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ABSTRACT:

Three dimensional urban reconstruction is gaining popularity with the paradigm shift from 2D maps to 3D maps. LiDAR remote
sensing is emerging as the main source of 3D spatial data because of its very dense and discrete point cloud. The enormous amount
of data collected over natural terrain calls for automatic methods for labelling the point cloud. Semantically labelling the urban point
cloud into various features is essential for urban planning and development. In this study,we propose a new object oriented methodology
for semantic labelling of urban point cloud data. In addition to the geometrical information from LiDAR, we have used the spectral
information for labelling of the point cloud. The coloured point cloud was segmented using colour based region growing algorithm
to produce 3D segments. Spectral and geometrical features were extracted from the segments created. The extracted features were
classified using different classifier system into five urban classes. The proposed methodology has been tested on LiDAR captured over
urban datasets .The results indicate the potential of object based classification for automated 3D point cloud labelling.

1. INTRODUCTION

Semantically identifying and labelling the minutest details of the
real world (eg: Road, lawn, residential buildings, commercial
buildings etc) resulting in a realistic 3D models has numerous
applications - city planning, disaster response preparation,virtual
tourism,cultural heritage documentation etc (Golovinskiy et al.,
2009). However creating such models automatically remains a
challenge.

Geospatial technology is considered to be the main source of data
for producing such models ranging from ground survey to stereo
images. Last decade has witnessed the power of Light Detection
and Ranging (LiDAR) technique for accurately capturing the 3D
of the various earth surface features. The ability of LiDAR in
directly capturing the altitude information of ground and above
ground objects through range measurements (point cloud) makes
it readily usable for three dimensional city modelling. The dense
point cloud obtained from LiDAR is useful not only for the gen-
eration of high resolution DTM (Digital Terrain Model) but also
for many applications ranging from 3D urban reconstruction, bio-
physical parameter estimation,virtual reality models etc. Despite
the ready availability of geometrical information from the LiDAR
point cloud, many applications require the point cloud to be se-
mantically classified into the various earth surface objects. This
method known as point cloud classification is one of the impor-
tant research topics in LiIDAR data processing. The nature of data
makes the automatic labelling of point cloud a challenge.

In the domain of point cloud labelling of urban scene, the earlier
works were on separating the ground and non ground points. This
technique, popularly known as filtering, has been well developed.
Some of the popular filtering techniques include progressive den-
sification based filtering (Axelsson, 2000) morphological based
filtering (Vosselman, 2000) surface based filtering (Pfeifer, 2005)
and segmentation based filtering (Filin and Pfeifer, 2006).A re-
view of the ground filtering algorithms by (Meng et al., 2010)
summarize that the current ground filtering algorithms use one
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of the following characteristics to separate ground points from
non ground points: lowest feature in specific area, ground slope

threshold, ground surface elevation difference threshold and smooth-

ness. The review paper concludes that the filtering algorithms
work well for flat terrain dataset but has certain limitations over
undulating terrain.

Many studies have focussed on extracting one of the urban fea-
tures from LiDAR dataset. Building prevail to be the objects of
most interest amongst the researchers (Lari et al., 2011),(Rab-
bani et al., 2006),(Ghosh and Lohani, 2011),(Topographic Laser
Ranging and Scanning:Priniciples and Processing, 2009). Clus-
tering based segmentation was used by Shan and Sampath (Topo-
graphic Laser Ranging and Scanning:Priniciples and Processing,
2009) to extract building from point cloud data. (Sun and Sal-
vaggio, 2013) has used graph cut methods for building extraction
from point cloud.

Most of the existing studies used only the geometrical informa-
tion from the LiDAR point cloud to identify various urban fea-
tures in the scene. The spectral information from optical images
could complement the geometrical information from LiDAR for
better object discrimination. However, due to the different na-
ture of the datasets, one being in three dimension and the other
in the two dimension, it is not straightforward to use the datasets
together for object recognition. Early researchers have converted
the LiDAR to 2D Digital Surface Models (DSM) or Digital Ter-
rain Models (DTM) and fused with the optical images (Rotten-
steiner et al., 2004),(Sohn and Dowman, 2007). However, this
leads to loss of the rich geometrical information inherent to Li-
DAR data (Wang and Shan, 2009). Very few studies have at-
tempted using the coloured point cloud for urban scene analysis
(Niemeyer et al., 2014).

Assigning labels to each points in the dataset can be either point
based or object based. Commercial LIDAR processing softwares
such as Terrasolid use point based methods which normally relies
on the elevation information for point cloud labelling. However
this involves significant human intervention and it is time con-
suming. With the popularity of Geographic Object Based Image
Analysis (GeOBIA)approaches, few researchers have attempted

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-8-907-2014 907



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-8, 2014
ISPRS Technical Commission VIII Symposium, 09 — 12 December 2014, Hyderabad, India

labelling of LiDAR data using object based methods. Spectral in-
formation is not used in most of the cases. We propose a method-
ology for object oriented semantic labelling of point cloud de-
rived from LiDAR data complemented with the spectral infor-
mation obtained from optical data. The spectral information ob-
tained from aerial images (R, G, B) was first integrated with geo-
metric information from LiDAR to produce a colored point cloud
X,Y,Z, R, G, B). An improved color based 3D region growing
segmentation algorithm was applied on the colored point cloud
data. Various geometric and spectral features extracted from the
3D segments are then classified semantically using various clas-
sification algorithms. All the points inside a 3D segment were
labelled with the same class as that of the segment.

We applied the proposed methodology on two airborne LiDAR
datasets and the corresponding aerial images.

2. METHODOLOGY

Point cloud labelling can be either point based classification or
object based classification approach. In point based classifica-
tion points are classified mainly using the few features inherent
to the point cloud such as distance from the ground, planarity.
In most of the commercial softwares available such as Terrasolid,
point labelling is based on point based classification. On the other
hand, object based point cloud analysis is gaining momentum as
it produces more realistic results. Similar to the GeOBIA (Ge-
ographic Object Based Image Analysis) concepts of 2D images,
object based analysis for LIDAR point cloud has two stages. Seg-
mentation is the first stage in which the point cloud is grouped to
form objects (also called as segments), mainly based on geomet-
ric characteristics. Features are then extracted from the segments,
for classification. The label assigned to each segment is then
given to all the points belonging to the segment. This involves
assigning a label ¢; to each of the 3D points . Fig 2. shows the
methodology adopted in this research. The point clouds were as-
signed to one of the five classes 1. Pavement/Road 2.Lawn 3.Flat
Roof Building 4. Gabbled Roof Building 5. Shrubs/Trees.The
steps are explained in detail in the following sections.

2.1 Filtering

To reduce the complexity of classification, the LIDAR points were
separated into ground and non ground points before further pro-
cessing. This step is essential as the first two classes ie.,Pavement
/ Road and Lawn belong to the ground class whereas as the three
classes belong to the non ground class. We have used have pro-
gressive TIN densification algorithm(Axelsson, 2000). In this al-
gorithm, an initial TIN surface is generated from a set of seed
points chosen initially based on the statistical information derived
from the LiDAR data. The initial TIN surface is densified itera-
tively using the threshold that is obtained iteratively based on the
threshold to the two parameters - angle to the nodes and the dis-
tance from the nodes.

2.2 Segmentation

Segmentation groups LiDAR points which are similar in some
respect. This approach combines the inherent geometric prop-
erties of the LiDAR data with the spectral information from the
optical image to produce disjoint 3D segments which are used for
further processing. Since the LiDAR is captured in an unorgan-
ised random fashion, we have used KD tree algorithm to establish
the neighbourhood of the point cloud. Color based region grow-
ing segmentation was then carried out on the organised dataset.
There are three main steps in this algorithm : region growing, re-
gion merging and region refinement. Seed points were selected
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Figure 1: The general framework of object based point cloud la-
belling

by fitting a normal to the set of KNN neighbours and calculat-
ing the residual of the point which indicate the curvature of the
points. Points which have high curvature value has high resid-
ual and the points with minimum curvature values were chosen
as seed points.(Rabbani et al., 2006). Seed points were selected
which were grown using colorimetric distance as given in equa-
tion 1

CD(Cl, 02) = \/(Rl — R2)2 + (B1 — 32)2 + (Gl — G2)2

(€]
where R,G,B denote the spectral values obtained from the optical
image. The roughly segmented regions obtained from the region
growing process were checked for colorimetric similarity and are
merged in the region merging stage. In the region refinement
process the regions with less than acceptable number of points
were merged with the neighbouring region.

2.3 Feature Extraction

The 3D segments created were used to extract features for fur-
ther classification. Various spectral and geometrical features are
computed in addition to the range of Z value in each segments.

2.4 Classification

Three different classifiers: Naive Bayes, K Nearest Neighbour-

hood, Support Vector Machines were used for classification. Naive
Bayes is a probabilistic classifier which uses the prior and the

likelihood to find the probability of an instance to be classified

to a particular class. K Nearest Neighbourhood uses the dis-

tance/similarity function to relate the unknown class with the

known class.

Support vector machine is a mathematical tool which aims at
finding the best hyperplane in the high dimensional feature space
that separates the classes (Vapnik, 1995). We have used the ’Guas-
sian Radial Basis Function (RBF)’ as the kernel. SVM usually
works for binary classification. We used multiclass SVM in this
work as the entire dataset needs to be classified into five classes.
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The performance of the classifiers was evaluated by generating
confusion matrix and kappa coefficients. Ground truth map was
generated based on complete enumeration. To assess whether the
classification was due to chance, the popular statistical measure
Cohen’s Kappa coefficient was used. Kappa value was calculated
using the equation 2

R:po_pe (2)
1 —pe

where po is the sum of the relative frequency in the diagonal of
confusion matrix (proportion of true agreement) and p. indicates
proportion due to chance agreement. The kappa value ranges be-
tween 0 and 1. Value of £ between 0.6 and 0.8 indicate substan-
tial agreement between the classification and ground truth data
and the value of kappa above 0.8 and 1 indicate almost perfect
agreement.

2.5 Point cloud labelling

The labels obtained from the classification for the segments as-
signed to all the corresponding points within the segment. The
points were given one of the following labels 1. Pavement/Road
2. Lawn 3. Flat roof 4. Gabbled Roof 5. Shrubs/Trees.

3. DATASET USED

-

Figure 2: Test sites of Vaghingen, Germany : a) Areal : Inner
City b) Area2 : High Riser

The dataset used for the study was provided to us as part of IS-
PRS Test Project on Urban classification and 3D building recon-
struction. The dataset was captured over Vaihingen, Germany on
August 2008 using Leica ALS50. The flying altitude was 500 m
above ground. The point density of the LIiDAR dataset is around
5 points per sq m. The corresponding optical image was captured
using an Integraph/ZI DMC. The spatial resolution of the image
is 8 cm and has a radiometric resolution of 11 bits. Two subsets
of around 170 sq m were used for the study as shown in Figure
2.Areal consists of dense complex buildings with some trees and
is situated in the center of the city. Area 2 consists of few high
rising residential buildings surrounded by trees. Figure 3. shows
the LiDAR data points captured over Area 1 and Area 2 displayed
based on the elevation.

4. RESULTS AND DISCUSSION

The methodology described in the previous section was applied
to the two study sites and the results obtained is discussed in this
section.

Figure 3: LiDAR point cloud data of the test sites Areal and Area
2 displayed based on elevation

Area 1 contained a total of 10242 points. After applying filter-
ing algorithm there are 3806 ground points and 6436 non ground
point. Area 2 had 15282 points of which there are 5887 ground
and 9395 non ground points. The results of filtering is shown in
figure 4.

Areal Area2

Figure 4: Filtered point cloud

The ground and the non ground points were segmented using
color based region growing algorithm. For Area 1, there are 32
segments, of which 11 belonged to ground points and the rest
to the non ground points. Area 2 consist of 56 clusters out of
which 19 belong to ground points and the rest to the non ground
points. The results of color based region growing segmentation
algorithm is as seen in Fig 5. Each cluster is assigned a color
for easy visualisation. The results of segmentation indicate that
most of the urban features are classified distinctively indicating
that spectral information along with geometrical information can
be a key factor to distinguish the various urban features present.

Areal Area2

Figure 5: Segmented point cloud

The ground and the non ground data point were classified us-
ing the different algorithms discussed in the methodology sec-
tion. The results are presented in Table 1 and Figure 8. It can
be seen that the accuracy of classification is comparable among
all the three classifiers. However, amongst the three classifiers,
KNN performs relatively well for both the ground and non ground
classes with an overall accuracy of around 96.67 % for ground
classes and 84.48 % for non ground classes. Kappa coefficient
also exhibits substantial to almost perfect agreement with the
ground data. The overall accuracy for all the three classifiers is
above 90% for the ground features whereas it is around 80% for
non ground features. This is reflected also in the producers and
users accuracy for the individual classes as shown in Figure 6 and
7. There is a drop in the accuracy for the classes 3 and 4 (Flat roof
and gabbled roof). From the Figure 8 , it can be seen that there
is misclassification between flat roof and gabbled roof.This can
attributed to the fact that limited number of geometrical features
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Classes/Classifiers Naive Bayes | KNN SVM
Ground Point Overall Accuracy 93.33 96.67 93.33
Kappa Coefficient 0.857 0.923 0.842
Non Ground Point | Overall Accuracy 79.31 84.483 | 81.035
Kappa Ceofficient 0.725 0.771 | 0.7056

Table 1: Performance Evaluation of different classifiers

used in this study. Use of more geometrical features such as shape
and planarity int he classification may improve the classification
accuracy.

Producer's Accuracy

mClass
mClas:

Producers Accuracy

mClass
W Class

Naive Bayes KNN svm
Classification Algerithms

Figure 6: Producers accuracy for different urban features

User's Accuracy

WClass
mClass
Class

mClass

mClass

Naive Bayes KNN sum
Classification Algorithms

Figure 7: Users accuracy for different urban features

The point cloud data were assigned class labels based on the la-
bels generated as a result of classification.The points were as-
signed to either one of the 5 urban land cover class (1. Pave-

ment/Road 2. Lawn 3. Flat roof 4.Gabbled Roof 5. Shrubs/Trees).

Areal Area2

1. Pavement/Road

Figure 8: Labelled point cloud data representing various urban
features

5. CONCLUSION

A novel object based semantic point cloud labelling method util-
ising the geometrical information from LiDAR point cloud data
and spectral information from optical images has been developed
for urban land cover classification. The proposed method is able
to label the points with an accuracy of 94% for ground classes
and 82% for non ground classes. Color based 3D segmentation
followed by KNN classification gives the best accuracy for point

cloud labelling. Results indicate that better geometrical descrip-
tors in the classification stage can improve the accuracy of point
cloud labelling.
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