speed is zero. For the other coefficient (β), it represents the damping 

component related to the stiffness matrix, thus it is proportional to the dissipation of 

energy by the hysteresis (nonlinear behavior) of materials. Moreover this coefficient, β 

has less importance for the first few modes of the dynamic behaviors of trees (Mayer 

1987), because the expectation is that trees will stay within the linear range. Some 

researchers have used a high value for the first coefficient (α) and a small value for the 

second coefficient (β), when response is dominated by the first few modes. Moreover, 

Castro-García et al. (2008) state that these first few modes comprise the first two modes, 

because according to them the participation of these two modes makes up nearly 80 % of 
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the total response of trees. To give several examples for the values of the coefficients α 

and β, Castro-García et al. (2008) used α = 10.68 and β = 0.00045; Sellier et al. (2006) 

proposed using α = 6.72 and β = 0.001 rather than a null value to minimize numeric noise 

at the first few mode frequencies. Additionally, there is a relation between the 

coefficients α and β and the mode frequencies of dynamic systems. Thus the values of the 

coefficients α and β in the previous research studies (Sellier et al. 2006, Castro-García et 

al. 2008) are consistent with Eq. 2.3 and the mode frequencies in their studies.  

     
        (2.3) 

where wk is the frequency of the k
th

 mode and ζk is the damping ratio for this mode. Due 

to this formula (Rayleigh damping coefficients), the different damping ratios can be 

participated into the finite element programs for many significant mode-shapes.  

2.2.2.3 Stiffness Property of Tree Dynamics 

Stiffness is related to the geometric and material properties of trees. That is why, 

the geometric and material property information are important. In computational studies, 

geometric properties of trees in general are defined by introducing some parameters such 

as, especially, crown structure, height of trees, stem diameter and so on. These 

parameters may be so various in trees for even a specific species.   

Modulus of elasticity (MOE) of trees is the important parameter to define the 

material properties of trees. This parameter in general changes through branches (Dahle 

and Grabosky 2010) and stems (Spatz et al. 2007) of trees, or this parameter can be also 

associated with the age of trees (Mencuccini et al. 1997). To mention about the varying 
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of the young modulus (or MOE) through the length of members of trees, in general MOE 

is lower at the tip of branches or stems than the base point of these elements (Yoshida et 

al. 1992, Spatz et al. 2007, Dahle and Grabosky 2010). In contrast to this inference, rarely 

MOE may be higher near the tip parts than the base for particular trees like Eucalyptus-

Rubida (Yoshida et al. 1992). Changing of MOE (or E, elasticity) through the length of 

branches can be seen in Figure 2.4.  

 

Figure 2.4: A scatter plot of modulus of elasticity (MPa) by the distance (mm) from the 

branch terminal bud for Acer-Platanoides branches (Dahle and Grabosky 2010). 

 

Mencuccini et al. (1997) determined values of modulus of elasticity of Scots Pine 

trees by concerning the age and location of trees. According to the investigators, the 

modulus of elasticity increases with tree age from 1.7 GN/m
2
 to 7.8 GN/m

2 
up to 25 

years. After 25 years old, it remains approximately constant as can be seen in Figure 2.5. 

Moreover the effect of cambial age of trees on the young modulus was also investigated 
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by some researchers (Lindström et al. 1998, Lichtenegger et al. 1999, Reiterer et al. 1999, 

Bruchert et al. 2000, Spatz and Bruechert 2000).  

 

Figure 2.5: Variation in Young’s modulus, MOE (GN/m
2
) with cambial age of single 

specimens (Mencuccini et al. 1997). 

 

The rising of the modulus of elasticity in Figure 2.5 causes that younger wood or 

tree is more flexible than old one (James 2003). Furthermore, sapling trees have a lower 

MOE than mature trees as in many research studies (Panshin et al. 1980, Plomion et al. 

2001, Woodrum et al. 2003, Chauhan and Walker 2006, Read and Stokes 2006). In 

addition, it can be expected that MOE may depend on the diameter of tree members such 

as branch elements in trees (Spatz et al. 2007) as in Figure 2.6, because the number of 

rings (or diameter) of tree cross-sections is related to tree age.  
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Figure 2.6: MOE of primary branches for a Douglas fir tree with respect to diameter of 

these branches (Spatz et al. 2007). 

 

Modulus of elasticity may also vary within the cross-section of the wood material 

because of the adaptive mechanism which is defined in section 2.2.2.4. The research of 

Mencuccini et al. (1997) indicates that the effect of the sapwood of trees does not 

contribute much more on the modulus of elasticity than heartwood part of trees. 

According to Alméras et al. (2005), MOE is usually lower in compression part of the 

cross-section than in the tension part. Langum et al. (2009) supports Alméras et al. (2005) 

by finding that MOE tension parallel to grain is approximately equal to 1.10 times of 

MOE compression parallel to grain for two different species, douglas-fir and western 

hemlock. Furthermore, Niklas (1997) had also a research about the variety of MOE 

within cross-section of trees, and Figure 2.7 explains his research, briefly:  
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Figure 2.7: Young’s modulus (E) of wood layers with respect to the approximate age of 

samples isolated from the tree major trunks (Niklas 1997). 

 

2.2.2.4 External Force for Tree Dynamics 

Some of the most important loads are in general dead load and wind load for 

trees. The first one is typically vertical and static load. This load type is not so 

detrimental and harmful for trees, because of the adaptive mechanism (James 2003,  

Rowe and Speck 2005, Telewski 2006, Moulia et al. 2006, Brüchert and Gardiner 2006, 

Sellier and Fourcaud 2009). According to adaptive mechanism, if a tree has an internal or 

external load, it will try to enlarge some areas at its critical tissue-points on which the 

stresses are larger than the initial stresses in order to adapt the changes of loading and to 

decrease the stress values on these points. In other words, unless trees had this 

mechanism, the increasing of internal stresses due to increasing of dead loads in time 

would cause to some stem or branch breakage. As for the wind load, it is a kind of 

spatially, and temporally changeable and suddenly exposed dynamic load (Ennos 1999). 
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Therefore, the adaptive mechanism cannot immediately prevent the failure due to wind 

force. Because of this reason, the second load type (wind forces) is really important for 

tree lives. To calculate this load type on trees, many studies (e.g. Peltola and Kellomäki 

1993, Gardiner and Quine 2000, Ancelin et al. 2004, Cullen 2005, and Sellier and 

Fourcaud 2009) used the formula of the drag-force, which is defined by Eq. 2.4, from 

fluid mechanics.   

   
 

 
       (2.4) 

in which FD is the drag force, ρ is the air density, A is the frontal area on which 

the wind forces is exposed, U is the wind speed, and CD is the drag coefficient.  

2.2.2.4.1 Air Density for Wind Drag Forces on Trees 

 Air density is one of the variables of calculating drag forces (Eq. 2.4) on trees. 

This variable changes approximately from 1.16 kg/m
3
 to 1.42 kg/m

3
 with regarding to the 

temperature of the air. When the weather is cold, the air density increases as seen in 

Table 2.2. As an example, air density is selected as ρ=1.226 kg/m
3
 in the research of 

Kane and Smiley (2006). Moreover, varying of air density with respect to temperature 

can be calculated by using Eq. 2.5 (ideal gas law).  

  
 

  
 (2.5) 

in which   is the absolute pressure,   is the specific gas constant for dry air like 

287.05 J/K
o
 in SI units, and   is the temperature in K

o
.   

 

 

http://en.wikipedia.org/wiki/Specific_gas_constant
http://en.wikipedia.org/wiki/International_System_of_Units


23 
 

Table 2.2: Air density with respect to temperature. 

 Temperature (°C) 

30 25 20 15 10 5 0 -5 -10 -15 -20 -25 

Air 

Density 

(kgm
-3

) 

1.16 1.18 1.20 1.22 1.25 1.27 1.29 1.32 1.34 1.37 1.39 1.42 

 

2.2.2.4.2 Wind Speed for Wind Drag Forces on Trees 

As Zhu et al. (2000) mentioned that the wind profile or the variation of wind 

speed with height is important, and this relation depends on the height (z) along stem and 

branches. Thus Kerzenmacher and Gardiner (1998) used the following formula (Eq. 2.6) 

as in several researches (Oliver and Mayhead 1974, Cionco 1978) to represent the wind 

profile in stands simulated in their mathematical models.  

 ( )       ( (
 

 
  )) (2.6) 

where    is the wind speed at the top ( = ) of the beam elements in models.  

In addition to Eq. 2.6, wind profile was also determined by Eq. 2.7 (Panofsky and 

Dutton 1984), which is commonly used in engineering texts for land based and for the 

neutral stability of the atmosphere: 

 ( )    (  ⁄ )
  ⁄  (2.7) 

where    is the same within Eq. 2.7. Furthermore, this formula can be comparable 

with the codes in ASCE-7 about the changing of wind speed with height. 

http://en.wikipedia.org/wiki/Celsius
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Moreover, wind speed is a kind of spatially, and temporally changeable and 

suddenly exposed dynamic speed (Ennos 1999). Thus, it contains many different 

frequencies for each direction in a wind time history. This kind of speed causes the drag 

forces on trees to be the fluctuating excitation loads, and these drag forces have also 

many frequencies. In general, some engineering or mathematical techniques can be used 

in order to see the participation of the dominant frequencies in all frequency values of 

wind forces by drawing the PSD (power spectral density) functions of these forces which 

describes how the power of these forces is distributed with frequency. There are some 

significant studies (such as Harris 1971, Davenport 1961, Ochi and Shin 1988) which 

formulated these PSD functions in terms of average wind speed. Moreover, the 

application of the formula in the research of Ochi and Shin (1988) can be seen in Chapter 

4.  

2.2.2.4.3 Frontal Area for Wind Drag Forces on Trees 

According to the studies of Rudnicki et al. (2004) and Vollsinger et al. (2005), 

frontal areas decrease when wind speed increases. Because all the materials in trees like 

branches and leaves bend away from the wind and they reconfigure into more 

aerodynamic shapes. The varying of frontal areas with respect to wind speed can be 

shown in Figure 2.8. Thus, if the frontal area is considered as a function of wind speed, 

Eq. 2.4 can change. Kane and Smiley (2006) considered this changing in Eq. 2.4. 

According to them, drag force is proportional to wind speed raised to an exponent of 1.4, 

instead of 2.0 in Eq. 2.4. But for the other red maples whose foliage is stripped, drag 

force is proportional to wind speed raised to an exponent of 1.9.  
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Figure 2.8: Frontal area ratio of crowns in selected species digitized from video image at 

wind speeds (U) from 0 to 20 m/s (Vollsinger et al. 2005). 

 

2.2.2.4.4 Drag Coefficient (CD) for Wind Drag Forces on Trees 

Drag coefficient, CD varies as a function of wind speed, flow direction, object 

shape, object size, fluid density and fluid viscosity. Speed, dynamic viscosity, density, 

and the traveled-length of fluids (for instance, the fluid is represented by wind for this 

Thesis) are incorporated into a dimensionless quantity which is called the Reynolds 

number or Re in fluid mechanics.  

According to Figure 2.9, CD values depend on the object shape and Reynolds 

number. Moreover, it can be accepted that drag coefficient decreases due to increasing of 

wind speed, because when wind speed increases, Reynolds number increases. At some 

wind speed, however, CD likely reaches an asymptote. The relationship between CD and 

wind speed is investigated by using 60 different trees in the research of Kane and Smiley 

http://en.wikipedia.org/wiki/Viscosity
http://en.wikipedia.org/wiki/Kinematic_viscosity
http://en.wikipedia.org/wiki/Reynolds_number
http://en.wikipedia.org/wiki/Reynolds_number
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(2006) as can be seen within Figure 2.10. To choose of the object shape, if the crown area 

of the selected red maple trees is assumed as an ellipse or a rectangle shape in order to 

calculate the drag coefficient by using the chart (Figure 2.9) with Reynolds number, they 

obtained nearly underestimated the drag coefficient by 29% and 44%, respectively, at 20 

m/s wind speed (Kane and Smiley 2006). Furthermore, they found that the assumption of 

crown area as a triangular shape causes the overestimated the drag coefficient by 14% at 

20 m/s wind speed.  

 

Figure 2.9: Drag coefficient (CD) as a function of Reynolds’ number (Re) for different 

object shapes (Potter et al. 2011).  

 

Moreover, when two different tree species which have similar leaf shape are 

compared to see the effect of leaf shapes on the drag coefficient (CD), it is interesting that 

the average CD value for the red maples at 11 m/s from the research of Kane and Smiley 

(2006) is approximately identical to the CD value of a London-plane tree at 10 m/s from 

the research of Roodbaraky et al. (1994).   
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Figure 2.10: Graphical representation of the relationship between drag coefficient (CD) 

and velocity (U) (Kane and Smiley 2006). 

 

2.3 Tree Dynamic Response under Wind Induced Excitation 

This section generally covers the literature about the dynamic characteristics of 

oscillatory motion of trees. These intrinsic characteristics are mode-frequencies, which 

MDOF systems will inherently oscillate at free vibrations, and damping ratio values of 

the system. Mode frequencies of this motion will be mentioned in the next section. The 

other intrinsic characteristic, damping processes of this oscillatory motion has already 

been addressed in section 2.2.2.2.  

2.3.1 Dynamic Mode Frequencies in Trees 

Trees have a number of modes (is related to the number of degree of freedom of 

each defined mass in trees). For the each mode they have an eigenfrequency, because 

they are a kind of multi degree of freedom system. In other words, each element (e.g. 
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main stem, first branch, and second branch in trees) has infinite mode numbers due to 

continuing mass distribution on these elements of trees. Furthermore, these mode-

eigenfrequency values depend on stiffness and the mass of the system (system refers to 

any member of trees which have a periodic motion). The effect of the stiffness and the 

mass on the mode frequencies of the systems can be seen in the next sections. 

2.3.1.1 Stiffness Effect on Dynamic Mode Frequencies 

To see the effect of the stiffness on a SDOF system (basically), the proportional 

relation between the stiffness and the natural frequency of this system can be explained 

by Eq. 2.8 that the higher stiffness, the higher natural frequency.  

   √
 

 
 (2.8) 

in which   is the stiffness,   is the mass for the SDOF systems.  

Eigenfrequency of each mode in relation to the varying architectures of different 

species of trees were investigated in some research (Roodbaraky et al. 1994, Gardiner 

1995, Peltola 1996, Speck and Spatz 2004, Sellier and Fourcaud 2005, Brüchert and 

Gardiner 2006) by doing some `pull and release` experiments on trees and in other 

theoretical studies (Sellier et al. 2006, Rodriguez et al. 2008). They found that the first 

mode frequency values of the trees are much more significant than the other mode 

frequencies, because the second mode can be seen only when the free vibration motion 

was initiated by pulling the stem at the location of one third of the stem height, and this 

second mode is not active when the motion is started by other initial conditions (Sellier et 

al. 2006). The results of these studies (first mode frequency values) are written in Table 
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2.3 to compare and see the effects of the different species of trees on fundamental 

frequency.  

Table 2.3: Natural frequencies of trees from selected studies. W and S represent the 

winter and summer seasons, respectively, for the experimental research of Baker (1997). 

Citation Tree Species Natural Frequency (Hz) 

Castro-Garcia et al. 2008 Olive trees 20.2 

Hassinen et al. 1998 P. Sylvestris 0.20 

Sellier et al. 2006 Maritime Pine 0.60 

Baker 1997 Lime trees 0.71
(W)

 - 0.42
(S)

 

Moore and Maguire 2004 Sitka Spruce 0.44 

Moore and Maguire 2004 Lodgepole Pine 0.49 

Moore and Maguire 2004 Douglas-fir 0.41 

Kane and James 2011 Chestnut Oak 0.71 

 

2.3.1.2 Mass Effect on Dynamic Mode Frequencies 

Again, Eq. 2.8 is a good explanation for the inverse proportion between the mass 

and the mode frequencies of a system. Therefore, to estimate the varying of mode 

frequencies of trees with constant stiffness, it is important to focus on the variation in 

mass matrix of trees. For example, the mass matrix of deciduous trees can be change 

within the seasons. Baker in 1997 found that same deciduous trees have substantial lower 

fundamental frequencies for the summer terms than for the winter seasons. It can be 

explained by inversely proportion between the mass and the natural frequency of trees. 
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Additionally, Kane and James (2011) agree with Baker (1997) with their results that 

leafless trees have about 2.5 times greater frequency than in-leaf trees. Thus if it is 

focused on that the lower the natural frequency, the lower the failure wind force or wind 

speed (Baker 1997), it can be supposed to be that the summer terms might be more 

dangerous for trees because of the property of the spectral density function of wind 

speed. (An example exists in the Chapter 4 for the spectra of wind speeds to see the 

property of this function.) On the other hand, decrease in drag (Kane and Smiley 2006) 

and the increase of the damping due to leaves (Kane and James 2011) also should be 

considered for the summer terms. Moreover the increasing of the total mass of trees 

within the case of ice accretion on branches in winter seasons was investigated by Kane 

and James (2011). They state that a thin layer of ice accretion could alter the system 

frequency by 2 % of the frequency had existed before the ice accretion.  

2.3.1.3 How to Obtain or Estimate Dynamic Mode Frequencies 

Various research studies used several methods to obtain the mode frequencies of 

trees by using some experimental results or applying some mathematical models to 

represent trees. These methods will be explained in the next sections under the names of 

‘experimental methods’ and ‘analytical methods’. 

2.3.1.3.1 Experimental Methods 

To find the fundamental frequency of trees experimentally, several different 

methodologies and instruments were used and improved by several studies. For instance, 

some of them (Milne 1991, Roodbaraky et al. 1994, Gardiner 1995, Flesch and Wilson 



31 
 

1999, James and Kane 2008, Kane and James 2011) used portable dataloggers to take the 

record of data from sensors which can measure the displacements of trees. Some other 

ones (White et al. 1976, Blackburn et al. 1988, Peltola and Kellomäki 1993, Peltola 1996) 

used accelerometers even if they can have some errors due to estimated initial position of 

trees. Moreover, as another example to the different experimental methodologies, Baker 

(1997) focused on measuring the power spectrum of tree velocity by using a Laser 

Doppler Interferometer in order to obtain the natural frequency of trees.   

 

Figure 2.11: Eigenfrequencies of all primary branches of the Douglas fir (Pseudotsuga 

menziesii) tree with a length greater than 0.2 m. The frequency measured for the intact 

tree is indicated by an unbroken line (Spatz et al. 2007). 

 

To find a relation between the mode-frequency of each element (such as main 

stem and all primary branches) and the natural frequency of the whole system, Spatz et 

al. (2007) worked on frequency values of branches of 12 years old Douglas-fir trees in 
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Germany. They compared these branch frequencies with the oscillation of the intact trees 

like in Figure 2.11. According to them, all large branches have close frequency to the 

natural frequency of the main system as can be seen in Figure 2.11. Thus, the 

combination of all the branches in trees can affect the fundamental frequency of the 

whole system (trees). For instance, whereas some research (Sellier and Fourcaud 2005, 

Spatz et al. 2007) found that the intact trees have approximately one third (1/3) of natural 

frequency of debranched stem cases for the same trees. The research of Milne in 1991 

obtained for 26 years old Sitka spruce trees in Scotland that this ratio is nearly equal to 

2/3. It means that this ratio may be varied for trees; because, for example, Spatz et al. 

(2007) states that the dominance or the effect of branches on the natural frequency of 

trees (Douglas fir) depends on the proportion of branch mass with respect to the trunk 

mass.  

2.3.1.3.2 Analytical Methods 

Estimates of the fundamental frequency of trees are useful to compare with 

detailed models. Several different approaches may be used to determine these 

estimations. Five of these approaches were chosen as the most common ones from 

literature and are addressed in this section. By the way, several of these methods are 

considered as a typical of dynamic analysis.  

The first approach is to assume that trees are a kind of single degree of freedom 

system, so its fundamental frequency is equal to the square root of the ratio of the 

stiffness of cantilever tree structure to the mass of the tree. This method is describing Eq. 

2.8 as in the study of Sellier and Fourcaud (2005). 
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The second method is based on the application of the principle of conservation of 

energy. According to this method, the natural frequency of trees can be calculated by 

using Eq. 2.9 as in the research of Milne (1991). 

   √
∑       
∑     

   
 (2.9) 

where the subscript of i refers to a vertical section of trees, xi is the maximum horizontal 

displacement, mi is the mass, ηi is the bending moment in the stem, and θi is the angular 

displacement of the stem for the vertical i
th

 section.  

The third method is derived from dynamics of distributed property systems 

(Humar 1990). For this method, the assumptions are to accept that the modulus of 

elasticity and the mass are uniformly distributed, and the cross-section is constant 

through the length of stem. Thus, the natural frequency can be found by using Eq. 2.10. 

   (     )
 √

  

   
 (2.10) 

where E is the modulus of elasticity, I is the second moment of area (or moment of 

inertia), m is uniformly distributed mass along the length (L) of stem.  

The fourth method is based on the estimates of Blevins’ λ (Blevins 1979) from the 

measured fundamental frequencies of a specific species. His expression (Eq. 2.11) can be 

used to find the natural frequency of slender and tapered beam elements.  

   
  

    
 √

   
   

 (2.11) 

where fn is the natural frequency, I0 is the area moment of inertia, A0 is the area of the 

cross-section at the base of the cantilever beam (cantilever stem), h is the height of trees, 

E is the modulus of elasticity, and ρ is the material density. The unitless parameter, λ can 
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be affected by the varying of the physical properties of trees (such as shape, mass 

distribution, vertical or horizontal orientation, type of the supporting point, mode of 

bending, taper of the beam, and so on). On the other hand, this dimensionless parameter 

can be estimated by using some experiments for a specific species under some certain 

shapes. For instance, Milne (1991) estimated its average value as 2.08 with its low 

standard deviation (0.06) for Sitka spruce trees.  

Finally, the fifth empirical method is developed by the research of Mayhead 

(1973) thanks to the data collected during the 1960s by the British Forestry Commission. 

This empirical equation includes not only a main part (as seen in Eq. 2.12) but also an 

expansion part which may vary with tree species. But this expansion part could be 

neglected unless they had been obtained for a specific species. Thus, the natural period of 

trees can be estimated approximately by using Eq. 2.12.  

           
 √  

   
 (2.12) 

where M is the total mass of tree, H is the height of tree, and DBH is the diameter at 

breast height (approximately 1.4 m). Additionally, Moore and Maguire (2004) also 

combined the results of several previous studies and re-analyzed the data on the 

relationship between tree height, tree diameter, and tree natural frequency by using eight 

different species (totally 602 trees), and they plotted their results which are comparable 

with the empirical formula (Eq. 2.12) as can be seen in Figure 2.12. 
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Figure 2.12: Relationship between natural frequency and the ratio (DBH/H
2
). The 

equation of the fitting line on the data points is fn = 0.0766 + 3.1219(DBH/H
2
) (Moore 

and Maguire 2004). 

 

Baker (1997) studied on season effects on tree natural frequency as in Figure 

2.13. According to him, there is an inversely correlation between the DBH and 1/T 

(natural frequency of trees) under different conditions such as winter and summer terms. 

This study also shows the importance of tree height on the natural frequency, because this 

inversely correlation between DBH and the natural frequency can be converted to directly 

proportionality after concerning the effect of tree height as in the study of Moore and 

Maguire (2004) (Figure 2.12).  
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Figure 2.13: Natural frequency versus dbh (tree diameter at breast height) for healthy 

limes. The graph at the left is for summer conditions, the latter one is for winter 

conditions (Baker 1997). 

 

Up to here, the first natural frequency of trees can be estimated by using these 

different five methods. Then to find the other mode frequency values of trees, some 

mathematical formulas can be used as in the research of Rodriguez et al. (2008). They 

improved these formulas by utilizing of that trees are assumed like a general fractal 

structure. For the sympodial shape trees,  

  
  
  

(   )(   )
   (2.13) 

For the monopodial shape trees, 

    
    

 [        ]
(   )
   (2.14) 

in which N is to represent the n
th

 mode, β is the slenderness coefficient, µ and λ are 

respectively the lateral and axial branching ratios, and α is the branching angles which are 

used to illustrate the two idealized trees (the sympodial and the monopodial shape trees) 

as in the research of Rodriguez et al. (2008). The values of these parameters can be 
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selected from Table 2.4. Moreover the representing of the different mode shapes in their 

mathematical models can be seen clearly in Figure 2.14.  

 

Table 2.4: The parameters in the equations of Rodriguez et al. (2008) for idealized tree 

shapes. 

Idealized Tree Shapes β λ µ α 

Sympodial 3/2 1/2 0 20
o 

Monopodial 3/2 1/6 2/3 30
o 

 

 

Figure 2.14: (A) Modes of groups I, II, and III of the sympodial model tree. (B) Modes 

[I,I], [II,I], and [II,II] of the monopodial model tree (Rodriguez et al. 2008). 

 

2.4 Tree Mechanics and Tree Failures 

Mechanical properties of wood (tree material) are orthotropic, that is, material 

properties are different depending on the direction considered. For example, strength 

depends on the direction of forces with respect to the direction of the grain and it also 
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depends on the type of forces applied (compression or tension). Therefore, strength of 

wood is often defined as parallel or perpendicular to the grain direction. Tensile strength 

parallel to the grain (   
       ) is generally the highest one, parallel compressive strength 

(   
     

) is higher than the parallel shear strength (   
     ). Moreover, the perpendicular 

tensile strength (  
       ) is lowest one. Additionally, when the perpendicular 

compression strength (  
     

) is moderate, the perpendicular shear (  
     ) is high with 

respect to all strength values of wood. The ranking of these strength values can be seen in 

the inequality below (Hoadly 1980, Green 2001, Kretschmann 2010). For example, while 

the parallel tensile strength (highest one) of Western hemlock is 89600 kPa, the 

perpendicular tensile strength (lowest one) is 2000 kPa for the same tree species 

(Kretschmann 2010).   

   
       >   

     >    
     >   

     >    
     >   

        

Of all these strength values, the parallel tensile and compression strength values 

play the most important role for bending failure of trees under wind forces. As it can be 

easily seen from the inequalities above between the different strength types that wood is 

stronger in tension at the direction of parallel to grain than in compression at the same 

direction. Additionally, many experimental data (Richard et al. 1999, Kretschmann 2010) 

about the different strength properties of different species state that this tensile strength is 

approximately two times as greater as the compressive strength in a number of trees. 

Thus, failures in general occur on the leeward or the compression side of the cross-

section of stems or branches (Wagener 1963, Hoadly 1980, Mattheck et al. 1994). Before 

completely failure, the material in tension side tries to compensate for the compressive 
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strength loss by changing the place of the neutral axis of bending, even if some portions 

of compression wood has been failed (Mergen 1954, Mattheck et al. 1994). 

How to obtain the wood strengths is conducted by several standard tests 

(American Society for Testing and Materials, 1971). The most common test is to 

determine wood strength of beams in use is the static bending test called as ASTM D-143 

standard test. This test can also be used to obtain a value for the modulus of rupture 

(MOR) of the materials. The meaning of MOR is the bending stress of the materials to 

have maximum load-carrying capacity under bending (Kretschmann 2010).  

Hankinson’s formula may be used to determine strength of wood in any direction 

knowing the direction of applied loading relative to the direction of the grain. Thus the 

strength of wood in any direction depends on the angle of the direction, and the parallel 

and the perpendicular tensile strength of the wood as in the formula in Figure 2.15 

(Hankinson 1921). Thus only by using or finding the compressive or tensile strength to 

perpendicular to grains, the other strength (parallel to the grains) can be estimated due to 

the Hankinson’s formula by considering angle phase is 90
0
, and vice versa.  
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Figure 2.15: Hankinson’s formula 

(www.worldwideflood.com/ark/design_calculations/wood_strength.htm). 

 

2.4.1 Decay Effect on Tree Mechanics 

The data of the USDA Wood Handbook (Kretschmann 2010) submits all strength 

values for each strength type of many tree species, and these strength values are for 

healthy trees. But, in general, trees might have some loss of strength because of some 

defects. These defects result from decays (such as, usually, hollow decays, cavities) in 

wood material, effect of included barks (especially for v-attachments and codominant 

stems) and imperfection on attachment-angles of branches (Kane et al. 2008). Gilman 

(2003) has the similar results on Acer Rubrum trees about the effect of included barks in 

codominant stems with the results of Kane et al. (2008), again, on the same tree species. 

Additionally, the investigations of Gilman (2003), Kane (2007), and Kane et al. (2008) 

were on some experiments about the strength loss can be changed with the ratio of branch 

diameter to trunk diameter (Db/Dt). Gilman (2003) improved an empirical linear equation 

http://www.worldwideflood.com/ark/design_calculations/wood_strength.htm
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about to find the strength of branch attachments by using the ratio of branch diameter to 

stem diameter. To represent this formula, it is plotted as in Figure 2.16.  

 

Figure 2.16: Stress (in N/mm
2
) required separating a branch from the trunk for a variety 

of the aspect ratios (Gilman 2003). 

 

The strength loss at branches with respect to the aspect ratio is also plotted in the 

experimental research of Kane (2007) in Figure 2.17, and Kane et al. (2008) in Figure 

2.18. They improved three equations to approximately find the new failure stress of the 

attachments of three different trees (sawtooth oak, callery pear, and red maple trees) in 

terms of Db/Dt ratio of the attachments. The results of these graphs in Figure 2.17 and 

Figure 2.18 are consistent with the concept that the strength of any elastic material may 

change with the effective slenderness ratio of the material under stresses. As an example 

to these elastic materials, changing of the compression design stress of a steel material 

can be seen in Figure 2.19 (Kumar and Kumar 2005).  
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Figure 2.17: Scattered plot and best fit lines between stress ratio and aspect ratio. Stress 

ratio was calculated using inside bark branch depth and width (triangular data) and 

outside bark branch diameter (square data) (Kane 2007). 

 

There are also another experimental study (Kane and Clouston 2008) obtained 

amounts of stress failures and calculated strength loss by considering the difference 

between these stress failures and capacity strength of perfect healthy trees (MOR). 

According to Kane and Clouston (2008), their experimental data shows that strength loss 

is about 55 % due to codominant stems, whereas non-codominant stems have 21 % 

strength loss.   
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Figure 2.18: Scattered plots for the prediction of stress from the ratio of branch diameter 

to trunk diameter (Kane et al. 2008). 

 

 

Figure 2.19: Column buckling curves for different buckling classes. Whereas fcd is the 

design stress in compression, fy is the yield stress (Kumar and Kumar 2005). 
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2.4.1.1 Assessing Strength Loss due to Decays 

However, to predict the loss of strength is really complicated, because trees are 

individuals, and so it is quite difficult to obtain a “one size fits all” calculation or 

estimation of strength loss. According to some research (Mills and Russel 1984, Lucas et 

al. 1984, Robbins 1986, Matheny and Clark 1991, Smiley and Fraedrich 1992, Albers and 

Hayes 1993, Kennard et al. 1996), experience of foresters and arborists, and observations 

(Wagener 1963), some thresholds can be developed by using several approximate 

estimations of strength loss due to decays (Kane et al. 2001). There are four important 

formulas commonly used in the literature survey of tree failures in order to estimate this 

strength loss in percentage. Whereas two of them are about the effect of only concentric 

decays, the third one [Figure 2.20 from Smiley and Fraedrich (1992)] has the effect of 

concentric decays with open cavities. The last one (belongs to “offset hollow” in Figure 

2.20) is related to the off-centric decays. The definition of decays for these formulas can 

be seen separately in Figure 2.21. Additionally, all of these formulas have some 

thresholds in order to give some information and alerts about the potential failure of trees 

for the hazard tree managers. By using these thresholds, managers can have some ideas 

about the distinctions between a hazardous tree which needs to be pruned or removed and 

a nonhazardous tree which can remain standing. The behavior of these formulas can be 

seen in Figure 2.20.  
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Figure 2.20: Graph of strength loss as a function of stem hollow percentage (Kane et al. 

2001). 

 

 

Figure 2.21: Simple definitions of decays which used for the curves in Figure 2.20. 

 

Wagener (1963) assumed that the materials of trees are like a pipe due to 

concentric hollow decays, and then he traced not to only Eq. 2.15 which is used in solid 

mechanics but also his experiences and observations to estimate and calculate the 

strength loss of trees. His anecdotal study states that the loss of strength in conifers 

depends on the formula d
3
/D

3
 as in Figure 2.20, where d is the diameter of hollow decay 

column and D is the average stem diameter inside bark (Wagener 1963). For instance, if a 
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10 in. diameter tree has a 5 in. diameter decay column, the loss of strength can be 

calculated as 12.5 % by using Eq. 2.15. 

              
  
 

  
  (2.15) 

in which dH is the diameter of hollow to represent the decays in cross-sections, DS is the 

diameter of this cross-section.  

According to mechanics of solids formula, the loss in moment of inertia of cross 

sections due to decays can be derived by using Eq. 2.16.   

              
      

     
 
       

 

       
  

  
 

  
  (2.16) 

Coder (1989) used the ratio of d
4
/D

4
 as in Eq. 2.16 for his research to create a 

hazardous threshold graph for wind induced tree failures. He states that the d
4
/D

4
 formula 

can be applicable only to perfect circles of decays and stems under ideal test conditions, 

so the outcome of the formula must be judged carefully.Coder (1989)   

At the Barlett Tree Lab, Smiley and Fraedrich (1993) improved Wagener’s 

formula by adding the effect of cavities to estimate the strength loss. This inclusion is 

important, because an open cavity (an example of an open cavity can be seen in Figure 

2.21) is generally at the outer tree rings, and the outer rings have the significant portion of 

the total strength of trees. According to Barlett’s empirical formula, the percent of 

strength loss can be calculated by Eq. 2.17. 

   ( )  
    (     )

  
     (2.17) 

where d and D are respectively average of the diameter of decay and sound wood, and R 

is the ratio of cavity opening to stem circumference. Again, the decay and the stem are 

assumed concentric circles like in the formulas of Wagener and Coder.   
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As another type of decays, non-concentric (off-center) decays, Mattheck et al. 

(1994) studied with some experiments on 800 broken and standing trees. According to 

the results of these experiments, they noticed an empirical inequality for tree risk 

assessment that when t/R (t is the thickness of sound wood remaining in a stem and R is 

the radius of the stem) is less than 0.3, in general trees were failed. For standing trees 

after the experiments, the ratio of t/R is greater than 0.3. Additionally, what the authors 

did not take into account of the effect of cavities less than one-third of the stem 

circumference is mentioned in the research of Kane et al. 2004.   

Moreover, in the light of each 4 formulas mentioned before about the strength loss 

of trees due to decays, the authors decided to have some thresholds for the hazard tree 

managers by using their experiences and observations on real tree data. For instance, 

whereas the decision of Wagener is that the hazardous case of tree failures starts after 

strength loss is 33 %, Coder decided that annual review required under 20 % strength 

loss, caution case is for the interval of 20 % and 44 % strength loss, and the hazardous 

case begins after strength loss is 44 %. The statistical figure (Figure 2.22) below shows 

us the thresholds for each of 4 formulas (Kane et al. 2001).  

Moreover, about the defect and decay thresholds for the hazard tree managers, 

some researchers ((Smiley and Fraedrich 1992), (Kane et al. 2001) accept that if the 

diameter of defect or decay exceeds the 70 % of the trunk diameter, the tree can be 

considered as severe hazard.  
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Figure 2.22: Hazard tree strength loss thresholds (Kane et al. 2001). 

 

2.4.2 Tree Failure Types under Wind Forces 

Failures can be written under the common types which are called stem breakage, 

branch breakage, attachment breakage, and uprooting failure types. These failures depend 

on many factors are like wind speed and frequency, precipitation, soil strength, and tree 

characteristics (material, geometric, and mechanical properties of trees) (Kane 2008). For 

instance, the effect of various species on tree failure types was examined by Kane (2008). 

In this research, he emphasized the complexity of these factors with respect to tree 

species as can be seen in Figure 2.23. As another example to tree failure types, Kane 

(2007) concluded that Bradford pear trees have a reputation about their branch breakages.  

Additionally, the influences of these factors, which can cause to various tree 

failure types, were conducted as very complicated phenomenon in many experimental 
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studies (Cutler et al. 1990, Gibbs and Greig 1990, Smiley and Fraedrich 1992, Fransic 

and Gillespie 1993, Putz and Sharitz 1996, Duryea et al. 1996, Jim and Liu 1997, Fransic 

2000, Luley et al. 2002, Duryea et al. 2007), because the ideas and results of some 

researchers may have conflicts with the results of some other investigators. For instance, 

whereas Luley’s results (Luley et al. 2002) state that there is no significant effect of 

pruning trees on reducing the number of branch breakage as a failure type in New York, 

other researchers (Duryea et al. 1996) found that pruning could reduce the chance of the 

branch breakage in another place, Florida.  

 

Figure 2.23: Frequency of each failure type for each species (PR: Pinus rigida, PS: Pinus 

strobes, QA: Quercus alba, QV: Quercus velutina, Other: Acer rubrum, Carya glabra, 

Robinia pseudoacacia, Sassafras albidum) (Kane 2008). 

 

Branch breakage (as a tree failure type) does not seem to be affected by angle of 

attachment (Gilman 2003). In addition to Gilman’s research, Kane (2007) and Miller 

(1959) emphasized that aspect ratio (the ratio of diameter of branches to the trunk 
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diameters which are the closest to those branches) is a good predictor instead of the angle 

of attachment. Moreover, Kane (2007) states the importance of the ellipse shape instead 

of the circle shapes of the branches on this failure type.  

The difference between defining failures as branch breakage or branch attachment 

breakage is discussed by Kane (2007). To categorize as branch failure type more than 50 

% of the total failed fibers must have originated in the branch. If less than 50 % of the 

total failed fibers originate in the branch, then failure is categorized as a branch 

attachment failure. In general, attachment failures occur when bark is included at the 

attachment, so if the failure type is branch attachment breakage, the presence of the 

included bark can be checked at the attachment point (Kane 2007).  

 

Figure 2.24: Examples of the failure modes for (A) the embedded branch failure mode, 

and (B) the flat surface failure mode (Kane et al. 2008). 

 

There are three important failure sub-categories for the attachment breakage 

failure (Kane et al. 2008). These are embedded branch failure mode, flat surface failure 

mode with included bark, and ball-in-socket failure mode (Figure 2.24 and Figure 2.25). 
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In addition, Kane (2007) states that aspect ratio of trees is a good predictor on the branch 

attachment strength. Therefore, it can be accepted that the aspect ratio of trees has an 

important role on causing to the attachment breakages.  

 

Figure 2.25: An example of the ball in socket failure mode (Kane et al. 2008). 

 

2.4.2.1 Risk Assessment on Tree Failures 

Tree risk assessment has been investigated, especially, under the wind loads. 

Three different approaches were developed and commonly used over the last 25 years: 

(1) qualitative assessments, (2) empirical or statistical models, (3) mechanistic models 

(Gardiner et al. 2008). All these approaches were developed for, generally, trees in 

forests. The first model is based on observational tools (e.g. Miller 1985, Mitchell 1998). 

The second one is mentioned by several researchers (e.g. Valinger and Fridman 1997, 

Lanquaye-Opoku and Mitchell 2005), and the advantage of the second approach with 

respect to the first approach is that this second one may be quite accurate and reliable for 

various locations (Gardiner et al. 2008). The third approach is the newest and most 

common one which was developed by Peltola et al. (1999) (HWIND mechanistic models) 
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and Gardiner and Quine (2000) (GALES mechanistic models). HWIND and GALES use 

a static analysis for trees in stands by using empirical gust factors in order to attempt to 

catch the effect of the dynamic response of the trees under fluctuating wind. But, the 

disadvantage of these mechanistic models is that they may not accurately calculate the 

critical wind speed for the trees in various locations elsewhere the empirical tests were 

done. Additionally, it is possible to see the cumulative distribution function diagrams in a 

few studies (Gardiner and Quine 2000, Ancelin et al. 2004, Schelhaas et al. 2007) for the 

tree failures in stands.  

2.5 Conclusion 

All the information in this literature review (Chapter 2) have been searched to see 

significant studies on understanding tree language and to have some important ideas 

about tree risk assessments, and to obtain some ideas to reduce the likelihood of tree 

failures under wind forces. To mention the importance of the literature review section by 

section:  

Section 2.2 has the important information utilized in the other chapters, especially 

in the details of tree modeling approach in Chapter 3. In other words, this section is a 

good source for Chapter 3 to find a combination of the important computational studies 

with their methodologies, results, and discussions. For example, dynamic approach on 

trees subjected to wind loading has been, in detail, addressed in this section to give an 

idea how to correctly do a model in a FE modeling. 

Section 2.3 is related to tree dynamic response under wind excitation forces. This 

section is also so important to validate tree modeling, which will be defined in Chapters 
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3, 4 and 6, because of that this section has many significant discussions about various tree 

responses. Thus it is possible to discuss the results of Chapters 3, 4 and 6 with all these 

information in this section. 

 Section 2.4, finally, is about the tree mechanics and failures. The importance of 

this section is that it is inevitable to learn tree mechanics and failures for doing research 

on tree risk assessment as applied in Chapters 4 and 5. For example, in this section, it is 

possible to find several important studies about how they have addressed decay effect on 

tree failures and tree risk assessment.  

Furthermore, as can be seen in this chapter (literature review), it is easier to find 

many computational studies conducted on forest trees than open-grown trees. Thus, the 

current research in this Thesis will consider open-grown trees. 
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CHAPTER 3 

FINITE ELEMENT MODELING OF AN OPEN-GROWN MAPLE TREE 

3.1 Introduction 

A large body of knowledge has investigated windthrow and trunk breakage for 

forests under static loading (Peltola 2006), but very few studies have considered large and 

open-grown trees (Kane and Clouston 2008) with dynamic loading. It has also long been 

recognized that predictions of critical wind speeds from static analyses are overestimates, 

presumably from the dynamic interaction of wind and tree (Oliver and Mayhead 1974). 

Thus, to investigate the dynamic behavior of large and open-grown trees subjected to 

dynamic wind loading, as the first goal of this chapter, a finite element (FE) model was 

constructed in a computer package program, ADINA 8.5 from ADINA R&D, Inc. in 

located at Watertown, MA by using field measurements taken by Kane et al. (In 

preparation) of a large, decurrent sugar maple (Acer saccharum), a common amenity tree 

in the northeastern United States. Then, as a second goal of this chapter, this FE model 

was validated by comparing the calculated modal frequency results with experimental 

values, determined from the tests of Kane et al. (In preparation), and with several 

empirical and numerical formulae.  

Investigations of tree dynamics have been both empirical (Blackburn et al. 1988, 

Baker 1997, Moore and Maguire 2005, James et al. 2006, Spatz et al. 2007, Rodriguez et 

al. 2008, Kane and James 2011) and theoretical (Baker 1995, Kerzenmacher and 

Gardiner 1998, Saunderson et al. 1999, England et al. 2000). In this chapter, FE modeling 

has also been used to computationally (theoretically) investigate the wind-induced 
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dynamic response of trees. This dynamic response of trees was characterized by using a 

single dynamic displacement amplification factor, Rd, which is described in Section 3.5, 

as has previously been used to investigate the dynamic response of trees in the research 

of Sellier and Fourcaud (2009).  

3.2 Tree Selected for FE Modeling (Prototype Tree) 

A sugar maple (Acer saccharum) growing in Belchertown, MA, USA (72.413º W 

longitude and 42.277º N latitude) was chosen as an example to large and open-grown 

trees in the northeastern United States. This location was formerly an institutional 

property with streets and buildings, and the size and crown architecture of trees (Figure 

3.1) were typical of those growing in residential settings in the northeastern United 

States. In addition, this tree will be used as the base model (denoted M100) for all the 

parametric models described in Chapter 6.  

The diameter of the main stem is 53 cm at a height of 1.4 m above the ground 

(diameter at breast height, DBH) and the overall tree height is 17.1 m. Its crown is 13.7 m 

in height and 12.1 m in width; the ratio of minimum to maximum crown width, measured 

orthogonally, is 0.74. The height, diameter, attachment angle, and azimuth of all eleven 

primary branches were also measured by Kane et al. in preparation (see Table 1). Branch 

length was not measured due to time constraints. The seventh branch of the tree (Table 1) 

effectively served as a co-dominant stem. This characteristic has important consequences 

on the dynamic response as will be discussed later.  
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Figure 3.1: Maple tree in Belchertown, MA which is used for the base model, M100. 

 

In August 2006, strain meters that measured trunk axial displacements accurate to 

0.001 mm were attached orthogonally to the stem (north or south and east or west sides) 

of the prototype tree approximately 1.4 m above the ground as described by James and 

Kane (2008). A skidder with a cable winch (John Deere model 440D) was used to apply a 

point load at approximately 40% of tree height, where the diameter of the trunk was large 

enough to sustain the applied load without failing.  The tree was pulled and released three 

times, incident with each strain meter (six tests total); loads were always applied to place 

the strain meters in tension. Axial displacements during free sways were recorded on both 

strain meters (incident and orthogonal) and plotted with respect to time. The time (t) and 

amplitude (y) of four successive maximum displacements (i = 1, 2, 3 and 4) were used to 
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determine fn (1/Tn) and damping ratio (ζ), which was calculated using the logarithmic 

decrement method (Eq. 3.1):  

  
    

    (
   

√    
) (3.1) 

3.3 Finite Element Modeling 

The FE modeling program ADINA-8.5 (ADINA Software, Watertown, MA, 

USA) was used to conduct the analyses of all tree models. The stem and branches of 

M100 were divided into longitudinal elements of constant geometry and modulus of 

elasticity (MOE). For each branch or stem element, MOE and diameter were separately 

defined before meshing the elements. The concept of local averages of random fields 

introduced by Bucher (2009) was used to define the properties of each element. In this 

method, each element is assigned properties of a homogenous material instead of using 

heterogeneous material properties, but the overall material variations are captured by 

dividing the tree model into sufficient elements.  
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Table 3.1: Diameter, estimated mass, mass-weighted mean MOE, attachment height, azimuth, attachment angle, and the first 

modal frequencies of the stem and each branch of M100. The first modal frequencies were calculated using Eq. 3.11 (Mabie 

and Rogers 1972). The first mode frequencies calculated by using Eq. 3.11 are close to the natural frequencies from the results 

of the FE modeling as illustrated in Figures from 3.6 to 3.12 for selected elements (Stem, each branch). 

M100 Diameter 

(m) 

Mass 

(kg) 

MOE 

(GPa) 

Attachment 

Height   

(m) 

Azimuth 

Angle 

(º) 

Attachment 

Angle      

(º) 

Natural 

Frequency 

(Hz) 

1
st
 Mode 

Frequency 

(Hz) 

Stem 0.53 1235 9.00 n/a n/a n/a 2.37 2.332 

Top Branch 0.13 69 4.60 12.80 0 0 1.07 1.641 

1
st
 Branch 0.28 393 5.08 3.23 83 44 0.69 0.756 

2
nd

 Branch 0.27 320 5.03 3.96 230 23 0.73 0.811 

3
rd

 Branch 0.27 338 4.95 5.33 68 27 0.70 0.786 

4
th

 Branch 0.08 8 4.29 5.36 180 37 1.29 1.752 

5
th

 Branch 0.11 21 4.50 5.94 22 13 1.15 1.471 

6
th

 Branch 0.06 4 3.97 6.10 354 62 1.34 2.049 

7
th

 Branch 0.32 563 5.08 6.19 298 80 0.59 0.652 

8
th

 Branch 0.19 118 4.83 7.38 157 88 0.85 0.983 

9
th

 Branch 0.17 81 4.74 7.62 47 85 0.91 1.106 

10
th

 Branch 0.12 30 4.52 8.60 109 47 1.09 1.395 

11
th

 Branch 0.06 5 4.03 9.66 111 90 1.31 2.003 
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M100 was modeled using a sufficient number of beam elements of constant cross-

sectional dimensions to model the branch taper approximately. Branches were divided 

into 12 elements of equal length. The stem was divided into elements as follows: nodes 

were established on the stem at the height of each branch; if the distance between two 

successive nodes exceeded 0.5 m, additional nodes were added at equal lengths midway 

between them so that no nodes were more than 0.5 m apart. The MOE of the proximal 

stem element was set to 10.7 GPa (Kretschmann 2010). For each subsequent element, 

MOE was adjusted in accordance with the slope of an empirical relationship for branches 

of Norway maple (Dahle and Grabosky 2010). For the elements in the distal 4.3 m of the 

stem (the top branch), MOE was held constant at the value of the first element in the top 

branch. Spatz and Bruechert (2000) noted a decrease in MOE of branches with branch 

height, so MOE of the proximal element of each branch was initially assigned the MOE 

of the stem element to which the branch was attached. After assigning the MOE of the 

proximal element of each branch, MOE of the other elements of each element was 

adjusted in accordance with the empirical relationship for branches of Norway maple in 

the study of Dahle and Grabosky in (2010) (see Figure 2.4). Then mass-weighted mean 

values of MOE for branches were calculated by considering the mass and assigned MOE 

of each element of branches. In order to have approximately a linear relationship between 

the branch diameter and MOE like in the empirical relationship developed by Spatz et al. 

(2007) (see Figure 2.6), the MOE values conducted to the seventh branch were adjusted. 

After this adjusting, all the mass-weighted mean values of MOE with respect to branch 

diameter can be seen in Figure 3.2.  
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Figure 3.2: Adjusted and assigned mass-weighted mean MOE of the branches in the 

modeling. 

 

Stem was assumed to be fixed at the base, and connections between branches and 

the stem were assumed to transfer moment at the attachments. Previous work has 

demonstrated that modeling branches as lumped masses attached to the stem can lead to 

errors of modeled natural frequencies of trees (Sellier et al. 2006, Moore and Maguire 

2008). 

The mass of the stem and branches were estimated assuming mean wood density 

of green wood specimens from the USDA Wood Handbook (Kretschmann 2010) and 

volume of the stem or branches. This method will slightly overestimate branch mass 

because diameters were measured outside the bark, which is not as dense as the wood 

itself. The FE models only considered the stem and primary branches. However, the 

estimated mass of secondary and tertiary branches was included by increasing the density 
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of the primary branches using a ratio. The ratio of stem volume to the total volume of 

primary branches was calculated for M100. Assuming that M100 follows a fractal 

structure as described by Rodriguez et al. (2008), the ratio was applied to each primary 

branch to estimate the additional mass of secondary and tertiary branches.  

Empirically-determined damping ratio, ζ, for M100 was 16%, which was rounded 

down to 15% assuming Rayleigh damping. In order to emphasize damping for the first 

two modes of vibration, the Rayleigh damping coefficient (β) was assumed to be 0.001, 

as previously proposed (Sellier et al. 2006, Castro-García et al. 2008). If β is known, α 

can be calculated from Eq. 2.3 where ωk is known from the undamped dynamic analyses 

and ζ is 15%.  

Material nonlinearity was ignored in the FE model because the tree response did 

not exceed the yield stress, so displacements and stresses remain within the elastic region. 

Geometric nonlinearity was neglected, because stiffness reduction caused by P-Delta 

effects is negligible given the relatively small mass near the top of trees. Although the 

lateral deflections of trees may be large near the top, gravity loads are generated by self-

weight, which is distributed along the components of the system. The largest gravity 

loads occur near the bottom of trees where deflections are small. 

Newmark’s time history linear acceleration method used to conduct the dynamic 

analyses is stable if the ratio of time step to natural period of the model (∆t/Tn) is less 

than or equal to 0.551 (Chopra 2007). To avoid any stability problems, particularly for 

higher modes, a sufficiently small time-step of 0.05s was selected for the analyses. To 

verify the accuracy of the prototype model, the undamped natural frequency was 
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calculated in the FE program as 0.59 Hz (so Tn = 1.69). Thus the ratio of the time-step 

increment to the natural period of the model is ∆t/Tn = 0.05/1.69 = 0.029 < 0.551.  

3.4 Assumed Wind Loading 

Since wind speed varies with height (z) above the ground (Hsu et al. 1994, Zhu et 

al. 2000), for each element of the trees in the FE models, wind profile (u) was determined 

by Eq. 2.7 (Panofsky and Dutton 1984), which is commonly used in engineering texts for 

land based and for the neutral stability of the atmosphere. Wind speed profiles used in 

forest stands were deemed inappropriate because of the substantial reduction in wind 

speed below the top of the canopy. The harmonic drag (FD) on each tree element was 

calculated as: 

   
     

    
 

 (3.2) 

where ρair is air density (assumed to be 1.226 kg/m
3
), A is the frontal area of the tree, and 

CD is the drag coefficient, which was assumed to vary with wind speed in accordance 

with Kane and Smiley’s (2006) empirical relationship (see Figure 2.10) for small red 

maples (Acer rubrum). The distribution of drag on the tree and individual branches is 

shown in Figure 3.3. Each model was run 38 times for wind excitation frequencies 

ranging between 0 and 5 Hz. Wind frequencies were incremented by 0.05 Hz for 

frequencies up to 1.20 Hz, 0.1 Hz for frequencies between 1.20 and 2.00 Hz, and 0.50 Hz 

for frequencies greater than 2.00 Hz. Multiple frequencies were investigated because of 

the highly variable air flow and turbulence associated with wind in developed settings 

(Kastner-Klein et al. 2004). Smaller increments were used at lower frequencies to better 

capture the low frequency response of the trees, where greater wind energy can be 
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transferred to the tree (Baker 1995). Additionally, plots of Rd vs. wind frequency in this 

chapter and Chapter 6 include interpolated values between tested wind frequencies. 

 

Figure 3.3: Illustration of distributed wind forces on stem and branches of trees. The 

figure on the left is an elevation view, and the one on the right is a plan view. 

 

3.5 Dynamic Amplification Factor (Rd) 

To capture the characteristics of dynamic response using a single parameter, the 

dynamic displacement amplification (or deformation response) factor (Rd) was analyzed 

as the output of the FE models. Rd is the ratio of the maximum displacement computed 

from the dynamic response of a structure to the maximum displacement computed from 

the static response of the structure. It is a unitless function that depends on characteristics 

of the structure (the mass, damping, and stiffness of the tree in this case) and the forcing 

function (frequency in the case of a harmonic load). For a single degree of freedom 

(SDOF) system subject to harmonic loading, the steady-state displacement of the system 

can be calculated as: 
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and ω is the frequency of the excitation force, ωn is the natural circular frequency of the 

system, ζ is the damping ratio, k is the stiffness of the system, and P0 is the amplitude of 

the excitation force. The ratio of P0/k gives the maximum displacement, [(ust)0] induced 

by the amplitude of static loading. Given that the sine and cosine functions are bound 

between -1 and 1, and are out of phase by an angle of π/2, the maximum dynamic 

displacement (u0) of a SDOF system is: 

   √      (3.6) 
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For SDOF systems, Rd is plotted as a function of the frequency ratio (ω/ωn), as in Figure 

3.4. There are often multiple peaks for MDOF systems, however, so Rd was plotted as a 

function of ω for this study, as in Figure 3.5. Modal frequencies of M100 were identified 

where peaks in plots of the damped and undamped Rd for Node-10 (located on the stem 

1.4 m above the ground) occurred at the same excitation frequency. Modal frequencies of 

each branch of M100 were identified where peaks in the plot of the undamped Rd for a 

node near the base of the branch exceeded the Rd plotted for Node-10. Figure 3.5 
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includes these plots for Node-27, near the base of the first branch, which is closest to the 

ground.  

 

Figure 3.4: Dynamic amplification factor of SDOF systems excited by harmonic forces 

for several different damping ratios. 
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Figure 3.5: Comparison of the dynamic amplification factors of the first branch and the 

main-stem in the prototype tree. The blue (solid line) one belongs to the Node 10 whose 

height is close to the breast height (1.4 m). The other curve is for the Node 27 which is 

one of the nodes on the first branch of the tree. 

 

3.6 Validation of FE Modeling 

To validate the FE model, modal frequencies of the whole tree, the branchless 

stem, and each branch were determined by several other ways. Natural frequency of the 

whole tree was determined from field tests conducted by Kane et al. (In preparation), as 

described above, and by using two empirical relationships from two different studies 

(Baker 1997, Mayhead 1973). Baker (1997) developed an empirical relationship, Eq. 3.8, 

for the natural frequency of in-leaf Tilia europea: 

   (            (   ))       √        (        )  (3.8) 
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where DBH is measured in cm and the right-hand term is the 99% confidence interval. 

Substituting 53 cm into Eq. 3.8 yields 0.50 Hz. Mayhead (1973) empirically developed 

Eq. 3.9 for conifers: 

   [         (
 √  

(   ) 
)]

  

 (3.9) 

where DBH is given in cm, H is total tree height (m) and M is tree mass (kg). Entering 

values of M100 into Eq. 3.9 gives: 
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(    )√(    )(    )
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         (3.10) 

The first four modal frequencies of the branchless stem and each branch were 

determined by using Mabie and Rogers’ (1972) equation (Eq. 3.11) for double-tapered 

cantilever beams (second, third, and fourth frequencies). These determined first four 

modal frequencies can be seen in Table 3.1.  

   
(  ) 

  (
  

  
)
√
  

   
 (3.11) 

where (lk)
2
 is a constant associated with a particular beam taper, l is the length of the 

element, h1 is the thickness at the distal point of the element parallel to the direction of 

the applied load, E is the elastic modulus, g is gravitational acceleration, and ρ is the 

density of the element. Imperial units were used for these parameters to be consistent 

with Mabie and Rogers (1972). In addition, the modal frequencies of each element in 

M100 can be obtained from the FE modeling using shapes obtained through modal 

analysis. For example, the modal frequencies and the mode shapes of each element 

(branches and main stem) can be seen in Figures from 3.6 to 3.12.  
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Figure 3.6: Mode shapes and modal frequencies of 7
th

 (left) and 1
st
 (right) branches from 

the top view of the model, M100. 

 

FE modeling result (0.59 Hz) is comparable with all the values (0.50 Hz from Eq. 

3.8, 0.52 Hz from Eq. 3.10, 0.59 Hz from Eq. 3.11 and the experimental result, 0.42 Hz) 

for the natural frequency of the tree.   
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Figure 3.7: Mode shapes and modal frequencies of 3
rd

 (left) and 2
nd

 (right) branches 

from the top view of the model, M100.  
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Figure 3.8: Mode shapes and modal frequencies of 8
th

 (left) and 9
th

 (right) branches from 

the top view of the model, M100. 
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Figure 3.9: Mode shapes and modal frequencies of the top (left) and 10
th

 (right) branches 

from the side (left) and top (right) view of the model, M100.  
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Figure 3.10: Mode shapes and modal frequencies of 5
th

 (left) and 4
th

 (right) branches 

from the top view of the model, M100. 
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Figure 3.11: Mode shapes and modal frequencies of 11
th

 (left) and 6
th

 (right) branches 

from the top view of the model, M100.  
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Figure 3.12: Mode shape and modal frequency of the stem of M100. 

  

It can be said that several same frequencies are coupled, for example the natural 

frequency (1.09 Hz) of tenth branch is coupled with a higher frequency of seventh branch 

as can be seen in Figure 3.9.  
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3.7 Discussion of Measured and Calculated Dynamic Parameters 

In Table 3.1, it can be seen that smaller natural frequencies correspond to 

branches of greater diameter because natural frequency is inversely proportional to the 

diameter of a beam (Eq. 3.12). The circular frequency (ωn) of a branch is the square root 

of the ratio of stiffness (k), which increases linearly with diameter (D) because length 

depends linearly on the slenderness ratio (λ) of the branches, and mass (m), which 

increases as a function of diameter cubed and wood density (ρ): 

   √
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(3.12) 

Thus, circular frequency and frequency will be inversely proportional to branch 

diameter. Figure 3.5 reveals the first and second modal frequencies of the first branch 

(see Table 1) in comparison with modal frequencies of M100. Unless stated otherwise, 

Rd values refer to those at Node 10 in the FE model, which is on the stem, 1.4 m above 

ground. 

Table 3.1 also includes the estimated mass of each branch and stem and mean 

MOE of branches and the stem, weighted by the mass of each element in a branch or the 

stem. The estimated mass of M100 (3185 kg) and the ratio of branch mass to stem mass 

(1.4), were significantly larger than medium-sized Douglas-firs previously considered in 

FE analysis (Moore and Maguire 2008). Slenderness of the stem including (32) or 

excluding (24) the top branch was smaller than previously reported (Moore and Maguire 

2005, Sellier and Fourcaud 2005, Jönsson et al. 2007, Rodriguez et al. 2008, Sellier and 

Fourcaud 2009). 
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Figure 3.13 shows Rd of M100 as a function of wind frequency for damping 

ratios of 0% and 15%. The damped model shows a peak at 0.59 Hz, which is greater than 

the value determined from pull and release tests (0.42 Hz) conducted by Kane et al. (In 

preparation). As it will be evaluated in Chapter 6, changing the assumed value of branch 

slenderness from 50 to 60, however, caused a peak at 0.42 Hz (see Figure 6.8), which 

lends confidence that the assumptions used to develop the model (M121 will be defined 

in Chapter 6) were reasonable. The natural frequency determined by FE modeling 

(M100) fit within the 99% confidence interval of Eq. 3.8 (Baker 1997), but was 19% less 

than the values calculated in Eq. 3.10 (Mayhead 1973). The disparity is not surprising 

because Eq. 3.10 was developed from trees of excurrent form.  

 

Figure 3.13: Dynamic amplification factors in terms of wind frequency for the 

undamped and damped (15 %) MDOF systems of the prototype tree subjected to 

harmonic wind forces. 
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The peak at 0.59 Hz is close to the natural frequency of the seventh branch, which 

is the largest, of M100. The natural frequencies of three other large branches (first, 

second, and third) are slightly greater than that of the seventh branch, and all of these 

were different from that of the stem (Table 3.1). It was not surprising that the natural 

frequency of M100 was similar to that of the four largest branches because their 

cumulative mass (1614 kg) exceeded that of the stem and top branch (1304 kg). It 

appeared that the portion of the stem proximal to the seventh branch effectively 

functioned as a rigid element in the model because of its reduced slenderness and greater 

MOE.   

The effect of crown architecture on natural frequency has been illustrated 

previously (James et al. 2006, Spatz et al. 2007, Sellier and Fourcaud 2009) and previous 

works have shown a similar difference between natural frequency of the stem compared 

to the whole tree (Moore and Maguire 2005, Sellier and Fourcaud 2005, Spatz et al. 

2007). Results of the current study demonstrate the significant effect of large branches on 

sway response, which has made it more difficult to fit empirical data to theoretical 

expectations (Baker 1997, Kane and James 2011).  

Although 0% damping is unrealistic, it is included to illustrate peaks in the Rd 

curve (Figure 3.13) that would otherwise not be visible.  The peaks of the undamped plot 

of Rd at 0.59 and 2.0 Hz correspond to the first and the second modal frequencies of the 

tree; the first modal frequency is close to the first modal frequencies of the large branches 

and the second modal frequency is close to the first modal frequency of the stem, the 

second modal frequency of the medium and small sized branches and the third modal 

frequencies of the largest branches (Table 3.1). Other peaks in the undamped model 
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correspond to modal frequencies associated with branches, but these peaks disappear 

once damping is considered. The number of branches and the number of peaks in the plot 

are not equal because several branches have natural frequencies that are approximately 

equal (because they have similar diameters). For example, the first modal frequencies of 

the first, second, and third branches are similar (Table 3.1), which caused the peak in Rd 

near 0.70 Hz (Figure 3.5). 

3.8 Summary 

A FE model was developed for a prototype tree in Belchertown, MA by using 

several assumptions and information from the literature in Chapter 2. By using this FE 

modeling, two important results are obtained for use in subsequent chapters (Chapter 4 

and Chapter 6, respectively). First, the favorable results of selected response parameters 

(mainly frequencies) between the FE model and field testing validate the assumptions 

used in FE modeling.  This is required before conducting the Monte Carlo simulations in 

Chapter 4. The second important implication of the analysis results presented in this 

chapter is that with a validated model one can now incorporate variations of the base 

model to create parametric models to investigate the effects of model variations on 

dynamic response.  These analyses are presented and results are discussed in detail in 

Chapter 6.  
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CHAPTER 4 

RISK ASSESSMENT OF MAPLE TREES SUBJECTED TO RANDOMLY 

GENERATED WIND LOADING 

4.1 Introduction 

Trees have some important roles for human lives due to their many environmental 

and sociological benefits (Nowak and Dwyer 2000). If they fall down due to uprooting or 

breakage failures of stems or branches, these benefits sometimes may be replaced by 

significant damages such as deaths, personal injuries, cold-sicknesses, traffic jams and 

economic losses owing to litigations (Kerzenmacher and Gardiner 1998, Gardiner and 

Quine 2000, Kane and Ryan 2004, Mortimer and Kane 2004, Fournier et al. 2006, James 

et al. 2006). That is why, risk assessment of trees is important for arborists.  

According to the studies (Milne 1991, Rodriguez et al. 2008, James and Kane 

2008), wind forces have the important role on falling down of trees. Thus, tree risk 

assessment has been investigated under the wind loads and three different approaches 

were developed and have been commonly used over the last 25 years: (1) qualitative 

assessments, (2) empirical or statistical models, (3) mechanistic models (Gardiner et al. 

2008). The first model is based on observational tools and it was mentioned in some 

studies (e.g. Miller 1985, Mitchell 1998). The second one is mentioned by several 

researchers (e.g. Valinger and Fridman 1997, Lanquaye-Opoku and Mitchell 2005), and 

the advantage of this approach with respect to the first approach is that this second one 

may be quite accurate and reliable for different locations (Gardiner et al. 2008). The last 

approach is the newest and most common one which was developed by Peltola et al. in 
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1999 (HWIND mechanistic models), and Gardiner and Quine in 2000 (GALES 

mechanistic models). All these approaches were developed for, generally, trees in forests. 

Additionally, the other important example of the mechanical models (FOREOLE 

mechanistic models) was developed by Ancelin et al. (2004) not only for wind loading 

but also for snow loading on trees in forest areas about the risk assessment.  

As for the important differences between the research in this chapter and the 

previous studies, large and open-grown trees will be addressed instead of trees in forests. 

The other difference is to use FE modeling as the methodology to study tree risk 

assessment. The third important difference relates to the methodology that 1000 different 

wind speed samples of a mean wind-speed were randomly generated for the wind loading 

on tree models in this chapter in order to concern the randomness of the wind loading in 

nature. But the randomness of the wind loading in the mechanistic models cannot be 

seen, or in other words each wind speed has a specific gust factor for a specific tree, so 

the critical wind speed of that specific tree is calculated specifically and deterministically. 

The final important difference is that dynamic analysis approach was used to calculate 

the probability of tree failures. Mechanical models, however, use empirical gust factor to 

attempt to catch the effect of the dynamic response of trees under fluctuating wind, these 

models may not calculate the critical wind speed dynamically for the trees in different 

locations elsewhere the empirical tests were done, because the gust factor might be 

different for such different locations.  

Currently, by using Monte-Carlo (MC) simulation algorithm in order to attempt to 

capture the variance of wind turbulence, totally 1000 different samples could be 

generated and applied to two specific trees (in Belchertown and Amherst, MA) for each 
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wind speed (from 13 m/s to 39 m/s) with the interval of 2 m/s (≈ 4.5 mph). The 

disadvantage of MC simulations is to be expensive computationally (Arwade and 

Deodatis 2011), because it takes time to do FEMs and to apply all the varied inputs into 

these models. However, in probabilistic approaches, MC is a common method in 

engineering for fragility analysis which is a standardized methodology for performance-

based structures subjected to loads. The objective of this fragility analysis is to see the 

conditional probability of exceedance of deterministically defined indicator (such as 

maximum lateral drift or maximum bending moment in structures or any other indicator 

corresponding to a specific feature of the response of the structures) (Smith 2009). Thus, 

in this paper, maximum bending moment at breast height of two trees was used as the 

indicator of the fragility analyses. After that, the annual probability of tree failures in a 

specific location can be calculated by using the probability density function of annual 

wind speed or wind speed for a reference period which belongs to that specific location.  

4.2 FE Modeling Maple Trees 

The finite element (FE) modeling program, ADINA 8.5 was used to conduct the 

dynamic analyses of two different real trees, which are located (1) near the police station 

in Belchertown, MA and (2) in the campus of University of Massachusetts-Amherst, MA. 

All the modeling methodologies have already been described in Chapter 3, thus it is not 

necessary to mention how to model the trees in ADINA, again.  

The morphological information of the second tree can be seen in Table 4.1, 

because these information do not exist in Chapter 3. Additionally, Figure 4.1 is also show 

a picture of Tree-2 with its model shape from ADINA.  



82 
 

 

Figure 4.1: A photo from the real TREE-9 (left one) and its model in ADINA (right one). 

 

 

Figure 4.2: The relationship between stem diameter and foliage area with leaves. The 

equation of the linear fitting on the experimental data is y=0.49x+5.22. 
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Table 4.1: Field measurements for the morphological properties of the second tree. 

2
nd

 TREE 

Diameter 

(m) 

Attachment 

Height (m) 

Azimuth 

Angle (º) 

Attachment 

Angle (º) 

 Stem 0.66 n/a n/a n/a 

B
ra

n
ch

 #
 

1 0.13 2.21 228 89 

2 0.23 2.29 308 59 

3 0.21 2.44 134 71 

4 0.23 2.74 28 15 

5 0.20 2.75 28 65 

6 0.38 2.79 138 26 

7 0.17 2.97 198 53 

8 0.09 3.20 225 69 

9 0.21 3.38 225 30 

10 0.17 3.86 305 66 

11 0.15 4.06 114 65 

12 0.16 4.24 188 19 

13 0.15 5.31 7 41 

14 0.17 5.44 316 45 

15 0.44 5.51 282 16 

16 0.19 6.32 40 24 

17 0.16 7.54 26 29 

18 0.13 8.15 143 21 

19 0.19 8.86 25 20 

20 0.08 10.52 322 52 

21 0.12 12.07 337 26 

22 0.08 13.06 265 22 

23 0.10 13.72 308 40 

24 0.13 13.84 50 25 

25 0.10 14.35 346 33 

26 0.14 14.36 75 29 

27 0.08 15.01 349 21 

28 0.07 17.12 240 13 

29 0.10 18.21 360 24 

Top 0.10 18.22 n/a 0 

 

In modeling, two different seasons, which are called as winter season and summer 

season were investigated because they have different drag forces and so different 

responses for these seasons. All the reasons of the differences due to these seasons can be 

collected under two definitions like ‘internal effects of seasons’ and ‘external effects of 



84 
 

seasons’. The important external effect is air density which was assumed to be 1.226 

kg/m3 and 1.326 kg/m3 in tree models for the summer season and the winter season, 

respectively. The first important internal effect is changes in foliage area of trees in Eq. 

3.2. Whereas foliage area for the winter season was defined as the exposure area of the 

trunks and the branches in trees without leaves, the foliage area for the summer season 

was estimated by using the relationship between stem diameter at breast height and the 

total area of the whole trees which had been investigated in the research of Kane as can 

be seen in Figure 4.1. The other internal effect is drag coefficient in Eq. 3.2, and for 

winter season it was approximately selected as 1.0 from fluid mechanics under the 

assumption is that branches and tree trunk are a kind of rough circular cylinders along 

their length. For the summer season, it was assumed to vary from 0.6 to 0.9 as a function 

of wind speed as in the study of Kane and Smiley (2006).  

4.3 How to Generate Random Wind Loading for MC Simulations 

To generate, randomly, 1000 samples for the time-history of each wind speed in 

Eq. 3.2, it might be necessary to obtain a function of spectral density with respect to wind 

speed frequencies. Thus, Ochi-Shin Equation (Eq. 4.1, from Ochi and Shin (1988)) was 

modified in order to correspond to a new equation for lands, because Eq. 4.1 is for 

offshore areas. For this modification, the spectral densities of the time-histories of several 

wind speeds, which are field data measured from Amherst, MA in September of 2006, 

were calculated by taking Fourier Transformation of these wind speed data. Then these 

spectral densities were compared with the Ochi-Shin equation, and the surface drag 

coefficient of Eq. 4.1 was modified as long as the differences between the numerical 
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integration of the modified Ochi-Shin equation and the spectral densities of the field data 

are the smallest value. The spectral densities of the field data can be seen in Fig. 4.2 with 

the modified Ochi-Shin equation. Moreover, it has already been expected that the surface 

drag coefficient of the modified equation for land areas should be larger than the surface 

drag coefficient of the equation for offshore areas because of the effect of the higher 

friction at land areas than offshore areas.  

   ( )  
   

   

 
 (4.1) 

in which C (defined by Eq. 4.2) is the surface drag coefficient and is related with 

the roughness of surface, Vw is the average wind speed at a reference level of 10 meter, f 

is the wind frequency in Hz, and    is the gust factor as defined in Eq. 4.2. The modified 

surface drag coefficient, C
M

 in Eq. 4.4 is for the modified Ochi-Shin equation, and it is 

for the land areas like in Amherst, MA.  
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Figure 4.3: Comparison of wind spectral densities of field data and modified Ochi-Shin 

equation.  

 

 

  (        )(      
  ) (4.3) 

   (          )(      
  ) (4.4) 

After obtaining a modified Ochi-Shin equation, it is time to generate 1000 

samples for the time-history of several specific mean wind-speeds which were 

incremented by 2 m/s (≈4.5 mph) from 13 m/s (29 mph) to 39 m/s (87 mph). Thus, a 

matlab code were applied to generate the time history samples of Vw(t), a stochastic 

process, by using the methodology of the spectral representation (Shinozuko 1972). 

According to this spectral representation, Gaussian stochastic processes can be obtained 

by using Eq. 4.5.  

  
 ( )  ∑     (   )       (   )

 

   

 (4.5) 
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where Ar and Br are independent Gaussian random variables with zero mean and 

the variance (σ
2
) which can be calculated by using Eq. 4.6, t represents the time in the 

time-history wind samples, and ωr is the wind speed frequencies which are at the middle 

of the number of n which is the number of equally divided parts of the spectral density of 

the modified Ochi-Shin Equation. In this chapter, the spectral density was divided to 430 

equal parts (n=430) from zero to approximately 0.48 Hz in order to obtain approximately 

30 minutes time-history of the stochastic processes.  

      (  )   (4.6) 

where GVV(ωr) is the range value of the domain of ωr in the wind spectral density 

function, and Δω is the interval of frequencies for the equally divided parts in the spectral 

density function.  

These Gaussian time history samples can be transformed to Log-Normal 

distributions by using Nataf-model (Nataf 1962) in Eq. 4.7, because of the assumption 

that winds blow with the property of a kind of Log-Normal distribution.  

  
     [   (  )] (4.7) 

in which Vi
G
 is Gaussian variables of wind speed, Φ

-1
 is the inverse of Gaussian 

cumulative distribution function, and FVi is the cumulative distribution function of log-

normally distributed random variables (Vi) which can be written in terms of Gaussian 

cumulative distribution function as in Eq. 4.8.  

   (  )   (
  (

  
 )

 
) (4.8) 
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where the parameters s and µ can be written in terms of the mean (µXi) and the 

standard deviation (σXi) of the log-normally distributed random variables as follows (Eq. 

4.9 and Eq. 4.10):  

  √  (
   

 

   
 
  ) (4.9) 
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)  
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(4.10) 

In Eq. 4.7, the terms (Φ
-1

 and FVi) can be cancelled each other out because of Eq. 

4.8. Thus Eq. 4.7 can be rewritten as follows;  
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) (4.11) 

Then, Eq. 9 and Eq. 10 can be plugged into Eq. 11 as follows;  
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(4.12) 

Finally, the log-normally distributed random variables (Vi) of wind speeds can be 

generated by using Eq. 4.13 which is another form of Eq. 4.12. As an example, in Figure 

4.3, the histogram of 1000 samples, which have 21 m/s (≈ 47 mph) mean wind speed, 

matches to the perfect log-normal distribution whose mean is 21 m/s and standard 

deviation was calculated from the modified Ochi-Shin’s equation for this specific wind 

speed. Additionally, the time history of one of these samples can be seen in Figure 4.4.   
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The limitation of the Nataf model is that the correlation function of the Gaussian 

random field of wind speed, which is obtained by using the methodology of the spectral 

representation (Eq. 4.5), might not equal to the correlation function of the generated log-

normal random field of wind speed because of the distortions of using Eq. 4.13. But, 

these distortions can be ignored, because they are small as can be seen in Figure 4.6.  

 

Figure 4.4: Matching of the generated samples (blue shaded area) with the perfect Log-

Normal distribution (solid red line). The mean of the samples is 21 m/s. 
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Figure 4.5: Time-history for one of the generated 1000 samples. Dashed line is to 

represent the mean of the sample at 21.6 m/s. 

 

 

Figure 4.6: Correlation functions for the random field of generated Gaussian and Log-

Normal wind-speeds.  
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4.4 Probability of Exceedance for MC Simulations 

To be broken at once in a given time, or not to be broken over this time region, 

that is the question about the failure of trees. Thus, it can be defined that a tree will be 

broken down in this time region if a bending moment at anywhere on its trunk exceeds 

the threshold (maximum bending moment for that location on its trunk not to reach to the 

compressive yield point of the stress-strain behavior of the trunk) at least once. In the 

light of this definition, probability of exceedance can be calculated as in Eq. 4.14.   

  (   )      [    
  [   ]

 (    )   ] (4.14) 

in which ξ is the threshold, T is the given time period, M(t,ns) is the random field 

which could be obtained as the outputs of the FEMs for 1000 number of samples (ns). 

The application of Eq. 4.14 for the MC simulations in this research can be explained by 

using Figure 4.6. The threshold value of the bending moment in Figure 4.6 can be 

calculated by using Eq. 4.15 (bending stress formula in a cross-section) for trees. To 

explain Figure 4.6, if the bending moment of the tree trunks (at breast height, 1.4 m) for 

any sample in total of 1000 samples reaches to the threshold (ξ) in Figure 4.6 at least 

once, tree will break down at that location. Then, the ratio of the number of the samples, 

whose bending moments have at least one up-crossing with the threshold, to the total 

number of the samples (1000 for this research) is the probability of exceedance in Eq. 

4.14 (or maybe called as probability of failures) for the specific mean wind speed.  

   
  

 
 (4.15) 

where σ is the compression strength parallel to grain (27700 kPa for green sugar 

maple trees from Kretschmann 2010), y is the distance between the neutral-axis and the 
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point which has the maximum bending moment (Mb), and I is the second moment of 

inertia for the cross-section of the trees. This inertia can be calculated by using Eq. 4.16 

under the assumption that the tree cross-sections are a kind of circular shape.  

  
   

  
 (4.16) 

where D is the diameter of the cross-section of the trees. 

If it is assumed that the neutral-axis goes through the diameter of the cross-section 

of the tress, y will be equal to the half of the diameter of the cross-sections. Thus, Eq. 

4.15 can be rewritten as follows;  

    
  
   

  
 
 

 
    

 

  
 (4.17) 

 

 

Figure 4.7: Bending moments at breast height (1.4 m) of Tree-1 for two different 

samples which were generated to have 21 m/s mean wind-speed on the trees. 
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4.5 Results and Discussion 

To determine the time region for the record of the generated wind samples, the 

MC simulation time intervals (900 sec.) were assumed to represent the characteristics of 

life time for storms. This assumed time length may be increased for hurricanes by 

concerning their life time.    

Figure 4.7 shows a plot of fragility curves for the different strength-loss scales 

due to decay in Tree-1 under the winter conditions. Figure 4.8 is for the same tree, but for 

the summer conditions. For example, when Tree-1 is subjected to wind blows whose 

mean speed is 56 mph and standard deviation (std) is 24 mph (80-56=24 in Figure 4.7) 

under the zero decay condition of this tree, the probability of exceedance of the bending 

moment at breast height (1.4 m) to the threshold value (for the stem breakage) is 

approximately 7 % and 40 % for the winter and summer seasons, respectively. For the 

same conditions of Tree-9, these probabilities are 68 % and 36 % for, again, the winter 

(Figure 4.9) and summer (Figure 4.10) seasons, respectively. The comparison of these 

probabilities for these trees can be seen in Figure 4.11 as well.  

The fragility curves (with respect to decay levels in the trees) in each figure 

(Figures 4.7 through 4.10) can be calculated by using an assumption that the new moment 

capacity (new threshold value, ξ) of the cross-section of the tree trunk is equal to 90% 

(for SL=10%), or 80% (for SL=20%) of the original moment capacity due to particular 

decays in the cross-section. This moment capacity loss depends on the size and the 

location of the decays in cross-sections of the trunks. This relationship between the 

moment capacity loss and the decay size and location will be addressed in Chapter 5 in 

detail. 
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Figure 4.8: Winter season for Tree-1. Dashed line, solid line, and dotted line represent 

fragility curves of Tree-1 with zero, 10 %, and 20 % moment capacity loss, respectively, 

due to an assumed decay in the tree. 

 

 

Figure 4.9: Summer season for Tree-1. Dashed line, solid line, and dotted line represent 

fragility curves of Tree-1 with zero, 10 %, and 20 % moment capacity loss, respectively, 

due to an assumed decay in the tree. 
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Figure 4.10: Winter season for Ttree-9. Dashed line, solid line, and dotted line represent 

fragility curves of Tree-9 with zero, 10 %, and 20 % moment capacity loss, respectively, 

due to an assumed decay in the tree. 

 

 

Figure 4.11: Summer season for Tree-9. Dashed line, solid line, and dotted line represent 

fragility curves of Tree-9 with zero, 10 %, and 20 % moment capacity loss, respectively, 

due to an assumed decay in the tree. 
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Figure 4.12: All seasons for Tree-1 (solid curves) and Tree-9 (dashed curves) without 

any decay. Red and blue curves represent the summer and winter seasons, respectively.  

 

Although dynamic analyses can be viewed as a nonlinear transformation from the 

inputs to outputs, a nearly linear relationship between the maximum bending moments 

for the winter and summer seasons for each of the trees (Tree-1 and Tree-9) can be seen 

in Figure 4.13 and Figure 4.14, respectively. After applying MC simulations only for 

winter season, the maximum bending moments for summer season would have been 

generated by using the slope of the linear relationships between the maximum bending 

moments for the different seasons, because the constant values in these linear functions of 

Figure 4.12 and Figure 4.13 can be neglected due to their small values with respect to the 
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amount of summer bending moments at the y-axes in these figures. To obtain the slope of 

the linear functions in the figures can be estimated by using Eq. 4.18.  

   
   

 
[     ] 
[     ] 

 (4.18) 

where BMS and BMW are for the maximum bending moment data from the MC 

simulations for the summer and winter seasons, respectively. The ratio of these maximum 

bending moments in Eq. 4.18 is close to the slope of the linear functions in Figures 4.12 

and 4.13. This slope depends on the ratio of the dynamic excitation forces for the summer 

and winter seasons. ρ, A, and Cd are the same symbols in Eq. 3.2. The damping ratio (ζ) 

varies from season to season due to leaves on the trees.  

 

Figure 4.13: The relationship between the maximum bending moments of the winter and 

summer seasons for Tree-1. 

 

For example, the effect of the ratio (Eq. 4.20) of the damping ratios on the 

dynamic response of Tree-1 for the summer and winter seasons can be estimated by using 
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Eq. 4.18 and Eq. 4.19 to obtain that the slope of the linearity in Figure 4.12 is averagely 

1.53 for the Tree-1.  

[
[     ] 
[     ] 

]
      

 
(     )(     )(   )(  )

(     )(  )(   )(  )
      (4.19) 
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      (4.20) 

 

 

Figure 4.14: The relationship between the maximum bending moments of the winter and 

summer seasons for Tree-9. 

 

For another example, again, the effect of the ratio (Eq. 4.22) of the damping ratios 

on the dynamic response of Tree-9 for summer and winter seasons can be estimated by 

using Eq. 4.18 and Eq. 4.21 to obtain that the slope of the linearity in Figure 4.13 is 

averagely 0.87 for the Tree-9.  

[
[     ] 
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      (4.21) 
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]
      

      (4.22) 

It is interesting that the ratios (0.71 in Eq. 4.20 and 0.63 in Eq. 4.22) of the 

damping ratios of the summer and winter seasons are in the range of 0.58 (Rd15 / Rd5 = 

0.58 for the dashed curve in Figure 6.11) and 0.84 (Rd15 / Rd5 = 0.84 for the dotted curve 

in Figure 6.11).  

Additionally, the probability of tree failures can be expanded for various tree 

locations and for various time periods by using Eq. 4.23 which is a common formula used 

in several recent studies (e.g. Yue and Ellingwood 2006, Smith 2009).  

  
  ∫   ( )  ( )  

 

 

 (4.23) 

where FR(v) is the fragility curve function (as in the figures from Figure 4.7 to 

Figure 4.10) of trees in terms of wind speed (v), and fv(v) is the probability density 

function (pdf) of wind speed. For this fragility analysis, this wind-speed distribution can 

belong to anywhere and can be expressed with reference to any time period (such as 

annual wind speed, 10-year wind speed, and 50-year wind speed).  

4.6 Conclusion 

In this chapter, only two different trees could be investigated because of the 

difficulties on measuring real tree structures and time concerning of MC simulations. 

Thus, the randomness of tree structures could not be addressed, but the randomness of the 

wind excitation force could be addressed successfully, by generating a total of 1000 

different wind speed samples for each mean value. For future work, the investigation of 
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the randomness of tree structures with concerning the randomness of wind forces on 

those trees may be a good research.  

The results discussed in this Chapter are limited to some assumptions used. One 

of the assumptions is that Ochi-Shin equation was modified by using small mean wind-

speeds (from 1.1 m/s to 5.7 m/s), and then wind samples were generated by using this 

modified Ochi-Shin equation for greater mean wind-speeds (from 13 m/s to 39 m/s). The 

other important assumption is that decay can only affect the moment capacity of the tree 

sections by excluding the effect of decays on tree dynamics and the effect of wood 

orthotropic material property on that moment capacity.   

The effect of moment capacity loss due to decays on the fragility curves can be 

seen in the figures (from Figure 4.7 to Figure 4.10) by assuming that there is a specific 

decay and this decay causes to a 10% or 20% moment capacity loss for the tree sections. 

But the important question is to know or calculate the moment capacity loss for any 

decay. The answer of this question will be addressed with the next chapter, Chapter 5.  
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CHAPTER 5 

MOMENT CAPACITY LOSS IN TREES DUE TO DECAY 

5.1 Introduction 

Tree risk assessment is an important aspect of arboricultural practice. Tree 

failures regularly damage property and kill or injure people (Schmidlin 2009). There is 

also a risk of litigation associated with tree failures (Mortimer and Kane 2004), so their 

economic cost may be much greater than simply the cost of removing the tree and 

repairing the damage. Examples can be found in most cities: a recent series of articles in 

the New York Times detailed multiple lawsuits stemming from fatalities and injuries 

associated with hazardous trees (Glaberson and Foderado 2012). 

Tree risk assessment involves many techniques that range from visual approaches 

(Fink 2009) to sophisticated methods involving tomography (Nicolotti et al. 2003, Gilbert 

and Smiley 2004, Wang and Allison 2008), radar (Butnor et al. 2009), strain gauges and 

inclinometers (Sinn and Wessolly 1989). Assessing decay has been the focus of much 

research, primarily in the form of decay detection devices (Johnstone et al. 2010). 

Quantifying the amount of decay has been translated into the probability of failure using 

strength loss formulas (Wagener 1963, Coder 1989, Smiley and Fraedrich 1992, 

Mattheck et al. 1994). Kane et al. (2001) reviewed existing strength loss formulas, which 

[excepting Mattheck et al. (1994)] derive from the moment of inertia (I) of a beam of 

circular cross-section, and have been modified in accordance with empirical evidence. It 

should be noted that the level of sophistication and the quantity of investigations of 
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testing of devices to detect decay far exceeds the sophistication, accuracy and quantity of 

investigations of the strength loss formulas. 

Strength loss formulas suffer from three important limitations. First, they consider 

only the relative proportion of decay in the cross-section, but strength loss depends also 

on the location of the neutral axis and distance (c) between it and the location at which 

stress (σ) is calculated in the flexure formula: 

  
  

 
 (5.1) 

The second limitation of the formulas is that they assume a homogeneous and 

isotropic material:  where tensile and compressive stresses develop symmetrically in the 

cross-section. It is well known that wood is axially stronger in tension than compression 

(Bodig and Jayne 1993), which is why bending failures of test specimens initially fail in 

compression (Hoadly 1980). Finally, the formulas assume circular areas of decay, and 

two of them (Wagener 1963, Coder 1989) do not account for off-center areas of decay, 

which undermined their ability to predict strength loss (Kane and Ryan 2004). 

The objective of this chapter is to develop improved moment capacity loss (MCL) 

curves that account for areas of decay that vary with respect to size and distance from the 

perimeter of the cross-section, as well as those of irregular shapes. A secondary objective 

is to investigate whether the magnitude of disparity between the tensile and compressive 

elastic moduli of wood affected the performance of the improved strength loss curves.  

5.2 Materials and Methods 

In deriving the improved MCL curves, several assumptions have been made. 

First, it was assumed that the stem or branch experienced pure bending stress; the effects 
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of axial, shear and torsional stresses have been ignored. The reason of this assumption is 

that wind-induced tree failures typically involve bending stress due to tree swaying 

motion (James 2003) and experimental verification of the improved formulas involved 

primarily bending stress. Shear stresses or combination of shear and bending stresses are 

neglected given the typical slenderness found in branches and stem. Second, cross-

sectional areas of the stem and decay were assumed to be circular and defined by radii R 

and r, respectively, as shown in Figure 5.1. The area of decay, still considered a circle, 

can also have an open cavity, as in the right-hand side of Figure 5.1. Third, the derivation 

assumes that the line of application of bending force is along a diameter drawn through 

the center of both the area of decay and the cross-section of the stem (Figure 5.1). This 

assumption results in the maximum loss in moment capacity of the cross-section in order 

to concern the worst case scenario in tree failures. 

 

Figure 5.1: Decay definitions in cross-sections of any members in trees. The shaded area 

refers to the region of tensile stress and strain; the clear area refers to the region of 

compressive stress and strain. The neutral axis (where there are no bending strains) is the 

dashed line that separates the shaded and clear areas of the cross-section. 
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5.2.1 Definition of Circular Decays in Cross-Sections:  

The distance (d) in Figure 5.1 quantifies the degree to which an area of decay is 

offset from the point which has maximum tensile strain and stressin the stem cross-

section. It is the distance along a diameter line that bisects the area of decay and the stem 

from the farthest point of the tension side of the stem (PPM in Figure 5.1) to the closest 

point on the perimeter of the area of decay (PPD in Figure 5.1). The ratio d/R will be used 

to plot the loss in moment capacity. 

5.2.2 Theoretical Approach and Implementation: 

Moment capacity of the stem cross-section (with and without decay) can be 

calculated as the total moment of compressive and tensile stresses about the neutral axis 

of the cross-section. Thus, the first step to calculate moment capacity of stems with and 

without decay is to determine the location of the neutral axis. Figure 5.2 shows a 

representative stem cross-section with decay, as well as distributions of compressive and 

tensile strains and stresses [including the resultant compressive (FC) and tensile (FT) 

forces induced by bending moment]. The neutral axis lies at the transition from 

compressive (εc) to tensile (εt) strains, where for the case of zero axial force as assumed 

in this analysis. 

      (5.2) 

The location of the neutral axis does not coincide with the geometric centroid of 

the stem, because it was assumed that the elastic modulus of wood is greater in tension 

(ET) than in compression (EC) due to the knowledge that theratio of ET to EC is 
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approximately 1.1 for two juvenile tree species, Douglas-fir and Western hemlock 

(Langum et al. 2009).  

To determine the location of the neutral axis, eight values of the modular ratio, n, 

(1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 2.0 and 2.5) were tested, where 

  
  
  

 (5.3) 

This facilitated a qualitative comparison of the effect of n on MCL. The ratio 

dictates the proportional disparity between similar triangles representing εt and εc shown 

in Figure 5.2. For a given strain distribution, a stress distribution can be calculated 

(Figure 5.2). The neutral axis was initially assumed to be at 1% of the diameter of the 

cross-section, an unrealistically small value. Tensile and compressive strains that resulted 

from the placement of the neutral axis at each value of n were used to calculate c and t 

from Hooke’s Law: 

        (5.4) 

where i designates compressive or tensile values of each parameter. From the 

distributions of σc and σt, the resultant forces (FC and FT) were calculated by integrating 

compressive (c) and tensile (t) stresses over the cross-sectional areas in compression 

and tension, respectively, in Figure 5.2. For each value of n, the preceding steps were 

repeated after incrementally increasing the distance between the neutral axis and PPM in 

Figure 5.1 until Eq.5.2 was satisfied, a statement of internal force equilibrium.  
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Figure 5.2: Strains and stresses in compression and tension sides of a cross-section. 

 

Once the location of the neutral axis was known, the moment of inertia (I) of the 

stem about the neutral axis was calculated for stems with and without decay. A program 

was written in Matlab (Matlab 7.8.0-R2009a) to calculate the moment of inertia of the 

stem by dividing the cross-section into rectangular areas of incremental width and using 

the parallel axis theorem to sum the inertia of each rectangle about the neutral axis of the 

cross-section: 

  ∑
 

  

 

   

    
      

  (5.5) 

where N, b, h, and A are the number, base, height, and area, respectively of each 

rectangle (i); and l is the perpendicular distance between the neutral axis and the center of 

each rectangle.  

5.2.3 Experiments on Moment Capacity Loss: 

To validate the MCL curves for different amounts and locations of decay, ten red 

oaks (Quercus rubra) growing in Pelham, MA, USA (USDA Hardiness Zone 5A) were 
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tested in 2009 by Kane (unpublished data). Morphometric data of the trees are presented 

in Table 5.1. Branches were removed prior to testing to limit the P-delta effect of the 

offset mass of the crown during testing. A snatch block (McKissick Light Champion 

model 419) was attached to the tree with an Ultrex sling (1.9 cm diameter, Yale Cordage, 

Saco, ME) at approximately 65% of its height. Trees were pulled using a skidder (John 

Deere model 440D) with a hydraulic winch and 61 m of Vectrus (1.3 cm diameter, Yale 

Cordage, Saco, ME). The rope was passed through the block and attached to a load cell 

(Dillon EDXtreme, Weigh-Tronix, Fairmont, MN) that recorded loads (accurate to 44 N) 

at 10 Hz. Loads had to be adjusted to account for friction and they were resolved into 

components parallel and normal to the long axis of the trunk. Taking the sine of the mean 

angle between the applied force and the tree (Table 5.1) indicated that 96% of the load 

was applied normal to the longitudinal axis of the trunk.  

Table 5.1: Morphometric data for ten red oaks tested by Kane (unpublished data) 

Parameter Mean SD 

DBH (cm) 41 4.3 

Tree Height (m) 21.6 1.2 

Crown Width (m) 11.9 2.3 

Block Height (m) or Pulling Height 13.8 1.3 

Diameter at block height (cm) 18 1.8 

Angle between cable and stem (
o
) 73 2.5 

% of diameter notched (Type 1) 35 10 

% of diameter notched (Type 2) 40 15 
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A strain meter was attached to the tension side of the tree approximately 1 m 

above ground as described by James and Kane (2008), which recorded axial 

displacements at 20 Hz. Displacements were converted to strains and downloaded into a 

spreadsheet (Excel 2003, Microsoft Corp.). To relate displacements with loads, which 

were also downloaded into Excel, the mean of two displacements taken every 0.1 s was 

matched each load taken at the corresponding time. Trees were winched to induce 

displacements in the trunk of approximately one or two mm to ensure that strains 

remained in the elastic range. The rate of loading varied with trees of different 

dimensions and time in the test (initial rates were less). Loading rate ranged from 

approximately 100-200 N/s, which induced displacements at a rate of approximately 0.1-

0.2 mm/s.  

After winching, a notch whose long axis was normal to both the direction of 

winching and the longitudinal axis of the trunk was cut into each tree with a chainsaw. 

Two types of notches were cut: 1) into the tension face of the trunk, removing all of the 

wood on the perimeter of the stem (two tested trees); 2) through the tree leaving wood 

intact at the perimeter of the trunk on the tension and compression faces (eight tested 

trees) (Figure 5.3). More Type 2 notches were cut because of the variability of the 

location of the notch relative to the center of the trunk (as measured incident with the 

applied load). One left equal thicknesses of wood on the proximal and distal sides of the 

trunk (relative to the position of the skidder); one left a greater thickness of wood on the 

proximal side of the trunk; and the remaining seven trees left a greater thickness of wood 

on the distal side of the trunk. The mean thickness of wood on both the proximal and 

distal sides of the trunk for all trees that received Type 1 notches is included in Table 5.1.  
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Figure 5.3: Two different drilling types were applied to tree stems. 

 

 

Figure 5.4: Representing the experiments on the trees and the data from these 

experiments. 
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The force (P) inducing bending moment (M) was plotted against strain before and 

after notches which were cut on each tree. The slope of the best-fit line is related to the 

moment capacity of the tree before (k0) and after notching (kd) due to the derivation of 

Eq. 5.22 (Figure 5.4).  

5.2.4 Analyses of Experimental Data: 

In the following derivation, the subscripts (0) and (d) refer to before and after 

notching, respectively, and it was assumed that  

      (5.6) 

Hooke’s Law can therefore be used to relate stress to strain of trees before and 

after notching: 

  
  
 
  
  

 (5.7) 

Eq.5.7 can be solved for σ0: 

   
    
  

 (5.8) 

To find moments (M) of the applied force (P), the distance between the center of 

the strain meter and the block on the tree (H) and θ (in Figure 5.4) must be known: 

           (5.9) 

           (5.10) 

where P0 and Pd can be found for each tree as shown in Figure 5.4: 

        (5.11) 

        (5.12) 

and substituted into Eq.5.9 and Eq. 5.10: 
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             (5.13) 

             (5.14) 

Eq.5.1 can be re-written including nfor tension side of the stem cross-sections (as 

in Figure 5.5): 

    
    
  

 (5.15) 

    
    
  

 (5.16) 

M0 and Md from Eq.5.13 and Eq.5.14 can be substituted into Eq.5.15 and Eq.5.16: 

    
           

  
 (5.17) 

    
           

  
 (5.18) 

The section modulus (S) before and after damage is calculated using: 

   
  
  
 
          

  
 (5.19) 

   
  
  
 
          

  
 (5.20) 

Substituting σ0 from Eq. 5.8 into equation Eq. 5.19 yields: 

   
          

  
 (5.21) 

Loss in section modulus (LOSSSM) of the tension side of tested tree cross-sections 

due to notching can be calculated for each tree from values of k0 and kd: 

         
  
  
   

            ⁄

            ⁄
   

  
  

 (5.22) 

LOSSSM in the tension side of cross-sections of trees tested in situ was also 

determined as described in Section 5.2.2, except that areas of notches were considered 
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trapezoidal, not circular, consistent with Figures 5.3 and 5.5. The reason of that LOSSSM 

in the tension side of the tested tree cross-sections was theoretically obtained instead of 

the moment capacity loss (described in Section 5.2.2) for each tree is that all the 

measurements in situ correspond to tension side of the cross-sections of the trees. In 

addition, it is known that the moment capacity loss is equal to the loss of elastic section 

modulus in the compression side because trees have a lower compressive strength, and 

not in the tension side. 

 

Figure 5.5: Strains and stresses in compression and tension sides of the cross-sections of 

the trees which have drilling type-2 as in Figure 5.3. 

 

To experimentally and theoretically compare the LOSSSM values in the tension 

side of the cross-sections of the tested trees, the modular ratio, n, unknown for the tested 

trees (large, open-grown red oaks), should be assumed first. Thus, two values of n, 1.10 

as in the study of Langum et al. (2009), and 2.00 were considered when theoretically 

determining LOSSSM. A one-way analysis of variance was used to investigate whether 

estimates of LOSSSM differed between the three methods (empirical, theoretical assuming 

n=1.1, theoretical assuming n=2.0). A regression analysis was used to determine whether 
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differences between empirically and theoretically determined values of LOSSSM were 

related to the magnitude of LOSSSM. 

5.3 Results and Discussion 

Figures 5.6 and 5.8 plot moment capacity loss (MCL) of the cross-section of a 

tree relative to size and location of decay in the cross-section. In both figures, it has been 

assumed that n = 1.10 (consistent with Langum et al. (2009)). To describe the location of 

decays, the ratio of d/R was used as illustrated in Figure 5.1. If this ratio is negative, it 

means that decay creates an open cavity on the tension side of the cross-section, so Figure 

5.8 should be used for these decay types. Figure 5.6 should be used for the other 

possibilities (d/R ≥ 0) for location of decay. Linear interpolation may be used for values 

of d/R not included in Figures 5.6 and 5.8. For d/R = 0.40, for example, MCL can be 

interpolated between the curves for d/R = 0.33 and 0.50.   

 

Figure 5.6: MCL for different sizes and locations of decays [n = 1.10]. 
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Figure 5.7: Relationship between decay size (r/R) and the yielding points of various d/R 

ratios in Figure 5.6. 

 

Yield points for various d/R ratios in Figure 5.6 are shown by dots in Figure 5.7. 

Data in Figure 5.7 fit well to a line with the slope of -0.5 and the r/R intercept of 1. The 

fitted equation shows that: 

 

 
     

 

 
   (5.23) 

Eq. 5.23 can be rewritten in the following form, 

        (5.24) 

By considering the definition of decay in Figure 5.1, Eq. 5.24 corresponds to the case of 

the formation of an open cavity in a tree cross-section. The shape of the moment capacity 

loss curves in Figure 5.6 indicates that for a given decay location (d/R), a critical decay 

size (r/R) exists above which MCL does not increase significantly.  This critical r/R is 

given by Eq. 5.24.  

The interaction of size (r/R) and location (d/R) is underscored by Figures5.6 and 

5.8. For example, in Figure 5.6, a specific size of decay (r/R=0.5) can have varying MCL 
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values depending on location: 27% for d/R=0.00, 4% for d/R=0.33, 7% for d/R=0.50 

(concentric decay), and 48% for d/R=1.00. Predicted loss in moment capacity for 

d/R=0.00 exceeds predictions of loss in moment capacity for all other positive values of 

d/R (except d/R=1.50) for r/R ≤ 0.2. As r/R increases, predicted loss in moment capacity 

for d/R=0 is less than predictions from the largest values of d/R (1.17, 1.33, 1.50), but 

still greater than predictions from smaller values of d/R (0.17, 0.33, 0.50, 0.67). As r/R 

continues to increase predicted loss in moment capacity for d/R=0.00 is less than 

predictions assuming small and moderate values of d/R, but greater than predictions 

assuming the largest values of d/R (1.33, 1.50). A careless accounting for the location of 

decay could grossly under- or overestimate the loss in moment capacity of the stem, even 

for relatively small areas of decay. As an example, Wagener (1963) suggested that when 

the diameter of an area of decay was 70% of the diameter of the cross-section there was a 

greater likelihood of failure. Figure 5.6 shows that loss in moment capacity or strength 

loss (Wagener 1963, Coder 1989, Smiley and Fraedrich 1992) at r/R=0.7 can be quite 

variable depending on location. Conversely, 0.41, which is the approximate loss in 

moment capacity for r/R=0.70 and d/R=0.00 can occur at r/R ≈ 0.67, 0.61, 0.64, 0.47, 

0.43 for d/R=0.50, 0.67, 0.83, 1.00, and 1.17, respectively. These findings are explained 

by the difference in compressive and tensile capacities of the stem. Decays located near 

the tension side are more detrimental than those found near the compression face.  
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Figure 5.8: MCL values for different sizes and different locations of decays [n=1.10].  

 

Wagener’s (1963) and Coder’s (1989) predictions of strength loss have been 

included in Figure 5.6, although both researchers based on reduction of I (moment of 

inertia). Smiley and Fraedrich’s (1992) formula is the same as Wagener’s (1963) when no 

cavity is present. The limitations of the formulas are immediately evident in Figure 5.6. 

Unless r/R < 0.10, using the formulas will dramatically over- or underestimate the loss in 

moment capacity. Such disparities are particularly important because the formulas have 

action thresholds. For example, Wagener (1963) suggested that conifers were more likely 

to fail when strength loss exceeded 33%. Loss in moment capacity of 35% occurs at r/R 

values of approximately 0.40, 0.45, and 0.50 for d/R values of 1.13, 1.00, and 0.83, 

respectively. Wagener’s (1963) formula predicted 33% strength loss at r/R of 0.70. 

Similarly, Coder (1989) described the “caution zone” when strength loss exceeded 20%, 

which occurs at r/R ≈ 0.66. Loss in moment capacity of 0.20, however, occurred across 

the range of 0.25 < r/R < 0.70, depending on the value of d/R (Figure 5.6). Large 
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differences were also noted when values of d/R < 0 were considered (Figure 5.8). For r/R 

≤ 0.5, Wagener’s (1963) and Coder’s (1989) formulas underestimated loss in moment 

capacity compared to predictions using d/R = -0.17, -0.33, and -0.50. For r/R ≤ 0.5, the 

formulas overestimated loss in moment capacity compared to predictions using d/R = -

1.17, -1.33, and -1.50. 

Wind-induced motion of some trees does not always result in pendulum-like 

sways. Some stems are only deflected in the leeward direction before returning to the 

equilibrium point when the wind stops (see Figures 7 and 8 in James et al. (2006)). This 

motion may cause areas of decay to occur consistently in the tension or compression 

sides of the cross-section of the stem, depending on the wind direction as shown in Figure 

5.9. A leaning tree would similarly experience bending stress consistently tensile and 

compressive on opposite sides of the cross-section, relative to the direction of lean. It is 

noteworthy that the direction of loading produces very different results for certain 

combinations of r/R and d/R. For example, consider d/R = 0.17 and -0.17 in Figures 5.6 

and 5.8, respectively: the loss in moment capacity is similar for 0.9 < r/R < 0.2, but 

noticeably different throughout the remaining range of r/R. Practitioners would almost 

certainly reach opposite conclusions regarding the removal of a tree depending on 

whether wind-induced deflection causes the area of decay to be in compression or 

tension. The range of disparity is smaller, but the same pattern is true for d/R values of 

0.33 and -0.33, as well as 0.50 and -0.50. 
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5.3.1 Procedure to Estimate MCL 

Figure 5.9 shows two different decay sizes for a tree cross-section. According to 

this figure, the radius (R) of the cross-section of the stem is 20 cm. If wind blows from 

right to left as illustrated in the left part of the figure, the distances for the two decays (d1 

and d2) between the points (PPM and PPD) are 10 cm, and the size as defined by their 

corresponding radii (r1 and r2) are 10 and 15 cm.; For wind blowing from left to right 

(right side of figure), d1 (for the small decay) will be 10 cm, and d2 (for the large decay) 

will be zero for the given radii r1 and r2. The vertical dashed lines in Figure 5.9 represent 

tangents to the tree cross-section on the side where tension is generated due to the 

direction of wind. Because wind direction can blow from two directions, two estimates of 

MCL can be obtained for this cross-section for each decay size depending on wind 

directionality.  Sections 5.3.1.1 and 5.3.1.2 present the results from these two cases, 

where wind blows from right-to-left (leftward), and from left-to-right (rightward), 

respectively.  

5.3.1.1 Wind Blowing Leftward 

The ratio of the distances, d1 and d2 (between the points, PPM and PPD) to the 

radius of the cross-section is 0.50, as can be seen at the left side of Figure 5.9. Using the 

curve in Figure 5.6 corresponding to d/R=0.50 (cyan) and reading vertically from the two 

decay size ratios (r1/R=0.50 and r2/R=0.75) gives the two estimates for MCL. Estimated 

MCL is 6.6 % and 72.8 % caused by the small and large decays, respectively, 

highlighting the non-linear relationship between moment capacity loss and decay size. 

For an increase in decay size of 50%, MCL is obtained greater than tenfold. 
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Figure 5.9: Representation of two different decays in a cross-section. The figure at right 

is for the rightward blowing wind; the figure at left is for leftward blowing wind.  

 

5.3.1.2 Wind Blowing Rightward 

The effect rightward wind condition for the same two decay types studied in the 

previous section references the right of Figure 5.9. Decay position ratios (d/R) in this case 

are 0.50 and 0.00 for the small and the large decays, respectively. The curves 

corresponding to these two decay location ratios (cyan for d1/R=0.50 and dashed-tan for 

d2/R=0.00) are used to determine MCL. For each decay size with r/R of 0.50 and 0.75, 

respectively, one finds MCLs of 6.6 % and 46.2 %. The effect of the small decay on 

MCL is the same as the case of leftward blowing wind, but a lower MCL is caused by the 

larger decay than before. The two examples discussed illustrate the importance of 
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accounting for wind directionality to find the critical MCL for a given tree stem and size 

of decay.  

5.3.1.3 MCL Envelope for Rightward and Leftward Wind 

The small decay produces the same MCL for both directions of induced wind 

(MCL=6.6%) because of that it is a concentric decay. The large decay, in contrast, 

produces two different MCLs, with 72.8 % MCL being the critical condition for leftward 

wind.  

Results of the small decay (concentric decay) are compared with the estimations 

from the formulas proposed by Wagener (1963) and Coder (1989), who only studied the 

effect of concentric decays. Using Wagener’s formula results in a strength loss of 

approximately 12 % (about twice the value predicted here), while Coder’s formula 

predicts a strength loss of about 6 %, in better agreement with results from the current 

approach. The discrepancy in results points to the importance of using proper 

assumptions in the capacity loss models. 

As further comparison of the proposed method, consider the diameter of a trunk 

cross-section is increased to 40 cm (R=20 cm), and the diameter of a concentric decay is 

increased to 33.2 cm (r=16.6 cm with d=3.4 cm). Using Wagener’s and Coder’s formula, 

strength losses are estimated as 57 % and 47 %, respectively. The critical MCL using the 

proposed method (Figure 5.6) is 47.5 %, again in better agreement with the results 

Coder’s formulas for the assumed modular ratio of for n=1.10. It is conceivable that a 

larger modular ratio (n), indicating a larger difference between tensile and compressive 
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capacities would result in larger differences in MCL predictions. The effects of n on the 

critical MCL values of tree cross-sections will be discussed in Section 5.3.2.  

5.3.2 Effects of Modular Ratio (n) on MCL 

Figures 5.10 and 5.11 show that different values of n would not dramatically 

change MCL of decayed sections. Moment capacity loss was defined as 1-MCd/MC0. 

MCd refers to the moment capacity of a cross-section with decay; MC0 is for the moment 

capacity of this cross-section without decay. Moment capacities with and without decay 

are calculated using equal values of n, so the resulting ratio is not as affected as the 

individual capacities are by increasing values of n. The small effect of n on moment 

capacity loss suggests that a wide range of species could be included using the curves 

given in Figures 5.6 and 5.8. 

 

Figure 5.10: Effect of n (1.1, 2.0) on MCL for three values of d/R (0.17, 0.50, 0.83). 
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Table 5.2: Moment Capacity Loss (MCL) for various values of n (Et/Ec) and decay cases. Cv refers to cavity. T and C are for 

tension and compression sides of the cross-sections. The symbols (r, R and d) are defined in Figure 5.1. All the percentage 

columns were calculated by considering that the base case is n=1.0.  

r / R = 0.5 
d / R 

1.50 1.17 0.83 0.50 0.17 - 0.17 - 0.50 

n = 1.0 .2822 % .4732 % .2890 % .0625 % .1129 % .4732 % .2830 % 

n = 1.1 .2797 0.9 .4719 0.3 .2927 - 1.3 .0657 - 5.1 .1086 3.8 .4745 - 0.3 .2856 - 0.9 

n = 1.2 .2772 1.8 .4688 0.9 .2960 - 2.4 .0690 - 10.4 .1048 7.2 .4760 - 0.6 .2880 - 1.8 

n = 1.3 .2772 1.8 .4691 0.9 .2990 - 3.5 .0694 - 11.0 .1010 10.5 .4774 - 0.9 .2885 - 1.9 

n = 1.4 .2771 1.8 .4678 1.1 .3020 - 4.5 .0758 - 21.3 .1003 11.2 .4771 - 0.8 .2887 - 2.0 

n = 1.5 .2748 2.6 .4664 1.4 .3044 - 5.3 .0763 - 22.1 .0940 16.7 .4787 - 1.2 .2914 - 3.0 

n = 2.0 .2702 4.3 .4626 2.2 .3129 - 8.3 .0881 - 41.0 .0855 24.3 .4830 - 2.1 .2977 - 5.2 

n = 2.5 .2658 5.8 .4588 3.0 .3187 - 10.3 .0947 - 51.5 .0769 31.9 .4879 - 3.1 .3037 - 7.3 

Decay case Cv & C Cv & C C 
C & T 

(Concentric) 
T Cv & T Cv & T 

 
 

 

Figure 5.11: Illustration for the decay cases mentioned in Table 5.2. Dotted and dashed lines are for neutral axis and tension 

face representations (for n=1.10), respectively, for the cross-sections. 
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Figure 5.12: Effect of n (1.1, 2.0) on MCL for three values of d/R (-0.17, -0.50, -0.83). 

 

Table 5.2 presents specific values of moment capacity loss for r/R = 0.50 and 

several values of d/R and n. The second column in each of the cells corresponding to a 

given d/R indicates the percent difference in moment capacity loss from the value 

calculated using n=1.0. The disparity between predicted MCLs assuming different values 

of n from the baseline of n=1.0 varied depending on the value of d/R. For values of n up 

to 1.4 the differences in MCL do not exceed 4% except for two notable cases of d/R 

corresponding to concentric and nearly concentric decays. These results suggest that 

incorrect assessment moment capacity loss will be limited for most situations, unless n is 

much larger than 1.0 particularly for cases where decay is nearly concentric. It should be 

noted, however, that cases where the percentage differences are high also correspond to 

cases where MCL is lowest (less than 12%), so the practical impact of these differences 

would be quite limited and perhaps negligible.  
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5.3.3 Assessment of Decay Shape on MCL 

Although decay in trees can sometimes adopt an approximately circular or other 

areas with simple geometry, decays mostly form in irregular shapes (Shigo 1984) and the 

extent of decay can vary by tree species and presence of fungus (Deflorio et al. 2008). 

Two methods can be used to estimate MCL of such decayed stems using the curves 

developed in this dissertation. The first method can be used without excessive 

calculations, making it suitable for use in the field. The second method requires a more 

careful accounting of the area and location of decay. 

5.3.3.1 Method I 

An irregularly-shaped area of decay can inscribe and be inscribed by circles. For 

example, Figure 5.13 shows a rectangular-shaped decay, but the method can be applied to 

any other decay shape. The moment capacity loss (MCL) can be determined from Figures 

5.6 and 5.8, assuming r and d for the smaller and larger circles. Three estimates of MCL 

could be obtained using the larger circle, the smaller circle, and a mean value. Depending 

on the loading conditions (sheltered or exposed trees, for example) or other factors 

related to risk assessment (such as value or importance of the affected structure), the 

smallest of largest estimate of MCL could be employed. This approach may offer an 

advantage over the method described by Mattheck et al. (1994), who suggested using the 

thinnest remaining wall of sound wood when assessing off-center areas of decay, which 

tended to over-estimate the loss in I of such stems (Kane and Ryan 2004). 
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Figure 5.13: Approach for non-circular decay areas (Method I). Actual decay is shown in 

part-A as a rectangular shaded area. B shows the larger circle inscribing the decay region; 

C shows the smaller circle inscribed by the decay area. R, r, d, and PPM were described in 

Figure 5.1.  

 

5.3.3.2 Method II 

In this method, an irregularly-shaped area of decay can be converted into an 

equivalent circle as in Figure 5.14. The irregularly-shaped area of decay and its circular 

equivalent must share the same centroid and have the same area. The MCL of the section 

can be determined from Figures 5.6 or 5.8, as appropriate, using the equivalent circular 

decay area. For simple geometric shapes, like a rectangle, this method can be applied 

simply because to the equivalent area and its centroid can be found with ease. For 
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irregularly-shaped areas, determining the area and centroid requires more careful 

analysis, but could be done using image-analysis software. For practitioners, images can 

be gleaned from tomography (Gilbert and Smiley 2004, Wang and Allison 2008). The 

main drawback of this method is that it requires sophisticated tools and techniques, but 

the results are anticipated to be more precise. 

 

Figure 5.14: Approach for decays with irregular shape (Method II). The irregular decay 

is converted into an equivalent circular shaped decay. CM refers to the geometric center 

of the decays. R, r, d, and PPM have already been described in Figure 5.1.  

 

5.3.4 Comparison of the Results with the Experimental Results 

To validate the method to calculate MCL, theoretically- and empirically-

determined values of LOSSSM in tension side of tree cross-sections were compared for 10 

trees tested by Kane (unpublished data).  In each case the theoretical MCL was computed 

using two different values of n (1.10 and 2.00) considered to be within extreme practical 

limits. Theoretical predictions are not significantly different to empirical values for the 

values of n used in the theoretical approach (Table 5.3).  MCL for each tree is predicted 
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with reasonable accuracy by using one of the two n values. In some cases both provide 

equally good estimates. There was no correlation between the magnitude of difference 

between empirically- and theoretically- determined values of LOSSSM for n = 2.00 (R
2
 = -

0.12 and p = 0.93 which could be calculated in SAS statistical software from SAS 

Institute Inc. at Cavy, NC) or n = 1.10 (R
2
 = -0.04 and p = 0.43 by SAS statistical 

software from SAS Institute Inc. at Cavy, NC). Statistically, R
2
 is the coefficient related 

to the goodness of fit of the regression analysis between the theoretical and empirical 

LOSSSM, p is about how many chances the fitted relation between the empirical and 

theoretical LOSSSM values cannot be explained by all the empirical and theoretical data. 

Thus, R
2
 and p for different n values, as well as the similar number and magnitude of 

positive and negative differences, suggests that differences were random rather than 

systematic. Differences were presumably due to assumptions used to derive the 

theoretical values of LOSSSM such as perfect circular areas for stem, values of n, and 

homogenous material properties within the compression and tension sides of the stem.  

Measurement error may have also contributed to the observed differences. 

Diameter of trees was measured outside the bark, and it was assumed that a) bark 

thickness was 2 cm for all trees and b) bark was assigned a null value for E. From a 

practical standpoint, the highest difference is important because it reflects the degree to 

which an assessor might over- or under-estimate the loss in moment capacity of a tree. 

Using n = 1.10, the two greatest differences of 8.6% and 9.8% were nearly twice that of 

the two greatest differences obtained using n = 2.00 (Table 5.3). The standard deviation 

of the differences was also greater when using n = 1.10 compared to n = 2.00 (Table 5.3). 
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For large and open-grown red oaks, n is probably closer to 2.00 than 1.10, which explains 

the better results obtained when using n=2.00. 

 

Table 5.3: Comparison of empirical and theoretical values of LOSSSM; the difference 

was calculated by subtracting theoretical from empirical values of LOSSSM. 

n NA 2.00 1.10 

Tree # 

Empirical 

LOSSSM 

(%) 

Theoretical 

LOSSSM 

(%) 

Magnitude 

Difference 

(%) 

Theoretical 

LOSSSM 

(%) 

Magnitude 

Difference 

(%) 

29   6.4   6.2   0.2 12.1 - 5.7 

30 86.7 88.8 - 2.1 92.2 - 5.5 

32 81.4 75.7   5.7 82.0 - 0.6 

34 15.1 13.0   2.1 16.8 - 1.7 

35 20.5 19.4   1.1 25.9 - 5.4 

36 22.3 21.6   0.7 17.4   4.9 

37 18.8 15.4   3.4   9.2   9.6 

40 12.3   9.9   2.4   5.6   6.7 

86 37.8 43.3 - 5.5 46.4 - 8.6 

89 32.5 34.7 - 2.2 28.4   4.1 

Mean 33.38 32.80 0.58 33.60 - 0.22 

STD 28.24 28.52 3.20 30.57 6.20 

 



129 
 

5.4 Concluding Remarks 

The critical MCL of any decayed cross-section can be approximately computed 

by using methods I and II and Figures 5.6 and 5.8. Similarity between a) theoretically- 

and empirically-determined values of LOSSSM and b) MCL values calculated for 

different values of n lends confidence that these methods can be reasonably applied under 

a variety of field conditions. Three limitations regarding applicability of the methods 

presented in this chapter are (1) neglecting axial stresses induced by dead load and the 

vertical component of the pulling tests; (2) altered E values of wood formed after 

wounding, and (3) neglecting wind-induced deflection of trees, which generates an 

additional moment due to the weight of the deflected crown (Peltola 2006). The third 

limitation has a greater effect on excurrent than decurrent trees (Kane and Ryan 2003). 

Another important limitation to the application of values of moment capacity loss in 

Figures 5.6 and 5.8 is that failure will not necessarily occur at the location of the critical 

MCL. Other defects (such as weak branch attachments or poor root anchorage) may fail 

prior to parts of the tree with decay.  

While maximum moment capacity of trees has not been directly addressed in this 

chapter (MCL values are relative), the methods described can be used to estimate it. 

Following a storm, failed and intact branches and stems with decay could be measured to 

determine whether a threshold value of critical MCL existed. Previous attempts to find a 

threshold (Mattheck et al. 1993, Mattheck et al. 1994) have been problematic (Gruber 

2008, Fink 2009), so care must be taken in sampling and analyzing such data. For 

instance, after using enough data in order to obtain a distribution related to tree failures 

and their critical MCL, the first and the second moments (mean and standard deviation) 
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of this distribution can show and give insight about the hazard of trees failing due to 

bending generated by wind forces. 

Risk assessment of trees determined in Chapter 4 could be expanded to trees with 

decays.  Fragility curves obtained by using the probability of exceedance theory were 

based on moment capacity of the cross-sections of the trees subjected to dynamic random 

wind loading. To obtain the fragility curve for a decayed tree, the critical moment 

capacity can be estimated by using the results of Chapter 5. Then, the methodology in 

Chapter 4 can be applied.  
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CHAPTER 6 

EFFECTS OF CROWN ARCHITECTURE AND WOOD PROPERTIES ON 

TREE DYNAMICS 

6.1 Introduction 

A better understanding of the effect of crown architecture and wood properties on 

large, open-grown tree dynamics will help reduce the risk of failure of such trees, which 

can damage property and injure people. In the United States, from 1995-2007, 407 people 

died as a result of wind-related tree failures (Schmidlin 2009), and litigation often 

accompanies property damage and personal injury (Mortimer and Kane 2004).  

Dynamic behavior of trees can be affected by geometric (e.g. mass distribution 

and cross-section along tree structures) and material (e.g. density, viscous damping and 

modulus of elasticity of species) properties of the trees. Thus, it is possible to find several 

studies focused on the effects of these properties on tree dynamics experimentally (Baker 

1997, James et al. 2006, Kane and James 2011) or theoretically (Sellier and Fourcaud 

2005, Moore and Maguire 2005, Sellier et al. 2006, Spatz et al. 2007, Rodriguez et al. 

2008, Sellier and Fourcaud 2009).  

Empirical studies (Baker 1997, Moore and Maguire 2004, Kane and James 2011) 

have demonstrated the effect of crown form on natural frequency of open-grown trees. 

Baker (1997) showed that the natural frequency of deciduous open-grown trees is 

inversely proportional to diameter at breast height (DBH). Then, Moore and Maguire 

(2004) state that the natural frequency of trees in forest has a linear relationship with the 

ratio of DBH to the square of tree height (DBH/H
2
). In contrast to Moore and Maguire 
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(2004), predicting natural frequency of individual trees from the ratio, DBH/H
2
 proved 

problematic Kane and James (2011).  

Previous theoretical studies have investigated the effects of tree crown structure 

on only the natural frequency and damping ratio for trees. In multiple degree-of-freedom 

systems (MDOF), such as trees, higher frequencies may be as important as the 

fundamental frequency. The main difference between the research of Sellier and 

Fourcaud (2009) and other theoretical studies is their methodology. To describe the 

dynamic response of trees, Sellier and Fourcaud used the dynamic amplification factor 

for a specific harmonic wind frequency as a broader indicator of dynamic response 

instead of just natural frequency and damping ratio. A limitation of their research, 

however, is that a specific wind frequency was used in their analyses. The current 

research therefore employs a total of 38 different wind frequencies for application to 

different tree models (parametric models). These parametric models were developed by 

applying changes on selected several geometric and material properties (stem diameter, 

damping ratio, elastic modulus, and the number, slenderness, height, azimuth, and 

attachment angle of branches) of the base model, M100, which was described in Chapter 

3. Then, by analyzing the dynamic amplification factor of each model varying with wind 

frequency, the relationship between branches and stem could be investigated to state 

some comments for, especially, arborists in order to reduce tree failures subjected to wind 

forces.  

Additionally, the theory of the mass participation factor and its applications on 

branches will be addressed in Section 6.3, because this factor is important to examine 
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some of the model results. This factor has not been mentioned in detail by the authors 

studied on trees.  

6.2 Parametric Models 

All the parametric models were based on the prototype tree model, M100, as 

described in Chapter 3. To investigate the effect of tree morphometry on Rd, each of 

eight parameters (stem diameter; damping ratio; MOE; and the number, height, 

attachment angle, azimuth and slenderness ratio of branches) was varied independently, 

holding the other parameters constant. A nomenclature was created to represent all the 

parametric models, in which the second digit refers to the number of the parameter being 

varied and the third digit refers to the variation of the parameter. For example, models 

M111, M112, M113, and M114 are the four variations of the first parameter; M121 and 

M122 are two variations of the second parameter, and so on. Parameters were varied in 

accordance with reasonable expectations for open-grown sugar maples in the northeastern 

USA.  

6.2.1 Parameter 1 – Stem Diameter 

The effect of stem diameter was examined by multiplying the stem diameter of 

M100 by 1.25, 1.50, 1.75, and 2.00, which increased the stem diameter to 66, 79, 93, and 

106 cm in models M111, M112, M113, and M114, respectively. Trees of smaller 

diameters were not modeled because it was intended to investigate large trees that posed 

a greater risk of damage if they failed. To maintain a realistic taper of the stem, the 
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diameter of the top branch (the axial extension of the stem) was also increased by the 

same factors in these models as can be seen in Figure 6.1. 

 

Figure 6.1: Illustration of models M100, M111, M112, M113, and M114, where the 

parameter varied is the stem diameter. 

 

6.2.2 Parameter 2 – Slenderness Ratio of Branches 

Branches on M100 were assumed to have a slenderness ratio of 50. This value 

was selected because it represented the mean slenderness (rounded to the nearest ten) of 

branches the diameter of which was at least 10% of stem diameter on M100. Only larger 

branches were considered because it was expected that more massive branches would 

exert a greater influence on Rd because of their larger mass participation in the overall 

dynamic response (Eq. 6.1). As shown in Figure 6.2, slenderness was changed to 60 and 

40 in models M121 and M122, respectively. These values represented the mean 

slenderness (rounded to the nearest ten) of branches the diameter of which exceeded the 
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median and upper quartile diameters, respectively, on M100. Slenderness ratio was 

changed by altering branch length while keeping branch diameter constant. 

 

Figure 6.2: Illustration of models M122, M100, and M121, where the parameter varied is 

the slenderness ratio of the branches. 

 

6.2.3 Parameter 3 – Number of Branches 

The number of branches on the tree was varied as follows (Figure 6.3): model 

M130 included only the stem and the “top branch,” the axial extension of the stem. 

Subsequent models added individual branches (see Table 3.1):  models M131, M132, 

M133, and M134 added the first; first and second; first, second and third; and first, 

second, third and fourth branches of M100, respectively. Branches were added beginning 

with those closest to the ground because the first three branches had comparatively larger 

diameters while the fourth was of smaller diameter. This approach facilitated a 
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comparison of the effect of branch mass on Rd. In addition to these models, M131-7 

included just the top and seventh branches. The seventh branch is the largest by diameter. 

The attachment height of the seventh branch was nearly twice as great as that of the first 

branch, so this model made it possible to investigate the effect of the spatial distribution 

of mass on Rd.  

 

Figure 6.3: Illustration of models M130, M131, M132, M133, and M134, where the 

parameter varied is the number of the branches. 

 

6.2.4 Parameter 4 – Damping Ratio 

The effect of damping was examined by increasing the damping ratio from 0 to 

0.15 with the following values: 0, 0.01, 0.05, 0.10, and 0.15. The range was chosen in 

accordance with the maximum measured value from pull and release test on M100 and 

values similar to those previously reported for deciduous trees (Roodbaraky et al. 1994, 

Kane and James 2011). 
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6.2.5 Parameter 5 – Branch Attachment Heights 

To assess the effect of the branch attachment heights, branch attachment height 

was increased (M151) and decreased (M152) by 0.5 m simultaneously for all branches. 

These models were expected to serve as a comparison to models in which branches were 

added, because of the consistent change in the location of mass distribution along the 

stem.  

 

Figure 6.4: Illustration of models M152, M100, and M151, where the parameter varied is 

the branch attachment heights. 

 

6.2.6 Parameter 6 – Branch Attachment Angles 

In addition to a model using measured branch angles of the maple tree from which 

M100 was constructed, parametric models were also developed assuming constant branch 

angles of 70º, 60º and 50º for M161, M160, and M162, respectively, as illustrated in 

Figure 6.5. These attachment angles were selected because it was observed that many 
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branches on the prototype sugar maple curved upwards beyond their attachment to the 

stem. It means that these angles of the models, M100, M161, and M162 are 

approximately for the representation an average of where the branches on the actual tree 

pass through. It was not possible to measure the angle of the branch relative to its center 

of mass. Discussion of results shown in Figure 6.13, presented in section 6.3.6, 

demonstrate that a constant angle assumption was reasonable since results do not depart 

significantly from the response of M100.  

 

Figure 6.5: Illustration of models M162, M100, and M161, where the parameter varied is 

the branch attachment angles. 

 

6.2.7 Parameter 7 – Branch Azimuth Angles 

The effect of wind directionality was investigated by varying the branch azimuth 

angle (Figure 6.6) instead of changing the direction of wind forces.  Models M171, 
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M172, and M173 increased the azimuth of each branch by 30, 60, and 90 degrees relative 

to their measured azimuth in M100.  

 

Figure 6.6: Illustration of models M100, M171, M172, and M173, where the parameter 

varied is the branch azimuth angles. 

 

6.2.8 Parameter 8 – Modulus of Elasticity (MOE) 

Two models were created to investigate the effect of varying MOE for the 

branches and the stem. In M181, MOE of the stem and branches was set to the constant 

value of 6.53 GPa, which was the mean MOE of all elements in M100, weighted by the 

mass of each element. In M182, MOE of each element of the stem was set to 9.0 GPa, the 

weighted mean of MOE of stem elements in M100; MOE of each branch element was set 

to 4.99 GPa, the weighted mean of MOE of all branch elements in M100.  

6.3 Theory of Mass Participation and its Application on M100 

In civil engineering (or earthquake engineering), Eq. 6.1 is a common formula to 

calculate the total static shear force on the basement of buildings. For simplification to 
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apply Eq. 6.1 and to see the effect of branch mass on tree trunk behaviors, it can be 

assumed that each branch mass is a lumped mass (mj in Eq. 6.1) on trunks. According to 

this equation, the shear forces (sjn in Eq. 6.1) on the attachment of branches depend on the 

mass of these branches, separately. Therefore the largest branches (7th, 1st, 3rd and 2nd 

branches, in descending order of diameter) in Table 3.1, which have the important portion 

of the total mass of the whole tree, cause great shear forces on the attachment points of 

these branches on the trunk. Those great forces cause greater displacement and greater Rd 

of the trunk.   

   
   ∑    

 

 

∑       

 

 

 (6.1) 

where Гn is the modal participation factor of the nth mode (Chopra 2007), mj is 

the mass of the jth lumped mass and ϕjn is the nth-mode shape at the location of the jth 

lumped mass. Additionally, the modal participation factor (Гn) has the modal mass (Mn) 

of the total system at the denominator of its formula. Thus, the ratio of mj in Eq. 6.1 to 

the modal mass (Mn) will be called mass participation of a branch or branches. 

6.4 Results and Discussion 

Again, as in Chapter 3, the parametric model results were evaluated through 

changes in the dynamic amplification factor, Rd, in order to characterize the dynamic 

response using a uniform approach. Effects of each parameter on the dynamic response of 

the base model (M100), which was described in Chapter 3, can be examined by 

comparisons and discussions on the Rd factors of each parametric study in the following 

sections (from 6.4.1 to 6.4.8). 
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6.4.1 Effects of Parameter 1 – Stem Diameter 

Figure 6.7 shows Rd plotted with respect to wind frequency for M100 and models 

of trees with greater stem diameter. The plot can be divided into three regions, identified 

by ovals. The left-hand oval marks the region where the first peaks of the Rd curves 

occur. The first peaks reflect the first modal frequency of several large branches (see 

Table 3.1 for M100 values). Peaks in the center oval reflect the natural frequency of the 

top branch in the models. Peaks in the right-hand oval reflect the natural frequency of the 

stem in each model, although the peak that belongs to the stem natural frequency of 

M100 is not visible because of its small mass participation when using a 15% damping 

ratio. The first modal frequencies of the stem and top branch in each model are listed in 

Table 6.1. 

Peaks in Figure 6.7 that coincide with natural frequencies of different branches 

(left-hand and center ovals) and the stem (right-hand ovals) are consistent with the mass 

participation of different elements in the tree. As the diameter of the stem and top branch 

increased, their mass participation increased, which explained why Rd of models of 

greater stem diameter decreased in the left-hand oval, but increased in the center and 

right-hand ovals. This finding is consistent with mass-induced damping (James et al. 

2006) at selected frequencies. The frequency at which Rd was maximum increases in the 

center and right-hand ovals because of increased diameter and hence mass participation at 

these frequencies. 
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Table 6.1. Diameter and estimated first modal frequencies of the stem and top branch in 

models shown in Figure 6.7. 

Model 

Stem  Top Branch 

Diameter (m) Frequency (Hz)  Diameter (m) Frequency (Hz) 

M100 0.53 2.50  0.13 1.05 

M111 0.66 3.00  0.16 1.20 

M112 0.79 3.50  0.20 1.45 

M113 0.93 4.00  0.23 1.70 

M114 1.06 4.50  0.26 1.85 

 

 

 

Figure 6.7: Dynamic amplification factors with respect to wind frequency for the 

selected models (M100 dashed and dotted line; M111 dotted line; M112 solid line; M113 

dashed line; M114 solid line with the star (*) marker). Node 10 is one of the nodes on the 

main stems at the breast height (1.4 m).  

 



143 
 

The difference between decurrent (large branches with respect to stem) and 

excurrent (small branches with respect to stem) forms can be observed by changes in Rd 

induced by changes in stem diameter. Thus, it may be thought that the Rd factors of 

excurrent trees and decurrent trees must behave like M114 and M100, respectively. The 

decreasing of the Rd peaks in the left oval is consistent with findings from Sellier and 

Fourcaud (2009), who indicated that decreasing the diameters of primary branches in 

excurrent Maritime pine causes a decrease of Rd.  

6.4.2 Effects of Parameter 2 – Slenderness Ratio of Branches  

Changes in slenderness ratio were introduced by changing the length (and, 

consequently, the mass) of branches, which altered natural frequency of the branches as 

expected from the dynamics of a cantilever beam with uniformly distributed mass and 

elasticity:  

   √
 ̇ 

 ̇  
 (6.2) 

where Ė is the distributed elastic modulus, I is the moment of inertia, and ṁ and L 

are the distributed mass and length, respectively, of the cantilever beam. As branch 

slenderness decreased, Rd increased (Figure 6.8) because the natural frequency of larger 

branches became closer to the natural frequency of the stem and top branch of M100 

(Table 3.1), which had slenderness ratios of 24 and 33, respectively.  

Changing the length of primary and secondary branches by equal magnitudes 

altered Rd of a maritime pine (Sellier and Fourcaud 2009), but the magnitude of change 

of Rd was not as large as in the current study. This presumably reflects the effect of large 
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diameter branches in M100, as well as Sellier and Fourcaud’s (2009) single excitation 

frequency not being near the natural frequency of the tree. Sellier and Fourcaud (2009) 

did predict reduced Rd for greater stem slenderness, however, which is consistent with 

the result for branches of M100.  A more accurate accounting of slenderness of decurrent 

trees of different species would help improve predictions of Rd.  

 

Figure 6.8: Dynamic amplification factors with respect to wind frequency for the 

selected models, M121, M100 and M122.  

 

6.4.3 Effects of Parameter 3 – Number of Branches 

Results from adding branches on Rd again can be explained by understanding 

mass participation of different elements in the system. The addition of branches of similar 

natural frequencies increased the magnitude of Rd at an excitation frequency close to the 

natural frequencies of the branches being added and decreased the magnitude of Rd at 
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excitation frequencies near the natural frequencies of the stem and top branch (Figure 

6.9). Rd of M130 (just the stem and top branch) had maxima at 1.05 and 2.50 Hz, which 

corresponded to the natural frequencies of the top branch and stem, respectively (Table 

3.1). Adding the first branch (M131) added another peak of Rd at 0.65 Hz, close to the 

natural frequency of the first branch (Table 3.1). Adding the first branch also reduced the 

magnitude of Rd at 1.05 and 2.50 Hz because (1) the natural frequency of the first branch 

was not similar to that of either the stem or top branch, and (2) the mass participations of 

the stem and top branch would decrease in the overall response of the system. This 

pattern recurred when the second (M132) and third (M133) branches were added. Adding 

the fourth branch did not meaningfully alter Rd because of the small diameter (thus small 

mass) of the fourth branch (Table 3.1). Adding the seventh branch to M130 (M131-7) 

shifted the left-hand peak of Rd to coincide with the natural frequency of the seventh 

branch. This suggests that the spatial location of mass is less important than mass 

magnitude because the height of the seventh branch was greater than that of the first 

branch (Table 3.1). Maxima of Rd associated with the natural frequencies of the top 

branch and stem are no longer visible when all branches have been added (M100), 

consistent with mass damping (James et al. 2006) or reduction of mass participations of 

the stem and top branch.  
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Figure 6.9: Dynamic amplification factors with respect to wind frequency for the 

selected models, M130, M131, M131-7, M132, M133, M134 and M100. Damping ratio, 

15% is represented by DR for each model. 

 

6.4.4 Effects of Parameter 4 – Damping Ratio 

Damping in open-grown, deciduous trees derives primarily from aerodynamic 

drag on leaves (Kane and James 2011) and branch motion (James et al. 2006, Castro-

García et al. 2008), but in a forest stand, collisions between branches of neighboring trees 

also play a role (Milne 1991, Rudnicki et al. 2008). This means that damping ratio can 

vary significantly among different trees. Thus several different magnitudes of damping 

ratios were plotted in Figure 6.10 to see the effect of these varying damping ratios on tree 

dynamics by only using the base model (M100).  
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Figure 6.10: Dynamic amplification factors with respect to wind frequency for the base 

model (M100) with varying amounts of damping ranging from 0 to 15% of critical.  

 

Figure 6.11 shows the variable effect that damping ratio has on dynamic 

amplification factor of the base model at several specific wind frequencies (0.60, 0.70, 

0.85 and 1.05 Hz).  These frequencies are the natural frequencies of the seventh branch, 

second branch, eighth branch and top branch as an example of the largest, large, medium 

and small sized branches. Although damping ratio affects Rd differently depending on 

wind frequency, the differences decrease as damping ratio increases.  In fact all of the 

curves asymptotically approach a constant value at damping ratios close to 15%.  

Therefore damping ratios greater than 15% would not change Rd significantly from the 

values calculated at a damping ratio of 15%, so higher values were not considered in the 

parametric studies. 
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Figure 6.11: Interpolated Rd factors for varying damping ratio at the selected wind 

frequencies of the base model (M100). The selected wind frequencies are approximately 

seen in Table 3.1 as the natural frequencies of several branches. 

 

6.4.5 Effects of Parameter 5 – Branch Attachment Heights 

Altering branch attachment heights did not have a substantial effect on Rd (Figure 

6.12), which was expected. Natural frequencies of the branches would remain the same 

since the geometry and material properties of branches were not changed, but the natural 

frequency of the tree would change due to changing the attachment points of branch 

masses on the main stem (see Eq. 6.1).  



149 
 

 

Figure 6.12: Dynamic amplification factors with respect to wind frequency for the 

selected models, M151, M100 and M152. All the nodes (Nodes 9, 10 and 11) are on the 

main stems of the models at the breast height (1.4 m). 

 

6.4.6 Effects of Parameter 6 – Branch Attachment Angles 

Attachment angle of branches did not have a substantial effect on Rd (Figure 

6.13). The plot of Rd versus excitation frequency was similar regardless of whether 

models included actual angles or average angles. This result is consistent with the 

similarity between plots of M131 and M131-7, supporting the idea that mass magnitude, 

rather than its location influences Rd more significantly at a particular frequency. Sellier 

and Fourcaud (2009) showed a similar magnitude of change in Rd as attachment angles 

were altered. 
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Figure 6.13: Dynamic amplification factors with respect to wind frequency for the 

selected models, M161, M100 and M162. M100 has been also obtained with the real 

branch attachment angles for the same damping ratio (DR). 

 

6.4.7 Effects of Parameter 7 – Branch Azimuth Angles 

Differences between models M100, M171, and M172 were very small, so Figure 

6.14 has been plotted without damping to allow the influence of this parameter to be 

observed and discussed. This small disparity is consistent with the test results (Kane et al. 

in preparation).Since the values of the natural frequency from the tests were similar for 

both directions in which the tree was excited: 0.40 Hz in the north-south direction and 

0.42 Hz in the east-west direction. Previous work on conifers has also demonstrated 

consistent sway frequency, independent of the direction of initial excitation (Milne 1991, 

Moore and Maguire 2005, Jönsson et al. 2007). The small disparity of the natural 
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frequencies depending on two orthogonal directions (north-south and east-west) was 

likely due to elliptical cross-sections of large branches, which would change the stiffness 

of those branches relative to the direction of sway. Modeling branches with circular 

cross-sections did not account for such differences, so changing the azimuth angle of 

branches in the model would not detect the resulting disparity in natural frequency. 

Future FE models of open-grown trees should account for elliptical cross-sections in 

branches, which have been observed on some species (Kane 2007). 

 

Figure 6.14: Dynamic amplification factors with respect to wind frequency for the 

selected models, M100, M171, M172 and M173.  

 

6.4.8 Effects of Parameter 8 – Modulus of Elasticity 

Assuming a constant MOE for the entire tree (M181) substantially increased Rd 

(Figure 6.15). This was expected because the fundamental frequency of each element in 
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the model would be more similar because each element had the same value of MOE 

(according to Eq. 3.7 and Eq. 3.12). The increase in the frequency at which the maximum 

Rd of M181 occurred was also expected because MOE of the seventh branch increased. 

The Rd peak in M100 corresponds primarily to the seventh branch, so with a change in 

MOE of branch 7, its natural frequency was expected to increase according to Eq. 3.7 and 

Eq. 3.12.  

Assuming different, but constant values of MOE for stem and branches (M182) 

slightly reduced Rd relative to M100. This result was also expected because there was a 

greater disparity between natural frequency of the seventh branch and that of the stem 

and top branch. The excitation frequency at which maximum Rd occurred was slightly 

less for M182 because the natural frequency of the seventh branch would be slightly less 

assuming the slightly smaller value of MOE for that branch (see Eq. 3.7).  

Previous work has shown that sway characteristics are influenced by MOE of the 

stem (Sellier and Fourcaud 2009) and branches (Moore and Maguire 2008). In both of 

these studies, MOE was held constant along the length of the stem and branches. 

Comparing Rd of M182 with M100 suggests that this was a reasonable assumption. 

Although there was a large disparity of Rd between M181 and M100, Sellier et al. (2006) 

assumed a constant value of MOE for the entire tree and their FE model reasonably 

predicted natural frequency of three small maritime pines. This inconsistency was likely 

related to the difference in tree size and relative proportion of crown and stem mass of 

M100 compared to the maritime pines. The results presented here do highlight, however, 

that trees with co-dominant branches with large mass and different MOE must be 

modeled with sufficient detail to capture relevant Rd peaks at appropriate frequencies. 
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Figure 6.15: Dynamic amplification factors with respect to wind frequency for the 

selected models, M100, M181 and M182.  

 

6.5 Conclusions for Parametric Analyses 

The main parameters that affect the dynamic response of trees were found to be 

stem diameter, slenderness ratio of branches, number of branches, MOE, and damping 

ratio. Except damping ratio, each of these parameters changed Rd in accordance with the 

mass being contributed to the overall response of the models (mass participation, see Eq. 

6.1). The effect of large branches on both the magnitude of Rd, and the frequency at 

which Rd is maximum is clearly important in decurrent trees. Pruning to remove lower 

branches in the crown of excurrent trees did not substantially alter natural frequency and 

damping until most of the branches had been removed (Mayhead et al. 1975, Moore and 
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Maguire 2005). Removing the seventh branch of M100, in contrast, would have removed 

18% and 29% of the total tree mass and crown mass, respectively (see Table 3.1).  

For decurrent amenity trees, predicting the natural frequency of large branches in 

the crown has important implications for pruning that warrant additional investigation. 

For example, removing one large branch from a crown that includes several branches of 

similar diameter may reduce Rd more effectively than pruning an equivalent amount of 

mass from several smaller branches. This approach ignores possible physiological and 

aesthetic constraints on pruning, but a better understanding of the mechanical effects of 

pruning may lead to alternative approaches to pruning that more effectively reduce the 

risk of branch or tree failure. 

Several assumptions made in constructing the FE models limit the interpretation 

of the results. Assuming a uniform slenderness ratio for all branches may not be 

appropriate, and this parameter clearly influenced the magnitude of Rd and excitation 

frequency at which it was maximum. Assuming uniform attachment angles of branches 

did not alter Rd relative to using measured angles of individual branches, and the similar 

responses of models M131 and M131-7 suggest that the amount rather than the location 

of branch mass is a more important factor affecting Rd. However, future work should 

more carefully account for the curvature of branches on open-grown trees to better define 

the spatial distribution of branch mass.  

Decay in trees was investigated in Chapter 5 to determine the moment capacity of 

the decayed trees and in Chapter 4 to show the fragility curves of these decayed trees 

subjected to wind forces. In addition to ignore the effect of decay in trees on tree 

dynamics by these chapters, Chapter 6 has not a parametric study on that topic, either. In 
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the absence of severe weather events, structurally-sound trees typically to do not fail. 

Trees with decay or poor branch attachments, however, are likely to fail in less severe 

weather, so including defects on future dynamic analysis to determine Rd would help 

advance the accuracy and reliability of methods to assess the likelihood of failure of such 

trees.  
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CHAPTER 7 

CONCLUSION 

7.1 Summary 

This purpose of this research was organized to reach the answers of the questions 

mentioned in Section 1.2. Outcomes concluded from the dissertation will be addressed in 

Section 7.2, after a brief overview of chapter contents. The outcomes of this research are 

intended to be useful for arborists and urban foresters. Limitations of the research and 

several suggestions for future works are presented in Section 7.3.  

Chapter 2 presents relevant studies and conclusions from existing literature that 

has been used in this dissertation. In Chapter 3, to the techniques used to model trees 

have been addressed by using a tree prototype located in Belchertown, MA. Following 

the modeling techniques presented in Chapter 3, models of two different trees are 

subjected to varying wind effects in Chapter 4 to obtain fragility curves for the 

probability of failure of these trees. In Chapter 5, decay effects on these fragility curves 

have been investigated by considering decreasing the moment capacity of cross-sections 

of trees due to decays. The effects of different parameters in the dynamic response of 

trees subjected to wind forces were studied in Chapter 6 to identify those elements that 

are critical for tree failure reduction that may control.  

7.2 Practical Outcomes 

The word conducted in this dissertation will serve to provide tools for arborists, 

urban foresters, and insurance companies that will assist in quantifying risk of tree failure 
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as a consequence of wind loading.  The fragility curves presented in Section 4.5 provide a 

concise way with which one can evaluate the risk of failure of trees subjected to wind 

forces. But these fragility curves are not sufficient by themselves to base a decision on 

whether a tree is hazardous or safe. Other parameters must be considered such as the 

possibility of decay since fragility curves are dependent on the amount of decay 

considered as mentioned in Section 4.5. Thus, for arborists, urban foresters or consultants 

work with insurance companies, one of the most important problems is to find or estimate 

how much moment capacity loss occurs due to such decays in tree cross-sections. To 

estimate this moment capacity loss, two methods in Sections 5.3.3.1 and 5.3.3.2 can be 

utilized with respect to decay shapes. The first method is easiest and practical way for 

arborists, because they commonly drill tree cross-sections, and they can approximately 

construct the decay shapes in the cross-sections. For arborists, the second method can be 

better and more accurate, but requires use of expensive methodologies such as 

tomography and radar in order to perfectly determine the shapes of the decays. 

Additionally, the methodology addressed by Sections 4.3 and 4.4 can be extended to the 

fragility curves with or without decay of different tree species by researchers if needed.  

Another important outcome of this Thesis is about pruning trees. For this 

outcome, the question is to decide how much amount of which branches or maybe stem 

should be pruned. Thus, firstly, the natural frequencies of all the branches and stem in a 

tree should be estimated. The most efficient and easiest option is to use Mabie and 

Rogers’ formula mentioned in Section 3.6 instead of doing expensive and time 

consuming tree models to estimate the fundamental frequencies of the tapered branch and 

stem in trees. Secondly, by considering the results of the parametric studies addressed by 
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Section 6.4, when arborists and urban foresters do several changes on crown architecture, 

tree dynamics will have been changed. For example, they can prune some of the branches 

in order to obtain a variety for the natural frequency of the members (branches and stem), 

because this variety can cause reducing Rd factor due to the tuned mass damping and 

mass participation effects of branches on tree dynamics.  

7.3 Limitation and Suggestions 

The research results presented in this dissertation are dependent on assumptions 

that have been described in detail in each of the chapters.  For convenience to the reader, 

some of the most important limitations are again repeated here. 

Chapter 3 presented the assumptions used to model a prototype tree using the 

finite element (FE) method. One of the assumptions used pertained to branch slenderness 

ratio, assumed equal to 50 for the tree in Belchertown, MA, after which the model was 

constructed. When slenderness ratio was changed to 60 as was done in Chapter 6 (for 

model M121), the tree response was more accurately captured as seen by the closer 

agreement of M121 results to the empirical test results. This assumed parameter plays an 

important role in the response of trees and should, therefore, be measured carefully in the 

field in the future.   

A second limitation of the FE models was the assumption of support fixity at the 

base of the trunk, and neglecting to consider the effects of soil-root system deformations.  

These deformations or, in other words, support flexibility would vary if the ground is 

saturated or unsaturated. If the connection between the trunk and ground could be 

represented more accurately, the result of M100 would have been probably closer to the 
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empirical test results, because the model would have been more flexible. Ground 

flexibility is difficult to model and as pointed out may vary with soil conditions.  It might 

be more sensible to conduct several analyses by setting upper and lower bounds to the 

support condition to bracket the response of the model. 

Throughout the research, bark thickness was neglected in the FE modeling, 

another limitation of the models. If the bark thickness could be subtracted from the 

measured diameters for each element in tree modeling, the model, M100 would have 

been, again, more flexible and closer to the results of the empirical tests. This requires, 

however, that bark thickness be measured in the field to allow an accurate representation 

of tree elements. 

The fourth important limitation is that geometric nonlinearity was ignored in the 

modeling and its effect on stiffness reduction caused by P-Delta effects was considered 

negligible given the relatively small mass near the top of the trees. Although for the work 

presented in this dissertation this assumption seemed reasonable, second-order effects 

may increase with higher gravity loads on trees such as those caused by ice and snow 

accretions on branches, especially, on which leaves exist. Thus, for a future work related 

to trees subjected to the combination of wind load and ice or snow accretions, the effect 

of geometric nonlinearity on fragility curves for tree failures may be investigated.  

Finally, the assumed values of the MOE and density values for each segment in 

the tree models present an important limitation of this work. Even if several research 

studies are based to define the MOE and density of each segment, these values can vary 

because of inherent randomness in trees. For example, decay can change the density and 

MOE value of the segments, and so the stiffness and mass matrices of trees can be 
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different. These differences in stiffness and mass generate differences in tree dynamic 

response under wind excitation forces. Thus, for future work, the effect of cylindrical 

decays on tree dynamics can be investigated as a parametric study like in Chapter 6, or 

perhaps more importantly the variation of MOE and density should be considered as a 

random variable in the models.  

The most significant limitation of the work presented in Chapter 4 is that random 

wind loading has been applied on two different trees that are considered deterministic. 

Thus, for future work, the fragility curves in this chapter may change after considering 

the effect of random tree models in Monte Carlo (MC) simulations. The other important 

limitation relates to the generation of random wind loading based on experimental wind 

speed data. These experimental data consist of small values of wind speeds, but the 

random wind loading in this chapter has been generated for higher wind speeds. In other 

words, the characteristics of the wind speed spectrum may change for different mean 

values of wind speed data when experimental data for higher wind speeds are included. 

The modified Ochi-Shin equation developed in this chapter can be tested for greater wind 

speed data such as hurricanes. MC simulation techniques in this chapter can be applied to 

obtain the fragility curves of the tree failures under these higher intensity wind events. 

The other future work can be that all the methodologies in this chapter can be applied for 

the uprooting and branch failures, because in this chapter only stem breakage at breast 

height has been investigated.  

Chapter 5 included several assumptions used to calculate the moment capacity 

loss of tree cross-sections. One of these assumptions is that shear and axial stresses or 

combination of shear, axial, and bending stresses are neglected. The other assumption is 
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that trees have homogenous material property along the cross-section of the trees, 

although they are heterogeneous orthotropic materials. Thus, for future work, it can be 

recommended that these heterogeneous orthotropic material properties can be applied in 

FE models for different decay size and location in tree cross-sections by considering the 

combination of shear, axial, and bending stresses. Then, by using the results of these FE 

models, the moment capacity of tree decayed cross-sections can be compared with the 

moment capacity of the non-decayed sections in order to obtain moment capacity loss 

diagrams like in Chapter 5. 

The parametric models presented in Chapter 6 provide a first step in identifying 

those parameters that importantly affect the dynamic response of trees. Additional 

analyses could be conducted following a similar philosophy as that used in Chapter 6 to 

compute the risk of failure given variations in tree models. . For example, the effects of 

common pruning types (crown reduction, crown thinning, and crown raising), and 

vertical decay in trees on tree dynamics can be investigated as a first step in hazard 

reduction of tree failure. Furthermore, all the parametric studies were related to the Rd 

factor of the tree in Belchertown, MA at approximately breast height (1.4 m), so this Rd 

factor diagrams can be examined for several other points on the tree such as every 1.0 m 

above the breast height and the points at lower and higher levels of the large branches of 

trees.  The Rd factor provides a convenient way to synthesize the dynamic response of 

trees using a single parameter, but this should not be viewed as the only way one can 

represent the dynamic response.  
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