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ABSTRACT 

MEASUREMENT OF THE HYDRAULIC CONDUCTIVITY OF GRAVELS USING A 

LABORATORY PERMEAMETER AND SILTY SANDS USING FIELD TESTING 

WITH OBSERVATION WELLS 

MAY 2013 

AARON JUDGE, B.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Don J. DeGroot 

 

A new laboratory permeameter was developed for measuring the hydraulic 

conductivity of gravels ranging from 0.1 to 2 m/s.  The release of pneumatic pressure 

applied to the test specimen induces an underdamped oscillatory response of the water 

level above the permeameter, similar to an underdamped in situ slug test response in 

monitoring wells.  A closed form model was derived to calibrate the hydraulic minor 

losses in the permeameter and the hydraulic conductivity of the specimen by performing 

tests without and with a specimen.  The majority of each test series performed on 

individual specimens produced hydraulic conductivity values within 10% of the average, 

which is very small for such a measurement.   

Tests were performed using the permeameter on a collection of subrounded and 

angular gravels prepared to measured grain size distributions and porosities. The surface 

area was determined by evaluating the shape and angularity using a method developed in 

this research and these parameters were used with the measured tortuosity and hydraulic 
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conductivity, to back calculate the packing factor of the Kozeny-Carman equation.  The 

results show that the packing factor for the gravels and materials tested is proportional to 

the tortuosity cubed. These results provide a valuable update to the Kozeny-Carman 

equation for predicting the hydraulic conductivity of gravels.   

Field slug interference tests were performed in pairs of monitoring wells installed 

at the same elevation in a floodplain deposit of silty sand in Dedham MA.  Slug tests 

were performed in one of the wells while the response was monitored simultaneously in 

both wells.  The measured responses were both analyzed by modifying the KGS model of 

Hyder et al. (1994) to consider the wellbore storage and filter packs effects.  This 

modification was found to produce estimates of hydraulic conductivity based on the 

slugged well response that compared well with that estimated based on the observation 

well's response.  Calibrated hydraulic conductivities for the pairs of wells tested ranged 

from 4x10-6 to 1.5x10-5 m/s and specific storage ranged from 2x10-5 to 7x10-4 m-1. 
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CHAPTER 1 

1 INTRODUCTION 

Gravels are extensively used in roadway construction, drainage curtains, and 

railroad ballast which fouls over time, affecting the hydraulic conductivity.  In some 

projects the gravel must be able to provide a minimum and high enough rate of drainage 

and engineers and contractors are required to prove that their source material or an 

existing material has a high enough hydraulic conductivity via direct measurement to 

satisfy this.  Open-framework gravel can be found in gravelly fluvial deposits 

interstratified with sand and gravel as well as in glaciofluvial aquifers.  The hydraulic 

conductivity of gravel is difficult to test because laboratory tests usually do not provide 

laminar flow and wells are not commonly installed in gravel formations.  Chapuis and 

Aubertin (2003) noted that the accuracy of laboratory permeability tests (e.g., ASTM 

2002) in coarse grained materials is often questionable; they note that laboratory 

hydraulic conductivity values from just three replicate tests may vary broadly.     

The Kozeny-Carman equation is the most accurate grain size model for estimating 

hydraulic conductivity because it considers the porosity and surface area of the soil.  The 

packing factor was empirically determined by Carman (1956) to be equal to 5 for uniform 

spheres, and this value has been used since then.  The tortuosity squared was suggested to 

be considered in the denominator of the Kozeny-Carman Equation by Scheidegger 

(1957), Costa (2006) and a few others, though it has been rarely evaluated and used.  

Furthermore, if the roundness and angularity were estimated by a method of determining 

the shape factor, the formula would provide better accuracy (Carman 1956).  If more 

accurate soil properties were used then the Kozeny-Carman equation would predict 

values with better accuracy.  Chapuis and Aubertin (2003) considered the distribution of 
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grain sizes and found the Kozeny-Carman results to be within a factor of three of the 

measured results for soils where the permeability (k) ranges over orders of magnitude.  

The accuracy and precision of the measured k and grain size distribution values of the 

tests they considered were unknown, and are very likely less than satisfactory in some 

cases, especially for soils with high k. 

Slug testing is the most common method used to determine a quick estimate of the 

in situ hydraulic conductivity of a deposit.  Uncertainty of soil, formation, and well 

properties provide different hydraulic properties for any analysis.  Results are sometimes 

fit to type curves that are a function of hydraulic conductivity and specific storage and 

often times the data are forced to fit a curve that is compromised.  Misinterpretation of 

the initial displacement of water is another reason that results may differ.  The wellbore 

storage (water in the open well) and the wellskin (water in the highly permeable filter 

pack) are not always considered in slug tests.  Different methods of analysis provide 

results within about a half an order of magnitude of error, showing that either not 

everything is being considered in all solutions, or that some assumptions are wrong.  

Analyzing slug tests performed in a pair of wells installed at the same elevation and close 

to each other horizontally while measuring the hydraulic response, provides data for 

analysis that eliminates some of this uncertainty. 

 The primary objective of this dissertation was to find better ways to evaluate 

hydraulic conductivity of highly permeable coarse grained soils using a new laboratory 

device, as well as an improved method of analyzing slug interference tests.  The tasks 

performed to meet this goal were to: 
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1. Design and build a new permeameter for performing quick laboratory tests on 

gravels with hydraulic conductivity values ranging from 0.1 to 2 m/s.   

2. Develop a model to calibrate the hydraulic conductivity using this new device 

while proving that the results are repeatable, consistent, and follow Darcy’s law. 

3. Show that the Kozeny-Carman Equation works for spheres tested because it is 

well established for spheres. 

4. Use the Kozeny-Carman Equation for other types of tested coarse grained soils 

that are commonly found as well as anisotropic stones that allow the tortuosity to 

be calibrated in the model of Judge et al. (in press).   

5. Modify the Kozeny-Carman Equation to include the tortuosity on these gravels as 

well as other soils since it is known that it has an influence but has not been tested 

experimentally. 

6. Perform slug interference tests utilizing two wells with one test and one model.  

This eliminates many of the errors that are seen in slug tests, mainly because they 

both test a similar volume of soil at the same time. 

7. Consider the wellbore storage (water in the open well) and wellskin (well filter 

pack) in both wells for interpretation of the slug interference tests because they 

both can have a strong influence on the results. 

Chapters 2 to 4 present the results of this research and Chapter 5 presents a 

summary and conclusions.  Chapter 2 presents the results of the development of a 

permeameter for transient tests on gravels as well as a model to calibrate the hydraulic 

conductivity using this device.  It is the second of its kind, following Ferrierra et al. 

(2010), but has a few more advantages such as rapid testing and it provides tortuosity 
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estimates.  This work has been accepted for publication: Judge, A.I., Ostendorf, D.W., 

DeGroot, D.J. and Zlotnik, V.A. (in press).  “A Pneumatic Permeameter for Transient 

Laboratory Tests.”  Journal of Hydrologic Engineering. 

 Chapter 3 presents results from tests performed using the new permeameter 

described in Chapter 2 by considering soils of different shapes and gradation.  The data 

were used to develop an experimentally calibrated packing factor for the Kozeny-Carman 

Equation as a function of tortuosity using the measured hydraulic conductivity.  This 

chapter was prepared in the form of a manuscript that has been prepared for submission 

to a peer-reviewed journal. 

   Chapter 4 presents the results of slug interference tests performed in pairs of wells 

in a silty sand floodplain deposit to evaluate the hydraulic conductivity and specific 

storage.  The wellbore storage and wellskin were found to have strong effects on 

interpretation of the results, something that is typically not considered using current 

methods.  This chapter was prepared in the form of a manuscript that has been prepared 

for submission to a peer-reviewed journal. 

The Appendix contains slide posters and presentations of meetings and 

conferences attended during the time of this study. 
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CHAPTER 2 

2 A PNEUMATIC PERMEAMETER FOR TRANSIENT TESTS ON COARSE 
GRAVEL  

A new permeameter is proposed for performing laboratory hydraulic conductivity 

tests on gravels with hydraulic conductivity values ranging from 0.1 to 1 m/s.  A small 

diameter riser is connected to a large diameter cylinder, which holds the coarse-grained 

specimen saturated in a water bath.  The release of pneumatic pressure applied to the free 

surface in the riser induces an underdamped oscillatory response of the water level in the 

riser, similar to an underdamped in situ slug test response in monitoring wells.  A closed 

form model used to analyze the measured oscillatory hydraulic head data to calibrate the 

minor losses in the permeameter and the hydraulic conductivity of the specimen by 

performing tests without and with a specimen.  The average model error of calibrated 

pressure head values in the riser for the tests considered is on the order of 5% of the 

initial displacement of about 2 cm.  The hydraulic conductivity values are calibrated 

considering replicate tests, tests of different specimen lengths, and different time periods 

within a test to verify that the results reflect the hydraulic conductivity of the specimen 

alone.  The Kozeny-Carman equation which considers the specific surface area of the 

tested material gave a hydraulic conductivity value within 5% of the measured value for 

the marbles, which is a good comparison because the uniform marbles have a known 

specific surface area.  For all the various tests performed on each specimen, most of the 

hydraulic conductivity values were within 10% of the average, while the specimens with 

hydraulic conductivity greater than 1 m/s were within 10 to 20% of the average.   



 

6 

2.1 Introduction 

A new permeameter is proposed for performing laboratory hydraulic conductivity 

tests on gravels with hydraulic conductivity values ranging from 0.1 to 1 m/s.  A small 

diameter riser is connected to a large diameter cylinder, which holds the coarse-grained 

specimen saturated in a water bath.  The release of pneumatic pressure applied to the free 

surface in the riser induces an underdamped oscillatory response of the water level in the 

riser, similar to an underdamped in situ slug test response in monitoring wells.  A closed 

form model used to analyze the measured oscillatory hydraulic head data to calibrate the 

minor losses in the permeameter and the hydraulic conductivity of the specimen by 

performing tests without and with a specimen.  The average model error of calibrated 

pressure head values in the riser for the tests considered is on the order of 5% of the 

initial displacement of about 2 cm.  The hydraulic conductivity values are calibrated 

considering replicate tests, tests of different specimen lengths, and different time periods 

within a test to verify that the results reflect the hydraulic conductivity of the specimen 

alone.  The Kozeny-Carman equation which considers the specific surface area of the 

tested material gave a hydraulic conductivity value within 5% of the measured value for 

the marbles, which is a good comparison because the uniform marbles have a known 

specific surface area.  For all the various tests performed on each specimen, most of the 

hydraulic conductivity values were within 10% of the average, while the specimens with 

hydraulic conductivity greater than 1 m/s were within 10 to 20% of the average.   

Gravels are extensively used in roadway construction, in drainage curtains, and 

railroad ballast which fouls over time, affecting the hydraulic conductivity.  In some 

projects the gravel must be able to provide a minimum and high enough rate of drainage 
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and engineers and contractors are required to prove that their source material or an 

existing material has a high enough hydraulic conductivity via direct measurement to 

satisfy this.  Open-framework gravel can be found in gravelly fluvial deposits 

interstratified with sand and gravel as well as in glaciofluvial aquifers.  Cedergren (1977) 

showed an example where lenses of open-framework gravel with K was 0.3 m/s within 

silt where K was 10-4 m/s resulted in over five orders of magnitude more seepage under a 

dam.  The high permeability of open-framework gravel strata is due to the lack of 

sediment blocking pore space between gravel grains.  Ferreira et al. (2010) noted that 

these zones of high permeability (K = 0.04 m/s) form preferential flow pathways which 

can act as “thief zones” during the recovery of reservoirs.  Bobo and Khoury (2012) 

collected samples in Prince William Sound, Alaska and used a capillary model and the 

Kozeny-Carman equation to determine the hydraulic conductivity at a tidally induced 

beach where K was estimated (i.e., not directly measured), to be 0.01 m/s near the beach 

surface.  Bobo and Khoury (2012) noted that the hydraulic conductivity of the gravel at 

the beach surface plays a critical role in the lag of water table fluctuations behind tidal 

oscillations.  

Chapuis and Aubertin (2003) noted that the accuracy of laboratory permeability 

tests (ASTM 2002) in coarse grained materials is often questionable; they note that 

laboratory hydraulic conductivity values from just three replicate tests may vary broadly.  

This lack of precision partially depends on test equipment and procedures and also due to 

the natural variability of the tested material.  Constant-head and falling-head laboratory 

tests are commonly used to determine the saturated permeability (k) or hydraulic 

conductivity (K) of coarse-grained materials.  Constant-head tests using a Marriott tube 
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are used for coarse-grained soils with high K values because it supports a small head 

difference over the specimen, which is critical for preventing non-Darcian (turbulent) 

effects.  Frequent readings of the water level must be taken and an accurate and truly 

constant head must be applied.  In the common constant head equipment set up that uses 

a Marriott tube to maintain constant head pressure, both of these factors are complicated 

by the lack of clean and quick release of air bubbles from the bottom of the bubble tube.   

Flow through a specimen is proportional to the gradient as long as the flow is 

laminar, or Darcian.  Lambe and Whitman (1969) stated that the critical Reynolds 

number above which flow is not laminar and Darcy’s law is no longer valid should be 

determined experimentally for soils that are more permeable than medium sand.  

Scheidegger (1957) stated that the critical Reynolds number ranges from 0.1 to 75 with 

higher Reynolds numbers for larger grain sizes.  Theoretically the Reynolds number is 

about 2,000 for flow through straight tubes but pore spaces in soils are far from straight 

and this number should be adjusted by multiplying by the porosity and divided by three 

because the water can move in three spatial directions which yields a critical Reynolds 

number of about 250 to 300 for typical values of porosity for gravels.  Identical Reynolds 

numbers are not sufficient to compare dynamic similarities between specimens 

(Cedergren 1977), who report data giving a Reynolds number of 150 for constant head 

tests performed on coarse gravel up to 4 cm in diameter.   

Performing laboratory tests to directly measure the hydraulic conductivity of 

gravels is limited, likely in part due to the difficulties in conducting such tests as noted 

above.  However, Ferreira et al. (2010) recently developed the "megapermeameter" for 

testing of gravels with a specimen length of 3 meters and diameter of 10 cm.  Small heads 
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(on the order of 0.1-1.0 cm) were measured to a resolution of 10-5 m to maintain the 

laminar flow regime which was determined by performing tests at varying gradients and 

noting when the gradient was no longer proportional to the velocity.  Each test required a 

permeation period of 3 hours to 3 days to ensure flow stabilization.  Uniform pebbles 

with a diameter of 1 cm were used to proof test the equipment and yield K equal to 1.0 

m/s which was equal to the values of the Kozeny-Carman equation.  The flow was 

increased slowly until it was no longer laminar which was found to be at a critical 

Reynolds number of 25 for the pebble specimens and 10 for the open-framework gravel.  

Data collected at higher Reynolds numbers yielded erroneously low K values. 

Plain and Morrison (1953) performed experiments on spherical glass beads with 

diameters of 0.016 cm to 0.3 cm using water and a silicone fluid with a much lower 

viscosity and a constant flow rate for all tests.  These tests with varying viscosities 

yielded a critical Reynolds number for given grain sizes which was 100 when water was 

used on the glass beads with a small diameter size of 0.13 cm while it was lower for 

specimens with a smaller diameter.  Tennakoon et al. (2012) tested clean and fouled 

ballast (2 to 5 cm diameter) stating that the flow was laminar because a gradient less than 

four was used and K was found to be 0.3 m/s using a standard constant head 

permeameter.  However, a back calculation of the Reynolds number based on their data 

indicates that the Reynolds number appears to be at least 10,000, and thus the flow region 

was very likely nonlaminar.  White et al. (2007) developed an in situ air penetrometer for 

testing of granular bases as permeable as 0.1 m/s.  The test was primarily developed to 

improve values used for drainage coefficients and to evaluate potential variability of the 
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gradation of the source material.  The results were found to not be very consistent and 

were up to five times higher than compaction mold permeameter tests. 

Grain size models and constant head tests are the only current way to test soils 

more permeable than 0.01 m/s unless a well is installed in the field in such a deposit 

where a slug test can be performed using pneumatic methods.  The falling-head test fails 

to give reliable K values for gravels because water level responses in coarse specimens 

may be turbulent and inertial (depending on the equipment set up used), which cannot be 

evaluated using the falling head equation.  The oscillatory response of slug tests 

performed in wells where K is high has been observed and studied by Butler (1997) and 

Ostendorf et al. (2005).  The period of the oscillations in a well is governed by the inertia 

of the water column (e.g., Zlotnik and McGuire (1998) and Zurbuchen et al. (2002)), 

which is calculated considering the geometry of the flow system.  An analogous 

phenomenon would occur in a laboratory permeameter, with an appropriate geometry and 

equipment set-up, where the underdamped response would be dampened by the K of the 

specimen and head losses in the permeameter.  Any head losses that may occur due to 

contractions in the permeameter, if they exist, can be incorporated with the closed form 

model using the same approach of Zlotnik and McGuire (1998) and Ostendorf et al. 

(2005) for in situ slug tests and for which head losses due to contractions and friction in 

the riser were considered.   

This paper describes a new laboratory permeameter and a corresponding closed 

form theory for testing the hydraulic conductivity of coarse grained soils such as gravels.  

A significant objective of the work was to develop an alternative equipment set up and 

test procedure than the megapermeameter developed by Ferreira et al. (2010).  The 
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permeameter described in the paper uses a much shorter test specimen and a much shorter 

test period than the three meter tall specimen and 3 hours to 3 day test period of Ferreira 

et al. (2010).  The equipment was designed to improve upon the challenge of performing 

traditional constant head tests on highly permeable soils such as gravels.  The hydraulic 

response in the new permeameter is underdamped and the oscillatory signal is interpreted 

using a modified form of the model of Ostendorf et al. (2005) to determine the hydraulic 

conductivity.  The modifications consider that the flow in the permeameter is vertical, 

that there is a smaller diameter riser above the specimen, and that flow exits and enters 

the region below the bottom of the specimen chamber horizontally.  Minor losses are 

calibrated to the measured water pressure in the riser for tests performed without a 

specimen, and then those values are used to calibrate K to the measured water pressure in 

the riser for tests performed with a specimen.  This method is illustrated for various 

coarse-grained specimens where the oscillation amplitudes decay more rapidly with less 

permeable specimens.  The specimen length and applied pressure head are varied, and 

results obtained for perfect spheres (marbles) are compared with the Kozeny-Carman 

hydraulic radius model to verify that the results yield accurate and precise K values. 

2.2 Methods 

 A cylindrical permeameter made of PVC with a diameter of 15 cm and an 

adjustable specimen length of up to 25 cm has one screen near the bottom where the 

specimen is held as shown in Figure 2.1.  The screen holding the specimen is made of 

stainless steel woven wire cloth Type 304 with porosity of 0.58, opening square length of 

1.9 mm, and wire diameter of 0.6 mm.  The permeameter is placed in a barrel (0.4 m in 

diameter and 0.5 m tall), which acts as a water bath keeping the static water level 0.4 m 
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above the holes in the base of the cylinder.  The permeameter is airtight and watertight; a 

manifold at the top allows pressure transducers and cables to pass through a port using a 

split rubber plug inside of a compressible ring (Ostendorf et al., 2005) to measure the 

pressure of the air and the water in the riser.   

The manifold with a 5 cm ball valve is connected to the top of the riser to hold the 

water level at the desired level.  Pneumatic pressure of about 200 to 300 Pa is applied to 

the free surface of the water through the manifold using a quick-connect pneumatic 

fitting, which depresses the free surface of water in the riser by 2 to 3 cm.  The test is 

then commenced by opening the valve, which instantly allows water to flow through the 

permeameter and into and out of the water bath which has an area large enough relative 

to the small volume of water displaced to keep a quasi-static water level during the tests.  

Another advantage of having a specimen area larger than the riser is that the velocity of 

the water flowing through it is lower, keeping it laminar. 

One transducer measures the air pressure above the water and the other is lowered 

to a depth of 5 to 10 cm in the riser below the static water level at an elevation where it is 

stays submerged.  The applied pressure and the water pressure in the riser are measured 

using vented pressure transducers at a frequency of 100 Hz, because the period of the 

water level fluctuations occur over one second for all of the tests performed.  This system 

consists of a National Instruments modular signal conditioning module and a National 

Instruments PC card 16 bit multifunction I/O analog to digital converter processed the 

signal, and a laptop using LabView to save the data (Ostendorf et al., 2007). 
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Figure 2.1: Schematic diagram of the permeameter. 
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2.3 Materials tested 

 Figure 2.2 shows the test materials and Figure 2.3 presents the corresponding 

grain size distribution curves.   These materials include fine to very coarse gravels 

including oblong stones which were tested with the long axis aligned with the vertical 

flow direction (V Stones) and horizontal (H Stones).  Although the volumetric void ratios 

and grain size distributions of the stones are identical, the tortuosity of the flow of water 

is greater for the horizontally aligned specimens, resulting in a lower permeability. 

 Marbles with a uniform diameter of 1.5 cm were tested to compare with that 

predicted by the Kozeny-Carman equation which considers the void ratio, specific 

surface area, and packing factor, which is easy to compute for uniform spherical marbles 

unlike that for natural soils.  Chapuis and Aubertin (2003) evaluated the Kozeny-Carman 

model by studying literature results for laboratory measurement of the hydraulic 

conductivity of a large variety of grain size distributions and void ratios.  Rather than 

using one effective diameter, they considered the distribution of grain sizes and found the 

Kozeny-Carman results to be within a factor of three of the measured results for soils 

where the hydraulic conductivity was less than 0.01 m/s.  The observed discrepancies 

were attributed to practical reasons such as inaccurate surface area values, unsteady flow 

or unsaturated specimens.  Theoretical reasons may also include anisotropy, motionless 

water in the specimens, or erroneous packing and roundness coefficients. 
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Figure 2.2: Materials tested 

 

Figure 2.3: Grain size distribution of materials tested and from other sources with 
relevant results (K10 is used where the tested temperature is known) 

2.4 Theory 

2.4.1 Conservation of Momentum 

 Figure 2.1 illustrates the permeameter highlighting the concepts, geometrical 

parameters, flow direction, and origin of z-coordinate.  Head losses occur at the 

contractions at the base and riser bottom and there is friction over the length of the 

specimen when water flows in and out of the permeameter.  The vertical pressure 

gradient in the reservoir outside of the permeameter is hydrostatic, while it is both inertial 

and hydrostatic inside.  The inertial effects are calculated considering the velocity over 
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the four different vertical regions effects and are summed as the effective riser length (LE) 

to calibrate k to the water level change during the tests.  The specimen length (LS) with 

porosity (n) within the cylinder of length (LC) are all considered, allowing for all 

velocities values to be expressed in terms of the measured pressure in the riser.  The 

minor losses in the permeameter are linearized to reduce a second order ordinary 

differential equation and are written with the permeability of the specimen in the form of 

one constant for the first order term. 

The effective riser length of a column of water oscillating vertically has been 

investigated by Zlotnik and McGuire (1998) and Zurbuchen et al. (2002) for slug tests in 

well risers that consider constrictions in diameter.  The effective riser length of the 

permeameter is calculated considering the riser length plus the distance traveled by water 

through other sections multiplied by the reduction in velocity through those distances.   

      (2.1) 

With constant flow through the system in both directions, the velocity in the cylinder 

(wC) through the cylinder area (AC) is nine times less than the velocity in the riser (wR) 

through the riser area (AR).  The effective riser length is easily calculated for the tests 

performed without a specimen (where LS = 0), while the tests performed with specimen 

consider the average porous area of the cylinder (AP) over the length traveled throughout 

the specimen which includes some horizontal flow.  The tortuosity (τ) is equal to the 

average length of the traveled path divided by LS (Scheidegger 1957).  The speed along 

this path is equal to the cylinder velocity divided by the porosity, while the speed along 

this tortuous path is multiplied by the τ value, which is estimated as 1.2 to start, and is 

discussed subsequently.  The tortuosity and porosity are not directly used in the 
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calibration of k, but they affect the duration of the period of the oscillation so a good 

calibration is needed. 

The conservation of momentum in the permeameter balances inertia, weight, and 

pressure in different proportions throughout the permeameter, with shear through the 

specimen.  The vertical pressure gradient is first considered through the initially 

submerged riser length (LR) where the velocity is highest through the small riser area and 

the inertial effects are most dominant. 

       (2.2a) 

          (2.2b) 

where g is gravitational acceleration, p is pressure at elevation z above the datum, t is 

time, ρ is water density, and η is water level displacement above the static free surface 

elevation (z0).  Equation 2.2a is integrated from the nonstatic free surface of the water 

level where the pressure is zero (z0+η) down to the transducer at a depth below the static 

free surface (DT) using Equation 2.2b.  The small second order term of η above the static 

free surface at z0 is neglected for simplicity. 

        (2.3) 

Equation 2.3 will subsequently be combined with another equation expressing the 

transducer pressure (pT) where integration starts at the free surface of the outside water 

level and includes the permeability and minor losses.   

The pressure outside the base of the permeameter (pZ) is hydrostatic at any 

elevation (z). 

         (2.4) 
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This equation is considered from the free surface of the hydrostatic reservoir outside of 

the permeameter (z0) where the change in pressure is simply hydrostatic down to the 

base.  A head loss inside of the base (hB) occurs at the base elevation (zB) at a minor loss 

(FB) where the water enters though the base area (AB) at velocity (wB). 

          (2.5)  

The vertical pressure gradient is then considered inside the bottom of the cylinder 

where the velocity is slow up to the specimen.  Through the specimen, the pore speed 

considers some horizontal flow due to the tortuosity, and is considered by multiplying the 

cylinder velocity (wC) by τ and dividing by n.  There is also a pressure change over LS due 

to the specimen permeability (k) and water kinematic viscosity (ν).  The area of the 

cylinder (AC) is then empty again up to the riser interface.   

      (without specimen) (2.6a) 

     (through specimen)  (2.6b) 

where zR is elevation of the riser bottom, and ν is water kinematic viscosity.  Equations 

2.6a and 2.6b are now integrated from their limits and used to get the change in pressure 

from zB to zR.  There is a head loss in the riser (hR) at the minor loss (FR) just above the 

contraction at zR.   

           (2.7) 
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Equation 2.2a is now integrated from zR up to the transducer elevation (zT) and combined 

with Equations 2.4, 2.5, and 2.7 and integrated Equation 2.6 to give a second equation of 

pT.   (2.8) 

Equations 2.8 and 2.3 are combined to a nonlinear second order differential equation with 

constants written in forms that will be simplified and linearized. 

 (2.9a) 

          (2.9b) 

           (2.9c) 

          (2.9d) 

          (2.9e) 

The second and third order terms of Equation 2.9a are written in terms of η using 

Equations 2.9b and 2.9c. 

 

(2.10) 

Equations 2.1, 2.9d, and 2.9e simplify Equation 2.10. 

    (2.11) 

Equation 2.11 includes the head losses and k which are used to balance the position, 

velocity, and acceleration of the water pressure at the transducer elevation.   
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The head losses in the riser and base are a function of the two minor losses and 

the velocity squared at those locations, which both are linearized to the first order form in 

terms of the riser velocity and are written with the permeability as the damping 

oscillation frequency (ω).  An ordinary differential equation is then used to express the 

water pressure in the riser as a function of time with first order constant ω calibrated to 

measured data. 

2.4.2 Minor Losses 

 Minor head losses in the permeameter along with the permeability of the soil 

dampen the oscillations and attenuate the water level fluctuation over time.  Zlotnik and 

McGuire (1998) considered minor losses in slug tests in the governing equation along 

with the friction through the soil.  The minor losses are included with the permeability 

using a model similar to Ostendorf et al. (2005) where they calculated friction and energy 

losses and included them in the damping constant.   

The two minor losses given in Equations 2.5 and 2.7 are summed as a total minor 

loss (FP) and rewritten in terms of the head losses and velocities. 

          (2.12a) 

        (2.12b) 

          (2.12c) 

The total minor loss is written in terms of the riser velocity using Equation 2.12. 

        (2.13) 
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2.4.3 Linearization 

 The head loss is linearized using a characteristic riser velocity (wA) like Ostendorf 

et al. (2005) used to determine the riser friction in slug tests.  The displacement of one 

and a half periods over a characteristic time duration (tC) is now used to reduce the order 

of the differential equation.   

          (2.14) 

Equation 2.14 is evaluated using finite difference like Ostendorf et al. (2005) did, but this 

is provided subsequently because it requires an estimate of ω. 

Equation 2.11 is written in terms of minor losses using Equation 2.13, with one of 

the velocity terms linearizing the constant of the first order term and with both sides 

divided by ρ and LE.   

      (2.15a) 

         (2.15b) 

        (2.15c) 

The first order constants are written as a damping oscillation frequency constant (ω) for 

tests without soil (Equation 2.15b) and for tests with soil (Equation 2.15c).  Equation 

2.15a can now be written in the form of a damped spring equation and then be evaluated 

as a function of time to calibrate ω to measured data, giving FP for a test without soil and 

then k for a test with soil after FP is calculated. 
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2.4.4 Governing Equation and Oscillation Frequency 

 Equation 2.15 is written in the form of the damped spring equation with the 

damping oscillation frequency ω, which is a function of friction, gravity and inertia (Van 

der Kamp 1976).   

       (2.16) 

Equation 2.16 is now written as a closed form solution for η as a function of time which 

is similar to solutions for slug tests by Ostendorf et al. (2005).   

    (2.17) 

where η0 is the initial position of the water level above the free surface at the start of the 

analysis.  This is equal to the initial applied pressure (where η is negative) divided by the 

density and gravity, although it represents the starting pressure at the beginning of some 

calibrations performed on later periods of the tests to show that the flow is always 

laminar because k is consistent, which is discussed subsequently. 

The measured pressure at zT is about 5-10 cm below z0, and reflects the fluctuating 

water level in the riser, the hydrostatic pressure, and the inertial effects due to the 

velocity and acceleration of the water.  The order of Equation 2.3 is reduced using 

Equation 2.16 to consider the pressure change at the transducer elevation (PT), 

subtracting the hydrostatic pressure from each side of the equation. 
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Equations 2.17 and 2.18 combine to give the pressure change as a function of η, ω, LE, 

and time the same way that was done by Ostendorf et al. (2005). 

 

   (2.19) 

Equation 2.19 calibrates ω which leads to a calculation of k once FP and wA are known.   

The average characteristic velocity is calculated using an estimated ω value 

before the calibration of any test, and it may have to be reiterated a few times until it 

converges because it uses ω implicitly.  This is used exactly as Ostendorf et al. (2005) 

used it. 

    (2.20) 

This equation considers the average absolute value of the velocity over the first 1.5 

periods dividing the averaging interval into periods of rising and falling water levels, 

which is about 1.5 seconds for most tests. 

2.4.5 Minor Loss Calibration 

 A nested Fibonacci search (Beveridge and Schechter, 1970) calibrates ω for the 

tests. 

        (2.21) 
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calibrations from the start of a test performed without a specimen considering 1.5 to 2 

seconds (and 1.5 to 2 oscillations) of data.  The first two seconds of data were used for 

most tests because the characteristic velocity reflects the average velocity over the first 

1.5 seconds while the first 1.5 seconds were used for the gravel and fine gravel tests 

because the water level fluctuation dampens considerably more after 1.5 seconds. 

 The damping oscillation frequency lowers slightly with time because FP increases 

as wA decreases throughout a test, so several consecutive oscillations were calibrated to 

form a linear relationship between the two (0 to 2 seconds and 1 to 3 seconds are shown 

in Table 2.1).  Equation 2.21 calibrates FP as a function of the wA values in the range seen 

in the tests with soil for most tests (0.07 to 0.02 m/s) giving FP as a function of wA over 

the two consecutive periods considered.  The FP values are calculated as a simple linear 

function of wA with the calibrated ω from Equation 2.19, the relationship and values 

considered are omitted because of the simplicity. 

        (2.22) 
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Table 2.1: Results of tests 

 

 

Figure 2.4: Pressure fluctuations (circles) and calibrations (lines) from the static value 
(DT) 

2.4.6 Hydraulic Conductivity Calibration 

 Equation 2.19 is used with Equation 2.20 (just as described before) to calibrate ω 

to the measured pressures using the appropriate FP value for a test performed with soil.  

The permeability of the specimen is calculated using Equation 2.19 with wA and the 

calibrated FP value. 

         (2.22) 

Empty (f irst 
tw o seconds)

Empty (from 1 
to 3 seconds)

V 
Stones

H 
Stones

Alpine 
Chips

Pond 
Pebbles

marbles gravel
f ine 

gravel

Specimen Length L s  (m) 0 0 0.248 0.248 0.238 0.238 0.210 0.230 0.155
porosity n  (-) 1 1 0.40 0.40 0.48 0.43 0.35 0.44 0.44

  (-) 1 1 1.54 2.22 1.78 1.52 1.09 1.64 1.48
Initial displacement η 0 (m) 0.021 0.017 0.023 0.016 0.027 0.024 0.019 0.029 0.025

ω  (s-1) 0.62 0.51 0.84 0.88 1.20 0.89 1.24 4.65 4.77
F P  (-) 3.27 3.54 4.49 5.56 4.26 4.38 4.35 6.32 6.41
k  (m2) - - 3.6E-07 1.8E-07 1.7E-07 3.4E-07 1.2E-07 2.1E-08 1.5E-08
K  (m/s) - - 3.5 1.7 1.6 3.3 1.14 0.20 0.15

K 10 (m/s) - - 2.7 1.3 1.3 2.6 0.87 0.15 0.11
model error δ  (%) 4.8 2.7 4.4 6.5 5.5 6.7 5.2 4.3 6.4

char. riser velocity wA  (m/s) 0.074 0.056 0.060 0.038 0.065 0.063 0.046 0.031 0.030
d50  (m) - - 0.035 0.045 0.023 0.029 0.015 0.008 0.005

Reynolds number - - 230 186 163 201 76 28 16
D T 0.085 0.085 0.106 0.106 0.081 0.084 0.082 0.085 0.085
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The hydraulic conductivity at the temperature measured (20°C) is shown as K but it is 

also is calculated at 10°C (K10) which represents the insitu temperature using the 

temperature dependent ν. 

          (2.23) 

2.5 Results 

 Table 2.1 gives the results of two calibrations of the empty chamber and one 

calibration for each of the soils considered.  The calibration curves have excellent fits; the 

average absolute difference between measured and predicted pressure head over the 

duration considered being on the order of 1 mm, or 5% of the initial displacement.  The 

amplitudes of the more permeable specimens (such as Figure 2.4g through 2.4j) have less 

decay, as shown by the lower ω values because of the higher K values.  The three 

calibrations for the same gravel but with different specimen lengths have different 

amplitudes (Figure 2.4d, 2.4e, and 2.4f) as a result of the different ω values due to 

varying specimen lengths, while Table 2.2 shows that the relative standard deviation of 

computed K values for all three specimen lengths is only 5%. 

The duration of the period of the oscillations varies proportionally to  and is 

about 1 second for tests with a specimen and 0.9 seconds without a specimen.  The 

accuracy of LE (within 1 cm) is very important in obtaining a satisfactory match of 

theoretical and measured curves and is found by iterating τ values in Equation (2.1).  

Figures 2.4d and 2.4e show that there is a notable difference in the period of the H Stones 

with larger τ values (2.22) than the V stones (1.54) as expected, because the path traveled 

against the larger diameter of an oval is longer than the smaller diameter.  Although the 
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porosity and length of the two samples are the same, the period of the oscillation of the H 

Stones specimen is noticeably longer because LE is larger.  The alpine chips have slightly 

higher τ values (1.78) than the Pond Pebbles (1.52), possibly because they are more 

angular.  The marbles have the smallest τ values (1.06), likely because of their perfect 

sphericity.  The tortuosity is known to affect the hydraulic conductivity of soil but is 

difficult to estimate.  Matyka et al. (2008) used a microscopic model to find the tortuosity 

of porous media to be about 1.2 to 1.8 within the porosity values found in this study, with 

higher tortuosity values for lower porosities and longer specimens.     

The hydraulic conductivity of the marbles calculated using the Kozeny-Carman 

equation at 10°C is 0.84 m/s, within 5% of the calibrated values from the two tests 

performed; just like Ferreira et al. (2010) were within 1% for pebbles with diameter of 1 

cm.  The uniform pebbles tested by Ferreira et al. (2010) were smaller and had a higher 

porosity (0.40) than the marbles tested in this study, but the results of all of their tests 

performed within the Darcian regime also matched the Kozeny-Carman model just like 

the results of this study did.  The Kozeny-Carman model is the most commonly used 

grain size model used because it considers the porosity and surface area of the soil tested.  

Its accuracy is slightly reduced when soils considered have a large distribution of grains, 

or if the gradation is not well known.  Therefore, these two test methods yield results that 

are more precise than any found in the literature for uniform spheres. 

The K values calculated for the three gravel specimens are about twice as high as 

constant head tests performed, which is likely due to difficulty measuring and keeping the 

Marriott bubble tube used for these tests to maintain a 0.5 to 1 cm of head to the 

specimen, which was done to keep the Reynolds number the same as that for the tests 
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performed in the new permeameter.  Furthermore, the bubble typically formed a large 

meniscus when small heads were applied, and was released from the bubble tube 

relatively slowly which likely affects the applied head.  Turbulent flow was likely not 

present during these tests because the K values were consistent but frictional losses in the 

system could explain why the K values were lower; all friction in these tests was 

attributed to the soil. 

The hydraulic conductivity values of several specimens were additionally 

calibrated considering one or two later periods after the first two (i.e. from 1 to 3 seconds 

and 2 to 4 seconds) until the response was too dampened.  These calibrations yielded 

consistent K values, assuring that the flow was laminar at the beginning of the test.  If it 

were not laminar, then the beginning values calibrated with the highest velocities would 

have yielded erroneously low K values.  The relative standard deviation of the calibrated 

K values was a maximum of 10% for specimens less permeable than 1 m/s to 24% for the 

most permeable specimens (Table 2.2).  The higher variability in the more permeable 

specimens is a result of the smaller influence that the high permeability has on the 

damping of the oscillations because head losses of those tests are larger than the friction 

form the specimen permeability and there is no trend in variability of K as the oscillations 

decay.  The Reynolds numbers were calculated using d50 (the grain diameter with 50% 

finer), kinematic viscosity and the average vertical velocity through the cylinder.  The d50 

values of the stones reflect the approximate diameter facing the direction of flow (0.035 

and 0.045 m).  Table 2.3 compares the Reynolds number, d50, and K for several sources 

listed as well as results of this study. 
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The hydraulic conductivity values are compared with the ballast tested by 

Tennakoon et al (2012) who reported K values of 0.3 m/s where they were tested in a 

constant head permeameter where the hydraulic gradient was about one.  They did not 

verify that the flow was laminar, only stating that using a gradient less than four would 

result in nonlaminar flow but a calculation of their Reynolds number shows that it was 

over 10,000.  A comparison of the grain size curve of their ballast to the pond pebbles in 

this study suggests that this ballast would be about 3 m/s using the analysis in this study, 

ten times higher.  Ferreira et al. (2010) experimentally determined that a gradient of  

0.0015 or lower was required for laminar flow on pebbles with a diameter of 1 cm, so the 

gradient was clearly too high, which explains the lower hydraulic conductivity value.  

The other literature reporting hydraulic conductivities this high were found in NAVFAC 

(1986), which were cited by Trani and Indraratna (2009) who modified the Kozeny-

Carman equation using the grain size distribution and measured hydraulic conductivity 

values from several sources.  The most permeable of these data are shown in Figure 2.3 

with results from this study.  Because the grain size distribution is different for every 

sample besides the uniform pebbles and marbles, a qualitative assessment of Figure 2.3 is 

the best way to compare the hydraulic conductivity values in this study to these results.  

These tests are all about three to five times less permeable than the values found in this 

study of comparable soils.  This could suggest that the flow was not laminar for the other 

tests performed.  It could also be an incorrect temperature or porosity value which was 

likely not available and estimated, but the nonlaminar flow is more likely the explanation 

because the values are consistently lower much like the constant head tests performed on 

the gravel.  Also, their sample of uniform with a diameter of 1 cm has a hydraulic 
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conductivity value that is three times less than the value found by Ferreira et al. (2010), 

who had K values that matched the Kozeny-Carman model this study.  The Kozeny-

Carman model can be used with the results of this study to evaluate the differences the 

grain shape has on K as well as the parameters tested e.g. (grain size and distribution, n, 

and τ). 

Table 2.2: Statistics of calibrations 

 

Table 2.3: Reynolds number comparison 

 

2.6 Conclusions 

A permeameter has been designed and constructed to determine the hydraulic 

conductivity of gravels ranging from 0.1 to 1 m/s.  The tests are commenced by applying 

200 to 300 Pa (2 to 3 cm of water level displacement) of air pressure to a water column in 

a small-diameter riser above a saturated cylinder with gravel specimen.  The pressure is 

V 
Stones

H 
Stones

Pond 
pebbles

Alpine 
chips

marbles gravel

number of tests 
considered

3 3 2 2 2 3

number of periods 
considered

9 7 6 6 6 3

average K  (m/s) 3.0 1.7 3.6 1.7 1.1 0.20

standard deviation 
of K  (m/s)

0.72 0.39 0.75 0.19 0.11 0.01

relative standard 
deviation of K  (m/s)

0.24 0.23 0.21 0.11 0.10 0.05

K 
(m/s)

Reynolds 
Number  

(-)
d10 (m) d50 (m)

Specific 
discharge 

(m/s)

Plain + Morrison 0.010 100 1.3E-03
Ferrierra OFG 0.040 10 3.0E-03 7.0E-03 6.0E-04

Ferrierra pebbles 1.0 25 1.0E-02 1.0E-02 2.0E-03
Cedergren Gravel 1 0.40 31 1.5E-02 2.0E-02 1.5E-03
Cedergren Gravel 2 1.6 151 2.8E-02 3.3E-02 4.6E-03

Fine gravel 0.15 16 3.0E-03 5.0E-03 3.3E-03
Gravel 0.20 28 6.0E-03 8.3E-03 3.4E-03

Marbles 1.1 76 1.5E-02 1.5E-02 5.1E-03
Alpine Chips 1.6 163 1.6E-02 2.3E-02 7.2E-03

Pond Pebbles 3.3 201 2.1E-02 2.9E-02 7.0E-03
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rapidly released allowing water to flow through the base of the cylinder and the specimen 

while the water column level oscillates about the static value in an underdamped 

response.  Fluctuations of the water level in the riser are measured and recorded at a 

frequency of 100 Hz.   

The underdamped responses oscillate about the static value at frequency at about 

1 Hz and are sensitive to the hydraulic conductivity of all tested materials.  The inertia 

and friction in the permeameter affecting the response are calculated and verified by the 

small model error while the closed form analytical model developed here calibrates the 

permeability using a closed form model.  Using this model that considers the 

permeameter geometry, the permeameter effects can be estimated separately by 

calibrating the model results with data from tests performed without a specimen.  The 

hydraulic conductivity is then calibrated by accounting for the head losses of the 

permeameter for each test with a specimen.  The average error in predicting the head 

values is 1.3 mm, or about 5% of the initial displacement for all tests.  The permeability 

values calibrated for three gravel tests with different specimen lengths are within 5% of 

the median value, which is very precise because the measurements of specimen length 

cannot be performed with much better precision.  The permeability value of the marbles 

calculated using the Kozeny-Carman equation is within 5% of the calibrated value, which 

is the most accurate grain size model to use since the specific surface is known.  
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CHAPTER 3 

3 USING THE KOZENY-CARMAN EQUATION TO PREDICT THE 
PERMEABILITY OF GRAVELS 

 The permeability and tortuosity of gravel specimens ranging from (2x10-8 m2 to 

2x10-7 m2) were calibrated to measured pressure readings using the model presented by 

Judge et al. (in press) which utilizes a modified permeameter that induces oscillatory 

responses.  The porosity and grain size distribution of the specimens were measured 

while the surface area was determined by evaluating the shape and angularity of 

subrounded and angular soils each arranged to the same six different gradations.  The 

Kozeny-Carman equation was used with these parameters including the tortuosity as 

suggested by Scheidegger (1957) and paired with the measured permeability values that 

are more precise and accurate than most data in the literature.  The Kozeny-Carman 

equation was used to empirically determine the packing factor which was observed to 

increase by a factor of the tortuosity cubed for these tests as well as select results from 

Judge et al. (in press) that have different tortuosity values.  The permeability values of 

the 12 specimens were predicted to be within an average factor of 1.2 of the measured 

values and all within a factor of 1.4. 

3.1 Introduction and background 

Gravels are extensively used for roadway construction, drainage curtains, and 

railroad ballast.  In some projects the gravel must be able to provide a minimum and high 

enough rate of drainage so engineers and contractors often need to measure it directly to 

prove that their source material or an existing material has an acceptable permeability.  

Chapuis and Aubertin (2003) noted that the accuracy of laboratory permeability tests 
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(e.g., ASTM 2012) for coarse materials is often questionable because the measured 

values from three replicate tests may vary significantly.  This lack of precision partially 

depends on test equipment and procedures in addition to the natural variability of the 

tested material.   As an alternative to making direct measurements, empirical correlations 

with grain size are often used to estimate the permeability since a grain size distribution 

test is quick and easy to perform, but such correlations are typically considered to only 

give an order of magnitude estimate.  However, if several reliable soil properties are 

considered, the accuracy of these correlations can be enhanced.  This is demonstrated and 

verified in this paper for two coarse gravels because the predicted permeability values of 

the presented soils are very close to the measured results tested using the permeameter 

and theory described by Judge et al. (in press ). 

Judge et al. (in press) calibrated the permeability and tortuosity of gravels and 

materials using a model that considers a modified permeameter.  It was used by applying 

an instantaneous change in head to a smaller diameter riser above the specimen, inducing 

an oscillatory response which decays as a function of the permeability just like in an 

underdamped slug test (Ostendorf et al. 2005).  Included in their tests were perfectly 

spherical marbles and oblong (and anisotropic) stones that were less spherical than the 

other soils, and tested in two orientations yielding different tortuosity values.  The 

permeability of the marbles calibrated by Judge et al. (in press) was equal to Kozeny-

Carman model whether the tortuosity was considered or not because the tortuosity was 

found to be small and the surface area was known.  The marbles were used for 

comparison and a basis for the packing factor because spheres were empirically 

investigated by Carman (1956).  The anisotropic stones tested with the flow in the 
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direction of the long axis of the stones and against it were also evaluated here because the 

only different soil parameter is the tortuosity which has a clear effect on the permeability.  

These findings led to the motive to use this equation with results from natural soils of 

complex shapes and tortuosity values tested by this device, which additionally required a 

means of quantifying the surface area of the soil tested. 

The purpose of this manuscript is to use the measured permeability, grain size 

distribution, shape, porosity, and tortuosity values from the tests performed on two soils 

evaluated using the model of Judge et al. (in press) to assess the accuracy of the Kozeny-

Carman equation which has a packing factor that can be empirically evaluated.  The 

effects of the shape factor, porosity, and grain diameter and grain size distribution on the 

permeability can be qualitatively compared by considering the tests performed on two 

soils of different angularity arranged to different grain size distributions.  Figure 3.1 

shows a photograph of these two soils collected from a gravel pit and their gradations of 

well (log normally distributed), uniform (with soil from two adjacent sieves), and skew 

(in between the other two, commonly found). 

The Kozeny-Carman equation is the most accurate grain size model that can 

currently be used for estimating the permeability (k) because it considers the porosity (n) 

and surface area of the soil tested.   

         (3.1) 

The packing factor (CPK) was empirically determined by Carman (1956) to be equal to 5 

for uniform spheres, and this value has been used by most researchers since then.  The 

permeability is shown as k in (m2), and deff is the effective diameter (usually taken as the 

average or a lower bound value).  The shape factor CSH varies from 6 (for round) to 8 (for 
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angular and surrounded soils), coming from Equation 3.2 where SA is the surface area 

and VS is the volume of solids.   

          (3.2) 

The shape factor reflects the effects of the surface area for a given volume of soil (with 

an effective diameter), as described by Fair and Hatch (1933).   

Chapuis and Aubertin (2003) evaluated the Kozeny-Carman equation by 

evaluating literature results of specimens with a variety of grain size distributions and 

void ratios that had a known grain size distribution and a measured k value.  They 

considered the distribution of grain sizes and found the Kozeny-Carman results to be 

within a factor of three of the measured results for soils where k ranges over orders of 

magnitude, some of which had k values higher than 1 x 10-8 m2.  The observed 

discrepancies were attributed to practical reasons such as inaccurate surface area values, 

unsteady flow, unsaturated specimens, etc.  Theoretical reasons were said to also include 

anisotropy, motionless water in the specimens, or bridging within the specimen and 

roundness coefficients.  The accuracy and precision of the measured k and grain size 

distribution values of the tests they considered were unknown, and are very likely less 

than satisfactory in some cases, especially for soils with high k.  The predicted 

permeability was within a factor of three times more or less than the measured k and 

noticeably higher than measured for most gravels.  If more accurate soil properties were 

used then the Kozeny-Carman equation would predict values with better accuracy.   

Ferreira et al. (2010) performed constant head tests on marbles and open-

framework gravel using a megapermeameter.  These tests yielded k values that matched 

those calculated using the Kozeny-Carman equation on marbles, which verified that their 
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procedure of determining k was valid, just as Judge et al. (in press) did.  Ferreira et al. 

(2010) also tested one specimen of open-framework gravel and used the Kozeny-Carman 

equation to solve for k but did not use it to validate their method for that specimen 

because the shape factor was unknown.  Having reliable soil parameters such as the 

porosity, tortuosity, and effective diameter determined by a sieve analysis for a tested soil 

and pairing them up with more accurate k values allowed for further assessment of the 

Kozeny-Carman equation in this study.  The tortuosity squared was suggested to be 

considered in the denominator of Equation 3.1 by Scheidegger (1957), Costa (2006) and 

a few others, though it has been rarely evaluated and used.  Furthermore, if the roundness 

and angularity were estimated by a method of determining the shape factor, this equation 

would be more accurate (Carman 1956). 

 

Figure 3.1: Grain Size Distribution of the Brown Stone (BS) and Tap Rock (TR).  Tap 
Rock is shown in the left of the photograph and Brown Stone is shown in the right. 
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3.2 Tests performed and procedures 

 The grain size distribution and porosity of gravel specimens are typically 

available while the other factors are rarely known or used.  The packing factor is usually 

set at 5 while the shape factor is usually given a value from 6 to 8.  Judge et al. (in press) 

performed laboratory permeability tests on gravels and calibrated k and τ with precision 

within 10% of replicate tests for specimens as permeable as 1 x 10-8 m2.  Three tests were 

performed on each specimen; the results of two of these tests were averaged and used.  

The shape and angularity were quantified independently in this paper using 

measurements and theory.  The following sections describe the various soil and specimen 

properties considered and how they were determined for use in Kozeny-Carman equation.  

The shape factor is quantified, the tortuosity is used, and the packing factor is considered 

using a new equation. 

3.2.1 Porosity and tortuosity 

The tests performed had a specimen length (LS) of 0.23 meters.  The porosity was 

determined by measuring the mass of the test specimen and dividing by the volume to get 

the dry density.  This value was divided by the density of solids (ρS) which was assumed 

to be 2.7 g/cm3 and subtracted from one.  The volume of solids (VS) of each specimen 

was calculated by dividing the total mass (mT) by the density of solids (ρS) using Equation 

3.3.  This is also done for the volume of individual grains by dividing the mass of the 

grain (mG) by ρS using Equation 3.4. 

          (3.3) 

          (3.4) 

STS mV 

SGG mV 
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The tortuosity (τ) of the specimens was determined by calibrating the measured 

pressure of a test to the model of Judge et al. (in press) simultaneously with k.  The 

porosity causes higher pore velocity which increases the inertial effect and consequently 

the time period (tC) of each fluctuation seen in Figure 3.2 (one second).  The permeability 

of the soil causes a decay of the oscillation, dampening the amplitudes h (t) which peak 

(from the static value h0) when tC is a multiple of 0.5.  The pressure difference through 

the specimen was integrated, considering the changes in velocity through the porosity 

along the calibrated average path (λ) of the water through the specimen length (Figure 

3.3).  The tortuosity was then calculated with the calibrated λ as it is defined in Equation 

3.5. 

          (3.5) 

The only other method to determine τ found in the literature was to estimate it 

using tritium breakthrough curves, results of a microscopic model of overlapping spheres 

by Matyka et al. (2008), or to use electrical methods as suggested by Scheidegger (1957).  

The tortuosity ranged from 1.1 to 1.4 for the two gravels tested in this study, which is 

within the theoretical range of 1.1 to 1.2 predicted for coarse soils by Hamamoto et al. 

(2012).  Two specimens of oblong stones tested by Judge et al. (in press) were arranged 

where τ was calibrated to be 2.2 (measured k = 3.2 x 10-7 m2) when the grains were 

aligned with the long axis against the flow and 1.5 (measured k = 1.8 x 10-7 m2) in the 

direction of the flow.  This shows that tortuosity affects k because anisotropy was the 

only difference between the two.  It should also be noted that τ was not directly used to 

measure k, but rather the response of the horizontally aligned specimen decayed more 

rapidly (due to lower k) and had a slightly longer period (yielding a higher τ).  These 
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resulted in different calibrated values for k and τ before consideration of the Kozeny-

Carman equation with all other parameters equal.  This further verifies that τ needs to be 

considered in the Kozeny-Carman equation at least for highly permeable soils where τ is 

significant (greater than 1.1). 

Matyka et al. (2008) noted that k decreases linearly with τ2 using the analogy of 

flow through curved pipes divided by the straight distance.  Scheidegger (1957) also 

noted this and included τ2 in the denominator of permeability equations he proposed in 

the form of the Kozeny-Carman equation.  Costa (2006) noted that the permeability 

decreases linearly with τ2 because the packing factor increases as a function of tortuosity.  

The model presented by Judge et al. (in press) gives τ for soils where k is greater than k = 

1.8 x 10-8 m2 because the inertial effects are seen but not less, so testing gravels of high 

permeability is an advantage here. 

 

Figure 3.2: Measured and calibrated pressure head for the Brown Stone small well graded 
specimen 
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Figure 3.3: Tortuosity through a specimen of soil (from Fair and Hatch (1933) 

3.2.2 Grain size distribution 

The grain size distribution was determined using a nest of nine sieves in order to 

capture more detailed information on the grain size distribution as compared to the 

common practice of using fewer sieves with larger gaps between consecutive sieve sizes.  

The sieves used range from 9.5 to 50 mm opening, as shown in Figure 3.1.  Carrier 

(2003) noted that the effective grain diameter is typically a logarithmic function between 

adjacent sieves and the diameter is best represented by Equation 3.6 where ds is the 

smaller sieve diameter and dl is the larger sieve diameter.   

          (3.6) 

This diameter represents the theoretical diameter of the smaller two axes of a gravel 

particle passing through a sieve while the third axis is usually the longest one.  It is 

typical to calculate the surface area of a grain with this effective diameter (assuming a 

sphere) and then comparing this value to the average diameter of the soil tested.  This 

Specimen 
Length (LS)
grey arrow

Path though 
pore spaces 

(λ)
black arrow
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effective diameter of a sphere is commonly used with the surface area to back calculate 

the shape factor of the two soils to compare to the values given for the visual examples 

provided by Fair and Hatch (1933).  An ellipsoid was considered for the soil grains in this 

study for better accuracy. 

The ellipsoid shape was first measured, and then the angularity of the surface was 

determined by considering the edge of the grains to the perimeter in three projected 

sections of the grain.  The surface area of a grain is affected by the shape and angularity 

of the soil, which was separately quantified in order to calculate the surface area to 

volume of solids ratio of ellipsoid shaped grains with accuracy.  The large particles were 

easier to evaluate than the smaller ones, which was another advantage of using this 

method with coarse gravel. 

3.2.3 Soil grain shape 

 A uniform sphere has a shape factor of 6 defined in Equation 3.2.  A sphere with a 

surface area that is rougher by an angular factor would have a shape factor equal to 6 

times that angular factor (Figure 3.4) which is typically assumed a value of 6 to 8 based 

on the examples provided by Fair and Hatch (1933) but is sometimes measured.  Since 

coarse grains commonly resemble ellipsoids rather than spheres, the ellipsoid shape is 

considered in this paper.  A smooth grain with the shape of an ellipsoid can have a shape 

factor as high as 8 or so while a rough one can be even higher.  The shape is first 

considered, and then the angularity is considered because the surface area of an ellipsoid 

cannot be calculated with a unique shape factor like a sphere can be.  A surface area to 

volume ratio is needed for each of the nine grain size groups of deff to calculate an 

average value for CSH.  
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The shape of the ellipse of a given gravel particle was first determined by 

measuring the three principal axes.  The three measured axes (am, bm, and cm) of three 

grains randomly selected from each of the nine size groups of two soils considered were 

measured using a micrometer to determine the shape of the grains as illustrated in Figure 

3.4.  The axes measured are often larger or smaller than the axes that would calculate an 

ellipsoid of an equivalent volume because of the irregular shape of the grains.   

The volume factor (CV) was calculated as the volume of a grain divided by the 

volume of an ellipsoid calculated using the measured axes as 

         (3.7) 

The volume factor was used to adjust the measured axes to adjusted axes that retain the 

measured shape but calculate the actual volume using Equations 8 through 10. 

          (3.8) 

          (3.9) 

          (3.10) 

This step was necessary because the overall surface area of the grain differs from that of 

an ellipsoid formed from measured axes by different proportions than it does from the 

axes forming the same volume.  This extra step provides better accuracy and requires 

several steps. 

Figure 3.4 shows that there are three projected sections of the grains considered 

that are used to determine the perimeter of the edge of each projected section, which were 

used to calculate the surface area of an ellipsoid of the same volume as the grain.  These 

edges were compared by measuring the perimeter edge of the projected sections.  The 
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average ratio of the perimeter of the edge of the projected section to the perimeter of the 

ellipse of that projected section is the same ratio of the surface area of the grain to the 

ellipsoid.  This factor was then used to determine the average surface area to volume ratio 

of grain. 

 

 

Figure 3.4: The effects of angularity and shape on the shape factor (CSH) and a 
comparison of the measured axes vs. the equivalent axes and their effect on the volume 

factor (CV).  Note that:  The volume and shape of ‘a’ equals ‘b’ and the volume and shape 
of ‘c’ equals ‘d’. 
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Axis showing equivalent 
area of Ellipsoid (smaller 

has CV < 1)
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3.2.4 Calculation of grain angularity and surface area using perimeter 
measurements 

Photographs of each projected section were taken and imported into AutoCAD.  

They were scaled by including a marble with a known diameter at the same distance from 

the camera as the grains considered.  The grain edges were then traced, providing the 

perimeter of each.  The perimeter (P) of each projected section differs from the perimeter 

of an ellipse with the same area (Pe) because the edge is rough as shown in Figure 3.4.  

Equation 3.11 is used for the perimeter of an ellipse. 

                 (3.11) 

The surface area factor (CSA) is calculated using the three projected sections to determine 

how much greater the perimeter is for each section than an ellipse of similar shape and 

equivalent area.   

          (3.12) 

The shape of the grain is retained using the adjusted axes (a, b, c) and the volume of the 

ellipsoid is equal to the volume determined from weight using Equation 3.4.  The 

angularity is considered by dividing the perimeter of the grain by the perimeter of the 

ellipse.   

Adjusting the measured axes to represent the same volume was required because 

errors in the lengths of the axes usually result in erroneously large values of the surface 

area of the ellipsoid by proportions that vary with every shape (Figure 3.4).  The surface 

area of an ellipsoid (SAe) with the same volume and shape of the grain considered is first 

calculated using Knud Thomsen's formula where p is a mathematical factor equal to 

1.6075. 
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    (3.13) 

There was no trend in CSA with grain size or plane so the values of the larger four 

grains were all averaged (Figure 3.5).  The surface area of each grain (SAG) considered 

was divided by the mass of the grain.  Although the grains are not spherical, they all have 

a similar shape so the surface area only varies with volume (or deff) for a given shape.  

The data followed this trend from the smallest to the largest as expected, with some 

outliers due to grains that differ broadly or were tough to measure accurately such as the 

smallest ones.  The largest grains provided the most reliable data, so a curve was fit 

through those data to represent all the grain sizes.  The average shape factor obtained 

Equation 3.16 using the data from Figure 3.5 is used for each of the nine groups.   

          (3.14) 

         (3.15) 

         (3.16) 

 

Figure 3.5: Surface area vs. effective diameter for the grain sizes considered 
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3.2.5 Packing factor 

A dimensionless packing factor of 5 was empirically found to work for glass 

spheres by Carman (1956) who noted that it was theoretically equal to 2 for straight 

tubes, but increases as the tubes are tortuous and the channels have a higher ratio of cross 

sectional perimeter squared to area.  The tortuosity squared is sometimes suggested in the 

denominator of the Kozeny Carman equation but it has rarely been used because τ values 

are rarely obtained.  Here, Equation 3.1 is used as is with the measured tortuosity 

considered in the packing factor. 

The tortuosity considered is theoretically squared for water flow though inclined 

pipes (Costa 2006), and it also is for air flow through dry soil (Moldrup et al. 2004) who 

found the exponent to become higher than two when water became present.  This same 

phenomenon is believed to occur for water flow through soils with complex tortuosities 

due to tortuous paths that have more variability within the specimen, even with the same 

average value.  This suggests that the equation should have tortuosity to a power higher 

than two in the denominator.  The packing factor is calculated with this tortuosity to a 

power of three which was observed to predict permeability values close to those 

measured as shown in Table 3.1 where the values of the exponent (η) are 3.3 on average 

with only a slight trend of an increase in diameter. 

          (3.17) 

The packing factor is still very close to 5 for the marbles whether or not τη is considered 

because it is so close to one. 
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Table 3.1: Permeability predictions and soil parameters using the Kozeny Carman 
equation with the packing factor as described in Equation 3.17 with η = 3. 

 

3.3 Results 

Equation 3.1 was used to predict the permeability of the twelve specimens with 

approximations of CSH taken from Fair and Hatch (1933) as noted in Table 3.1.  The 

permeability is predicted more than twice as high as the measured with a packing factor 

of five.  These findings along with the anisotropic stones tested by Judge et al. (in press) 

were motives to consider the tortuosity which properly lowers the predicted k.  The 

surface area method described in this paper was found to yield CSH values that are very 

close to the approximations given by Fair and Hatch (1933) which suggest that it is a 

valuable way to determine these factors.  The consideration of the tortuosity cubed in the 

packing factor using Equation 3.17 provides k values lower than the original 

d eff 

(mm)
n  (-)

(V S/ SA ) 

(mm-1)
τ  (-) η k m  (m2) k p  (m2)

δ 

(k p /k m )

BS Big well graded 24 0.367 2.81 1.29 3.8 7.4E-08 9.1E-08 1.23
BS Big skew graded 22 0.374 2.95 1.14 4.6 9.6E-08 1.3E-07 1.35

BS Big uniform 21 0.416 3.12 1.27 4.3 1.5E-07 2.0E-07 1.36
BS Small well graded 16 0.375 2.13 1.39 2.3 6.3E-08 5.1E-08 0.81
BS Small skew graded 16 0.389 2.21 1.26 3.1 7.5E-08 7.7E-08 1.02

BS Small uniform 16 0.405 2.26 1.28 3.5 8.0E-08 9.0E-08 1.13
TR Big well graded 24 0.380 2.52 1.21 3.4 9.5E-08 1.0E-07 1.08
TR Big skew graded 22 0.398 2.66 1.14 4.8 1.3E-07 1.6E-07 1.27

TR Big uniform 22 0.420 2.82 1.20 4.4 1.6E-07 2.0E-07 1.28
TR Small well graded 16 0.392 1.94 1.24 1.6 8.8E-08 6.5E-08 0.74
TR Small skew graded 16 0.399 1.99 1.28 2.4 7.8E-08 6.7E-08 0.86

TR Small uniform 16 0.416 2.03 1.13 3.8 1.1E-07 1.2E-07 1.10
Judge et al. (2013)

marbles 15 0.350 2.50 1.06 1.7 1.1E-07 1.2E-07 1.10
V Stones 15 0.410 5.56 1.54 3.1 3.2E-07 3.4E-07 1.06
H Stones 15 0.410 5.56 2.22 2.4 1.8E-07 1.1E-07 0.63

Average: 0.89
BS C SH  = 6.8 Standard Deviation: 0.22
TR C SH  = 7.6 Relative Standard Deviation: 0.25
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overpredictions within an absolute factor of 1.4 of the measured value, an average of 1.2, 

and relative standard deviation of 0.25.   

          (3.18) 

         (3.19)   

Equation 3.18 gives the factor δ indicating whether the predicted permeability (kp) 

is greater or less than it was measured permeability (km), so an average value of one 

indicates accuracy.  Equation 3.19 indicates the absolute factor δA equal to one or greater 

for predictions greater or less than km, so an average value of one indicates both accuracy 

and prediction.  The tests were all performed in water at 20°C which is considered in the 

model of Judge et al. (in press).  The corresponding hydraulic conductivity is easily 

computed as usual by taking into account the gravity g and kinematic viscosity ν at a 

specified temperature for all permeability calculations.   

          (3.20) 

The uniform specimens have higher k, as expected due to their higher porosity.  

Higher grain sizes result in higher k values as expected because the surface area ratio is 

lower, the pore spaces are higher, and the tortuosity is usually slightly lower.  The 

uniform specimens have a porosity about 2 percentage points higher than the well graded 

specimens, which are about 1.5 percentage points higher than the skew graded 

specimens.  The good precision seen here is needed because small variations in porosity 

result in variations in permeability larger than the other factors that vary from test to test 

as shown in Table 3.2.  The angular soil has more surface area per volume is slightly, but 

is more permeable because its higher void ratio has a stronger effect on k.  The porosity 
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of each of the Tap Rock specimens was larger than the Brown Stone specimens of the 

same grain size gradation by about 1.5 percentage points which is likely due to its high 

angularity. 

Table 3.2: Comparison of the effects of parameters on the permeability 

 

3.4 Conclusions 

In consideration of the various factors presented and discussed in the previous 

section, an updated method of using the Kozeny-Carman equation for gravels is proposed 

that offers a method of determining the surface area of a specimen and incorporates the 

measured tortuosity into an empirically determined equation for the packing factor which 

has been theoretically investigated without conclusive results.  The method presented of 

determining the surface area of two gravels is shown to give results that are very 

consistent and shape factors from two of the four examples provided by Fair and Hatch 

(1933).  This suggests that this method works and can be used for a better approximation 

of the surface area of any specimen that does not match one of the four examples 

presented by Fair and Hatch (1933).  The procedures presented can be used for coarse 

sands as well, but it is more difficult to determine the surface area and tortuosity of them. 

BS          
C SH  = 6.8 

d eff  ~ 16 mm

BS          
C SH  = 6.8 

d eff  ~ 23 mm

TR          
C SH  = 7.6 

d eff  ~ 16 mm

TR          
C SH  = 7.6 

d eff  ~ 23 mm

k m  = (m2) 3.4E-08 7.6E-08 5.7E-08 9.4E-08

n = 0.375 0.367 0.392 0.380
τ = 1.39 1.29 1.24 1.21

k m  = (m2) 6.5E-08 1.5E-07 5.8E-08 1.6E-07

n = 0.389 0.374 0.399 0.398
τ = 1.26 1.14 1.28 1.14

k m  = (m2) 7.5E-08 1.7E-07 1.2E-07 1.9E-07

n = 0.405 0.416 0.416 0.420
τ = 1.28 1.27 1.13 1.20

Well graded

Skew graded

Uniform graded
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The predicted permeability of the marbles reported by Judge et al. (in press) using 

the suggested packing factor of 5 without considering the tortuosity is still very close to 

the measured value using this new equation because the marbles have a low tortuosity.  

The predicted permeability of the stones tested in two orientations would be the same 

using this equation, but the measured k is not the same because τ is much larger for these 

specimens with all other parameters equal.  The effects of the grain size distribution, 

particle size, and porosity of two different soils tested in this study are shown with fine 

resolution in Table 3.2.  Figure 3.6 shows the predicted versus measured k for the 

specimens (with an average of 1.2) which is considerably more precise than a factor of 

three which is considered to be a good correlation (Chapuis and Aubertin 2003) because 

of the high accuracy of the soil parameters and the permeability values measured using 

the model of Judge et al. (in press). 
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Figure 3.6: Predicted vs. measured permeability using Equation 3.1 and 3.17 
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CHAPTER 4 

4 SLUG INTERFERENCE TESTS CONSIDERING THE EFFECTS OF 
WELLBORE STORAGE IN THE TESTED AND OBSERVATION WELLS 

 Slug interference tests were performed in pairs of wells installed with filter packs 

in a floodplain deposit of silty sand in Dedham MA by slug testing one well and 

measuring the response in both wells.  These tests were run to determine the hydraulic 

conductivity and specific storage of the tested deposit.  The hydraulic conductivity 

ranged from 4x10-6 to 1.5x10-5 m/s and the specific storage ranged from 2x10-5 to 7x10-4 

m-1.  The wellbore storage and filter pack effects on the measured pressure of both wells 

are modeled.  The calibrated hydraulic parameters of the slugged and observation well 

matched well using the KGS Model by Hyder et al. (1994) only when modified to 

consider the filter pack and the wellbore storage in the observation well. 

4.1 Introduction and background 

Slug testing is the most common method used to determine a quick estimate of the 

hydraulic conductivity of a natural formation.  The results often do not match the results 

of pump tests or other available results so they are often considered a preliminary test.  

Pump test results represent a larger and more native volume of soil than slug test results 

and are more affected by infrequent conduits of high permeability, so higher values are 

usually obtained (Butler and Healey 1998).  Incomplete well development and dynamic 

skins also have an effect on the results of slug tests which change over time if wells are 

tested again after the first time (Butler 1997).  Leaking boreholes and improperly 

installed wells cause results to differ (Black 2010). 
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 Butler (1997) summarized the methods of analysis of slug tests that affect the 

hydraulic conductivity results.  Uncertainties of soil and formation properties in addition 

to well properties provide different soil properties for any analysis.  Results are 

sometimes fit to type curves that are a function of hydraulic conductivity and specific 

storage and often times the data are forced to fit a curve that does not represent the soil 

properties so these two parameters are both compromised.  Misinterpretation of the initial 

displacement of water is another reason that results may differ.  The wellbore storage 

(water in the open well) and the wellskin (water in the highly permeable screen) 

illustrated in Figure 4.1 are not always considered in slug tests.  Different methods of 

analysis provide results within about a half an order of magnitude of error, showing that 

either not everything is being considered in all solutions, or that some assumptions are 

wrong.  Performing slug interference tests using the proper model and evaluating the data 

from one test utilizing two wells eliminates most of the problems listed. 

Slug interference tests are performed by measuring and recording the water level 

in an observation well at a detectable distance (within about 10 meters), in addition to the 

well that was perturbed with a slug (slugged well) to determine the properties of the soil 

between the wells.  The slug interference tests performed in this analysis consider 

wellbore storage (water in the open well) and wellskin (well filter pack) properties in 

both wells because they were both found to have a strong influence on the results.  Prats 

and Scott (1975) showed that the effects of wellbore storage in the observation well 

manifest as a delay in time and diminishment of the peak of the head amplitude which 

results in underestimates of hydraulic conductivity and overestimates of specific storage.  

The effects of wellbore storage in the observation well on slug interference tests were 
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evaluated by Novakowski et al. (1989a) by considering the analysis of hypothetical tests 

performed with and without a packer to prevent flow in the observation well.   

Slug interference tests were also evaluated analytically by Hyder et al. (1994) of 

the Kansas Geological Survey (KGS) with considerably more detail than other models.  

They considered partial penetration, the wellbore storage, anisotropy (when appropriate) 

and wellskin from the filter pack in the slugged well.  They did not consider wellbore 

storage and wellskin were in the observation well because the model assumes that it is 

negligible or that the observation well was packed off to prevent flow.  Presenting a 

model that evaluates the responses in the slugged and the observation well is a good way 

to confirm that the properties calculated are reliable because they both test a similar 

volume of soil at the same time.  The hydraulic conductivity and specific storage are 

underestimated for the slug tests if the wellbore storage is not considered in the 

observation wells when significant (Novakowski 1989).  The filter pack hydraulic 

conductivity is so high that the wellskin space behaves as if it is open.  The change in 

head in the observation wells was found to be greater than the head outside the wellskin.  

This is because the surface area of the filter pack in contact with the formation is double 

that of the riser that was originally considered, so that is considered in the model 

presented in this paper.   

Others have also evaluated slug interference tests in a semi-analytical way.  Peres 

et al. (1989) developed a model for slug interference tests by transforming the data to 

equivalent pump test data.  Spane (1996) used this model to show the effects of the 

aquifer thickness, hydraulic conductivity, anisotropy, storage, yield, and radial distance 

on the response of the water level.  The Kansas Geological Survey (KGS Model) is a 
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semi-analytical model developed by Hyder et al (1994) to evaluate these tests because 

they are very sensitive to partial penetration and the wellskin of the slugged well.  The 

KGS Model is used in this paper because it is simpler to use and it considers more soil 

and formation properties than the other methods, but it is modified to consider wellbore 

storage in the observation well using the equations developed by Novakowski (1989a) 

who considered the wellbore storage in the observation well using a semi-analytical 

model similar to that of Hyder et al. (1994). 

  

Figure 4.1: Definition Sketch 
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4.2 Model and boundary value problem 

The problem of interest for slug interference tests is flow to or from the slugged 

well due to the recovery of a relatively instantaneous displacement of water, and the 

water pressure at a radial distance during a slug test.  The boundary conditions were 

outlined by Hyder et al. (1994) who considered vertical flow and partial penetration for 

slug testing.  The governing equation for radial flow into a well due to an instantaneous 

change of water level in a slightly compressible, unconfined aquifer neglecting vertical 

flow is given by Equation 4.1 where the hydraulic head in the aquifer (h) is assumed to 

not change with the elevation above the impermeable bottom of the deposit (z).   

         (4.1) 

The hydraulic conductivity of the formation is shown as K, r is the radial distance from 

the centerline of the well, S is the specific storage of the soil, and t is time. 

The initial and boundary conditions of Equation 4.1 are illustrated in Figure 4.1 

which shows that there is no change in head before the start of the slug test and at a radial 

distance where h is equal to the initial head in the aquifer hi and H0 is the applied slug. 

         (4.2) 

         (4.3) 

         (4.4) 

The wellbore balance at the wellskin at the radius of the skin (rsk) for Equation 4.2 is 

given by Equation 4.5 where Q is the flow into the well, hSL is the head in the slugged 

well, and rSK is the radius of the skin. 
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The length of the skin (LSK) is used in all analyses as opposed to the actual screen length 

because the skin is orders of magnitude higher in hydraulic conductivity.  The continuity 

between the skin and the formation where auxiliary conditions differ by the effects of 

partial penetration are given for the slugged well during a slug test. 

   
 
   

(4.6) 

The head loss across the skin is negligible because the hydraulic conductivity of the skin 

is orders of magnitude greater than the deposit. 

4.2.1 Analytical model of slug interference tests 

The model of Hyder et al. (1994) was used to evaluate the slug tests, but it was 

modified to consider the wellbore storage in the observation well considering the 

equations provided by Novakowski (1989) who did consider the wellbore storage in the 

observation well using a semi-analytical model.  Also, the filter pack is considered to 

allow more water to enter the well by considering a mass balance of water entering the 

observation well.  Hyder et al. (1994) neglected wellbore storage to calculate the head 

inside an observation well expressed in LaPlace space.  Doing so is equivalent to 

evaluating the head in the observation well as piezometric head shown here in Equation 

4.7a which comes from Hyder et al. (1994) where CDS is the wellbore storage factor, hSL* 

is the Laplace transform of the head in the slugged well (hSL), h* is the Laplace transform 

of h in the aquifer, K0(x) is a Modified Bessel function of the zero order, K1(x) is a 

Modified Bessel function of the first order, p is the Laplace transform coefficient, and rD 

is the dimensionless radial distance r/rSK.  Equation 4.7a can be used for the slugged well 

by setting rD=1 or to evaluate h in the aquifer at rD>1. 

),(),( tzhtzhSL  0,0,  tbzrr SK
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         (4.7a) 

        
 (4.7b) 

       
  (4.7c) 

        
 (4.7d) 

Equation 4.7a is easily evaluated using the Stephest algorithm in a visual basic code 

through Microsoft Excel provided by Esling and Keller (2009).  Equation 4.7a is edited in 

this paper to reflect the wellbore storage by exploring the LaPlace equations used by 

Novakowski (1989b).  This provides the head in the well, which differs from the water 

pressure in the soil at that radial distance from the slugged well. 

 Novakowski (1989b) considered the same problem that Hyder et al. (1994) 

considered, giving the equations for hydraulic head in the slugged well, the aquifer, and 

the observation well.  He presented type curves based on theoretical results evaluated 

using an analytical model that is used to calculate the specific storage and hydraulic 

conductivity.  His solution considers the hydraulic head in an observation well with and 

without wellbore storage.  The solution without wellbore storage gives the head in the 

aquifer (piezometer head) given by Equation 4.7a.  His solution for the head in the 

observation well considering wellbore storage is given by Equation 4.8a where CDO is the 

wellbore storage factor in the observation well (Equation 4.8d), which is the same as CDS 

in this study because the radii of the slugged and observation wells are the same.   
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(4.8b)

 

       

(4.8c) 

          
(4.8d)

 

Equation 4.8a is used with Equations 4.8b and 4.8c and rewritten with CDS, p
1/2, and K1(x) 

to show all terms. 

  (4.9) 

Equation 4.9 is then rewritten using Equations 4.7b, 4.7c, 4.7d, and 4.8d. 

       
(4.10)

 

Equation 4.11 evaluates a case of Equation 9 as head in a piezometer ignoring 

wellbore storage to ensure that it matches the solution of Hyder et al. (1994) by setting 

CDO to zero. 

  
     (4.11) 

Equation 4.11 can be rewritten using simplified terms and is in fact equal to Equation 

4.7a, which justifies using Equation 4.10 to solve for the head in the observation well 

considering the wellbore storage in the observation well.   

 Equation 4.10 gives the head in an observation well considering that the screen 

and casing of the observation well have the same radius.  The hydraulic conductivity of 

the filter pack is several orders of magnitude larger than the formation which results in an 
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equivalent radius that is double the radius of the well size.  This causes twice as much 

water to enter the observation well for sudden pressure changes due to a slug test, which 

means that the head in the well is double that given by Equation 4.10 which is rewritten 

to reflect this by considering this factor of two in Equation 4.12.   

   
(considering the skin) 

 
(4.12) 

The effects of Equation 4.12 on the results on the hydraulic conductivity and specific 

storage values calculated from the data in the observation wells are shown in the results 

section.  Equation 4.12 is used for the results, but Equations 4.7a and 4.10 are presented 

in the discussion to show that they yield results from the two wells that are not consistent. 

4.3 Site description and well arrangement 

The observation wells are made of 5-cm diameter PVC construction with 10-cm 

diameter sand packs outside the 1.5 meter long well screens.  Above the sand packs are 

bentonite seals up to the ground surface where the wells are finished with locked steel 

casings and concrete pads.  Most wells were installed in clusters spaced about a meter 

apart with 1.5 meter screens at different vertical depths, to assess the hydraulic head and 

difference in the water quality in the different soil layers.  Pairs of wells were installed 

about a meter apart in each cluster in the floodplain deposit to allow for uninterrupted 

monitoring of the well while the wells were pumped monthly. 

Bedrock at the Dedham site is overlain by basal till turning to sand, which forms 

the confined sandy aquifer used to supply water to the towns of Dedham and Westwood.  

The lake bed sediments above this are mostly formed of silt with varying amounts of fine 

sand and clay.  Covering all of the other underlying strata is a deltaic floodplain deposit 
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consisting of silty sand (LaMesa 2008).  Figure 4.2 shows the location of the site from 

LaMesa (2008).  The details on the hydraulic properties and dimensions of the wells 

based on previous slug tests evaluated using Bouwer and Rice (1976) are provided in 

Table 1 where LS is the length of the screen and k is the permeability. 

 

 

Figure 4.2: Dedham site location from LaMesa (2008) 

Table 4.1:  Dimensions of the wells and hydraulic conductivity based on previous slug 
tests by LaMesa (2008). 

 

r (m) b  (m) L sk  (m) =

Cluster A 1.3 20.4 2.6
Cluster C 0.55 24.1 2.3
Cluster D 0.82 23.5 2.6

For all wells:
r C  (m) = 0.008
r SK  (m) = 0.016
L S  (m) = 1.52
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4.3.1 Methods of performing tests 

Water levels were measured before and after the slug tests to establish the static 

head.  Traditional slug tests were run by either inserting (slug-in test) or extracting (slug-

out test) a solid aluminum rod to force a displacement in the equilibrium water level in 

the well.  Small or large slugs which displace 0.3 m or 1 m were used for the tests.  The 

results of all tests yielded identical hydraulic parameters regardless of these 

considerations so they were all normalized and reported as positive head as shown in 

Figure 4.1.     

The slugged and observation wells were instrumented with Level Troll 500 

Pressure Transducers (In Situ Inc., Fort Collins, Colorado) to record temperature and 

pressure readings at a rate of 0.5 to 1 Hz with a reported accuracy of 0.07 kPa.  The well 

was allowed to come to static equilibrium with the transducer in it and then the aluminum 

rod was inserted to initiate the slug-in test.  After the well was at least 90% recovered 

back to its static water level; the test was stopped and the slug was removed to initiate the 

slug-out test.  The data were then uploaded to a laptop. 

4.3.2 Results 

The wellbore storage and wellskin both have an effect on the head in slugged and 

observation wells during a slug test.  The results vary enough to yield values of specific 

storage and hydraulic conductivity that can differ by a factor of at least two if these 

effects are not considered.  The slug test results are listed in Table 4.2 and the calibrations 

of the slugged well and the observation well using Equation 4.12 are shown in Figure 4.3.  

The results from LaMesa (2008) are shown in Table 4.3.  The data from each well were 

each calibrated to the model with the same values for K and S.  The compressibility ( ) 
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of the silty sand is within the range of sand of 10-9 to 10-7 Pa-1 (Freeze and Cherry 1979) 

using Equation 4.13 assuming porosity (n) of 0.4 where g is gravity, β is the 

compressibility of water equal to 4.4x10-10 Pa-1, and ρw is the density of water. 

  
       (4.13) 

 The hydraulic conductivity is lower by a factor of about 1.5 compared to the 

results of LaMesa (2008) who considered the Bouwer and Rice (1976) method except for 

the A cluster.  The specific storage is lower for the less permeable Cluster D as expected 

because the compressibility is typically lower for less permeable soil.  Cluster A is an 

exception here as well, suggesting that the results may subject to error.  The observation 

well is much more sensitive to the calibrations than the slugged well, which makes this 

such a good test to evaluate.  Lower S values drive the peak h value of the observation 

well up and towards the start of the test a bit while higher K values drive the peak h value 

to the left. 

Table 4.2: Slug test calibrations determined considering the presented model using 
Equation 4.12 for both wells and the other equations for the observation well. 

 

Table 4.3: Slug test results from LaMesa (2008) using the Bouwer and Rice method 

 




 n
g

S

w



Eq. 4.12
Eq. 4.10 
(no skin)

Eq. 4.7a (no 
skin or 

wellbore 
storage)

Eq. 4.12
Eq. 4.10 
(no skin)

Eq. 4.7a (no 
skin or 

wellbore 
storage)

Eq. 4.12

Well Cluster: C C C D D D A
K (m/s) 9.1E-06 9.1E-06 6.1E-06 3.7E-06 1.8E-06 1.1E-06 1.5E-05

S (m-1) 6.6E-04 1.6E-04 3.3E-04 1.2E-04 9.8E-06 4.9E-05 2.3E-05

Compressibility (Pa-1) 6.7E-08 1.7E-08 3.3E-08 1.3E-08 8.3E-10 4.8E-09 2.2E-09

K  (m/s)
Cluster A 1.5E-05
Cluster C 1.2E-05
Cluster D 6.1E-06
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Figure 4.3: Slug test results in the slugged and observation wells using the model 
presented in Equation 4.12 for the observation wells 

A

0 10 20 30 40

N
or

m
al

iz
ed

 H
ea

d 
(-

)

0.0

0.2

0.4

0.6

0.8

1.0

C

Time (s)

10 20 30 40 50

D

20 40 60 80



 

65 

4.4 Discussion 

The KGS Model by Hyder et al. (1994) does not consider wellbore storage or the 

wellskin in the observation well like it does in the slugged well.  This original KGS 

model is considered here in order to show that this needs to be considered in both wells.  

Dedham Clusters C and D are evaluated using three models here to demonstrate this.  

Cluster A is omitted because the results are less sensitive: 

1. The KGS model given by Equation 4.7a which does not consider the wellskin or 

wellbore storage in the observation well.   

2. The inclusion of the wellbore storage in the observation well to the KGS Model 

(but not the wellskin) as described in Equation 4.10.   

3. The current model considering wellbore storage and the wellskin using Equation 

4.12, which is used to present the results.   

Figure 4.4 shows all three observation well equations presented in Table 4.2 to 

model the head in the observation well using the K and S values calibrated from the tests 

shown in Figure 4.3.  This demonstrates that the current model is needed for a good fit of 

the data because the other models do not fit the measured data using the calibrated K and 

S values.  The alternative considerations do not fit the measured data as seen in Figure 5.  

The K and S values calibrated using Equation 4.7a and 4.10 in Table 2 had a good fit, but 

do not match the slugged well data, much like is seen in Figure 4.4.  The specific storage 

values used to fit are lower by a factor of up to fifty.  It is clear again that the current 

model gives a better fit to the measured data than the other models.  

The radial distance was considered with half and double the measured distance to 

determine the sensitivity of the results on the horizontal distance between well screens.  
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The radial distance was determined by measuring the distance from one well to another, 

assuming that each well was installed without any inclination.  An inclination of one 

degree results in the screen of a well being located 1.7% of its depth in the opposite 

direction of inclination.  A well that is screened at 50 feet will have a screen that is 0.87 

feet in the direction of inclination, which is about 20-30% of the measured horizontal 

distance between the tops of risers in this study.  A value of half the radial distance would 

underestimate S by about an order of magnitude and slightly overestimate K.  Double the 

value of the radial distance would have the opposite effect on S and K.  This may be a 

cause of error in the A cluster where the fit presented in Figure 4.4 is compromised a bit. 

 

Figure 4.4: The three observation well models considered in Table 4.2 using the 
hydraulic conductivity and specific storage values calibrated using Equation 4.12 
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4.5 Summary and Conclusions 

 The slug test results from the slugged and observation wells using the presented 

model yielded similar and plausible values for hydraulic conductivity and specific storage 

considering the wellbore storage and the filter pack.  The results of the two wells 

considered would be inconsistent if the wellbore storage and the filter pack were not 

considered in the model as shown in Table 4.2 and illustrated in Figure 4.4.  Erroneously 

low values of specific storage would not even fit the curve if the filter pack radius and 

wellbore storage were not considered in some cases.  The water level responses of both 

wells are affected by the same volume of soil, about 1 meter around the slugged well so 

they should yield similar results.  The slug tests give consistent results of the specific 

storage and hydraulic conductivity surrounding the well within the effective radius of the 

slug tests, which is about one meter.  
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CHAPTER 5 

5 SUMMARY AND CONCLUSIONS 

The primary objectives of this dissertation were to find better ways to perform 

hydraulic conductivity tests on highly permeable coarse grained soils using a new 

laboratory device, to use the results to improve a current grain size to hydraulic 

conductivity correlation, and present an improved method of analyzing slug interference 

tests.  These objectives were met through three chapters that present new methods of 

performing hydraulic conductivity tests and evaluating the results.  A brief overview of 

the most important results of these chapters is presented below as an overview of the 

results presented in this dissertation. 

Chapter 2 presented a permeameter designed to determine the hydraulic 

conductivity of gravels ranging from 0.1 to 2 m/s.  A model was developed that calibrates 

the hydraulic conductivity and also provides the tortuosity.  The hydraulic conductivity of 

the marbles calculated using the Kozeny-Carman equation was within 5% of the 

calibrated value and the repeatable results followed Darcy’s law. 

Chapter 3 presented an updated method of using the Kozeny-Carman equation for 

gravels is proposed that offers a method of determining the surface area of a specimen 

and incorporates the measured tortuosity and measured hydraulic conductivity into an 

empirically determined equation for the packing factor.  This has been theoretically 

investigated by others without conclusive results so the model was improved by 

considering the tortuosity.  The predicted versus measured hydraulic conductivity for the 

specimens was within an average of 1.2 using this consideration, which is more precise 

than the factor of three which is considered to be a good correlation (Chapuis and 

Aubertin 2003).  
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Chapter 4 presented the slug test results from the slugged and observation wells 

using the presented model yielded similar and plausible values for hydraulic conductivity 

and specific storage considering the wellbore storage and the filter pack.  The results of 

the two wells considered would be inconsistent if the wellbore storage and the filter pack 

were not considered.  The water level responses of both wells are affected by the same 

volume of soil, about 1 meter around the slugged well so they should yield similar 

results.  The slug tests give consistent results of the specific storage and hydraulic 

conductivity surrounding the well within the effective radius of the slug tests, which is 

about one meter.  
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APPENDIX:  LIST OF PRESENTATIONS 

1. Judge, A. December (2011).  Hydraulic Conductivity of Gravel Samples using a 
Modified Permeameter.  Poster presentation at AGU - Annual Meeting, San 
Francisco CA, 5 December 2011. 

 

2. Judge, A. December (2012).  Hydraulic Conductivity of Gravel Samples using a 
Modified Permeameter.  Oral presentation at UMass Amherst, Northeast 
Geotechnical Graduate Research Symposium, 26 October 2012. 

 

3. Judge, A. (2013).  Hydraulic Conductivity of Gravel Samples using a Modified 
Permeameter.  Oral presentation at GSA Northeastern Section - 48th Annual 
Meeting 18 March 2013. 
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