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Abstract. We measure the potential of an observational data
set to constrain a set of inputs to a complex and computation-
ally expensive computer model. We use each member in turn
of an ensemble of output from a computationally expensive
model, corresponding to an observable part of a modelled
system, as a proxy for an observational data set. We argue
that, given some assumptions, our ability to constrain uncer-
tain parameter inputs to a model using its own output as data,
provides a maximum bound for our ability to constrain the
model inputs using observations of the real system.

The ensemble provides a set of known parameter input and
model output pairs, which we use to build a computation-
ally efficient statistical proxy for the full computer model,
termed an emulator. We use the emulator to find and rule
out “implausible” values for the inputs of held-out ensemble
members, given the computer model output. As we know the
true values of the inputs for the ensemble, we can compare
our constraint of the model inputs with the true value of the
input for any ensemble member. Measures of the quality of
constraint have the potential to inform strategy for data col-
lection campaigns, before any real-world data is collected, as
well as acting as an effective sensitivity analysis.

We use an ensemble of the ice sheet model Glimmer to
demonstrate our measures of quality of constraint. The en-
semble has 250 model runs with 5 uncertain input parame-
ters, and an output variable representing the pattern of the
thickness of ice over Greenland. We have an observation
of historical ice sheet thickness that directly matches the
output variable, and offers an opportunity to constrain the
model. We show that different ways of summarising our

output variable (ice volume, ice surface area and maximum
ice thickness) offer different potential constraints on individ-
ual input parameters. We show that combining the observa-
tional data gives increased power to constrain the model. We
investigate the impact of uncertainty in observations or in
model biases on our measures, showing that even a modest
uncertainty can seriously degrade the potential of the obser-
vational data to constrain the model.

1 Introduction

Computer models (referred to hereon as computer simula-
tors) are used in a wide variety of computer experiments,
for the understanding and prediction of real-world systems
(see e.g.Santner et al., 2003 for examples). Such simula-
tors contain uncertain parameters that may represent real but
unknown physical constants, or be artefacts of the simplifi-
cation (and therefore parameterization) of complex physical
processes. It is important to choose an appropriate set of pa-
rameters with which to run the simulator, in order that simu-
lations match the behaviour of the true system as closely as
possible.

This raises questions: What observational data might we
collect in order to effectively match the simulator to the sys-
tem under study? And how valuable might they be in con-
straining our input parameters? We imagine a situation where
a new observational campaign of the system under study
is being considered, and there is a substantial cost associ-
ated with making new observations of the system. We might
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extend this to cases where there are observations, but we
could reduce their uncertainty. Finally, we might have a lim-
ited budget, which we can choose to spend on reducing ob-
servational uncertainty, or on improving the simulator – in
effect, reducing the simulator discrepancy, or its associated
uncertainty. To guide the observational campaign, we would
like to know the potential of an observation, with a particular
uncertainty, to constrain our simulatorbeforewe make the
observation.

The comparison of simulators with observations from the
appropriate real-world system, in order to choose a set of ap-
propriate parameters, is known as calibration. This paper in-
troduces a method for estimating the potential of a data set
for calibrating a simulator, when that simulator is computa-
tionally too expensive for brute force methods of calibration
or tuning to be effective. We use an ensemble of the simu-
lator output as a synthetic data set, treating output from an
ensemble member as if it were an observation of the real sys-
tem under study. We propose that our ability to calibrate the
simulator when we know the true set of parameters (as in our
ensemble), gives us a theoretical upper limit on our ability to
calibrate the simulator in the real system.

In this synthetic test bed, we can examine the impact on
the calibration of adding observational uncertainty, or simu-
lator discrepancy uncertainty. We advise caution, as the true
simulator discrepancy remains unknown, and might be dif-
ferent from anything that we can reasonably simulate. How-
ever, we believe that our metrics give a good guide to the
maximum constraint possible, given a particular simulator,
statistical framework, and data set.

Once a simulator is calibrated, it can be run to predict the
behaviour of the system under untested circumstances. For
example, climate simulators calibrated to historical data can
be used to project and constrain the behaviour of the Earth
system in the future under various greenhouse gas emission
scenarios (Sexton et al., 2012; Sexton and Murphy, 2012;
Rougier, 2007; Tebaldi and Knutti, 2007). Such simulators
are often computationally expensive to run, such that there
are usually only a small set of runs of the code with which
to estimate a potentially large number of these uncertain but
tuneable parameters within the simulator.

A probabilistic calibration allows for uncertainty in obser-
vational data, and for the fact that the simulator does not per-
fectly represent the true system. Such probabilistic calibra-
tion allows a range for each of the input parameters, assign-
ing a probability that each of the input parameters in a set
might best match the simulator to the true system. In this
case, a probabilistic prediction can be made by weighting the
prediction of the simulator according to the probability of the
corresponding set of input parameters being correct.

Metrics for the potential of data to constrain input parame-
ters have been proposed when working with computationally
cheap simulators and probabilistic calibration methods; for
example to simulate atmospheric aerosols (Partridge et al.,
2012), or terrestrial ecosystem models (Ziehn et al., 2012).

Here, we extend the methods for calculating these kinds of
metrics to computationally expensive simulators.

Calibration of a computationally expensive simulator can
be efficiently achieved using an emulator: a fast and compu-
tationally cheap statistical proxy for the full simulator. Use
of an emulator for calibration in a Bayesian setting was pi-
oneered byKennedy and O’Hagan(2001), with Wilkinson
(2011) offering a review of recent developments. An alterna-
tive approach, also using emulation techniques, is the history
matching ofCraig et al.(1996, 1997, 2001). History match-
ing places more emphasis on ruling out parameter sets where
the simulator performs poorly, whereas probabilistic calibra-
tion tends to down-weight poorly performing parameter sets.
While these approaches differ in their interpretations of the
meaning of the simulator, both share a notion of distance
of simulator output from observations of the real system, as
a measure of simulator quality.

Our metrics can also be viewed as a form of global sensi-
tivity analysis (Saltelli et al., 2000). Sensitivity analysis (SA)
in this context is concerned with quantifying the strength of
the relationship between the inputs and outputs of a simula-
tor. This relationship is often couched in terms of the induced
change in simulator output, for a given change in simulator
input. We are interested in inverting this measure, and finding
the implied uncertainty of a simulator input, given an output.
Trivially, if the output of a simulator is not sensitive to an in-
put, then the data corresponding to the output will not have
the power to constrain the input parameters. In addition, even
where there may be a unique forward mapping from inputs
to outputs of a simulator, this is not necessarily true of the in-
verse mapping. A single output may have many correspond-
ing inputs. An approach to probabilistic SA for expensive
computer simulators is introduced byOakley and O’Hagan
(2004). Our approach draws on those techniques, particularly
in the use of a Gaussian process emulator as a proxy for the
computer simulator.

We first briefly introduce history matching as a method of
solving inverse problems in the context of computer simula-
tors in Sect.2.1. We then introduce some empirical metrics
for the ability of an observation to constrain the simulator
input parameters in Sect.2.2. In Sect.2.3, we introduce em-
ulators, and explain how they might be used in calculating
the metrics introduced in the previous section. We apply our
methods of constraint to an ensemble of a computationally
expensive ice sheet simulator, and show that they work in
Sect.3. We introduce the results in Sect.3.2, and discuss
them and their implications for future research directions in
Sect.4. Finally, we offer some conclusions in Sect.5.
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2 Methods

2.1 Solving the inverse problem

We would like a metric for the strength of an observation of
a system to calibrate (to constrain, or find good values for)
a set of uncertain parameters in our computer simulator of
that system. This equates to asking “how well can we solve
the inverse problem, of estimating the parameters of a sim-
ulator, given some data?”. There are at least two approaches
to solving the inverse problem: probabilistic calibration, and
history-matching techniques.

In a probabilistic calibration, a probability is assigned to
a candidate set of inputs, depending on how well the corre-
sponding output of the simulator matches observations, and
the prior probability (before any data is seen) of the candidate
point being “correct” in some manner.

FollowingRougier(2007), we represent a particular set of
d input parameters as vectorx = x1 . . .xd , set within (∈) a
“parameter” or “input” spaceX , judged to be plausible by
the modeller, before the simulator is run. We assume that
this plausible space corresponds to a “prior” probability dis-
tribution, if we were to carry out a fully Bayesian analysis.
Similarly, we represent the simulator output asy ∈ Y, repre-
senting the state of some physical aspect of the system. We
represent the simulator as a deterministic functiong(.), so
that when run at a particular input parameter setx, it always
returns the same value ofy. The simulator is complex enough
that we cannot trivially predict the outputy at a givenx be-
fore the simulator is run. We can represent outputy as an
uncertain function of inputx thus:

y = g(x) . (1)

The relationship between the simulator outputy and an
observationz of the real system is represented by the equa-
tion

z = g(x∗) + δ(x∗) + e , (2)

wheree represents measurement errors in the observations,
andδ is the simulator discrepancy; the difference between the
real system, and the simulator when run at its “best” input,
x∗. This best input is therefore defined as the point which
minimises the difference between the observations and the
simulator output, given any known systematic errors (biases)
in simulator discrepancy or in observations.

In calibrating the simulator, we compare a set of observa-
tions of the true system,z, with the corresponding represen-
tative output of the simulatory, and through the mapping in
Eq. (1) we find a set of input parameters that is, by some mea-
sure (but not necessarily all measures), good. In general, we
assume that parameter sets which represent the real system
well produce a smaller difference between simulator outputs
y and observationsz, than do poor choices of inputs, and
have a corresponding higher probability of representing the

best input. In addition, we assume that there are places within
X where it is possible to run the simulator, that nevertheless
we judge as not well representing the true system being mod-
elled. We would like to exclude these regions from our analy-
sis as “implausible”, in effect setting their probability to zero.
ConstrainingY to a smaller representative region by compar-
ing it with observationsz therefore implies a constraint onX .

This constraint might be achieved through a fully prob-
abilistic calibration, simultaneously estimating probability
distributions forx∗, and for simulator discrepancyδ, as in
Kennedy and O’Hagan(2001). We use an alternative history-
matching approach, based on the concept of implausibility,
introduced byCraig et al.(1996). A full description of the
benefits of history matching for expensive simulations can be
found inVernon et al.(2010). Briefly, the aim is to rule out as
implausible, sets of parameters space where the simulator is
a very poor fit to observations of the real system. Any set that
is “not ruled out yet” is passed to further analysis. The im-
plausibility measure must take into account (a) the fact that
the observations are uncertain, (b) that we have uncertainty
about ways in which the simulator might be wrong (the dis-
crepancy), and (c) that we do not fully know the simulator
behaviour, due to our limited ability to run the simulator.

We use an implausibility measureI that takes all of these
uncertainties into account, writing

I2
=

|E
[
g(x)

]
− z|2

Var
[
g(x) + δ(x) + e

] . (3)

An input is more implausible, the further the correspond-
ing output lies from observations of the true system. How-
ever, if the observations, the simulator output at that input,
or the simulator discrepancy are more uncertain, that same
input would be less implausible.

We regard any point where implausibility is below
a threshold value of 3 as “not implausible”, and accept it as
a candidate for the best input. This threshold comes from the
3σ rule ofPukelsheim(1994), which states that for unimodal
distributions, ifx = x∗, thenI < 3, with a probability greater
than 0.95. This holds true even for highly skewed, or heavy-
tailed distributions.

In this framework, comparing the simulator with more
than one type of observation is simple. In the case where dif-
ferent types of observation imply different implausibility, we
take the maximum implausibility at the candidate input point
x. This allows for progressive ruling out of parameter space,
as more observations become available. A multivariate alter-
native to the maximum implausibility measure is introduced
by Vernon et al.(2010), along with modifications that make
the maximum implausibility measure less sensitive to inac-
curacies in an individual emulator. The high accuracy of the
emulator used in this study means that we can use the sim-
plest method.
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2.2 Metrics of constraint

We would like to assign a score or metric for the ability of
a particular observationz of the real system to constrain our
choice of a good set of input parameters withinX . There
are a number of ways that we might measure this, limited
by some practical considerations. We propose two primary
metrics: (1) the marginal range of plausible space in each
input dimension, relative to the initial estimate and (2) the
volume of “not implausible” input space, relative to the initial
estimate.

2.2.1 Marginal range of “not implausible” input space

The marginal rangeR of an individual input is the largest
range for each input parameter that we can find whereI < 3.
This is measured relative to the marginal ranges considered
plausible before the simulator was run. While this measure
can be useful as a simple sensitivity analysis, it should be
treated with caution, and we regard it as inferior to thevol-
umeof “not implausible” space metric, outlined in the next
section. Therangemeasures only the one-dimensional pro-
jection of the “not implausible” input space. The true range
of an individual might be very much smaller (and the metric
correspondingly more useful), if we were to gain information
about another input parameter, for example.

2.2.2 Volume of “not implausible input” space

We can define a volumeV of “not implausible” input pa-
rameter space, or alternatively that input space “not ruled out
yet” – as the region whereI < 3. We can estimate the rela-
tive volume of this space, with a Monte Carlo sample from
the initially plausible spaceX . Using an indicator function
I(I < 3), whereI = 1 if true, and 0 if not, we taken sam-
ples fromX , and estimate the volume as

V =
1

n

n∑
i=1

I(I < 3) . (4)

We must be careful to take enough samples to ensure
that this estimate is accurate, as well as taking into account
the sometimes counter-intuitive nature of high dimensional
space. For example, an observation that constrains the plausi-
ble volume to half the range of each input in a 5-dimensional
input space would have reduced the space to 0.55

≈ 3 % of its
original volume. However, such a reduction in volume can be
achieved by constraining a single input to 3 % of its original
range, with no constraint on any other input.

2.3 An emulator for computationally expensive
simulators

We are concerned with the case where the simulator is com-
putationally expensive, and complex enough that we cannot
trivially predict the output of the simulator before we run it.

We therefore cannot run the simulator enough times to com-
prehensively explore the mapping ofX to Y. We could, for
example, run a collection of simulations in an optimisation
routine to findx∗. This is unlikely to be a practical solu-
tion, given the possibly complex nature ofz, the difficulty of
searching high dimensional spaces which can have many lo-
cal minima, and conflicting demands on expensive simulator
output.

A more flexible solution is to run the simulator at a care-
fully designed collection of points inX ∈ X , with associated
outputY, called an ensemble, and use this to build a statis-
tical model to predict the outputy, at untested points within
X . This statistical model, termed an emulator, is computa-
tionally cheap and fast to run, and therefore can replace our
simulator in any analysis of the ensemble. The emulator re-
turns an estimated probability distribution for simulator out-
put given an input.

It is important to design the ensemble well, in order to
build a good emulator. The simulator should provide good
coverage of the input parameter space, in order that interac-
tions between parameters might be well estimated. It should
also span enough parameter space that the emulator is not
called to extrapolate far beyond the design points, or param-
eter values where the emulator has been validated. A good
option is the Latin hypercube design ofMcKay et al.(1979),
and its space-filling variants.

The emulator, denotedη(.), provides us with a complete
mapping ofX toY, with some uncertainty. If this uncertainty
is tolerably small, we can use the emulated best estimate of
simulated output in any analysis where we would normally
use the simulator directly. We denote the best estimate fory

at any givenx asŷ = η(x).

2.4 Using an ensemble to find an upper bound of
potential constraint

With an ensemble of a priori plausible simulator evaluations,
we let the simulator outputy take the place of a theoretical
observational data setz in our analysis. We estimate “not im-
plausible” candidates forx∗ for a given ensemble member,
given its outputy. The candidates will span a region within
the original input parameter space. We can calculate the met-
rics of constraint for that region, introduced in Sect.2.2, and
also check that the true value ofx∗ falls within the “not im-
plausible” region.

For computational efficiency, we let the emulatorη(.) take
the place of our simulatorg(.). Simulator discrepancyδ(.)
and observational errore (along with their respective uncer-
tainties) are both zero in this setting, as we know the obser-
vational data perfectly and we are using the same simulator
across the ensemble. We can easily add in a simulator dis-
crepancy or observational error of our choice, in order to test
their impact on our ability to constrainx∗.

We use a leave-one-out cross-validation (LOOCV) style
test on the ensemble, to find metrics of constraint at a sample

Geosci. Model Dev., 6, 1715–1728, 2013 www.geosci-model-dev.net/6/1715/2013/
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across input space. For each ensemble member in turni =

1. . .n we treat the outputyi from an ensemble member as an
observation of the true system. We build an emulator, con-
ditioned on the entire ensemble, except inputxi and output
yi . By finding the “not implausible” region, where our im-
plausibility measureI < 3 for each output in the ensemble
y1 . . .yn, we can obtain a sample of possible constraints that
an observation would give, if it were found to beyi .

We take a large Monte Carlo sample from the prior dis-
tribution at a large number of points withinX , and use the
emulator to predictŷi at each candidate point. We then find
the implausibilityI at each emulated input, given the uncer-
tainty about the true value of the simulator at that point, pro-
vided by the emulator. We calculate the metrics of plausible
marginal input parameter rangeR, and plausible input space
volumeV , using the emulated implausibility for each point.

Repeating this process across the ensemble, we obtain
a sample ofn of each of the constraint metricsV1 . . .Vn, and
R1 . . .Rn, where we haven ensemble members. Each sample
represents what the constraint might be if the true observation
were to fall atyi , so we see that there is some uncertainty in
the ability of the data to constrain the inputs, depending upon
where in the ensemble the true data might fall.

It is important that the ensemble output spans a range wide
enough to encompass any reasonable combination of obser-
vation, simulator discrepancy and observational uncertainty.
This is to avoid the situation where (for example) the obser-
vation falls well outside the range of simulated output, and
all of the input space is effectively ruled out immediately. In
this situation, the analysis would be iterated, with new judge-
ments about the uncertainty of simulator discrepancy.

3 An example using an ice sheet simulator

We investigate the utility of an emulator/observational data
set combination, for the calibration of the ice sheet simulator
Glimmer (version 1.04) (Rutt et al., 2009; Payne, 1999). We
have access to an ensemble of 250 simulator runs, with 5 un-
certain inputs, and an output variable, ice thickness, at each
point in a 76× 141 grid covering the Greenland Ice Sheet
(GrIS). This ensemble was generated and examined inStone
et al.(2010); details of the inputs and outputs are summarised
in Table1. The simulator is sufficiently computationally ex-
pensive to serve as a test bed for our methods, while being
relatively straightforward to run in an ensemble of several
hundred members.

The ensemble input points are sampled from independent
uniform distributions of simulator inputs, using a Latin hy-
percube sampling strategy. We normalize all inputs to a zero-
one scale, based on the expert-elicited limits of the ensemble
design.

The simulator output domain matches real-world observa-
tions of ice sheet thickness (Bamber et al., 2001) interpo-
lated to the simulator grid (Fig.1), and shown here to aid
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Fig. 1. Observations of ice sheet thickness over the Glimmer domain, from Bamber et al. (2001).

24

Fig. 1. Observations of ice sheet thickness over the Glimmer do-
main, fromBamber et al.(2001).

interpretation of the data. We can summarise the output vari-
able ice thickness, into a univariate output, in three ways.
First, we can find ice volume (denoted ICEVOL), by sum-
ming the ice thickness over the entire simulator domain. Sec-
ond, we can take the surface area (ICESA) of the ice sheet.
Third, we can examine the maximum thickness (MAXTHK)
of the ice sheet. It is important to simulate all of these vari-
ables correctly, in order to have confidence that our ice sheet
simulator is capturing the relevant dynamics of the GrIS. In
Fig. 2, we plot the marginal relationships between each pair
of inputs and outputs. We see that, even though the summary
outputs are from the same field variable, the output sum-
maries are affected by input dimensions in different ways.
Again, simulator outputs are normalized to a zero-one scale.

3.1 Building and checking the emulator

A first task is to build an emulator that we are confident accu-
rately represents the forward mapping between input and out-
put space. We use a Gaussian process emulator, implemented
in the package BACCO (Hankin, 2005), using the statistical
software R (R Core Team, 2012). The emulator is composed
of a basic linear statistical model, along with a more flexi-
ble part known as a Gaussian process, conditional on a set of
roughness parameters. There is one roughness parameter for
each simulator input-output relationship. The roughness pa-
rameters represent the length scales in each input dimension
at which a simulator output becomes uninformative about
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Table 1.Expert-elicited ranges for input parameters of Glimmer, and the corresponding ranges of the output parameters.

Units Abbrev. Min Max

Input Parameter

Positive degree day factor for snow mmd−1◦C−1 PDDFS 3 5
Positive degree day factor for ice mmd−1◦C−1 PDDFI 8 20
Near-surface lapse rate ◦Ckm−1 NSLR −8.2 −4
Flow enhancement factor – FEF 1 5
Geothermal heat flux mWm−2 GHF −61 −38

Output Parameter

Ice volume m3 ICEVOL 3.1× 106 4.3× 106

Ice surface area m2 ICESA 2.0× 106 2.4× 106

Maximum ice thickness m MAXTHK 3.0× 103 3.7× 106
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Fig. 2. Summary pairs plot of relationships between simulator inputs and outputs. All inputs and outputs
are normalised to a zero-one scale, relative to the limits of the ensemble.
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Fig. 2. Summary pairs plot of relationships between simulator inputs and outputs. All inputs and outputs are normalised to a zero-one scale,
relative to the limits of the ensemble.

a nearby simulator output. If the simulator is very rough
in a dimension, a simulator run will contain little informa-
tion about a nearby run, and uncertainty will increase rapidly
beyond any known simulator run. We use a single set of
roughness parameters, estimated empirically from the entire

ensemble. It would be possible to estimate the roughness pa-
rameters for each leave-one-out subset of data, but we find
that in practice this makes very little difference to the results
at markedly increased computational cost. The parameters

Geosci. Model Dev., 6, 1715–1728, 2013 www.geosci-model-dev.net/6/1715/2013/
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Fig. 3. Leave-one-out cross validation for a Gaussian process emulator, showing good performance in
prediction. We exclude a member from the ensemble, and predict the output, given the set of input
parameters. We repeat this process across the ensemble, for three summary simulator outputs. Vertical
lines represent ±1 standard deviation.
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Fig. 3. Leave-one-out cross-validation for a Gaussian process emu-
lator, showing good performance in prediction. We exclude a mem-
ber from the ensemble, and predict the output, given the set of input
parameters. We repeat this process across the ensemble, for three
summary simulator outputs. Vertical lines represent±1 standard de-
viation.

are estimated via the posterior mode, as set out byOakley
(1999).

The emulator fits a “best estimate” of the simulator output
at a particular input, smoothly through each of the available
outputs. It then estimates the uncertainty at each point, with
the uncertainty at known simulator runs reducing to zero, and
growing with distance from each known point. There is no
“nugget” term, and so the emulator is constrained to fit the
points where the simulator has been run exactly. We build
a separate emulator for each output, individually. Mathemat-
ical details of the GP emulator can be found in, e.g.Kennedy
and O’Hagan(2001), or Oakley and O’Hagan(2004).

We check the performance of the emulator by performing
both a forward, and an inverse leave-one-out cross-validation
analysis. Each ensemble member is excluded in turn, and the
emulator built on the remaining members of the ensemble.
First, we exclude simulator output, and predict it using the
most likely value of the emulator uncertainty distribution,
given the set of inputs. The prediction plots for the three out-
put summaries given in Fig.3, show that the emulator works
well, with small error and no detectable biases, across the
ensemble, and for each of the three outputs. Second, we find
the implausibilityI of the true held-out input, given the sim-
ulator output. We find this to be below the threshold of 3 in
all but 3, 1 and 2 ensemble members, for ICEVOL, ICESA
and MAXTHK, respectively. In these members, the value of
I is always below 4.

3.2 Results

To demonstrate our methods, we first show an example of
constraining input parameter space of the (arbitrarily cho-
sen) first ensemble member, with no additional observational
or simulator discrepancy uncertainty. We show two ways of
visualising the constraint of input space in Figs.4 and5. Af-
ter sampling uniformly from the entire input space, we plot
two-dimensional projections of those emulated input points
assigned “not implausible” by our method, when we use
all three data summaries to constrain the inputs (Fig.4). It
is clear that the true value of the inputs (green point) lies
within the region defined by the two dimensional projections.
A similar result is obtained looking at the parallel coordinates
plot (Fig. 5), showing the full location of the “not implausi-
ble” emulated ensemble members (red), along with the tar-
get ensemble member (blue). Again, those points calculated
as “implausible” are excluded from the plot. It is possible to
clearly see how well the input parameter FEF is constrained,
using the ensemble data. As each input is plotted over its en-
tire range, it is easy to see the “not implausible” range of each
parameter in Fig.5, as the difference between the uppermost
and lowermost points on each axis.

Once we have established that the emulator is accurate
to an acceptable degree, its flexibility allows us to conduct
many useful analyses that are too expensive to conduct with
the original simulator. For example, we can begin to study
the behaviour of the simulator, in terms of its individual in-
puts. We conduct a “two-at-a-time” sensitivity analysis, and
plot the results in Fig.6. Again, we use the first ensemble
member as an example. Each subplot shows the estimated
implausibility measureI , when the named inputs are var-
ied across a regular grid, and the remaining three inputs are
held at their true values. The contributions to the final “max-
imum implausibility” measure from each observation type
are shown in the inset (top right), and the true values of the
ensemble member are plotted as a green point. In this kind
of analysis, it quickly becomes clear that “not implausible”
regions of input space often form hyperplanes within high
dimensional input space.

We use our emulated implausibility method outlined in
Sect.2.4 in order to invert the emulator, and provide a set
of metrics for the ensemble members in a leave-one-out fash-
ion. We assume that we have no prior information on the pre-
cise location of any ensemble member within the input space,
and so we use a uniform distribution across the ensemble as
a prior distribution. We take a large Monte Carlo sample of
inputs and corresponding outputs (order thousands) from the
emulator over the entire domain, and find their implausibil-
ity I , according to Eq. (3). Using the emulated implausibility,
we calculateV andR for each ensemble member.

We report results here for two situations. First, we neglect
any observational or discrepancy uncertainty, and find the
maximum possible constraint for a given data set/emulator
pair. Second, we include a representative observational

www.geosci-model-dev.net/6/1715/2013/ Geosci. Model Dev., 6, 1715–1728, 2013
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Fig. 4. Two-dimensional projections of emulated “not implausible” (I < 3) ensemble members, when
the true inputs are those of the (arbitrarily chosen) first ensemble member. Implausibility is calculated
as the maximum of that from all three summaries of the output data – ICEVOL, ICESA and MAXTHK.
Emulated implausible members (not shown) are spread evenly through the input space. The true value of
the inputs (the target) is shown as a green point.
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Fig. 4. Two-dimensional projections of emulated “not implausible” (I < 3) ensemble members, when the true inputs are those of the (ar-
bitrarily chosen) first ensemble member. Implausibility is calculated as the maximum of that from all three summaries of the output data –
ICEVOL, ICESA and MAXTHK. Emulated implausible members (not shown) are spread evenly through the input space. The true value of
the inputs (the target) is shown as a green point.
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Fig. 5. Parallel coordinates plot of emulated “not implausible” (I < 3) ensemble members (red), when
the true inputs are those of the (arbitrarily chosen) first ensemble member (blue). Lines join points on the
y-axis, normalised to the ensemble maxima and minima, with each line representing a point in parameter
space. Implausibility is calculated as the maximum of all three summaries of the output data – ICEVOL,
ICESA and MAXTHK. Emulated implausible members (not shown) are spread evenly through the input
space, and would cover the entire range if shown.
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Fig. 5.Parallel coordinates plot of emulated “not implausible” (I <

3) ensemble members (red), when the true inputs are those of the
(arbitrarily chosen) first ensemble member (blue). Lines join points
on they axis, normalised to the ensemble maxima and minima, with
each line representing a point in parameter space. Implausibility is
calculated as the maximum of all three summaries of the output data
– ICEVOL, ICESA and MAXTHK. Emulated implausible members
(not shown) are spread evenly through the input space, and would
cover the entire range if shown.

uncertainty, in order to test the sensitivity of our metrics to
a real-world situation. We fix the standard deviation of the
representative observational error as 10 % of the maximum
simulated value for each of the outputs in the ensemble. This
uncertainty might also represent a discrepancy uncertainty,
as observational and discrepancy uncertainty are added in
the denominator in Eq. (3). We test each of our simulator
outputs in turn, to find which might provide the most use-
ful constraint overall, or for any of the particular simulator
inputs.

In Fig. 7, we see the distribution across the ensemble of
the constraintR – the range of inputs for each input param-
eter that are not implausible. The constraint for each param-
eter is represented by the block of colour, reaching a height
on they axis. An ensemble member filling the full height
is marginally unconstrained by the data; a member reaching
halfway up they axis is constrained to 50 % of the range
of the original ensemble. The ensemble members are plot-
ted along thex axis, ordered from the strongest constrained
member to the weakest, independently for each parameter.

Columns of individual plots show the results when sum-
marising the simulator outputs in the three different ways,
with the final column representing constraint combining all
three ways of summarising the data. The top row, (marked a),
represents the upper bound of constraint possible – that with
no observational or simulator discrepancy uncertainty. The

Geosci. Model Dev., 6, 1715–1728, 2013 www.geosci-model-dev.net/6/1715/2013/
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Fig. 6. A “two-at-a-time” sensitivity analysis of the (arbitrarily chosen) first ensemble member. Each
subplot (main figure) shows the emulated implausibility measure I , when the named inputs are varied
across a regular grid, and the remaining three inputs are held at their true values. Contributions to the
final “maximum implausibility” measure from each observation type are shown in the inset (top right),
and the true values of the ensemble member are plotted as a green point.
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Fig. 6.A “two-at-a-time” sensitivity analysis of the (arbitrarily chosen) first ensemble member. Each subplot (main figure) shows the emulated
implausibility measureI , when the named inputs are varied across a regular grid, and the remaining three inputs are held at their true values.
Contributions to the final “maximum implausibility” measure from each observation type are shown in the inset (top right), and the true
values of the ensemble member are plotted as a green point.

lower row (marked b) shows the constraint with a simulated
10 % observational uncertainty.

These plots are summarised in Table2, expressed as a per-
centage of the range of each input, which is on average ruled
out as implausible when using a particular output for con-
straint. While this summary table is useful, it does not ad-
equately describe the detail across the ensemble. For exam-
ple, there is a large range of possible constraints if using ice
surface area as a calibrating data set, even when we do not
include observational or simulator discrepancy uncertainty
(Fig. 9a). The input PDDFI might be constrained by up to
65 %, by this data set, or not at all, depending on where in
input space the true input lies. In contrast, using maximum
ice thickness (MAXTHK) as a calibrating data set will only
have a significant constraining effect on input FEF. However,
the smallest constraint observed is around 60 %, and largest
is near 100 %.

The histograms in Fig.8 represent the sample of the vol-
umeV of input space retained as “not implausible” across the
ensemble. First, we focus on the upper bound constraint, with
no additional observational uncertainty. Overall, we see that
maximum ice thickness (MAXTHK), provides the strongest
potential constraint of any individual data set, with all of the
ensemble members being constrained to a volume of input
space 13 % of the original volume. This is followed by ice
volume, ICEVOL with all below 17 %, and then ice surface
area ICESA, with all below 27 %. Combining the data, and
rejecting an input with an implausibilityI > 3 in any of the
data, leads to a much stronger constraint, with all inputs pa-
rameters constrained to smaller than 4 % of the original vol-
ume of input space.

The impact of adding a representative observational error
of 10 % of the ensemble maximum is considerable. We see
in Fig. 8 that the overall ability of the data to constrain the
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Fig. 7. The “not implausible” range of each input, R (a) assuming no observational or simulator dis-
crepancy uncertainty and (b) with 10 % of maximum observational uncertainty (1 standard deviation).
The “not implausible” range R across the ensemble is measured on the y-axis of each plot, where differ-
ent colours represent the input parameters. R varies according to ensemble member, with the ensemble
members sorted from lowest to highest R, separately for each parameter. Individual plots represent the
constraint using a single data summary, with the final plot in each row representing the constraint using
the maximum implausibility of all three data summaries combined. Plot colours are ordered by the mean
constraint of each parameter.
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Fig. 7. The “not implausible” range of each input,R (a) assuming no observational or simulator discrepancy uncertainty and(b) with 10 %
of maximum observational uncertainty (1 standard deviation). The “not implausible” rangeR across the ensemble is measured on they axis
of each plot, where different colours represent the input parameters.R varies according to ensemble member, with the ensemble members
sorted from lowest to highestR, separately for each parameter. Individual plots represent the constraint using a single data summary, with
the final plot in each row representing the constraint using the maximum implausibility of all three data summaries combined. Plot colours
are ordered by the mean constraint of each parameter.

Table 2.The typical range of each marginal input range (%) ruled out as “implausible”, when using a particular simulator output. The number
is the mean of the implausible range, taken across the ensemble. “COMBINED” indicates the constraint when the maximum implausibility
from all data streams is used.

PDDFS PDDFI NSLR FEF GHF

No observational error

ICEVOL 0 1 0 21 0
ICESA 1 14 3 0 0
MAXTHK 0 0 0 76 0
COMBINED 4 21 8 84 2

10 % observational error

ICEVOL 0 0 0 3 0
ICESA 0 2 0 0 0
MAXTHK 0 0 0 34 0
COMBINED 0 2 0 36 0

Geosci. Model Dev., 6, 1715–1728, 2013 www.geosci-model-dev.net/6/1715/2013/
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Fig. 8. Histograms of V , the estimated volume of “not implausible” (I < 3) input space, for each of the
250 members of the ensemble. The case with no observational error (grey bars) shows a much stronger
potential constraint than when a representative observational uncertainty of 10 % of the maximum value
of the ensemble is included (red bars).

31

Fig. 8.Histograms ofV , the estimated volume of “not implausible”
(I < 3) input space, for each of the 250 members of the ensem-
ble. The case with no observational error (grey bars) shows a much
stronger potential constraint than when a representative observa-
tional uncertainty of 10 % of the maximum value of the ensemble is
included (red bars).

inputs is degraded, with a much wider range of constraints,
and even the combined data only able to constrain the vol-
ume of the plausible space to 60 % of its original size. In
individual inputs, the ability to constrain is also greatly re-
duced, with some data unable to constrain inputs at all. Only
maximum ice thickness now offers a genuine chance to sig-
nificantly constrain a single input: FEF.

The extent to which an input parameter can be constrained
when we observe an output depends upon (a) the output type,
and (b) the location of the output (and hence input) within
the ensemble. This is because the relationship between in-
puts and outputs changes across the ensemble. We measure
the extent to which constraint of inputs is possible, in Fig.9.
Here, for each way of summarising the data, the rangeR of
inputs found to be not implausible is plotted on they axes,
against each input on thex axes. We see that the true position
of the ensemble member in input space has little systematic
impact, except in a few cases. Most apparent is the effect of
FEF parameter: it is easier to constrain FEF, PDFFI, and to
some extent NSLR and PDDFS if the value of FEF is either
high or low. If the true value of FEF is low, it is possible to
constrain it to a very small region of input space.

4 Discussion

In a set of “perfect simulator/observation” experiments
across an ensemble of the simulator, we find that the true
location of the input within the input parameter space does
impact on our ability to constrain the simulator given its out-
put. If the entire ensemble input space is initially plausible,
any one of the ensemble members might be a candidate for
a future observation of the system. The location of the best
input in input space will have a powerful impact on how well
we might constrain the simulator. We therefore find some
considerable uncertainty as to the potential constraint of the
input parameters.

Any systematic observational or simulator discrepancy un-
certainty will have the effect of shifting the estimate of best
input x∗ in input parameter space, compared to the “no un-
certainty” case of our example. It is therefore crucial that ob-
servational or simulator discrepancy uncertainty is included
in the assessment of potential observations, in order to avoid
overestimation of the value of data. Our example shows how
observational uncertainty can seriously degrade our ability
to use observations to constrain the inputs of a simulator, and
also highlights the importance of simulating observational er-
ror in any “observation system simulation” experiment. As
the observational and discrepancy uncertainties are equiva-
lent in the implausibility calculation (Eq.3), any study of the
value of observational data must also take into account the
potential value of reducing the simulator discrepancy – in ef-
fect, of improving the simulator.

Finding information about a particular input from other
sources might also give us useful information with which to
constrain other inputs. For instance, in our example learning
about one particular input, FEF, would offer a stronger con-
straint for other parameters. The flexible nature of the emu-
lator allows us to simulate learning about any subset of pa-
rameters, and to visualise the impact of that information on
the plausibility of the input space. This could be a powerful
technique in the process of simulator development.

Our method is perhaps most useful when we are quite un-
certain about a good set of inputs. This is because the metric
is defined relative to our prior knowledge about what consti-
tutes a good parameter space. The larger this prior parameter
space, the easier it is for data to be useful in constraining
it. It is important therefore that we carefully elicit prior dis-
tributions for the parameters, in order not to overinflate the
relative utility of a data set in constraining a parameter. The
prior distributions should accurately represent the prior un-
certainty of the modeller.

Our method could be useful in informing the design of ob-
servational strategies in situations where observing the true
system is expensive or time consuming. Our approach could
be used to prioritise observations in order to maximally con-
strain simulators, or in order to model how collecting data of
previously unobserved phenomena might benefit simulator
development. As a standard analysis technique, our example
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Fig. 9. The extent to which an input can be marginally constrained when we observe an output depends
upon (a) the output type, and (b) the location of the output (and hence input) within the ensemble. Here
we plot the extent to which an input can be constrained (height on the y-axes), against its position in the
input space of the ensemble (x-axes), for the three different output summaries. We see that, for example,
input parameter FEF can be very strongly constrained if the true value of FEF is low.
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Fig. 9.The extent to which an input can be marginally constrained when we observe an output depends upon (a) the output type, and (b) the
location of the output (and hence input) within the ensemble. Here we plot the extent to which an input can be constrained (height on the
y axes), against its position in the input space of the ensemble (x axes), for the three different output summaries. We see that, for example,
input parameter FEF can be very strongly constrained if the true value of FEF is low.

could be extended to show which observational data would
maximally constrain future projections made by the simula-
tor. In addition, the technique could be used to show how
best to summarise data, in order to better constrain inputs.
Our metric also offers a useful measure of sensitivity of sim-
ulator outputs to inputs, which may be useful in a simulator
development process.

Care must be taken to ensure that the simulator discrep-
ancy term realistically incorporates all plausible differences
between the simulator and reality, and that the ensemble is
drawn from a wide enough distribution in input space to ac-
commodate any plausible combination of simulator output
and model discrepancy. If the simulator discrepancy is poorly
modelled (i.e. there was an “unknown unknown”), the esti-
mated ability of data to constrain the simulator could be in
error. It might rule out all of the input parameter space, for
example if a real-world observation were to lie far from any

simulated observation. A poorly specified discrepancy could
also lead to less input space being ruled out than suggested
by using the ensemble itself as pseudo-observations.

Any method of summarising a set of volumes (e.g. “not
implausible” regions) in high dimensional space, will be in-
adequate when projected onto a two dimensional surface for
visualisation on the printed page. We welcome further devel-
opments in visualisation techniques.

5 Conclusions

We have introduced a method for quantifying the upper
bound of the potential of an observational data set to con-
strain the input of a computationally expensive simulator.
Demonstrating the method on an ice sheet simulator, we find
that we can identify a subset of simulator inputs which can
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be constrained by summaries of our observed field variable.
The extent of that constraint varies between ensemble mem-
bers. We find that if there were no observational or simulator
discrepancy uncertainty and the true observations lay within
that simulated by our model, we could rule out as implausible
at least around 95 % of the input space covered by the initial
ensemble. However, when a representative observational un-
certainty (1 standard deviation) of around 10 % of the max-
imum ensemble value is assumed, we find that we are able
to rule out at least around 40 % of the initial volume of input
space.

We find that different ways of summarising our observa-
tional data might offer different, and potentially strong con-
straints for different input parameters. This means that a sin-
gle observational data set might have more potential to cal-
ibrate a simulator than apparent at first glance. However, in
general, the data (especially when observational error is con-
sidered), does not offer as strong a constraint on the marginal
range of individual inputs as was expected by the authors be-
fore this experiment was run. This highlights the importance
of a priori knowledge about the input parameters as an impor-
tant constraint when using simulators to make predictions.
There is some optimism however, that stronger constraints
are possible when using multiple data sets for constraint, sug-
gesting the importance of using multiple and varied data sets,
with which to calibrate the simulator. This data might not cor-
respond to the main output of interest, but nevertheless could
contribute considerably to the constraint of the simulator.
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