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“Without trace of nerve elements, and without definite, fixed organs of 
any kind, internal or external, the Rhizopod,—simplest of all animals, a mere 
jelly-speck,—moves about with the apparent purposes of more complex creatures. 
It selects and swallows its appropriate food, digests it, and rejects the insoluble 
remains. It grows and reproduces its kind. It evolves a wonderful variety of 
distinctive forms, often of the utmost beauty, and, indeed, it altogether exhibits 
such marvelous attributes, that one is led to ask the question in what consists the 
superiority of animals usually regarded as much higher in the scale of life.” 

 
Joseph Leidy in Freshwater Rhizopods of North America, 1879, p. 5 
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ABSTRACT 

 

PHYLOGENETICS AND PATTERNS OF MOLECULAR EVOLUTION IN 

AMOEBOZOA 

 

SEPTEMBER 2011 

 

DANIEL J. G. LAHR, B. Sc., UNIVERSITY OF SÃO PAULO, BRAZIL 

M. Sc., UNIVERSITY OF SÃO PAULO, BRAZIL 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Laura A. Katz 

 

My dissertation explores several aspects of the relationship between 

morphological and molecular evolution in amoeboid lineages: 

Chapter 1 – General Introduction: This chapter provides an overview of the most 

pressing issues in Amoebozoa phylogeny that are dealt with in the remainder of the 

thesis. 

Chapter 2 - Reducing the impact of PCR-mediated recombination in molecular 

evolution and environmental studies using a new generation high fidelity DNA 

polymerase:  This chapter addresses the methodological difficulty in the study of large 

gene families, the generation of artifactual sequences by recombination during PCR 

Chapter 3 - Evolution of the actin gene family in testate lobose amoebae 

(Arcellinida) is characterized by two distinct clades of paralogs and recent independent 



 ix

expansions: This chapter explores intriging patterns of evolution in the actin gene 

families of testate amoebae. 

Chapter 4 - Comprehensive phylogenetic reconstruction of Amoebozoa based on 

concatenated analysis of SSU-rDNA and actin genes: A deep phylogenetic analyses of 

the Amoebozoa, enables exploration of well supported taxonomic units within the group. 

Chapter 5 - Interpreting the evolutionary history of the Tubulinea (Amoebozoa), 

in light of a multigene phylogeny:  This chapter explores a more restrict taxonomic unit 

within the Amoebozoa – the Tubulinea – based on an expanded sample of genes and taxa. 

Chapter 6 - The chastity of amoebae: re-evaluating evidence for sex in amoeboid 

organisms: This chapter asks whether the null-hypothesis that amoebae are asexual is 

consistent with current phylogenetic evidence. 
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CHAPTER 1 

 

 GENERAL INTRODUCTION 

 

Theoretical expectations in evolutionary biology are largely guided by principles 

established from the study of macro-organisms (e.g. plants, animals and fungi).  

Molecular biology has challenged some of these expectations.  Phylogenetic trees based 

on data for ribosomal genes revealed that life is separated into three large domains 

(Archaea, Bacteria and Eukarya) as opposed to the traditionally perceived five Kingdoms 

(Monera, Protista, Plantae, Fungi and Animalia).  However, classical and synthetic 

evolutionary theories have established a number of fundamental concepts that remain 

largely unchallenged.  For instance the change in classification exemplified by the switch 

from 5 Kingdoms to 3 Domains does not challenge the fundamental expectation that 

there is homology (common descent) between characters, and that analyses of these 

homologies enable us to reconstruct a historical diagram of relationships (phylogenetic 

tree).  However, as we start to explore the molecular evolution of microbial eukaryotes, 

some fundamental aspects of general theories are inconsistent.  Here, I discuss specific 

examples of molecular and morphological incongruence that are emerging from the study 

of diverse amoeboid organisms. 

One fundamental prediction (or assumption) of evolutionary theory is that 

diversity of morphological traits should be consistent with reconstructions of 

relationships based on molecular data.  After all, observation of descent with 
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modification of morphological traits is the foundation of evolutionary biology.  In the 

early days of molecular biology, phylogenetic reconstructions did not agree with the most 

accepted taxonomic systems for several biological groups.  The issue prompted great 

discussion, but two trivial reasons were responsible for the incongruence: 1) most early 

phylogenetic reconstructions were wrong (early molecular reconstruction methods were 

problematic); 2) some morphological predictions were wrong and ended up better 

interpreted with aid of molecular trees.  Most puzzles generated by early molecular 

reconstructions were resolved and no major dents were put into the canon of evolutionary 

theory. 

The Amoebozoa reveal considerable discord between molecular and 

morphological data.  A growing body of evidence shows that at multiple hierarchical 

levels, morphology does not accurately predict phylogeny for amoeboid organisms.  

There are multiple possible causes, which may be caused by systematic methodological 

errors or may be truly biological.  For instance, incomplete sampling of taxa can produce 

an incorrect estimate of relationships; in this case, a systematic error in the 

methodological approach could be creating the pattern of discordance.  On the other 

hand, there may be widespread morphological convergence happening at much deeper 

levels than is known for other organisms. 

Recognized as one of the major eukaryotic “supergroups”, the Amoebozoa are a 

collection of amoeboid organisms initially detected based on analyses of the small sub-

unit ribosomal DNA (SSU-rDNA) gene.  Not all amoebae are Amoebozoa though.  

Included in the Amoebozoa are only those organisms that generally produce lobose 

pseudopods, which are rounded, semi-cylindrical protrusions of cytoplasm with both a 
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granular internal compartiment (endoplasm) and a hyaline, external part (ectoplasm).  

There are however other amoeboid organisms scattered across the tree of eukaryotes.  A 

large number of them are in the “supergroup” Rhizaria.  These generally produce 

pseudopods of the filopodial type.  Filopods are thin pseudopods composed solely of 

ectoplasmic material, with no granular inclusions.  At this deep level of divergence, there 

aren’t many morphological or intracellular characters to be compared.  However, we still 

expect that in less-inclusive levels the morphology will be informative for phylogeny as 

is the case in other groups. 

Within the Amoebozoa, a number of morphologically well-defined lineages are 

consistently recovered in molecular reconstructions.  Examples of these are the 

Amoebidae (which includes the text-book favorite Amoeba proteus), the Dictyostellidae 

(including the cellular slime mold Dictyostelium discoideum, a favorite example for 

multicellularity apart from plants, animals and fungi), the Centramoebidae (containing 

the opportunistic pathogen Acanthamoeba spp.) and about 15 other groups.  Interestingly 

the relationships between these well-defined groups are largely unknown: there are 

proposed phylogenies and a working hypothesis of classification, but uncertainty about 

relationships in the Amoebozoa is higher than in other groups.  Although this lack of 

resolution may be attributed to insufficient data, it is worth noting that similar amounts of 

data were sufficient to resolve relationships in other high level groups.  For example, 

single gene analyses of SSU-rDNA are able to separate the Alveolata into their three 

main components: dinoflagelates, ciliates and apicomplexans. 

The inconsistency between morphology and molecules starts to appear when 

trying to group the well-defined lower level relationships within the higher group 
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Amoebozoa.  For instance, the Gracilipoda comprises an interesting group of three 

distinct genera that share a characteristic that is fundamentally distinct from any other 

Amoebozoa: they produce filose pseudopodia.  The general body shape (a flattened 

network) and locomotion characteristics are much more similar to organisms in the 

Rhizaria than to organisms in the Amoebozoa.  Another interesting example is the genus 

Phalansterium.  These are spherical organisms with a protruding flagellum, with no 

apparent amoeboid movement that although falls firmly within Amoebozoa, does not at 

the moment have a well-supported relationship with any other group.  Both examples 

may be interpreted as cases of convergence, even at this deep level. 

The most compelling cases of morphological/molecular incongruency are at the 

level of genera and species.  Across the Amoebozoa, a growing number of genera and 

species (these, the building blocks of systematic knowledge) turn out to be non-

monophyletic upon deeper inspection.  Rhizamoeba, Hartmannella, Amoeba, Nebela, 

Heleopera, Difflugia are all examples of easily identifiable amoebozoan taxa that are 

non-monophyletic in molecular trees.  In fact, around 60% of genera for which more than 

a single species had molecular sequences sampled are non-monophyletic.  Were 

morphologists simply wrong more than half the time?  Even more puzzling, some species 

display a high level of cryptic genetic diversification, as is the case of Hyalosphenia 

papilio and Vannella symplex.  These results point to a fairly problematic conclusion: 

morphology does not indicate species cohesion neither can be immediately used to 

reconstruct relationships.   

Of fundamental concern is the incongruency between morphology and molecules 

in the Arcellinida.  The arcellinids are amoebae with tests (shells).  Tests are an important 
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feature as they not only provide morphological identity, but they also provide a 

fossilization potential.  Fossil testate amoebae enable the calibration of the ancient 

Ameobozoa that are otherwise completely devoid of a fossil record.  This fundamentally 

useful feature of testate amoebae is under significant threat if we cannot confidently 

attribute a specific morphology to a monophyletic group of organisms.  One example is 

the Lesquereusiidae.  This Family comprises all members of Arcellinida that can 

biomineralize silica particles to be added in their shells.  Three genera included here 

were: Lesquereusia, Netzelia and Quadrulella but current molecular evidence places 

Quadrulella within the Nebelidae with high support, and statistical tests reject the 

possibility of monophyly of Lesquereusiidae.  Hence the biomineralization of silica 

particles, a character that can be identified in fossil forms, has emerged multiple times in 

the Arcellinida, making calibration of the fossil record more difficult. 

The emerging pattern is only visible now because of increasing interest in 

microbial eukaryotes.  As most of the diversity of microbial eukaryotes is neither harmful 

nor beneficial to humans, they have often been neglected, and thus theories and 

interpretations are spotty.  Additionally, amoebae are intrinsically difficult to study; 

microscopes and culturing are a necessity, which require much training.  Only recently 

molecular biology techniques enable objective and repeatable exploration of deep 

relationships within and among amoeboid organisms.  The intriguing inconsistency 

between morphological and molecular data presented here should spark a renewed 

interest in amoebae as subjects of evolutionary studies.  If these observations are even 

partially correct, they have the potential of deeply modifying our understanding of 
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evolutionary processes.  If they are incorrect, they will likely lead the way to the 

improvement of analytical methods. 
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CHAPTER 2 

 

 REDUCING THE IMPACT OF PCR-MEDIATED RECOMBINATION IN 

MOLECULAR EVOLUTION AND ENVIRONMENTAL STUDIES USING A 

NEW GENERATION HIGH FIDELITY DNA POLYMERASE 

 

2.1 Abstract  

PCR-mediated recombination can greatly impact estimates of diversity, both in 

environmental studies and in analyses of gene family evolution. Here we measure 

chimera (PCR-mediated recombinant) formation by analyzing a mixture of eight partial 

actin sequences isolated from the amoeba Arcella hemisphaerica amplified under a 

variety of conditions that mimic standard laboratory situations. We further compare a 

new generation proofreading processivity-enhanced polymerase to both a standard 

proofreading enzyme and previously published results. Proofreading polymerases are 

preferred over other polymerases in instances where evolutionary inferences must be 

made. Our analyses reveal that reducing the initial template concentration is as critical as 

reducing the number of cycles in order to decrease chimera formation and improve 

accuracy. Furthermore, assessing the efficiency of recovery of original haplotypes 

demonstrates that multiple PCR reactions are required to capture the actual genetic 

diversity of a sample. Finally, the experiments confirm that processivity-enhanced 

polymerases enable substantial decrease of PCR-mediated recombination through 

reducing starting template concentration, without compromising the robustness of PCR 

reactions. 
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2.2 Introduction 

Polymerase chain reaction (PCR)-based methods are the norm in molecular 

evolution studies of non-model taxa and in explorations of environmental DNAs. For 

example, degenerate PCR is often used in systematic studies where numerous diverse 

taxa are to be sampled (Baldauf 2003; Bapteste et al. 2002; Grant et al. 2009; Nikolaev et 

al. 2004; Tekle et al. 2008; Yoon et al. 2008). Despite advances and dropping costs in 

mega- and meta-genomic sequencing techniques (Allen and Banfield 2005; Holt and 

Jones 2008; Keller and Zengler 2004), PCR methods remain key in hypothesis-driven 

environmental studies (Barns et al. 1996; Costas et al. 2007; Dawson and Pace 2002; 

Doherty et al. 2007; Edgcomb et al. 2002). PCR is used in such studies mainly because of 

its reproducibility that enables the targeting of specific genes of interest from diverse 

taxa. 

One worrisome aspect of PCR-based studies is the phenomenon of PCR-mediated 

recombination, or chimera formation (Brakenhoff et al. 1991; Meyerhans et al. 1990). 

Chimeras are formed when incompletely extended DNA fragments anneal to closely 

related sequences generating recombinants between starting templates (Bradley and Hillis 

1997; Judo et al. 1998; Kanagawa 2003). It can be difficult to differentiate original 

haplotypes from chimeras, leading to overestimation of biological diversity in 

environmental studies (Berney et al. 2004; Hugenholtz and Huber 2003; von 

Wintzingerode et al. 1997). Interpretations about the fate of genes in molecular evolution 

studies can also be compromised by the presence of chimeras, as has been shown in tests 

of positive selection in the Major Histocompatibility Complex (MHC) in sticklebacks 

(Lenz and Becker 2008). 
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Most experimental work on PCR-mediated recombination has used traditional 

enzymes such as Taq polymerase to determine rates of chimera formation under 

conditions normally used in studies of environmental microbial samples (e.g. bacterial 

and archaeal 16s SSU-rDNA surveys (Acinas et al. 2005; Liesack et al. 1991; Qiu et al. 

2001; Speksnijder et al. 2001; Suzuki et al. 1998; Suzuki and Giovannoni 1996; von 

Wintzingerode et al. 1997; Wang and Wang 1997; Yu et al. 2006). These studies 

determined that chimera formation can be reduced for most DNA polymerases when the 

cycle number is lowered and extension time increased (Judo et al. 1998; Kanagawa 2003; 

Kurata et al. 2004; Yu et al. 2006; Zaphiropoulos 1998). The recommendation is that the 

lowest number of cycles be determined experimentally, which should be around 20 

cycles or fewer. These suggestions can be easily followed in experiments with high 

quality DNA from organisms of known genome complexity (Lenz and Becker 2008; Qiu 

et al. 2001). However, when dealing with DNA extracted from organisms that may have 

highly complex genomes or preparations with chemical compounds that are not 

completely removed (e.g. environmental DNAs from sediments), it is more difficult to 

optimize PCR for downstream applications such as cloning and sequencing (Acinas et al. 

2005; Speksnijder et al. 2001; von Wintzingerode et al. 1997; Wang and Wang 1997). 

Additionally, in molecular evolution studies where single nucleotide polymorphisms are 

important for inferring evolutionary processes (e.g. population studies, analyses of rare 

biosphere) the high error rate of Taq polymerase is not desirable. To address such 

difficulties, a new generation of DNA polymerases has emerged that combine 

proofreading capabilities with enhanced DNA binding motifs (Wang et al. 2004), 

including Phusion (Finnzymes, Finland); PfuUltra (Stratagene, CA) and Pfx50 
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(Invitrogen, CA). These enzymes have not yet been analyzed for dynamics of chimera 

formation. 

Our goal is to understand the formation of PCR-mediated recombinants when 

many closely related sequences are present in the same reaction, and when a high number 

of cycles is required to generate robust products. Low primer to target amplicon ratio is 

assumed to be the main reason for mismatch pairing in later cycles, which leads to 

chimera formation (Acinas et al. 2005; Brakenhoff et al. 1991; Judo et al. 1998; 

Meyerhans et al. 1990), thus we also surveyed different initial DNA concentrations. 

Varying DNA concentrations is also relevant because in genomic DNA extractions, the 

absolute number of genome copies varies according to genome size and the subsequent 

high copy number of members of large gene families could lead to increased PCR-

recombination (Lenz and Becker 2008). 

Here we analyze the formation of chimeras from a set of eight paralogous protein-

coding genes by comparing the following experimental conditions: 1) a processivity-

enhanced, proofreading polymerase to a traditional proofreading polymerase; 2) high 

cycle number to standard cycle number and 3) a range of initial template concentrations. 

These sets of conditions are relevant to numerous research areas as parameters fall within 

recommendations and are likely to be used in standard laboratory practice. 

 

2.3 Methods 

2.3.1 Origin of templates 

We chose to investigate a set of eight paralogous haplotypes of the actin gene 

extracted from the testate amoeba Arcella hemisphaerica. The eight haplotypes differ 
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from 2.4-20.5% in nucleotide sequence. Actin clones were obtained from previous work 

in A. hemisphaerica as described in Tekle et. al (Tekle et al. 2008), except that resulting 

clones were purified using the PureLink kit (Invitrogen, CA, USA). To generate 

templates for the experiment (Figure 1.1), we eliminated the vector by diluting each 

purification to 25 ng/μl and amplified them separately using Arcella-specific degenerate 

primers designed from an alignment with over 30 actin paralogs from this taxon: 

AhemAct-F (5’ GARGARCAYCCYGTYTTGTTGAC 3’) and AhemAct-R (5’ 

TAYTTYCTYTCDGGRGGAGCAAT 3’). Phusion Hot Start polymerase (New England 

Biolabs, USA, Cat. No. F540) was used in the following conditions: 98°C denaturing for 

15s, 56°C annealing for 15s, 72°C extension for 45s, 35 cycles. These primers yield an 

actin fragment that is 670 base pairs long. We performed these experiments using 

appropriate negative controls and the amplified products were sequenced to check for 

quality. Each amplified product was then purified using Microclean (The Gel Company, 

CA, USA). Finally, all haplotypes were individually diluted to 1 ng/μl and mixed (Figure 

1.1). 

 

2.3.2 Conditions 

The conditions surveyed varied across a gradient of template concentrations at a 

high cycle number and a low cycle number (Table 1.1). We performed amplifications 

using both VentR polymerase (New England Biolabs, MA, USA, Cat. No. M0254) and 

Phusion Hot Start polymerase (New England Biolabs, MA, USA, Cat. No. F540). To 

assess varying template concentrations, we started with the mixture of eight haplotypes, 

each at 1ng/μl measured in a NanoDrop (NanoDrop Products, Wilminton DE, USA), 



 

 12 

which is equivalent to 1.4x109 molecules/μl of the amplified 670 base pair (bp) fragment. 

We then proceeded to dilute this mixture in five consecutive 1:10 solutions of 10mM 

Tris-HCl and the final dilution 1:2. Hence we obtained the following concentrations: 1 

ng/μl; 10-1ng/μl; 10-2 ng/μl; 10-3ng/μl; 10-4ng/μl; 10-5ng/μl and 5x10-6ng/μl. These 

concentrations correspond respectively to the following amounts of template 

molecules/μl: 1.4x109; 1.4x107; 1.4x105; 1.4x103 and 6.8x102 (Table 1.1). 

We chose to use 30 cycles as a reasonable number for standard PCR in molecular 

evolution and environmental studies. For a high cycle condition, 50 cycles were used as 

an upper extreme boundary where effects of high cycling would certainly be obtained 

(see Lenz et. al (2008) for a brief discussion on commonly used cycle numbers). For 

Phusion polymerase, every template concentration yielded enough products in the 50 

cycle condition, but the 30 cycle condition did not present sufficient yield for 

downstream analysis in the lowest template concentration (5x10-6ng/μl or 6.8x102 

molecules/μl). We decided to analyze the data from the 50 cycle condition to the lowest 

dilution we could get, thus for both cycle numbers we analyzed the lowest possible 

dilution. For VentR polymerase, we only obtained satisfactory yields for downstream 

processing in the two highest concentrations analyzed (1 ng/μl and 10-1ng/μl; Table 1.1). 

Except for number of cycles and initial template concentrations, all reactions were 

performed using the same cycling parameters. The recommended extension times 

(30s/kilobase for Phusion, 60s/kilobase for VentR) were increased three-fold, taking into 

account previous claims that longer extension times decreases chimera formation (Judo et 

al. 1998; Kanagawa 2003; Kurata et al. 2004; Meyerhans et al. 1990; Wang and Wang 

1997). For experiments on Phusion polymerase, the concentrations for amplification 
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mixtures followed manufacturer’s protocol (1X HF buffer, 1.5mM of MgCl2, 0.2 mM of 

each dNTP, 0.5 μM of each primer and 0.01 U/μl of polymerase), and the cycling 

conditions were 95°C for 3 min, followed by 30 or 50 cycles at 98°C for 15s, 56°C for 

15s, 72°C for 90s and then a final extension at 72°C for 5min. For VentR polymerase the 

concentration for amplification mixtures were per manufacturer’s recommendations (1X 

Thermopol buffer, 1.5 mM of Mg2SO4, 0.2 mM of each dNTP, 0.5 μM of each primer 

and 0.005 U/μl of polymerase). Reaction mixtures were incubated at 95°C for 3min, then 

30 or 50 cycles at 95°C for 15s, 56°C for 15s, 72°C for 3 min and a final extension of 

72°C for 5 min. In both Phusion and VentR reaction mixtures, the final concentrations of 

DNA were 1.1x10-4 
μM, 1.1x10-6 

μM, 1.1x10-8 
μM, 1.1x10-10 

μM and 5.7x10-11 
μM 

corresponding to the experimental dilutions, respectively (in molecules/μl): 1.4x109; 

1.4x107; 1.4x105; 1.4x103 and 6.8x102. 

 

2.3.3 Cloning 

Each amplification reaction was run into 1% Seakem GTG agarose gel (Cambrex 

Bio Science, ME, USA) made with modified TA.E buffer (40 mM Tris-acetate, pH8.0, 

0.1 mM Na2EDTA). The 670 bp band was visualized by staining with SYBR Safe 

(Invitrogen, CA, USA) at dilution 1:104. We then excised the band from the gel and 

isolated DNA from agarose with the Millipore UltraFREE DA (Millipore Corp., MA, 

USA). The obtained product was further purified using Microclean (The Gel Company, 

CA, USA). The purified products were then ligated using Zero Blunt TOPO cloning kit 

(Invitrogen, CA, USA) and transformed into One Shot Competent Cells (Invitrogen, CA, 

USA) per manufacturers instructions. Cloned cells were plated in Luria-
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Bertani/Kanamycin plates and colonies were screened for inserts by direct PCR using 

AmpliTaq Gold Polymerase (Invitrogen, CA, USA). Positive colonies were then purified 

in a 96-well format using PureLink kit (Invitrogen, CA, USA), per manufacturers 

instructions. Sequencing reactions were performed in a 96-well format in an ABI 3100 

automated sequencer at the PennState University Nucleic Acid Facility (University Park, 

PA, USA). We aimed to sequence 24 clones of each amplification/cloning event for 

comparative reasons, but the rate of sequencing failure varied across conditions (see 

Table 1.1). 

 

2.3.4 Replicates and controls 

In order to avoid stochastic effects, we replicated the experiment by: 1) diluting 

and mixing the original templates two times independently and 2) repeating a subset of 

conditions for each experiment (Table 1.1). For the Phusion experiments, templates were 

made two times independently, starting from the first amplification of haplotypes. Each 

condition was amplified up to two times for each independent making of templates. For 

VentR experiments, templates were made once and amplifications replicated twice. 

Negative controls were used throughout the experiment, and no contamination was 

detected. We also used a positive control for contamination by randomly choosing one of 

the original haplotypes to run through the whole protocol (dilution, amplification, gel 

isolation, cloning and sequencing) side-by-side with the experimental mixed haplotypes. 

We sequenced at least 4 positive clones for each experiment and no cross-contamination 

was detected, as all sequenced clones were identical to the original haplotype. This 
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positive control indicates that we did not have cross-tube contamination, which could 

cause concentration errors or template bias.  

 

2.3.5 Determining PCR recombination events 

We analyzed sequences for each experiment individually. The sequences were 

initially scanned for quality using SeqMan (DNASTAR 1994); poor quality sequences 

due to ambiguity at sites were discarded, less than 1% of the overall sample. This step 

presumably excludes heteroduplexes as well (Thompson et al. 2002). All sequences from 

each PCR experiment were compiled and aligned manually using MacClade (Maddison 

and Maddison 2005). Similarity trees were generated by NJ algorithm using PAUP* 

(Swofford 2000) to tally cloned sequences as original or chimeric haplotype 

(Supplementary Material, available at http://www.biotechniques.com). Polymorphisms 

were confirmed by eye for sequences that were not 100% identical to the original 

haplotypes. Breakpoints were determined manually for chimeric haplotype 

(Supplementary Material, available at http://www.biotechniques.com), by aligning each 

chimera against all eight initial haplotypes in Megalign (DNASTAR 1994). A similarity 

tree for all encountered chimeric haplotypes was used to search for the exact same 

chimera in independent amplification events. Statistical analyses regarding distribution of 

breakpoints and One Way ANOVAs were performed in STATA/SE 9.1(StataCorp 2005).  

 

2.3.6 Software recognition of the chimeras obtained 

We used the online software Bellerophon (Huber et al. 2004) to determine 

efficiency of automated chimera recognition (Supplementary Material, available at 
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http://www.biotechniques.com). We chose to use this particular software as an exemplary 

system because: 1) it is widely used; 2) it is explicitly designed to recognize PCR-

mediated recombination, and not historical recombination signal; 3) it does not rely on a 

database of confirmed sequences, which is useful to only a fraction of studies. 

 

2.4 Results 

PCR-mediated recombination between eight initial haplotypes (2.4-20.8% 

divergence) was investigated across a gradient of template concentrations in two different 

cycling conditions (Table 1.1). Extensive experiments using the Phusion polymerase 

were compared to a more limited dataset using VentR polymerase (Table 1.2). 

 

2.4.1 PCR recombination events across different treatments 

We determined the number of chimeras recovered in each individual 

amplification/cloning event Figure 1.2 (see Supplementary Material, available at 

http://www.biotechniques.com, for a complete tally). For Phusion polymerase, 50 cycles 

amplification reaction yields significantly more recombinants then the 30 cycles 

amplification (One Way ANOVA: df=23, F=9.03, p=0.006), with an average of at least 

65% recombinant sequences for all initial template concentrations (Table 2.2). Reduction 

of concentration does not significantly reduce chimera formation for the 50 cycles 

condition (One Way ANOVA: df=11, F=2.20, p=0.16). Chimera formation remained 

high (~60%) at 30 cycles with higher initial template concentration not significantly 

different from the same concentrations at 50 cycles (One Way ANOVAs -- concentration 

1.4x109: df=5, F=4.17, p=0.11; concentration 1.4x107: df=5, F=3.76, p=0.12), but 
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decreased to 5% at a starting concentration of 1.4x105 molecules/μl and no chimeras 

were recovered in the lowest concentration (1.4x103 molecules/μl), both significant 

decreases (One Way ANOVA: df=11, F=36.33, p=0.00001). For VentR polymerase, we 

had fewer conditions to compare as the PCRs failed at the lower DNA concentrations. At 

50 cycles VentR yielded an average of 40-44% chimeras at all observed concentrations, 

and at 30 cycles 45% and 36% for higher and lower concentrations respectively (Table 

1.2). 

 

2.4.2 Recovery of original haplotypes per treatment 

The number of original haplotypes recovered out of the eight initially mixed 

varied for different treatments (Figure 1.2), and do not differ significantly with varying 

number of cycles (One Way ANOVA: df=23, F=2.52, p=0.12) or starting template 

concentration (One Way ANOVAs – 30 cycles: df=11, F=1.85, p=0.21; 50 cycles: df=11, 

F=2.91, p=0.1). Nevertheless, a few trends emerge. For Phusion, at 50 cycles, all 

template concentrations on average recover an assortment of four haplotypes out of the 

eight originals. At 30 cycles, the intermediate concentrations (1.4x107 and 1.4x105, 

molecules/μl) recovered seven haplotypes on average, with individual PCR reactions 

actually being able to recover all eight (Figure 1.2); the higher and lower template 

concentrations recovered four haplotypes on average. VentR polymerase recovered an 

average of five original haplotypes for all conditions. Some sequences were more prone 

to be recovered: Original Haplotype 2 and Original Haplotype 5 are recovered in almost 

all experiments; and Original Haplotype 3 is recovered only in half the experiments 

(Supplementary Material, available at http://www.biotechniques.com). 
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2.4.3 Number of breakpoints in chimeric sequences 

We determined breakpoints and participant original haplotypes for each chimeric 

haplotype. Both the distribution of numbers of breakpoints per sequence and the 

distribution of breakpoints along the sequence suggests that under PCR conditions the 

recombination events are random. Chimeras varied from having a single breakpoint with 

two clear parental sequences to having eight breakpoint and six parental sequences 

alternating in participation (see Supplementary Material, available at 

http://www.biotechniques.com, for a complete tally). The majority of chimeras (65%) 

have more than one breakpoint and in most cases there are more than two parental 

sequences for each chimera (Figure 1.3). There is no clear pattern between number of 

breakpoints and template concentration or number of cycles: the distribution of sequences 

with breakpoints follows a Poisson distribution when taken together (Poisson regression 

likelihood ratio chi-squared=7.83, p=0.02, df=2; Pearson goodness-of-fit chi-

squared=110.67, p=0.99, df=152), and follow that distribution when partitioned by 

concentration (p=0.01) or cycling number (p=0.04) (Figure 1.3). Additionally, we were 

unable to determine a correlation between sequence features (local similarity, 

conservation) and susceptibility to be a breakpoint. The distributions of breakpoints along 

the sequence are not significantly different from the expected in a normal distribution 

(Shapiro-Wilk’s W=0.95, p=0.04; Supplementary Material, available at 

http://www.biotechniques.com).  
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2.4.4 Haplotype participation in chimeric sequences  

The frequency that a specific original haplotype was involved in chimeric events 

corresponds with the frequency that haplotype was recovered overall in PCRs 

(Supplementary Material, available at http://www.biotechniques.com). Original 

Haplotype 2 was recovered most times across experiments (51 clones overall), and it also 

was involved as a part of a chimera in 81 cases. Original Haplotype 3 was the least 

recovered haplotype across experiments (16 clones overall) and was also the least likely 

haplotype to participate in chimeras (23 counts). Such pattern in the composition of 

chimeras is further evidence that recombination events are mostly random. The more 

readily available sequences are more likely to participate in recombination events, 

without any bias toward a particular haplotype or group of haplotypes. 

 

2.5 Discussion 

Chimeras are more likely to be observed when both high cycle condition and 

large initial concentration of templates are used (Table 1.2). In contrast, no recombinants 

were observed in the low cycle/low concentration conditions. Although our analyses 

corroborate the inference that high cycle numbers induce chimera formation in PCR 

(Bradley and Hillis 1997; Judo et al. 1998; Kanagawa 2003; Kurata et al. 2004; Qiu et al. 

2001; Wang and Wang 1997), they also highlight the importance of initial template 

concentration in chimera formation (Figure 1.2). The effect of template concentration 

revealed here is due to the wider range (seven orders of magnitude) of concentrations 

analyzed compared to previous research (Qiu et al. 2001). Such a range is enabled by the 



 

 20 

ability of Phusion, a processivity-enhanced polymerase, to amplify very low 

concentrations of template (Table 1.1). 

Rates of recombination obtained for Phusion are highly variable across 

conditions. Previous research has proposed that enzymes with higher processivity yield 

more chimeric sequences (Qiu et al. 2001). This is confirmed at high cycle/high template 

concentration conditions, with an average yield of 71% chimeras (Figure 1.2). However, 

the surprising result is that the same enzyme yields absolutely no chimeras when the 

initial template concentration is low enough (1.4x103 starting molecules) and when the 

cycle number is reduced to 30 cycles (Figure 1.2). The processivity-enhanced enzyme 

makes up for its high rate of chimera formation by being able to amplify initial 

concentrations that are four to five orders of magnitude lower than what the strict 

proofreading polymerase can amplify (Table 1.1), effectively reducing chimera formation 

to zero (Table 1.2). Non-proofreading polymerases (i. e. Taq) might also benefit from 

less concentrated initial templates but they are less desirable for molecular evolution 

studies. Furthermore, we attribute Phusion’s ability to amplify low template 

concentrations to the enhanced processivity. Ordinary Taqs might not be able to amplify 

concentrations that are low enough to reduce artifact formation. 

The percentages of chimeras formed per reaction are higher for certain conditions 

in the present survey than have been reported in much of the literature, which we believe 

is due to the greater complexity of our starting templates (i.e. 8 actin haplotypes). The 

rates of recombination for a proofreading enzyme (VentR) under standard conditions (30 

cycles) averages around 40% recombinants in the present study, while the highest 

available literature reports are 32% for Taq polymerase after 30 cycles on 7 distinct initial 



 

 21 

haplotypes (Wang and Wang 1997) 16% for the proofreading Expand H-F system 

(Boehringer, Mannheim, Germany) after 25 cycles using 8 initial haplotypes and 31% 

recombinants using Taq polymerase across multiple loci in polyploid cotton (Speksnijder 

et al. 2001). Since the reported chimera formation rates in other available literature 

ranges from 1-5% across a variety of enzymes (Acinas et al. 2005; Bradley and Hillis 

1997; Brakenhoff et al. 1991; Judo et al. 1998; Kanagawa 2003; Meyerhans et al. 1990; 

Qiu et al. 2001), we attribute the higher rates in our experiment as well as in two others to 

the higher number of initial haplotypes; most studies used 2-4 initial haplotypes to test 

chimera formation. In contrast, up to 35% recombinants were reported for only two MHC 

loci (Lenz and Becker 2008), which may indicate a possible influence of the template 

itself. Further, we demonstrate that there is a rapid increase in chimera formation as 

diversity in the original sample increases. This reinforces the idea that molecular 

environmental studies might be plagued with a slew of artificial sequences (Hugenholtz 

and Huber 2003). Moreover, initial template concentrations (i. e. abundances) in 

environmental samples will most likely be unequally distributed, which might influence 

the formation of artifacts. However, differential abundance of templates probably has a 

larger impact on the detection of true diversity and our analyses indicate that multiple 

(>2) PCRs will be required to capture the true diversity of a sample, even when 

abundances of templates are equivalent. 

We find that the majority of chimeras contain more than one breakpoint, 

indicating that more than two parental sequences can be involved in PCR-mediated 

recombination. This high rate of cross-over is independent of cycle number or initial 

template concentration (Figure 1.3). This observation will create problems for chimera 
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detecting software that base their search criteria in finding one breakpoint per sequence. 

For example, using the online software Bellerophon (Huber et al. 2004) to detect the 

chimeras in the present dataset, on average only 65±18% of chimeras are detected and 

even more worrisome there is a false-positive rate of 40±31% (see Supplementary 

Material, available at http://www.biotechniques.com, for details). 

Capturing the full diversity within a sample requires a combination of multiple 

PCR reactions that have been performed under chimera-reducing conditions. On average, 

PCRs at high cycle numbers are unable to recover all diversity (average 4±1 out of 8 

starting haplotypes, Figure 1.2), even if all three replicates are combined, and have the 

added bias of generating false haplotypes. While low cycle number improves recovery 

(7±1 out of 8 starting haplotypes, Figure 1.2), it is likely that a single PCR experiment 

will not capture all the diversity. For example in chimera-reducing conditions with low 

cycle number and lowest initial template concentration possible, individual PCRs detect 

an average of four out of the eight haplotypes, but performing three replicates will 

certainly describe all diversity in this eight haplotype system (Supplementary Material, 

available at http://www.biotechniques.com). Hence we reiterate the necessity of 

replicating PCRs to assess biodiversity (Acinas et al. 2005; Kanagawa 2003; Qiu et al. 

2001), and we add the recommendation that these replicate PCRs be run at minimal DNA 

concentrations and cycle numbers, which need to be established on a sample-by-sample 

basis in environmental studies. 
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Table 2.1: Conditions examined for the formation of PCR-mediated recombinants 
(chimeras). 
Template Concentration 1.4x109 1.4x10 7 1.4x10 5 1.4x10 3 6.8x10 2 
Phusion – template mix 1*      
50 cycles (2x) 12, 10 23, 25 23, 22 NA 24, 24 
30 cycles (1x) 27 29 24 15 failed 
      
Phusion – template mix 2*      
50 cycles (1x) 21 17 22 NA 15 
30 cycles (2x) 17, 19 20, 22 22, 19 3, 11 failed 
      
VentR **      
50 cycles (2x) 7, 8 8, 3 failed failed failed 
30 cycles (2x) 8, 10 10, 12 failed failed failed 

We have determined eight distinct experimental conditions to study, comprising of four initial template 
concentrations, each amplified using two different numbers of cycles.  
* For Phusion polymerase, each treatment was repeated three times, two of them with the same template 
mixing event, and one independent.  
** For VentR Polymerase, we used one mixture, independently assayed two times. 
NA - not available. Our objective was to survey the most dilute condition possible. Therefore, we skipped 
this condition for the 50 cycle experiments. The amplification works normally under these conditions. 
failed - Amplification under the established parameters did not yield a suitable product for cloning. 
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Table 2.2: Total clones observed, average numbers of chimeras, original haplotypes 
recovered and percentage of chimera haplotypes formed under varying conditions. 
Cycle Number 50 cycles 30 cycles 
Concentration 1.4x109 1.4x10 7 1.4x10 5 6.8x10 2 1.4x10 9 1.4x10 7 1.4x10 5 1.4x10 3 
Phusion         
Total clones 43 65 67 63 63 71 65 29 
Chimera Haplotypes 6  12  11 8 9  7  0  0  
Original Haplotypes 3  5  6  4  5  7  7  4  

Chimera % 65±9 70±11 64±3 65±2 67±9 50±10 5±8 0 
         
VentR         
Total clones 15 11 - - 18 22   
Chimera Haplotypes 2  2  - - 3  2  - - 
Original Haplotypes 3  3  - - 3  4  - - 

Chimera % 38±18 42±12 - - 46±5 38±31 - - 

Numbers represent averages across all replicates for the particular experiment. Percentages are represented 
along with the standard deviation. For Phusion polymerase, number of clones for each condition is 
averaged out of 3 replicate experiments; for VentR polymerase, out of 2 replicate experiments. A full 
detailed table is available as Supplementary Material 1 online. 
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Figure 2.1: Experimental design used to amplify eight paralogous actin haplotypes 
in different cycling conditions using multiple initial template concentrations. 
The haplotypes, obtained from a previous study, were diluted and amplified individually. 
All eight were mixed to a concentration of 1 ng/μl and then diluted to five successive 
experimental concentrations. Each experimental concentration was amplified in triplicate 
using both a processivity-enhanced proofreading polymerase (Phusion) and a strict 
proofreading polymerase (VentR), in a low cycle number (30) and a high cycle number 
(50) conditions. Each amplification was subsequently cloned, sequenced and scanned for 
chimeras. 
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Figure 2.2: Distribution of chimeric haplotypes according to number of breakpoints. 

There is no significant difference in distribution between cycle numbers. 
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Figure 2.3: Number of chimeras and original haplotypes recovered across all 
concentrations and cycling conditions analyzed using a processivity-enhanced 
proofreading polymerase (Phusion). 

The three replicates for each condition are shown separately. Numbers on x axis represent 
the initial concentration of molecules. 
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CHAPTER 3 

 

 EVOLUTION OF THE ACTIN GENE FAMILY IN TESTATE LOBOSE 

AMOEBAE (ARCELLINIDA) IS CHARACTERIZED BY TWO DISTINCT 

CLADES OF PARALOGS AND RECENT INDEPENDENT EXPANSIONS 

 

3.1 Abstract  

The evolution of actin gene families is characterized by independent expansions 

and contractions across the eukaryotic tree of life.  Here we assess diversity of actin gene 

sequences within three lineages of the genus Arcella, a free-living testate (shelled) 

amoeba in the Arcellinida.  We established four clonal lines of two morphospecies, 

Arcella hemisphaerica and Arcella vulgaris, and assessed their phylogenetic relationship 

within the ‘Amoebozoa’ using SSU-rDNA genealogy.  We determined that the two lines 

of A. hemisphaerica are identical in SSU-rDNA, while the two A. vulgaris are 

independent genetic lineages.  Further, we characterized multiple actin gene 

copieshaplotypes from all four lineages.  Analyses of the resulting sequences reveal 

numerous diverse actin genes, which differ mostly by synonymous substitutions. We 

estimate that the actin gene family contains 40-50 paralogous members in each lineage. 

None of the three independent lineages share the same paralog with another, and 

divergence between actins reaches 29% in contrast to just 2% in SSU-rDNA. Analyses of 

effective number of codons, compositional bias, recombination signatures and genetic 

diversity in the context of a gene tree -genealogy indicate that there are two groups of 

actins evolving with distinct patterns of molecular evolution.  Within these groups, there 



 

 29 

have been multiple independent expansions of actin genes within each lineage.  Together, 

these data suggest that the two groups are located in different regions of the Arcella 

genome.  Further, we compare the Arcella actin gene family to the relatively well-

described gene family in the slime mold Dictyostellium discoideum and other members of 

the ‘Amoebozoa’ clade.  Overall patterns of molecular evolution are similar in Arcella 

and Dictyostelium.  However the separation of genes in two distinct groups coupled with 

recent expansion is characteristic of Arcella and might reflect an unusual pattern of gene 

family evolution in the lobose testate amoebae.  We provide a model to account for both 

the existence of two distinct groups as well as the pattern of recent independent 

expansion leading to a large number of actins in each lineage. 

 

3.2 Introduction 

Though actin is one of the most abundant proteins in eukaryotic cells and has 

been the subject of many studies, much remains to be understood about the tempo and 

mode of evolution of this gene family (Reisler and Egelman 2007).  Actin cytoskeletal 

functions are well characterized (Goodson and Hawse 2002), but actins and actin related 

proteins (ARPs) are also implicated in nuclear processes (Chen and Shen 2007; Pederson 

2008; Reisler and Egelman 2007). 

There is a high level of structural and sequence conservation among actin proteins 

between disparate organisms, and between eukaryotic and bacterial homologues such as 

MreB (Erickson 2007; Goodson and Hawse 2002; Hightower and Meagher 1986; van den 

Ent et al. 2001).  However, different lineages show different patterns of evolution in their 
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sets of actin paralogs across the eukaryotic tree of life (Goodson and Hawse 2002; Wade 

et al. 2009).  

In multicellular eukaryotes, appearance of distinct actin gene duplicates and 

subsequent innovation is associated with tissue differentiation.  In the green algal lineage 

(including land plants), an increase of paralogs up to 18 in the soybean (McDowell et al. 

1996) is associated with an increase in morphological complexity (Bhattacharya et al. 

2000).  In animals, the appearance of specific muscle and cytoplasmic actin types is 

ancient, and subsequent duplications within each type seem independent, yielding up to 6 

actin genes in vertebrates and arthropods (Hooper and Thuma 2005; Kusakabe et al. 

1997). 

Our understanding of actin gene family evolution in microbial eukaryotes is 

incomplete.  Across the estimated ~70 lineages of microbial eukaryotes (Parfrey et al. 

2006; Patterson 1999), the breadth of knowledge on actin diversity is largely limited to 

organisms with completed genomes (Reisler and Egelman 2007).  In addition, diverse 

lineages such as dinoflagellates (Bachvaroff and Place 2008), Foraminifera (Flakowski et 

al. 2006), red algae (Wu et al. 2009) have been shown to contain large collections of actin 

gene paralogs of up to 28, 7, and 10 genes, respectively.  In these three cases, paralogs 

are divided into two groups with different evolutionary characteristics.  In all three cases 

there is significantly more synonymous substitutions than replacement ones, indicating 

purifying selection.  In the Dinoflagelate Amphidinium carterae (Bachvaroff and Place 

2008), both actin groups contain introns and are tandemly organized.  There is indication 

that the size of introns and expression differs between the 2 groups. 
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The ‘Amoebozoa’ contains many familiar amoeboid organisms, including 

Amoeba proteus, Dictyostelium discoideum, and the testate lobose amoebae (Arcellinida) 

that are the subject of this study.  Most knowledge in this group stems from studies in the 

model slime molds (Dictyostelium and Physarum) and some pathogenic lineages 

(Entamoeba, Acanthamoeba).  The completed genome of Dictyostelium discoideum 

(Eichinger et al. 2005) reveals a 41-member actin gene family encompassing 17 paralogs 

that code for the exact same amino acid sequence (Act8-group), 7 potential pseudogenes, 

and 16 other paralogs ranging from canonical actins to very divergent proteins (Joseph et 

al. 2008).  Identical paralogs for the most highly expressed type of actin (Act8-group) are 

spread across 4 chromosomes. 

The remaining ~14 major lineages in ‘Amoebozoa’ remain largely unexplored 

with respect to gene family evolution (Pawlowski and Burki 2009). We have investigated 

the actin gene family in the lobose testate amoebae (Arcellinida).  The Arcellinida are 

characterized by the presence of a test (shell), but despite a 750 Ma fossil record (Porter 

et al. 2003) and high abundance in numerous environments (Smith et al. 2008) the 

Arcellinida remain relatively understudied.  We have isolated four clonal lines that 

represent two morphospecies, Arcella hemisphaerica and Arcella vulgaris.  We 

established their relationship by analyzing small subunit ribosomal DNA (SSU-rDNA) 

genealogies and characterized their actin genes.  Analyses of actin gene -genealogies 

coupled with analysis of the effective number of codons, genetic diversity indices and 

recombination signatures reveal that actin genes in the Arcellinida are under an intriguing 

mode of evolution which combines paralogy predating the divergence of these 

morphospecies with recent independent gene expansions. 
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3.3 Methods 

3.3.1 Taxa studied 

We isolated and cultured four lineages of Arcella spp. during this study.  Two 

lineages of A. hemisphaerica were isolated from commercial cultures, both marketed as 

A. vulgaris.  The “Blue” lineage was purchased from Connecticut Valley Biological 

Supply Company, Southampton, MA and is the same strain described in Tekle et al. 

(2008) (Table 2.1, Figure 2.1a). The “Red” lineage was purchased from Carolina 

Biological, Burlington, NC (Table 2.1, Figure 2.1b).  The two A. vulgaris lineages were 

isolated from nature by sampling two geographically separated lake sediments in 

Massachusetts, USA (Table 2.1).  The “SC” lineage was isolated from Lyman Lake at the 

Smith College Campus, Northampton, MA (Figure 2.1d) and the WP lineage was isolated 

at Weeks Pond in Falmouth, MA (Figure 2.1c).  After starting initial mixed cultures, 

individual organisms were picked and washed to start clonal cultures (from a single 

organism) by placing cells into autoclaved pond water, and adding 0.05 volume cereal 

grass media (Fisher Scientific, Cat No NC9735391), as well as bacteria.  Identification 

follows Lahr and Lopes (2009), briefly A. hemisphaerica are 60-80 μm wide (Figure 

2.1a, b), with a markedly semi-circular lateral profile; A. vulgaris are 100-120 μm wide 

(Figure 2.1c, d), with a slightly flattened lateral profile and the presence of a rim on the 

border where the abapertural and apertural surfaces meet. 
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3.3.2 DNA extraction and amplification experiments 

For DNA extraction, 100-1000 clonal individuals were harvested multiple times 

for each isolate.  Individuals were either handpicked or harvested by spinning culture 

flasks into DNA extraction buffer (100mM NaCl, 10mM Tris, 25mM EDTA, 0.5% SDS, 

10μg/ml Proteinase K).  DNA was extracted following a standard 2 Phenol: 1 

Chloroform extraction followed by cold Ethanol precipitation.  Amplification of target 

genes was achieved by PCR in a PTC-200 Thermal Cycler (MJ Research, Waltham USA) 

with Phusion HotStart polymerase (Cat. Nº M0254; New England BioLabs), using 

concentrations of reagents per manufacturers recommendations (1X HF buffer, 1.5 mM 

MgCl2, 0.2 mM each dNTP, and 0.01 U/μl polymerase), except for primers which were 

used at a final concentration 2 to 4-fold higher than recommended (1-2 μm for each) in a 

total reaction volume of 25 μl.  Cycling conditions were: 98° for 3 min; followed by 35-

60 cycles at 98° for 15 s, 56° for 15 s and 72° for 90 s; and then a final extension at 72° 

for 5 min.  The number of cycles varied from 35-60 according to conditions inherent to 

different DNA extractions (see Supplementary Material available at 

www.mbe.oxfordjournals.org and Section 2.2.3 for details).  We performed single-celled 

PCRs by picking an individual, washing it 3 times in autoclaved water and transferring 

directly into a PCR master mixture.  Primers for SSU-rDNA genes are eukaryote specific 

from Medlin et al. (1988) and primers for actin genes are either eukaryote specific from 

Tekle et al. (2007) or Arcella specific as described in Lahr and Katz (2009) (see 

Supplementary Material available at www.mbe.oxfordjournals.org for details).  The 

target amplicon for Arcella actins were either 669 or 795 basepairs long depending on the 

primer set used.  Cloning experiments were performed for all amplified products using 
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the Invitrogen TOPO cloning kit, exactly as described in Lahr and Katz (2009). All 

plasmids containing inserts were purified using a PureLink kit (Invitrogen). The positive 

colonies were either amplified individually using a Big Dye Terminator kit (Perkin-

Elmer) and run on an ABI 3100 automated sequencer at the Center for Molecular Biology 

(Smith College, Northampton, MA) or in a 96-well format at the Pennsylvania State 

University Nucleic Acid Facility (University Park, PA, USA). 

 

3.3.3 Detection and avoidance of artifactual PCR-recombinants (chimeras) 

3.3.3.1 Avoiding chimera formation 

PCR amplification yields artifactual recombinants (chimeras) when multiple 

closely related target sequences are present in the mixture (Judo et al. 1998).  We chose 

to rely on an empirical strategy, performing extensive PCR-artifact formation 

experiments in our study system to determine chimera-reducing PCR conditions (Lahr 

and Katz 2009). We have found that PCR recombinants result of a combination of too 

many amplification cycles and too much starting DNA template.  Both conditions were 

determined on a sample-by-sample basis, given differences in genomic DNA extractions 

(number of individuals in the culture for example), and thus differ from experiment to 

experiment (see Supplementary Material available at www.mbe.oxfordjournals.org for 

details).  Hence, most PCRs were performed across a gradient of DNA concentrations 

and amplification cycles, to choose the most chimera- restricting amplification possible 

(lowest cycle number coupled with lowest initial DNA concentration).  Only those PCR 

products were cloned and sequenced, the others were discarded.  In addition, we have 

performed all PCRs using three times the recommended extension time, and two to four-
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fold more concentrated primers according to general guidelines for chimera reduction 

(Judo et al. 1998).   

 

3.3.3.2 Determining a dataset of “real” sequences 

We chose a conservative approach to distinguish “real” and “chimeric” 

sequences, based on observed experimental properties of chimera formation (Lahr and 

Katz 2009).  The appearance of a specific gene sequence in two or more independent 

PCRs is almost certainly indicative of a “real” sequence.  Hence we consider all 

sequences in this condition to be “real” (a total of 41 sequences for A. hemisphaerica, 16 

for A. vulgaris SC and 3 for A. vulgaris WP).  Additionally, when a particular gene 

sequence is found multiple times in the same PCR experiment (i.e. multiple clones) there 

is a reduced chance that this sequence is a recombinant, though this chance is larger than 

using the former criterion.  This probability increases with sampling effort, and we 

consider that for A. hemisphaerica, with a total sampling effort of 440 clones and 30 

PCRs, sequences that appeared or more times can be considered “real” for a total of 

additional sequences.  For A. vulgaris SC, with a quarter of that effort, we also consider 

clones that appeared three times or more as “real,” an additional four gene sequences.  

For A. vulgaris WP, with only 43 clones sequenced, we consider that clones which 

appeared two or more times to be “real,” yielding an additional five gene sequences.  

Using these two criteria, we come to a final dataset that includes 45 actin genes for A. 

hemisphaerica, 20 genes for A. vulgaris SC and 8 genes for A. vulgaris WP. 
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3.3.4 Total number of actin genes per lineage 

We estimated the total number of actin genes in each lineage using estimation 

tools most commonly used in ecological sampling, freely available in the package 

EstimateS 8.0 (Colwell 2006).  We have used only actin sequences that were considered 

non-chimeric for these estimations.  We have used two sub-partitions of the dataset to 

estimate diversity: 1) a conservative dataset that considers each PCR a sample, and uses 

only genes that were found in 2 or more independent PCRs as real paralogs; and 2) a 

more liberal dataset that considers a real paralog every gene that was found 3 or more 

times for A. hemisphaerica and 2 or more times for the A. vulgaris SC lineage, as 

described above.  In A. hemisphaerica, sampling was more intense and we were able to 

use interpolation methods (Mao ) to estimate the total diversity.  For A. vulgaris SC, not 

enough samples were taken to plateau the accumulation curve.  Hence we used an 

extrapolation method (MMMeans) to estimate total diversity.  Estimates were calculated 

using 1000 randomizations and sampling without replacement.  The remaining lineage, A. 

vulgaris WP had too few samples to allow a consistent estimate of total diversity, but the 

pattern of discovery of new genes is similar to the other two lineages, and we expect 

results to apply to this lineage as well. 

 

3.3.5 SSU-rDNA analysis 

Sequences of representative organisms in the ‘Amoebozoa’ were retrieved from 

GenBank (Figure 2.2 lists all accession numbers).  Taxon sampling reflects an effort to 

include representatives of all major lineages in the ‘Amoebozoa’ (Pawlowski 2008; 

Pawlowski and Burki 2009; Tekle et al. 2008).  One Arcella sequence used in previous 
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reconstructions of the Arcellinida (A. artocrea AY848969) is likely a contaminant 

(Edward Mitchell, pers. com.) and was not included in this study.  Alignments were 

constructed in SeaView (Galtier et al. 1996; Gouy et al. 2010) with alignment algorithm 

MAFFT (Katoh et al. 2009) using the L-INS-I setting, and adjusted manually in 

MacClade (Maddison and Maddison 2005).  We have masked the alignment to exclude 

regions that had over 50% missing data, as well as ambiguously aligned sites identified 

by ALISCORE, using default settings (Misof and Misof 2009).  The resulting alignment 

is 1587 sites.  We generated a second, more conservative alignment, by manually 

excluding ambiguous regions, to a total of 1357 sites.  Phylogenetic reconstruction was 

made using RAxML-HPC 7.0.4 (Stamatakis et al. 2008) through the online server 

CIPRES Portal 2.0 (Miller et al. 2009), using the GTRGAMMA model of nucleotide 

substitution and running 200 automatic rapid bootstraps followed by a slow search for the 

best-scoring ML tree.  The GTRGAMMA model was selected as the most appropriate 

model for our dataset through a ModelTest analysis performed on HyPhy (Pond et al. 

2005). 

 

3.3.6 Actin Genealogical Analysis 

Actins from other ‘Amoebozoa’ were obtained from GenBank accessions, curated 

Genome databases, and EST databases.  From genome databases, we included every 

available actin paralog, except four variant putative actin genes (>30% divergence at 

nucleotide level, >30% divergence at amino acid level) in D. discoideum (Joseph et al. 

2008).  To collect actins from ESTs, we first performed a BLAST search with one 

described actin against the EST database of the same organism.  We then constructed 
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contigs using SeqMan, and with a cutoff point of 1% we established putative actin 

paralogs.  The dataset, including 73 Arcella actins and another 103 ‘Amoebozoa’ actins, 

was aligned on SeaView (Galtier et al. 1996; Gouy et al. 2010) using the alignment 

algorithm MAFFT (Katoh et al. 2009) set to L-INS-I optimization.  Proper codon 

alignment was confirmed visually.  The final total alignment consists of 179 sequences, 

1134 nucleotide sites or 378 amino acid sites, which we designate “Actin Alignment A”.  

Phylogenetic analyses were performed at the nucleotide level considering all sites, as 

well as third positions excluded with RAxML-HPC 7.0.4 in the CIPRES Portal 2.0, using 

the GTRGAMMA model of nucleotide substitution and running automatic bootstrapping 

followed by a slow ML search.  An additional analysis limiting the dataset to only the 

795 homologous sites that were amplified in Arcella, which we designate “Actin 

Alignment B”, was performed.  The translated datasets consisting of 378 total sites and 

265 homologous sites were also analysed on RAxML using the JTT model of amino acid 

substitution, chosen through a ProtTest analysis performed on HyPhy (Pond et al. 2005). 

 

3.3.7 Codon usage and compositional bias 

We determined the codon usage and compositional bias for collections of actin 

paralogs in lineages that are represented by 3 or more actin sequences, totaling 149 actin 

sequences that do not have internal stop codons or frame-shift deletions in “Actin 

Alignment B” (which comprises only the 795 basepair region that contains the largest 

Arcella amplicons) using the algorithm CodonW (Peden 1999) as implemented in the 

online server MOBYLE (Neron et al. 2009).  We calculated the effective number of 

codons (ENC), total GC content and GC content at four-fold degenerate sites. 
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3.3.8 Genetic diversity indices 

We have used tools available for nucleotide diversity calculation at the online 

server DPDB (Casillas et al. 2005) to calculate: average pairwise distance in the group 

(k=measured by averaging all pairwise uncorrect-p distances), the average number of 

nucleotide differences per site ( ), the number of segregating sites (S) and respective 

variances.  The alignment used for this analysis is the most restrictive in terms of length, 

since we only used the 669 homologous basepair region that is available for our shortest 

Arcella amplicons (“Actin Alignment C”).  Each group of actin sequences representing 

an ‘Amoebozoa’ taxon was analyzed separately, and the Arcella dataset was divided into 

Groups 1 and 2 from the phylogenetic reconstruction. 

 

3.3.9 Recombination Detection 

We used the algorithm GARD (Pond et al. 2006) implemented in the online server 

Datamonkey (Pond and Frost 2005) to infer historical recombination between actins in 

each Arcella lineage, as well as other collections of sequences in each ‘Amoebozoa’ 

lineage separately.  Analyses were run by first calculating the most appropriate model of 

substitution for each case, then running the genetic algorithm estimating site-to-site 

variation with Beta-Gamma distribution and 4 rate classes.  The output is given in terms 

of most likely points for recombination in the dataset, and those points are further 

submitted to the Kishino-Hasegawa test because initial detection of points could be due 

to rate heterogeneity.  We then used the statistically significant recombination points to 

divide the dataset into partitions, and independently reconstructed ML trees using 
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RAxML.  Despite incomplete sampling in the A. vulgaris lineages, we can infer which 

genes have recombined by analyzing their relative position in different partitions.  We 

cannot infer, in most cases, exactly which other gene they recombined with. 

 

3.3.10 Comparison of actin gene copies across eukaryotes 

We have performed a comparison of average pairwise distances between chosen 

eukaryotes with large numbers of actin paralogs in their genomes.  We aligned GenBank 

deposits for actin genes in: the ‘Amoebozoa’ Entamoeba histolytica (7 actins) and 

Dictyostelium discoideum (29 actins), the dinoflagelate Amphidinium carterae (28 

actins); the red algae Flintiella sanguinaria (10 actins) and Glaucosphaera vaculolata (7 

actins); the Metazoa Drosophila melanogaster and Homo sapiens (6 actins for each); and 

the plants Glycine max (18 actins), Zea mais (12 actins) and Arabdopsis thaliana (10 

actins).  We calculated uncorrected pairwise distances both at the nucleotide and amino 

acid levels using Paup* 4.0 beta 10 (Swofford 2000), and averaged the distances for each 

taxon. 

 

3.4 Results 

3.4.1 SSU-rDNA analysis 

Maximum likelihood analysis of the SSU-rDNA gene (Figure 2.2) including a 

total of 55 taxa and 1587 characters is largely concordant with other recently published 

reconstructions of the ‘Amoebozoa’ (Nikolaev et al. 2006; Parfrey et al. 2010b; 

Pawlowski and Burki 2009; Smirnov et al. 2005; Tekle et al. 2008).  Most major lineages 

are recovered with high bootstrap supports (BS):  the Amoebidae, Leptomyxidae, 
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Echinamoebidae, Archamoebae, Dictyosteliida and Acanthamoebidae are all 

monophyletic and receive full support (BS=100).  The Flabellinea and the 

Hartmannellidae are recovered as paraphyletic. This analysis uses an alignment with 

liberal masking.  When analysis are repeated with more stringent masking, yielding an 

alignment with 1357 sites similar to Tekle et. al (2008), the relationships remain the same 

and bootstrap supports increase slightly (data not shown).  The Arcellinida are recovered 

with low support (BS<50%), and the structure of the Arcellinida sub-tree agrees with 

more focused reconstructions (Lara et al. 2008; Lara et al. 2007; Nikolaev et al. 2005), 

with the exception that the genus Argynnia appears related to Arcella in our 

reconstruction, as opposed to Heleopera sphagni in Lara et al. (2008). 

The Arcella lineages are monophyletic within the Arcellinida (BS=100).  The 

SSU-rDNA sequences for both lineages of A. hemisphaerica (Red and Blue) are 

identical, which may not be surprising as these were both obtained from biological supply 

companies.  Based on this and the sharing of numerous identical actin sequences, we 

consider these to be two populations of the same species.  However, the two A. vulgaris 

SSU-rDNAs differ by 1.7%, and do not share any actin sequences.  This indicates that 

these two lineages are independently evolving units.  Furthermore, the phylogenetic 

reconstruction places A. vulgaris WP isolate as a sister-group to A. hemisphaerica 

(BS=98), to the exclusion of the A. vulgaris SC isolate. 

 

3.4.2 Actin genes identified 

We identified a total of 166 distinct actin sequences from one lineage of A. 

hemisphaerica (2 populations that we interpret as the same genetical lineage) and 2 
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lineages of A. vulgaris.  Given the possibility of chimera formation, and taking into 

account the results from a previous experimental approach to PCR in this system (Lahr 

and Katz 2009), we use the sole criterion of redundancy to exclude chimeric sequences. 

We include 45 sequences of A. hemisphaerica that were found in at least 2 separate PCRs 

or were represented by 3 or more clones in a single PCR twice, or were found at least 

thrice in the same experiment.  For both lineages of A. vulgaris, we analyze 28 sequences 

(20 from the SC lineage and 8 from the WP lineage) that were found in at least two PCRs 

or were represented by two or more clones.  These 73 sequences, along with 

representatives from other ‘Amoebozoa’ lineages, were used in subsequent phylogenetic, 

recombination, diversity and codon usage analyses.  

After chimera exclusion, we have estimated the total number of actins likely to be 

present in each lineage, using tools for estimating total species richness commonly used 

by ecologists (Table 2.3).  For the A. hemisphaerica dataset, the most appropriate statistic 

is the species accumulation curve calculated by the Mao  parameter.  The estimate for 

this lineage is 45±1 actin genes.  For A. vulgaris, only the SC lineage was sampled 

sufficiently enough to enable estimation of total number of actin genes.  In this case, 

there are fewer samples than in A. hemisphaerica.  Hence, it is more appropriate to use an 

extrapolation method instead of a species accumulation curve.  The estimate for this 

lineage lies within 25-50 actin genes, consistent with the estimate for A. hemisphaerica.  

We conclude that each lineage has around 50 actin paralogs in their genome (Table 2.3).   

Unique gene sequence discovery varied with intensity of sampling effort.  

Sampling efforts were greater in A. hemisphaerica, where we obtained a total of 41 non-

chimeric gene sequences (Table 2.2).  The two populations (Blue and Red) share 30 out 
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of 45 gene sequences.  These 45 sequences are 1-29% divergent from each other at the 

nucleotide level.  The large majority of polymorphisms are synonymous substitutions, 

thus the amino acid sequences are identical for 36 actin genes.  Ahem_act19 shows major 

modifications (20 amino acid substitutions), Ahem_act45 shows 9 substitutions and 7 

other sequences show 1-3 amino acid substitutions.  Three sequences show deletions: 

Ahem_act33 has a frame-shifting deletion of 26 nucleotides and no amino acid 

modifications; Ahem_act38 shows two in-frame deletions and one frame-shifting, and 3 

amino acid modifications if made to be in-frame; and Ahem_act41 has a 1-nucleotide 

frame-shifting deletion as well as a 6-nucleotide in-frame deletion, and 2 amino acid 

substitutions if made to be in-frame (Figure 2.3). 

For both isolates identified as the morphospecies A. vulgaris, sampling was less 

intense than in A. hemisphaerica.  We have obtained 20 distinct sequences for the SC 

isolate and 8 for the WP isolate.  The levels of divergence are similar to those found in A. 

hemisphaerica with up to 27% nucleotide divergence in pairwise comparisons, and most 

sequences (16 in the SC lineage and 7 in the WP lineage) code for the same amino acid 

sequence.  The most divergent sequence found is AvulSC_act09 (10 AA substitutions, 

including a stop codon), other 4 show 2-3 amino acid substitutions (AvulSC_act20, 

AvulSC_act17, AvulSC_act18 and AvulWP_act02).  No nucleotide sequences are shared 

between isolates, but the most common coding sequence is the same across all four 

Arcella analyzed (59 out of 73 sequences). 
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3.4.3 Actins in the Arcellinida 

Maximum likelihood analysis at the nucleotide level of the 73 actin genes 

described in the present study reveal that instead of yielding monophyletic clades, the 

genes interdigitate between the three lineages (the 2 populations of A. hemisphaerica that 

we interpret as the same genetical lineage as well as the independent lineages, A. vulgaris 

SC and A. vulgaris WP; Figure 2.4).  These analyses were performed both including and 

excluding third positions.  There is no correspondence between actin genealogy and 

morphospecies or SSU-rDNA relationship for the Arcella.  Instead, the gene copies fall 

into 2 groups, with a well-supported split (BS=96): Group 1 is paraphyletic while Group 

2 is monophyletic and falls within Group 1 (Figure 2.4).  A phylogenetic analysis 

excluding third-positions to minimize the effect of saturation reveals the same pattern 

(Figure 2.5a).  The interdigitation indicates that gene duplication predated the divergence 

of these strains.  Yet there is also evidence of independent gene copy expansion within 

the 3 lineages as evidenced by the shallow clustering of paralogs from within a lineage in 

the actin topology.  

 

3.4.4 Actins in the ‘Amoebozoa’ 

The Maximum Likelihood reconstruction of the actin gene tree recovers most 

major lineages with moderate/high support (Figure 2.5a): the Amoebidae, Dictyosteliida, 

Entamoebida and Arcellinida are all monophyletic (BS>75).  The reconstruction based on 

amino acid sequences is topologically similar regarding the placement of Arcella actin 

paralogs with the reconstruction at the nucleotide level (Figure 2.5b).  Collections of 

paralogs within each lineage appear to have expanded independently in each species in 
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the ‘Amoebozoa’ for which sufficient data exist (e.g. intense PCR study, EST analyses).  

In almost all cases, actin paralogs of a given species group together, to the exclusion of 

paralogs in another species’ gene family.  There are two exceptions: the D. purpureum set 

of actin genes is a monophyletic group that falls within the D. discoideum family; and in 

Arcella the 3 lineages interdigitate, i.e., no one isolate is monophyletic to the exclusion of 

others. 

 

3.4.5 Codon usage and base composition 

We compared codon usage and base composition for sets of actin genes in 

lineages with three or more representative sequences (Figure 2.6).  In the genus Arcella, 

there are two separate groups of genes based on codon usage, and these correspond to the 

Groups 1 and 2 recovered in the phylogenetic reconstruction (Figure 2.4): Group 1 is 

moderately biased with average effective number of codons (ENC) of 34.6 and Group 2 

is less constrained with average ENC of 42.3 (Figure 2.6).  Group 1 also has higher GC 

content in four-fold degenerate sites, with an average of 65% compared to 44% in Group 

2. 

In contrast, sets of actin paralogs in the other ‘Amoebozoa’ lineages analyzed are 

restricted to a range of codon usage that is biased and low, with ENC generally less than 

30 (Figure 2.6).  Base compositions for the actin gene are highly variable in the 

‘Amoebozoa’: Mastigamoeba balamuthi has an average GC composition of 65% and 

Entamoeba dispar has 35%.  These organisms have biased codon usage for the actin 

gene, probably reflecting GC bias in the genome. 
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3.4.6 Recombination among actin genes 

We have searched for recombination among gene sequences in each Arcella 

lineage, using the online server GARD (Table 2.4).  For A. hemisphaerica two putative 

points of recombination were detected (Kishino-Hasegawa test, p<0.01).  Analyzing trees 

for each partition allows determination of sequences that have likely recombined (Table 

2.4).  Strikingly, sequences within Group 1 only recombine among themselves; the same 

is true for sequences in Group 2 with one exception: EBP27 is a member of Group 2 and 

appears to have recombined with members of Group 1 for the first third of the sequence.  

For A. vulgaris WP, the one breakpoint inferred by GARD is not statistically significant.  

For A. vulgaris SC, no inferred recombination breakpoints were statistically significant. 

We are confident that these are historical and not artifactual recombination events 

because there are further point mutations in recombined segments.  When using the same 

methodology for other sets of actin genes in ‘Amoebozoa’ lineages, only the genus 

Dictyostelium shows statistically significant recombination between paralogs (Table 2.4). 

 

3.4.7 Genetic diversity indices 

We calculated genetic diversity indices to elucidate general patterns of molecular 

evolution (Table 2.5).  Arcella sequences were analyzed separately according to the two 

phylogenetic Groups 1 and 2 (Figure 2.4).  Both Arcella groups show a high propensity 

for substitution, revealed by a high number of segregating sites per site (Group 1 s=0.23; 

Group 2 s=0.37).  Additionally, Group 2 shows higher average nucleotide differences per 

site ( =0.11) than Group 1 ( =0.07).  D. discoideum is the only other ‘Amoebozoa’ that 
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shows a comparable average pairwise distance, intermediate between Group 1 and Group 

2 ( =0.08). 

 

3.5 Discussion 

The two main observations for the actin gene family in the genus Arcella are: 1) 

the gene family is organized in two distinct groups whose members share similar patterns 

of molecular evolution; and 2) there have been recent independent expansions within 

each group.   To establish the pattern of molecular evolution, we first assessed the 

phylogenetic position of two isolates from each of the morphospecies A. hemisphaerica 

and A. vulgaris.  Analysis of both SSU-rDNA and sharing of identical actin gene 

sequences indicate that the 2 A. hemisphaerica isolates represent the same genetical 

lineage, whereas the 2 A. vulgaris isolates are independently evolving.  The genus Arcella 

forms a monophyletic clade in Maximum Likelihood genealogies of the SSU-rDNA and 

actin genes (Figures 2.2, 2.4).  However, the 2 A. vulgaris morphospecies are not 

monophyletic, indicating that there might be more genetic divergence than seen at the 

phenotypical level.  Though taxon sampling is limited here, these data also provide a 

framework for additional phylogenetic hypotheses.  For example, the genus Argynnia 

previously assigned to Hyalospheniidae (Lara et al. 2008) is recovered here as a sister 

group to Arcella with moderate support (BS=67).  This might be indicative of an 

unpredicted relationship between some testate amoebae with chitinous shells (Arcella) 

and others with biomineralized siliceous plates (Argynnia). 

The collection of actin gene copies in the genus Arcella is organized in two 

distinct genomic groups, based on multiple lines of evidence.  Phylogenetic analysis 
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reveals a well-supported split in a paraphyletic Group 1 and a nested monophyletic Group 

2 (Figure 2.4).  Group 1 has lower codon usage and higher GC content (Figure 2.6), as 

well as lower substitution rates (Table 2.5) than Group 2.  Recombination inference 

indicates that members in each group recombine mostly amongst themselves (Table 2.4).  

Although most of the classic literature lists testate amoebae as asexual organisms, 

evidence for meiosis (Mignot and Raikov 1992) validates our recombination inferences.  

Since recombination via unequal crossing-over is more likely within physically close 

segments, this pattern is consistent with two or more groups of tandemly arrayed actin 

paralogs in separate parts of the genome (different chromosomes or chromosomal 

regions). 

The two groups of actin paralogs experience strong purifying selection as they 

maintain a common coding sequence.  The majority of Arcella genes (59 out of 73) 

encode exactly the same amino acid sequence, even though uncorrected nucleotide 

divergence reaches 29%.  The slime mold D. discoideum presents a similar scenario: the 

core group of 17 highly expressed actins (Act8-group) have the same coding sequence 

and are separated in groups across four chromosomes (Joseph et al. 2008).  However, 

there are two significant differences in D. discoideum compared to the pattern of actin 

evolution observed for Arcella spp.  Firstly, D. discoideum does not show a separation in 

two distinct groups of actins with respect to codon usage and compositional bias (Figure 

2.6).  Secondly, there is no evidence of maintenance of ancient paralogous groups within 

different species as D. discoideum sequences form a single clade.  In contrast, the two 

distinct groups of Arcella sp. sequences are interdigitated showing that they predate the 

divergence of the three lines: A. hemisphaerica, A. vulgaris SC and A. vulgaris WP. 
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The second main observation of this study is the evidence for recent and rapid 

duplications within each lineage, and most likely within each group.  Within Group 2, 

there are multiple closely related copies for each of the three lineages of Arcella studied: 

A. hemisphaerica, A. vulgaris SC and A. vulgaris WP (Figure 2.4).  Within Group 1, there 

are multiple closely related actin copies for the A. hemisphaerica, but only one copy for 

each of the two other lineages, which might reflect either incomplete sampling or really a 

large reduction in this Group of actins for the two lineages.  The recency of these gene 

family expansions is evidenced by the presence of frame-shifting deletions in paralogs 

that have no additional amino acid substitutions (Figure 2.3).  We consider these an 

indication of recent recombination, since a locus that is no longer useful should quickly 

accumulate mutations. 

We propose a model consistent with our main observations: Arcella has a large 

collection of actin genes encoded in two distinct regions of the genome that evolve under 

strong purifying selection and yet are also expanding (Figure 2.7).  The two groups are 

subject to different evolutionary pressures, as evidenced by differing levels of codon 

usage.  These two groups may be evolving under distinct regulatory constraints, or the 

mutational background differs between different areas of the genome, or both.  At the 

same time, there are multiple independent expansions at the tips of the actin tree, 

especially within Group 2 where we see higher rates of recombination (Figure 2.3, Table 

2.4). 

There are at least two mechanisms to explain the pattern of recent gene family 

expansion: 1) Group 2 actins are in a recombination hotspot; or 2) actins are the target of 

developmentally regulated genome rearrangements (DRGR).  If Group 2 actins are in a 
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recombination hotspot, we should expect the appearance and elimination of genes at a 

higher than usual rate. Somatic events that alter genomes of either specific cells or at 

specific life-cycle stages are referred to as DRGR (Zufall et al. 2005).  Arcella might 

show the kind of DRGR Zufall et al (2005) classified as genome-wide rearrangements.  

The actins in this scenario would be amplified many times, as in a ciliate macronucleus, 

and might even reside on extra-chromosomal pieces of DNA.  Under this scenario the 

expansion pattern observed in the tips of our tree (Figure 2.4) really depicts one genomic 

copy and many “extra” copies.  Other ‘Amoebozoa’ are known to have extra-

chromosomal rDNA (D. discoideum and E. histolytica).  Additionally, Amoeba proteus, 

which is more closely related to Arcella, has been shown to exhibit DNA synthesis 

outside of cell division (see Parfrey, Lahr and Katz 2008 for a review). 

The pattern of actin evolution revealed for Arcella is unusual among eukaryotes 

(Figure 2.8).  Other unicellular eukaryotes show either a limited number of actins 

encoding the same amino acid sequence (e.g. Entamoeba spp.), or a large number of actin 

gene copies with detectable positive selection for some members (e. g. Amphidinium 

carterae).  Animals and plants have multiple actin copies, all with divergent amino acid 

sequences attributed to adaptive evolution concerning tissue differentiation.  Arcella has a 

large collection of genes that generally maintain the same coding sequence.  Yet, actins 

within these amoebae appear to be evolving under varying tempos of gene duplication. 
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Table 3.1: Lineages of Arcella used in this study. NA – Cultures perished before 
preservation. 

Species Source Coordinates Isolation SSUGenBank 
    EU273445 
A. hemisphaerica 

Blue  
CT V. Bio. 
Cat# L 1B 

- May 
2005 EU273445 

A. hemisphaerica 

Red  
Carolina Cat# 

131310 
- March 

2007 - 
A. vulgaris SC Lyman Lake, 

MA 
N42°19’ 07”; 
W72°38’24” 

April 
2007 HM853761 

A. vulgaris WP Weeks Pond, 
MA 

N41°33’21”; 
W70°36’52” 

Nov 
2008 HM853762 

The lineages A. hemisphaerica Blue and A. vulgaris SC have been deposited at the American Type Culture 
Collection (ATCC). The other two lineages perished before preservation.  
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Table 3.2: Summary of actin PCR experiments on Arcella lineages. 

Lineage Pop PCRs SC PCRs Clones Genes Non-chimera 

      
A. hemisphaerica Blue 15 3 246 69 41 
A. hemisphaerica Red 6 6 194 58 33 
A. vulgaris SC 11 NA 132 48 20 
A. vulgaris WP 8 NA 43 20 8 
Pop PCR – PCR performed on DNA extracted from a clonal culture; SC PCR – PCR performed on a 
single-cell. A complete table is available as Table S1; Clones – number of clones sequenced; Genes – 
number of distinct actin gene sequences obtained; Non-chimera – number of distinct actin sequences 
determined to be non-chimeric. 
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Table 3.3: Estimates of total number of actin genes for lineages of Arcella. 

  A. hemisphaerica A. vulgaris SC 

  
2 PCRs 

(n=365) 
3 Clones 
(n=381) 

2 PCRs 
(n=85) 

2 Clones 
(n=111) 

     
Sobs (Mao ) 41±0 45±1 16±0 27±2 
MMMeans 55 61 25.1 50 
The most appropriate statistic for each dataset is in bold.  Only actin sequences that were deemed non-
chimeric were used for estimation. Sobs – expected total number of sequenceshaplotypes sample-based 
statistic, using the Mao Tau calculation; MMMeans – expected total number of actin sequenceshaplotypes 
by functional extrapolation, based on the Michaelis-Menten richness estimator, computed analytically; n – 
number of actin sequenceshaplotypes used to calculate the statistic. We did not perform estimates of 
diversity in the lineage A. vulgaris WP due to low sampling effort. 

 



 

 54 

 

Table 3.4: Number of recombinants for each actin gene family in the ‘Amoebozoa’. 

  # BP #BP p<0.05* #seqs #Recombinants 
     
A. hemisphaerica 2 2 15 (G1) 4 
   30 (G2) 4 
     
A. vulgaris WP 1 0 1 (G1) 0 
   7 (G2) 2 
     
A. vulgaris SC 0 0 1 (G1) 0 
   19 (G2) 0 
     
D. discoideum 2 2 25 2 
     
D. purpureum 1 1 11 3 
     
M. balamuthi 0 0 12 0 
     
E. histolytica 1 0 7 0 
     
E. dispar 1 0 7 0 
     
A. castellani 2 0 6 0 
BP – number of inferred recombination points; G1 – Arcella Group 1 actins; G2 – Arcella Group 2 actins; * 
p-values are calculated by the Kishino-Hasegawa test, after breakpoint (BP) inference by GARD.
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Table 3.5: Genetic diversity indices for actin gene families across the ‘Amoebozoa’. 

  s  nucleotide (SD) N Source 
     
Arcella Group 2 0.37 0.11 (0.015) 52 PCR 
D. discoideum 0.27 0.08 (0.011) 22 Genome 
Arcella Group 1 0.23 0.07 (0.011) 17 PCR 
D. purpureum 0.05 0.02 (0.004) 11 EST 
A. castellani 0.04 0.02 (0.005) 6 EST 
M. balamuthi 0.04 0.01 (0.004) 13 EST 
E. dispar 0.01 0.01 (0.003) 6 Genome 
E. histolytica 0.01 0.01 (0.003) 7 Genome 
s – number of segregating sites per site,  - average number of nucleotide differences per site, SD – 
standard deviation assuming free recombination, N – number of genes used to calculate indices, Source – 
indicates whether sequences were obtained from Whole Genome Projects, Expressed Sequence Tag 
Projects or PCR-based experiments. 
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Figure 3.1: Representative images of Arcella lineages used in this study.  

a- A. hemisphaerica Blue lineage. b- A. hemisphaerica Red lineage. c- A. vulgaris WP 
lineage. d- A. vulgaris SC lineage: the image shows 6 individuals undergoing 
plasmogamy, where multiple individuals fuse their cytoplasm.  It is unknown whether 
nuclear fusion also occurs.  Images a, b and d are Hoffman Interference Contrast, image c 
is Differential Interference Contrast.  Scale bars are 50 um. 
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Figure 3.2: Most likely SSU-rDNA gene tree of the ‘Amoebozoa’.  

For this reconstruction, we used an alignment consisting of 55 taxa and 1587 characters, 
and performed a maximum likelihood analysis on RaxML using the GTR model of 
evolution and 200 bootstrap replicates (-lnL = 29300.662). The position of 2 new isolates 
of A. vulgaris are indicated in bold.  Thicker branches represent nodes that have >75% 
bootstrap support.  Branches are drawn to scale. Dashed lines represent paraphyletic 
groupings. 



 

 58 

 

Figure 3.3: Recent frame-shifting deletions in Arcella actin genes. 
The amino acid alignment compares three actin sequences to the most common actin 
found (Ahem_act01).  Identities are shown as dots, and substitutions are indicated with 
respective amino acid symbol.  Dashes show in-frame deletions and gray areas show 
frame-shifting deletions.  Insets show the number of nucleotides deleted in each case. 
Notice that all three haplotypes show at least one frame-shifting deletion, but the amino 
acid sequence remains largely unchanged, suggesting that these deletion events are 
recent. 
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Figure 3.4: Most likely genealogy of the actin gene family in the genus Arcella 

inferred from maximum likelihood. 
For this reconstruction, we performed a RaxML analysis using the GTR model of 
evolution with 300 bootstrap replicates on the dataset “Actin aligment B”, which consists 
of 795 nucleotides, third positions are included.  Genes are colored according to lineage.  
Most genes (59) code the exact same amino acid sequence.  A minority of genes (14) 
encode divergent amino acid sequences, these are indicated by the number of AA 
substitutions.  Sequences with an asterisk (*) represent putative pseudogenes.  Thicker 
branches represent nodes that have >75% bootstrap support.  All branches are drawn to 
scale. Dashed lines represent paraphyletic groupings. 
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Figure 3.5: Genealogy of actin gene families across the ‘Amoebozoa’, showing 
multiple independent expansion in different lineages. 
A - nucleotide tree without third positions inferred from the “Actin alignment A”, which 
consists of 179 sequences and 756 (after excluding third positions from a total of 1134 
sites) using maximum likelihood with the GTR model of substitution and running 650 
bootstrap replicates (-lnL = 5991.952).  B - amino acid tree inferred from translated 
“Actin alignment A”, which consists of 179 sequences and 378 amino acid sites, using 
maximum likelihood with the JTT model of substitution and running 1000 bootstrap 
replicates (-lnL = 4392.092).  Thick branches represent >75% bootstrap support for the 
backbone of the tree.  All branches are drawn to scale.  Dashed lines represent 
paraphyletic groupings. 
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Figure 3.6: Effective number of codons (ENC) versus GC content in 4-fold 
degenerate sites for actin gene families in the ‘Amoebozoa’. 
This analysis is based on a subset of “Actin Alignment B” and comprises 149 sequences 
and 795 basepairs.  Most gene families are restricted to an area of low effective number 
of codons as well as highly biased GC content, consistent with actins being highly 
expressed genes.  The Arcella on the other hand are able to explore a more relaxed space 
regarding both ENC and GC content, to the middle-upper area of the graph. 
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Figure 3.7: A hypothetical model for actin gene family evolution among species in 
the genus Arcella. 
The branching order for species is obtained from the SSU-rDNA reconstruction and the 
branching order for actin paralogs is exactly as in fig. 4.  The first event depicted is the 
separation of actins in 2 genomic groups (gray and black), which predates the divergence 
of lineages.  Following separation, each group is under distinct regulatory constraints.  
Perhaps actins located in different areas are activated/deactivated following the life cycle, 
thus may be subject to different evolutionary pressures.  Further, speciation happens, with 
maintenance of the 2 actin groups in all 3 lineages.  Within each lineage there is a high 
level of independent duplications, the mechanism for which might be either a 
recombinational hotspot or developmentally regulated genome rearrangements (DRGR). 
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Figure 3.8: Average pairwise distances within actin gene paralogs for different 
eukaryotic taxa. 
The number of members in each family is indicated in parenthesis after the organism 
name on the x-axis.  The distances were calculated as uncorrected pairwise distances and 
then averaged over the number of actins in the taxon. 
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CHAPTER 4 

 

 COMPREHENSIVE PHYLOGENETIC RECONSTRUCTION OF 

AMOEBOZOA BASED ON CONCATENATED ANALYSIS OF SSU-RDNA 

AND ACTIN GENES. 

 

4.1 Abstract 

Evolutionary relationships within Amoebozoa have been the subject of 

controversy for two reasons: 1) paucity of morphological characters in traditional surveys 

and 2) haphazard taxonomic sampling in modern molecular reconstructions.  These along 

with other factors have prevented the erection of a definitive system that resolves 

confidently both higher and lower-level relationships.  Additionally, the recent 

recognition that many protostelids are in fact scattered throughout the Amoebozoa 

suggests that phylogenetic reconstructions have been excluding an extensive and integral 

group of organisms.  Here we provide a comprehensive phylogenetic reconstruction 

based on 139 taxa using molecular information from both SSU-rDNA and actin genes.  

We provide molecular data for 13 of those taxa, 12 of which had not been previously 

characterized.  We explored the dataset extensively by generating 18 alternative 

reconstructions that assess the effect of missing data, long-branched taxa, unstable taxa, 

fast evolving sites and inclusion of environmental sequences.  We compared 

reconstructions with each other as well as against previously published phylogenies.  Our 

analyses show that many of the morphologically established lower-level relationships 

(defined here as relationships roughly equivalent to Order level or below) are congruent 
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with molecular data.  However, the data is insufficient to corroborate or reject the large 

majority of proposed higher-level relationships (above the Order-level), with the 

exception of Tubulinea, Archamoebae and Myxogastrea, which are consistently 

recovered.  Moreover, contrary to previous expectations, the inclusion of available 

environmental sequences does not significantly improve the Amoebozoa reconstruction.  

This is probably because key amoebozoan taxa are not easily amplified by environmental 

sequencing methodology due to high rates of molecular evolution and regular occurrence 

of large indels and introns.  Finally, in an effort to facilitate future sampling of key 

amoebozoan taxa, we provide a novel methodology for genome amplification and cDNA 

extraction from single or a few cells, a method that is culture-independent and allows 

both photodocumentation and extraction of multiple genes from natural samples. 

 

4.2 Introduction 

Reconstructing relationships between amoeboid organisms is challenging.  The 

intrinsic paucity of morphological characters when compared to macroscopic taxa, as 

well as difficulties in establishing homology, made deep inferences nearly impossible for 

the ~200 years of studies based on microscopy. As a result, most taxa were lumped into 

the artificial Sarcodina (Pawlowski 2008).  However, a number of well-defined 

morphological groups emerged from morphological information and are rarely disputed 

(Smirnov and Brown 2004), including lobose shelled amoebae (the Arcellinida); and the 

amitochondriate, parasitic amoebae with intra-nuclear mitotic spindles (the 

Entamoebidae).  Major advances were achieved with the use of electronic microscopy 

techniques, but these generally helped stabilize further the lower-level relationships with 
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additional putative synapomorphies, rather than resolve deep relationships (eg. (Bovee 

1985; Page 1987)).   

With the advent of molecular techniques, amoeboid groups were found to be 

scattered across at least 30 lineages in the eukaryotic tree of life, with the amoebae 

producing lobose pseudopodia now included in the Amoebozoa (Cavalier-Smith 1998).  

It was only in the early 2000s that the promise of molecular phylogenetic reconstruction 

reached the fine-grained relationships within Amoebozoa, with well-sampled analysis of 

SSU-rDNA and actin genes (Amaral Zettler et al. 2000; Bolivar et al. 2001; Fahrni et al. 

2003).  The number of available amoebozoan sequences has increased steadily in the last 

decade, though not exponentially as occurred in other groups.  A handful of medically 

important taxa and model organisms had their complete genomes sequenced or EST data 

made available (eg. Dictyostelium discoideum (Eichinger et al. 2005), Entamoeba 

histolytica (Stanley 2005)), but this sampling is still sparse making phylogenomic 

reconstructions difficult for this diverse group (Watkins and Gray 2008).  Currently, there 

are about 150 diverse strains of Amoebozoa for which the SSU-rDNA has been 

characterized, followed by the actin gene for a few dozen lineages.  These strains 

basically cover all the traditionally proposed morphological diversity (Page 1987; 

Smirnov and Brown 2004; Smirnov and Goodkov 1999).   

The last few years provided further stabilization in purported relationships within 

the Amoebozoa (Figure 3.1).  Two competing classifications emerged almost 

simultaneously: the higher-level taxonomic system of eukaryotes of Adl et al. (2005), and 

the Amoebozoa system of Cavalier-Smith et al. (2004).  Subsequently, both systems were 

combined using both morphological and molecular evidence in the now standard 
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classification of Smirnov et al. (2005).  Numerous additions have been made to the 

system of Smirnov et al. (2005), generally placing incertae sedis taxa without much 

modification into the higher-level proposed relationships (eg. (Corsaro et al. 2010; 

Dykova et al. 2008a; Fiore-Donno et al. 2005; Fiore-Donno et al. 2010; Kudryavtsev et 

al. 2009a; Lara et al. 2008; Romeralo et al. 2010)).  Subsequent large-scale 

reconstructions largely corroborated the proposed relationships in the Smirnov et al. 

(2005) system (Kudryavtsev et al. 2005; Nikolaev et al. 2006; Pawlowski and Burki 

2009; Tekle et al. 2008).  Notable exceptions to this rule come from analyses of 

organisms traditionally considered slime molds.  The Protostelia, once united by the 

ability to produce a unicellular fruiting body (Olive 1975), proved to be scattered in 

virtually every major branch of the Amoebozoa except for the Tubulinea (Shadwick et al. 

2009).  In addition, the sorocarpic slime mold Fonticula alba was shown to be more 

closely related to the opisthokont amoebae (Brown et al. 2009), and Copromyxa protea is 

shown to be in the Tubulinea (Brown et al. 2010). The implications and impact of these 

important insights are yet to be fully appreciated, either: 1) the ability to produce stalked 

fruiting bodies has emerged multiple times; 2) this ability has emerged once and was 

either lost or modified many times and; 3) many more lineages of amoebae are able to do 

so and the differences in the methodological traditions of typological protistology and 

mycology have failed to take this into account, as suggested by Shadwick et al. (2009). 

Reconstructing these ancient relationships is an outstanding question difficult to 

resolve both due to the scattered understanding of the diversity of organisms and the 

highly heterogeneous rates of molecular evolution within the group (Nikolaev et al. 2006; 

Pawlowski and Burki 2009).  The Amoebozoa may have radiated as early as 1200 Mya 
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(Berney and Pawlowski 2006), with the oldest unambiguous fossil being Arcellinida 

shells at 750 Mya (Bosak et al. 2011; Porter and Knoll 2000; Porter et al. 2003).  Here, 

we provide a comprehensive reconstruction based on available data, concatenating SSU-

rDNA and actin genes for 129 amoebozoan lineages and 10 outgroups.  We introduce 

new molecular data for 13 lineages, 12 of which had not been previously characterized.  

In order to scrutinize the range of techniques used to reconstruct the Amoebozoa, we 

explore multiple iterations of taxa and data sampling, aiming to obtain reliable estimates 

of consistent groups, and to assess critically the support for proposed relationships.  We 

perform comparative analysis using 18 different reconstruction approaches, including 

differential taxon sampling, removal of fast evolving sites, removal of long-branched and 

unstable taxa, and inclusion of environmental sequences.  We test previously proposed 

relationships at both lower and higher-levels, and provide a summary of which groups are 

corroborated given the current molecular and, to a lesser extent, morphological data. 

 

4.3 Methods 

4.3.1 New taxa and morphology 

Molecular sequences of SSU-rDNA and/or Actin were generated for 13 taxa 

(Table 3.1, Figure 3.2).  The testate amoeba Cryptodifflugia operculata (Figure 3.2a-c) 

was isolated from a mixed Protozoa culture (Carolina Biological Supply Company, Cat. 

No. 131970).  Arcella mitrata (Figure 3.2d-f), Arcella gibbosa (Figure 3.2g-i), Arcella 

discoides (Figure 3.2j-l), Hyalosphenia papilio (Figure 3.2s, t) and Nebela carinata 

(Figure 3.2z,a’) were isolated from Sphagnum sp. moss in Hawley Bog, MA. Pyxidicula 

operculata (Figure 3.2m, n) was isolated from Hiddensee, Germany and kindly donated 
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to us by Mr. Wolfgang Bettighofer.  Gocevia fonbrunei ATCC  50196 (Figure 3.2o-r), 

Stereomyxa ramosa ATCC  50982 (Figure 3.2u-y), Stygamoeba regulata ATCC  50892 

(Figure 3.2b’-e’), isolate CHINC-5 ATCC  50979 (Figure 3.2f’-h’), Thecamoeba sp. 

ATCC  50185, Paraflabellula hoguae ATCC  30733 were obtained from the American 

Type Culture Collection (Manassas, VA). 

All ATCC  species were identified following the original depositor information, 

and, when possible, comparison of photodocumentation provided by ATCC  to the 

original literature.  We maintained the original depositor identification for all organisms 

except isolate CHINC-5 ATCC  50979, which is certainly not a Sexangularia since it 

does not possess a shell (Figure 3.2f’-h’).  This organism presents morphological 

characteristics similar to the dactylopodids, and will be described in detail elsewhere.  

The accuracy of the original identification for all other accessions will be discussed 

further after molecular analyses.  However complete morphological characterization of 

these isolates is outside the scope of the current essay, and only limited morphological 

conclusions will be drawn.  

The Arcellinida were identified by light microscopy and scanning electron 

microscopy where necessary (for electronic microscopy methods, see (Lahr and Lopes 

2006)).  We established a clonal culture of Cryptodifflugia operculata, whose 

morphological characteristics are in accordance with the original description (Page 1966), 

including the presence of a mucous aperture plug after encystation (operculum, Figure 

3.2a).  The operculum is regarded as the only distinguishing characteristic between C. 

operculata and the type species C. oviformis Penard 1890, and its use as a distinguishing 

character has been challenged as it may vary intra-specifically (Hedley et al. 1977).  We 
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use Page’s C. operculata definition since the operculum has indeed been observed in our 

isolate, and further research on non-operculum forming lineages is needed to elucidate 

this issue.  Our clonal culture of Pyxidicula operculata had morphological characteristics 

in accordance with those described in Cash et al. (Cash et al. 1905).  Some individuals 

presented a small funnel shaped rim attached to the inner side of the shell that is 

characteristic of Pyxidicula patens (Claparede and Lachmann 1859) indicating that the 

character may vary intra-specifically.  The three Arcella isolates were identified in 

accordance with appropriate literature (Deflandre 1928; Lahr and Lopes 2009), Arcella 

discoides and Arcella gibbosa were culturable, while one A. mitrata individual was 

isolated from nature, photodocumented and genome amplified.  Hyalosphenia papilio and 

Nebela carinata individuals were isolated from nature, photodocumented and further 

processed, morphological characteristics in accordance with those of Lara et al. (2008). 

 

4.3.2 Molecular methods: DNA extractions, primers used, PCR conditions, cloning. 

A combination of multiple methods was used to characterize both SSU-rDNA and 

actin genes from the diverse lineages.  The ATCC  samples were processed as described 

in Tekle et al. (2008).  Briefly, cultures were harvested and DNA extracted using DNA 

Stat60 (Tel-Test, Inc., Friendswood, Texas, Cat. No. TL-4220) following manufacturer’s 

instructions, with the addition of a Phenol-Chloroform-Isoamyl step using Phase Lock 

Gel Heavy tubes (Eppendorf AG, Hamburg, Germany, Cat. No. 955154070). 

We used multiple strategies for obtaining DNA from the testate amoebae species, 

due to their resistance to PCR methods and the difficulty in culturing some species.  

Arcella gibbosa, Arcella discoides, Pyxidicula operculata and Cryptodifflugia operculata 
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were cultured in autoclaved pond water enriched with cereal grass media extract and 

bacteria as described in (Lahr et al. 2010).  DNA was extracted using a standard 

Phenol:Chloroform protocol on rapidly growing cultures as in (Lahr et al. 2010; Lahr and 

Katz 2009).  Arcella mitrata, Nebela carinata and Hyalosphenia papilio were not 

amenable to culture, so we adopted two alternative strategies before PCR: whole genome 

amplification and cDNA extraction of single individuals.  Briefly, for both strategies, a 

single or a small group of individuals were cleaned through several sterile pond water 

washes, left overnight to purge any remaining food/prey organisms being digested, re-

washed in sterile pond water, and photo-documented in a light microscope.  The 

individuals were then placed in either buffer DLB from a Repli-g Mini Kit (Qiagen, Cat. 

No. 150023) for whole genome amplification, or in Resuspension buffer with Lysis 

Enhancer from a SuperScript III CellsDirect cDNA synthesis kit (Invitrogen, Cat. No. 

18080-200).  Genome amplification and generation of complementary DNA libraries 

were then performed following manufacturer’s instructions.  PCR reactions on obtained 

DNAs were tested on a serial dilution (1x-1:1000 in ddH2O), and the lowest 

concentration amplification was chosen to avoid formation of chimeras for further 

processing (Lahr and Katz 2009).  Using this strategy enables a similar comparison to 

clonal cultures, since we have obtained the genetic material from a single individual.  

Primers for SSU-rDNA amplification were from (Medlin et al. 1988) with three 

additional primers used to generate overlapping sequences from each clone (Snoeyenbos-

West et al. 2002), or shorter internal sequences for organisms where full SSU-rDNA 

amplification was not possible.  Primers for actin were from (Tekle et al. 2007) and (Lahr 

and Katz 2009).  Phusion Hot Start DNA polymerase (New England BioLabs, Cat. no. 
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F540) was used to amplify the genes of interest, and Zero Blunt TOPO cloning kits 

(Invitrogen, Cat. No. K280020) were used to clone PCR products.  Cloned plasmid DNA 

was purified in a 96 well format using a PureLink Kit (Invitrogen, Cat. No. 12263018) 

and sequencing reactions performed using an ABI3100 sequencer (Applied Biosystems, 

Foster City, CA, USA) either at the Smith College Center for Molecular Biology 

(Northampton, MA) or at the Pennsylvania State Nucleic Acid Facility (University Park, 

PA, USA). 

 

4.3.3 Multiple Sequence Alignments 

4.3.3.1 SSU-rDNA datasets 

Sequences for SSU-rDNA of 117 Amoebozoa and 10 Opisthokonta outgroups 

were retrieved from GenBank (see Supplementary Material available online at 

www.plosone.org for details), along with the 9 SSU-rDNA sequences generated in this 

study (Table 3.1) for a total of 136 SSU-rDNA sequences. Taxon sampling reflects an 

effort to include representatives of all available lineages in the ‘Amoebozoa’ (Adl et al. 

2005; Pawlowski 2008; Pawlowski and Burki 2009; Shadwick et al. 2009; Tekle et al. 

2008).  Alignments were constructed in SeaView (Galtier et al. 1996; Gouy et al. 2010) 

with alignment algorithm MAFFT (Katoh et al. 2009) using the L-INS-I setting.  

Alignments were then curated manually to adjust ambiguous regions.  This larger 

alignment was then subject to manual removal of ambiguous sites, to generate the dataset 

named M139 (Figure 3.3, Table 3.2).  Independent automated removal of ambiguous sites 

was done using the online server GUIDANCE (Penn et al. 2010) with default parameters, 

to generate the dataset named A139 (Figure 3.3, Table 3.2).   
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Additional datasets with limited number of taxa were generated to explore the 

interaction between taxon sampling and missing actin sequences (Figure 3.3, Table 3.2).  

We removed taxa from both A139 and M139 to contain at least one representative of 

each major lineage, while maintaining all taxa for which actin sequences are available 

(43), to a total of 101 taxa, generating thus the alignments names A101 and M101 (Figure 

3.3, Table 3.2, see Supplementary Material available online at www.plosone.org for a 

detailed list of taxon inclusion).  Both datasets were subjected to further taxon removal to 

maintain only the 43 Amoebozoa lineages for which both actin and SSU-rDNA 

sequences are available as well as the 10 outgroup sequences, generating datasets A53 

and M53 (Figure 3.3, Table 3.2).  Datasets were then concatenated with the amino-acid 

actin dataset and subject to post-phylogenetic analyses treatment. 

 

4.3.3.2 Actin datasets 

Representative sequences for actin genes of Amoebozoa were retrieved from 

GenBank, curated Genome databases and EST databases, as detailed in (Lahr et al. 

2010).  The dataset, containing a total of 130 actin genes, 40 of them generated in this 

study (13 taxa, some with multiple paralogs, Table 3.1), was aligned at the amino-acid 

level in the software SeaView (Gouy et al. 2010) using the alignment algorithm MAFFT 

(Katoh et al. 2009) set to L-INS-I optimization, and trimmed down to retain only a 

central homologous region.  The dataset for actin consists of 130 sequences with 265 

amino acid sites.  To choose sequences for concatenation, we determined the shortest 

branched actin genes for each group of paralogs, through a PhyML (Guindon and 

Gascuel 2003) analysis using a GTR model, with optimized estimation of invariable sites, 
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gamma variation with 6 rate categories across sites, combining the best of NNI and SPR 

searches, as implemented in Seaview (Gouy et al. 2010).  We then trimmed the alignment 

to contain only the shortest branched paralog for each species, totaling 46 Amoebozoa 

taxa, and 265 amino-acid sites.  This dataset was then concatenated to six SSU-rDNA 

datasets obtained in section 3.1 (A139, M139, A101, M101, A53 and M53).  Additionally 

the alignment with all 130 paralogs was analyzed separately to determined events in the 

evolution of actin gene families in Amoebozoa.  We performed maximum likelihood 

analyses on the amino acid dataset. 

 

4.3.4 Phylogenetic analyses 

4.3.4.1 Concatenated datasets 

We performed maximum likelihood phylogenetic reconstruction in each of the 

initial six concatenated datasets using RAXML HPC 7.2.7 (Stamatakis 2006; Stamatakis 

et al. 2008) as implemented in the online server CIPRES (Miller et al. 2009).  We ran 

1000 fast bootstrap analysis using the GTRCAT approximation, and 100 independent 

maximum likelihood reconstructions using the GTRGAMMA model for the SSU-rDNA 

partition and the LG model for the protein partition.  The most appropriate model for 

amino-acid evolution was determined using model testing implemented in the online 

server Datamonkey (Delport et al. 2010).  Bootstrap values of the GTRCAT search were 

then plotted on the best tree found by maximum likelihood search for comparative 

analysis.  Additional Mr. Bayes analyses were performed on the two largest datasets 

Auto139 and Manual139 to test independence of results from algorithm.  We used the 

implementation on BioHPC cluster at Cornell University (http://cbsuapps.tc.cornell.edu/).  
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Using a random starting tree, the analyses did not converge after 20 million generations.  

Because Mr. Bayes is so computationally heavy, we had to resort to starting analyses 

from the best ML tree obtained in RAXML, although this may lead to exaggeration of 

support values in the final Bayesian tree.  Hence, we started the analysis using the 

topology obtained in the RAxML analysis, and obtained convergence after 4 million 

generations.  We performed two independent MCMC runs with 8 chains each, and a 

heating parameter of 0.05, with a burnin of 1 million generations.  We applied the 

GTR+gamma model for the SSU-rDNA partition, and the WAG model for protein 

partition, since the available version of Mr.Bayes did not implement the LG model at the 

time of writing this report.  The WAG model was the second best fit to our data 

according to the model selection analysis performed in the online server Datamonkey.   

 

4.3.4.2 Removal of fast rate sites, long-branched and unstable taxa 

To assess the effect of rate heterogeneity on SSU-rDNA topologies, we 

partitioned the Manual139 dataset into 8 rate classes using the GTR model with rate 

variation among sites following a discrete gamma distribution, as implemented in HyPhy 

v1.0beta (Pond et al. 2005).  Classes 0 and 7 represent the slowest and fastest rate classes, 

respectively.  We then proceeded to eliminate the fastest rate class (7) to generate the 

alignment M139-7 (Table 3.2).  Similarly, we removed the two fastest rate classes (7 and 

6) for the dataset M139-76, and the three fastest rate classes (7, 6 and 5) for the dataset 

M139-765 (Table 3.2). 

To assess the effect of long-branched taxa on final topologies the root-tip branch 

lengths of each terminal from section 4.1 was calculated as implemented in the freely 
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distributed program TreeStat v1.2 (http://tree.bio.ed.ac.uk/software/treestat/).  The results 

were then compared within reconstructions and we proceeded to remove the 10 overall 

longest branched taxa (Arcyria denudata, Dydimium nigripes, Echinostelium arboreum, 

Lindbladia tubulina, Pelomyxa palustris, Physarum polycephalum, Polysphondylium 

pallidum, Protophysarum phloiogenum, Trichia persimilis and Tricosphaerium sp. 

ATCC 40318 (a list of all branch lengths is available as Supplementary Material online at 

www.plosone.org), to generate the alignments M139-LB and A139-LB, with a total of 

129 taxa each (Figure 3.3, Table 3.2). 

To assess the effect of unstable taxa on final topologies we calculated terminal 

Leaf Stabilities (Thorley and Page 2000) as implemented by the script THOR 

(http://code.google.com/p/phylogenetics/) using as input the outgroup-rooted 1000 

bootstrap trees generated from Section 4.1.  After performing comparative analysis 

between the different datasets, we removed the 10 most unstable taxa (the three 

Cochiopodium spp., Dermamoeba algensis, Endostelium zonatum, Gocevia fonbrunei 

ATCC 50196, Pessonella sp., isolate CHINC-5 ATCC 50979, Trichosphaerium sp. and 

Vexilifera minutissima) to generate the datasets M139-us and A139-us, with a total of 129 

taxa each (Figure 3.3, Table 3.2).  Additionally, we generated datasets by removing both 

the most unstable taxa and the most long-branched taxa at the same time, to a total of 120 

taxa in the dataset A139-LB-us and M139-LB-us (Figure 3.3, Table 3.2). 

 

4.3.4.3 Sampling of environmental sequences 

A next logical step for our analyses was to determine whether increased taxon 

sampling will enable more robust phylogenetic reconstructions.  An available method 
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widely used to increase taxon sampling is to add environmental sequences that represent 

unculturable organisms or taxonomic representatives in environments that were not yet 

studied by specialists.  The number of environmental sequences available is very large, 

and there is a tendency to recover closely related organisms since most environmental 

studies are focusing on a specific type of habitat, rather then targeting phylogenetic 

coverage.  It is desirable then to use representatives from different parts of the tree rather 

than many representatives in a single branch (cherries).  We performed BLAST searches 

querying all 129 Amoebozoa taxa in our dataset against the environmental database in 

GenBank.  We retrieved the top 100 hits for each taxon to create a combined dataset, 

excluding redundant sequences of ~3,000 entries.  We then eliminated all entries that are 

98% similar to each other using the Rid v0.3 script (Grant, J.).  This approach recovered 

25 sequences that were then included in the M139 datasets, generating the dataset MEnv 

(Figure 3.3, Table 3.2). 

 

4.3.5  Comparative analyses of resulting trees 

We used three methods to assess the information in our reconstructions: 

comparison of bootstrap supports for different levels of groupings, Treeness Index and 

Leaf Stabilities.  For comparative analysis of support for different groupings, we divided 

the hypothesized groupings in two categories: higher-level relationships and morphology 

based lower-level relationships.  We then assessed bootstrap supports from the 18 

reconstructions performed to compare stability of clades between analyses.  We also 

compared data for the Treeness index, a measure of the proportion of total tree length that 

is taken up by internal branches, thought to be a rough assessment of how much of the 
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dataset’s information is being used to reconstruct stem relationships as opposed to 

substitutions along terminal branches.  We calculated Treeness values as implemented in 

TreeStat (http://tree.bio.ed.ac.uk/software/treestat/).  Finally, we calculated the average 

leaf stability for each reconstruction; this is useful in informing how much overall 

instability is present in a particular dataset, and whether our manipulations are improving 

overall resolution. 

 

4.3.6 Approximately unbiased (AU) testing of alternative hypotheses 

We tested whether non-recovered hypotheses could be rejected using the 

Approximately Unbiased test (Shimodaira 2002).  Briefly, we generated maximum 

likelihood reconstructions with constraints for each of 12 alternative hypotheses by 

running 100 independent maximum likelihood analysis in RAxML using the exact same 

parameters as before, and choosing the most likely tree.  All trees were then compared to 

the best tree found on the standard analysis using RAxML to calculate per-site 

likelihoods.  The per-site likelihoods were then analyzed in CONSEL (Shimodaira and 

Hasegawa 2001) with standard parameters to obtain p-values. 

 

4.4 Results 

4.4.1 General topology 

The SSU-rDNA and actin genes for 13 lineages were sequenced (Figure 3.2, 

Table 3.1) and phylogenetic analyses were performed on a total of 139 taxa, using 

multiple reconstruction strategies (Figure 3.3, Table 3.2).  Topologies obtained in the 18 

distinct phylogenetic reconstructions of concatenated SSU-rDNA and actin genes (Table 
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3.3) largely agree with previous analyses regarding the monophyletic status of lower-

level relationships (defined here as in roughly equivalent to Order level or below).  These 

groups are also consistent with morphological characters, as outlined in Smirnov et al. 

(2005) and Shadwick et al. (2009): the Amoebidae, Dictyosteliida, dark spored 

myxogastrids, Hartmannellidae (excluding Saccamoeba limax ATCC  30942), 

Leptomyxida, protosporangiids, protosteliids, schizoplasmodiids, soliformoviids and 

Tubulinida are always recovered with high support (Table 3.3); the Acanthamoebida, 

cavosteliids, Dactylopodiida, Echinamoeboidea, light spored myxogastrids, 

Mastigamoebida, Pelobiontida, Thecamoebida and Vannellida are recovered with 

moderate to high support; the Arcellinida are recovered with low support (Table 3.3).   

In contrast, almost all proposed higher-level relationships (defined here as above 

the Order level) are not recovered in our analyses, with three exceptions (Table 3.3): 1) 

the Myxogastrea (=myxomycetes) are recovered with high support in virtually all 

analyses, and both proposed nested groups are also strongly supported (dark spored 

myxogastrids and light spored myxogastrids); 2) the Tubulinea is recovered with 

moderate to high bootstrap supports in 15 out of 18 analyses, and 3 of the 4 group 

members Echinamoeboidea, Leptomyxoidea and Tubulinida are consistently recovered 

with moderate to high bootstrap supports.  The fourth group, Arcellinida is recovered 

with low support in 13 out of 18 analyses.  A further group within the Tubulinea 

(Hypothesis 1 – ‘Poseidonida’, see below) is highly supported in all analyses (Table 3.3); 

3) the Archamoebae are recovered in 8 out of 18 analyses with weak to moderate support, 

the two proposed groups within are also moderately supported, the Pelobiontida is 



 

 80 

recovered with moderate to high support in 7 out of 14 analyses, and the Mastigamoebida 

in 8 out of 16. 

Another two higher-level relationships worth noting are inconsistently recovered. 

The Mycetozoa sensu Cavalier-Smith et al. (2004) 

(Archamoebae+Dictyostellida+Protosteliidae) are only recovered in analysis with low 

number of taxa included (Analyzes A53, M53 in Table 3.3).  The Flabellinea are only 

recovered in analysis where long branched taxa and/or unstable taxa were removed 

(Table 3.3).  All other proposed higher-level relationships are never recovered in our 

reconstructions: Flabellinea, Conosea, Discosea, Stellamoebia, Variosea and Varipodida 

(Table 3.3), but these are also not rejected using an AU test (Table 3.4). 

 

4.4.2 Placement of newly characterized lineages 

4.4.2.1 Arcellinida lineages 

The newly introduced Arcellinida sequences consistently group with previously 

available lobose testate amoebae.  The Nebela carinata and Hyalosphenia papilio fall 

consistently with other members of the Hyalospheniidae previously sequenced (Figure 

3.4).  The three new lineages of the genus Arcella also consistently group with the other 

available Arcella, including Arcella discoides, only represented by actin genes (Figure 

3.4).  This demonstrates that at least in principle we should be able to infer relationships 

for the other two lineages represented only by actin genes (see below Steromyxa ramosa 

ATCC  50982 and isolate CHINC-5 ATCC  50979), as long as taxonomic sampling is 

significant.  Pyxidicula operculata and Cryptodifflugia operculata, both representing 

previously unsampled genera, fall consistently in the Arcellinida, but with no consistent 
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home.  The Arcellina hypothesis, which unites the testate amoebae that have secreted 

chitinous shells (Meisterfeld 2002), would encompass the Arcella, Pyxidicula and 

Spumochlamys, but was not recovered. 

 

4.4.2.2 Other Amoebozoa lineages 

The ATCC  accession 50196 identified as Gocevia fonbrunei is found to be 

strongly related to the protosteloid amoeba Endostelium zonatum.  This relationship is 

moderately or highly supported in 9 out of 10 analyses where both taxa were present 

(Figure 3.4, Table 3.3).  Further, Gocevia fonbrunei + Endostelium zonatum is 

monophyletic with Cochliopodium spp., albeit with moderate or low bootstrap supports 

in 9 out of 11 analyses where all taxa were present (Figure 3.4, Table 3.3).  The ATCC  

accession 50185, deposited as a member of the genus Thecamoeba, is nested within the 

genus Sappinia, with high support in all analyses (see Supplementary Material available 

online at www.plosone.org for details). Sappinia is in its turn the sister-group to the 

genus Thecamoeba (Brown et al. 2007; Dykova et al. 2010b).  Analysis of the SSU-

rDNA sequence performed by BLAST reveals that ATCC  50185 is almost identical 

(99% similarity) to a specimen identified as Sappinia sp. Noaf EU881941 (Wylezich et 

al. 2009), presumably related to Sappinia diploidea.  This is an indication that isolate 

ATCC  50185 is in fact a novel Sappinia lineage, and further research into its 

morphology should shed light on the distinctions between the two genera. The ATCC  

accession 50892 identified as Stygamoeba regulata, and with morphological characters 

consistent with the original description (Smirnov 1996) does not reliably fall into any of 
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the proposed groups (see Supplementary Material available online at www.plosone.org 

for details).  Leaf stability analyses do not indicate this as a particularly rogue taxon. 

 

4.4.2.3 Lineages represented only by actin genes 

The two non-Arcellinida lineages for which we were only able to amplify the 

actin gene do not group reliably with any other Amoebozoa, which may either indicate 

their status as incertae sedis is granted, or that a single gene is not sufficient to 

reconstruct their evolutionary history.  The ATCC  accession 50982 deposited as 

Stereomyxa ramosa does not reliably fall into any of the proposed groups, or lower-level 

morphological relationships.  In most reconstructions, it falls outside of the 

Archamoebae, but this is not supported by bootstrap analyses.  The leaf stability index for 

this taxon is generally one of the lowest, ranking 26 out of 29 (29 being the most unstable 

taxa), further confirming its status as incertae sedis at least for this single gene.  The 

isolate CHINC-5 ATCC  50979 (misidentified as Sexangularia sp., see Material and 

Methods section) is found to be related to the also incertae sedis Pessonella sp., albeit 

with low bootstrap support.  Leaf stability analysis shows that both taxa are unstable, 

ranking 27 and 26 out of 29. 

 

4.4.3 Comparative analyses of different types of reconstruction 

The general performance of 18 different reconstruction approaches was assessed 

by three measures: bootstrap supports of well-established morphological groups and 

proposed higher-level relationships (Table 3.3); leaf stability measures (Table 3.5, 

Supplementary Table S2); and Treeness indices (Table 3.5).  Overall, trees tend to score 
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higher with more taxa added; when manual removal of ambiguous sites is performed and 

when long branched as well as “rogue” taxa are removed (see Supplementary Material 

available online at www.plosone.org for a detailed discussion).  Since removal of 19 long 

branched or unstable taxa significantly impairs interpretation of relationships (for 

instance, Pelobiontida and Myxomycetes are almost completely removed), we consider 

that both Mr. Bayes and RaxML reconstructions based on the dataset with 139 taxa and 

manual removal of ambiguous sites (M139, Table 3.2) best represents our results (Figure 

3.4), and comparisons will be made to other reconstructions as necessary. 

 

4.4.4 Addition of environmental sequences 

The addition of 25 environmental sequences neither improves support for the 

groups recovered in other reconstructions, nor stabilizes rogue taxa.  The added 

sequences group with: Arcellinida (11 sequences), Mastigamoebidae (3 sequences), 

Hartmannellidae (2 sequences), undetermined (2 sequences) and one sequence in each 

Cochliopodium, Echinamoebidae, Filamoebidae, Myxogastrea, Poseidonidae, 

protosteliids and Saccamoeba. The bootstrap supports for lower-level relationships 

remain largely unchanged when compared to other types of reconstruction (Table 3.3); 

the average Leaf Stability is not significantly different from reconstructions with large 

taxon sampling (Table 3.5) and the Treeness index decreases when environmental taxa 

are added, probably the result of an increase in total tree length without a concomitant 

increase in signal (Table 3.5). 
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4.4.5 Actin gene family reconstruction 

A reconstruction using multiple actin gene paralogs for 46 Amoebozoa taxa 

largely agrees with the reconstruction in Lahr et al. (2010) (Figure 3.5).  Using a 

reconstruction based on amino acids fails to recover monophyly of Amoebozoa, because 

under these conditions the Opisthokont Amoebidium does not fall as an outgroup.  Still, 

many lower-level relationships are recovered (Figure 3.5): Leptomyxida, Tubulinida, 

Thecamoebidae, and one of the well-supported higher-level relationships is recovered: 

Archamoebae.  However, the isolate Hartmannella vermiformis does not fall into the 

Tubulinea, another well-supported high-level relationship in the concatenated 

reconstruction.  The Arcellinida appear as paraphyletic with the invasion of Tubulinida 

(Amoebidae+Hartmannellidae), indicating that some of the actin paralogs in these 

lineages may be ancient duplicates.  Additionally, throughout the tree many taxa display 

recent independent expansions of the actin gene family (Arcella, Cryptodifflugia, 

Dictyostelium, Phalansterium, Trichosphaerium, Gocevia). 

 

4.5 Discussion 

Our analyses of available SSU-rDNA and actin genes confirm the monophyly of 

several previously reported lower-level relationships (defined here as roughly equivalent 

to Order level and below) within the Amoebozoa, and indicate an additional six 

uncharacterized well-supported relationships (Figure 3.4, Table 3.3).  However, only 

three of the previously proposed higher-level relationships (defined here as deep 

relationships that are above the Order level) are consistently recovered: the Myxogastrea 

are strongly supported; the Tubulinea are moderately supported; and the Archamoebae 
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are weakly supported.  Other proposed higher-level relationships such as Conosea along 

with the included Mycetozoa and Stellamoeba, as well as the Protamoebae with the 

included Discosea and Variosea are never recovered, but our data also does not reject 

these relationships (Table 3.4).  The three recovered higher-level relationships are 

distinguished from other proposed groups in that they all have well-established 

morphological synapomorphies: the Tubulinea present cylindrical pseudopods with 

monoaxial streaming (Smirnov et al. 2005); the Archamoebae unite all amitochondriate 

Amoebozoa (likely a secondary loss (Patterson 1999), rather than a primitive condition as 

previously suggested elsewhere (Cavalier-Smith 1991)); and the Myxogastrea are 

characterized by a fruiting body arising from a syncytial diploid stage (Fiore-Donno et al. 

2010).  The remaining non-confirmed higher-level relationships (Table 3.3), which were 

proposed largely based on analysis single gene analyses of SSU-rDNA, are not marked 

by strong morphological synapomorphies. 

Most of the morphologically defined lower-level relationships are reliably 

recovered, as well as six previously undescribed groups, referred to here as Hypothesis 1-

6 (Figure 3.4, Table 3.3).  Proposed names for each hypothesis are stated in single quotes, 

to denote their speculative nature, and a taxonomic summary is provided for each group 

following regulations of the International Code of Zoological Nomenclature.  The 

Tubulinea and nested groups are consistently well supported:  Echinamoebida, 

Leptomyxida and Tubulinida are moderately to strongly supported and the Arcellinida is 

consistently recovered, albeit with weak support.  Additionally Hypothesis 1 

(‘Poseidonida’), a monophyletic group composed of Nollandela spp. and ‘Hartmannella’ 

abertawensis is distinct from the other four groups in the Tubulinea (Figure 3.4, Table 



 

 86 

3.3).  Indications of this relationship have been shown in previous reconstructions 

(Brown et al. 2010; Fiore-Donno et al. 2010), and our analysis suggests that this strongly 

supported group (Table 3.3) is not embedded within any other Tubulinea clade.  

Nolandella spp. and ‘Hartmannella’ abertawensis were isolated from near-shore marine 

environments in the same publication (Page 1980).  Another species with similar 

morphological features, Hartmannella vacuolata, also marine, has been described with 

notes about the unusual feature for limax amoeba of a floating form with extended arms 

(Anderson et al. 1997), a character shared with Nolandella.  Given the stable status of this 

clade, and the fact that the organisms share the marine environment as a habitat, we 

suggest the name ‘Poseidonida’, in reference to the Greek god of the seas, Poseidon (see 

taxonomic summary for a formal account).  The type genus and species for the group 

should be Nolandella hibernica (Page 1980) for stability reasons, since Hartmannella 

abertawensis will likely require re-assignment to a new genus with further research. 

The genus Soliformovum, common protosteloid amoebae found associated with 

dead plant material (Spiegel 1990), forms a monophyletic group with Grellamoeba 

robusta, an amoeba isolated from fish kidneys (Dykova et al. 2010a), which we designate 

as Hypothesis 2 (‘Fractovitellida’, Figure 3.4, Table 3.3).  Grellamoeba robusta is 

putatively related to Acramoeba dendroida based on SSU-rDNA analysis (Dykova et al. 

2010a), which justified inclusion in the group Acramoebidae (Smirnov et al. 2008).  

However Dykova et al. (Dykova et al. 2010a) emphasize that no well-supported 

relationships could be found in their analysis, either morphologically or phylogenetically, 

so they settled for an incertae sedis status.  Acramoeba dendroida never groups with G. 

robusta in our analyses, suggesting A. dendroida is still the only representative of the 
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Acramoebidae.  On the other hand, G. robusta composes a new, highly supported clade 

with two soliformoviids (Hypothesis 2, see taxonomic summary for details).  

Soliformovum spp. was removed from the genus Protostelium based on a series of gross 

morphology and ultrastructural characteristics (Spiegel et al. 1994).  Spiegel et al. 

(Spiegel et al. 1994) suggests that the nucleus with an irregular, multilobed nucleolus is a 

putative synapomorphy of the genus Soliformovum, although the cavosteliid 

Schizoplasmodiopsis amoeboidea also presents a diffuse nucleolus (Lindley et al. 2006; 

Shadwick et al. 2009).  Grellamoeba robusta presents oval nucleoli more similar to 

Protostelium spp. and S. amoeboidea as a trophozoite, but shows a lobed morphology in 

cyst form (Dykova et al. 2010a), which may be consistent with the Soliformovum-

Schizoplasmodiopsis type (Lindley et al. 2006).  The micrographs provided by Dykova et 

al. (Dykova et al. 2010a) do not indicate that G. robusta has a microtubular organizing 

center (MTOC), so this is possibly a further shared characteristic with the genus 

Soliformovum (Spiegel et al. 1994).  Both amoebae are generally uninucleate, without 

pigmentation and exhibit multiple contractile vacuoles.  They both present sharply 

pointed sub-pseudopodia an thus an acanthopodid morphotype (sensu Smirnov et al. 

(Smirnov et al. 2005)).  However, G. robusta tends to be more branched and exhibit fan-

shaped regions, while Soliformovum’s entire cell tends to be fan-shaped and less 

branched.  No sorocarp formation was observed in G. robusta (Dykova et al. 2010a), 

making this novel relationship a suitable clade to further research the evolution of fruiting 

body formation in amoebae.  We suggest this grouping be named ‘Fractovitellida’ 

(fractus-broken, vitellum-yolk) in reference to the diffuse aspect of the nucleoli, with type 
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genus and species Soliformovum irregularis (Olive and Stoinanovich 1969), see 

taxonomic summary for a formal account. 

Our analyses confirms the highly supported grouping of filopodia producing 

Amoebozoa in the genera Flamella and Arachnula sp. ATCC  50593, which we 

designate as Hypothesis 3 (‘Flamellidae’, Figure 3.4, Table 3.3).  Flamella are 

characterized by a fan-shaped morphology, with a wide anterior hyaloplasm that 

produces thin sub-pseudopodia and long trailing thin filipodia.  Trophozoites present a 

central non-diffuse nucleolus, although F. balnearia shows an irregularly shaped 

nucleolus in the cyst form (Kudryavtsev et al. 2009b).  Morphological information for 

Arachnula ATCC  50593 reveals that it is a multinucleate amoeba with branched thin 

filopodia (Tekle et al. 2008). This monophyletic relationship is within the moderately 

supported clade Hypothesis 4 (‘Gracilipodida’) as sister to Filamoeba spp., characterized 

by a flattened locomotive form with a thin anterior hyaloplasm and long, thin, filiform 

subpseudopodia (Dykova et al. 2005; Page 1967a).  Hypothesis 4 has also been 

previously recovered, along with other environmental sequences (Kudryavtsev et al. 

2009b; Nikolaev et al. 2006).  However, the previously proposed relationship between 

Flammella and Acramoeba dendroida is not recovered (Smirnov et al. 2008).  Gross 

morphological features characterize Hypothesis 4 as outlined in Kudryavtsev et al. 

(Kudryavtsev et al. 2009b), but no putative ultra-structural synapormophies can be 

suggested at this point.  The corroboration of both hypothetical clades in our analyses 

justify the designation of two nested amoeboid groups: Hypothesis 3 ‘Flammellidae’, 

containing Flamella + ATCC  50593; and Hypothesis 4 ‘Gracilipodida’ (gracilis-

slender, pedes-foot), in reference to the filose pseudopodia present in all members of the 
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clade.  The type genus and species for both groups is Flammella magnifica Schaffer 1926 

according to the Principle of Priority (see taxonomic summary for a formal account). 

The identification of ATCC  50593 as Arachnula sp. (Tekle et al. 2008) has been 

the subject of some controversy (Bass et al. 2009).  Bass et al. (2009) suggest that large 

terminal fans provided with many thin reticulating pseudopodia, a conspicuous character 

in Cienkowski’s description of Arachnula (Cienkowski 1876), are not present in the 

available images of isolate ATCC  50593 (Tekle et al. 2008).  Bass et al. (2009) isolated 

an additional organism that they argue is more consistent with the original description 

(Cienkowski 1876).  In molecular analysis of SSU-rDNA, this organism falls in the 

Rhizaria along with other similar forms such as Platyreta.  Bass et al. (2009) then suggest 

that ATCC  50593 is misidentified, and is instead more closely related to Acramoeba 

dendroida (Smirnov et al. 2008), but these do not group together in the current report.  

The isolate ATCC  50593 instead is included in the well-supported clade of filopodia 

bearing Amoebozoa (Hypothesis 4 ‘Gracilipodida’) enforcing the notion that extremely 

similar, convergent morphologies are present in Amoebozoa and Rhizaria (Bass et al. 

2009), corroboration based on molecular data is necessary to determine relationships.  

The taxonomic identity of Arachnula is further obscured because the organism in Figure 

8 of Bass et al. (2009) was unfortunately not amenable to culture (therefore cannot be 

studied further), and the authors themselves raise the possibility of contamination.  

Establishing a taxonomic identity by comparing traditional descriptions with modern 

techniques is a complicated affair (Lahr et al. 2008; Lahr and Lopes 2009), and is made 

worse in this case by the multiple uncertainties introduced by different studies.  The 
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question of which organism is the real Arachnula, either ATCC  50593 or the organism 

pictured in Figure 8 of Bass et al. (2009) remains an open debate. 

Hypothesis 5 (‘Goceviidae’) unites the amoeba Gocevia fonbrunei ATCC  50196 

and the protosteloid amoeba Endostelium zonatum, a relationship that has been 

previously suggested based on ultra-structure (Bennett 1986).  Although we present 

limited morphological data on ATCC  50196, its morphology is generally consistent with 

that of Gocevia fonbrunei as having a lens-like locomotive morphology, few thin 

subpseudopodia and covered in a hyaline cuticle without foreign bodies and an 

unornamented cyst (Page 1976; Page 1987; Rogerson and Patterson 2002; Smirnov and 

Brown 2004).  The protosteloid amoeba Endostelium zonatum is characterized by a 

fibrous covering, and the amoeba has numerous thin subpseudopodia (Olive et al. 1984).  

The taxonomic status of this organism has been a conundrum, and has evaded 

classification in relation to other protosteloid amoebae (Patterson 1999; Shadwick et al. 

2009; Spiegel 1990), the very monophyly of the genus Endostelium has been called into 

question (Spiegel 1990).  The high stability of Hypothesis 5 enables us to suggest a novel 

Amoebozoa group, defined morphologically by the presence of an outer cuticle of fibrose 

or hyaline material.  We suggest this group be named ‘Goceviidae’, the type genus and 

species should be Gocevia fonbrunei Pussard 1965 following the Principle of Priority.  

’Goceviidae’ is strongly supported and often recovered within a larger clade designated 

Hypothesis 6, along with the genus Cochliopodium, consistent with the ‘Himatismenida’ 

sensu Page (Page 1987), with the added inclusion of Endostelium zonatum (see 

taxonomic summary for a formal account).  However, support is low for Hypothesis 6 
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and there is a chance that Cochliopodium spp. are grouping here due to a long-branch 

attraction artifact. 

Our observation of a clade uniting the Dictyosteliida and the protosporangiids is 

inconsistent with previously published works.  We do not recover the previously 

proposed Stellamoebae (protosteliids + Dictyosteliida) within the Mycetozoa 

(Stellamoebae+Myxogastrea) sensu (Cavalier-Smith et al. 2004); nor the 

Macromycetozoa (Dictyostelidae+Myxogastrea) sensu (Fiore-Donno et al. 2010), also 

observed in (Nikolaev et al. 2006); neither the grouping with cavosteliids (Shadwick et 

al. 2009).  However our analyses do not allow rejection of any of these hypotheses (Table 

4).  Given the moderate support for this clade, availability of equally likely alternative 

topologies, and lack of morphological features supporting any of these hypothesis, we 

suggest that the Dictyosteliida should receive an incertae sedis status.   

Additionally, numerous taxa remain unplaced in our analyses: Parvamoeba 

monoura, Stereomyxa ramosa, Dermamoeba algensis, Acramoeba dendroida, Multicilia 

marina, Phalansterium solitarium, Stygamoeba regulata, ATCC  50979, Pessonella sp., 

Trichosphaerium sp., Vermistella antarctica and Mayorella spp. are taxa with highly 

unstable relationships (Figure 3.4, Supplementary Figure S2).  Morphological features of 

both Vermistella antarctica and Stygamoeba regulata would suggest these are closely 

related (Moran et al. 2007; Sawyer 1975; Smirnov 1996), but this relationship was not 

recovered (Table 3.3).  However, AU testing does not reject a possible relationship 

(Table 3.4).   

We hoped that including environmental sequences would increase resolution of 

the tree, a strategy previously adopted by several authors (Cavalier-Smith et al. 2004; 
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Fiore-Donno et al. 2010; Kudryavtsev et al. 2009b; Nikolaev et al. 2006; Smirnov et al. 

2008; Wylezich et al. 2009).  However, the environmental sequences at most only add to 

already stablished morphological groups, and fail to resolve deep branches.  This is 

corroborated by the low increase in the Treeness index, coupled with non-significant 

improvement in the average Leaf Stabilities (Table 3.5).  We conjecture that obtaining 

phylogenetically meaningful SSU-rDNA sequences for amoebozoans from 

environmental surveys is an unreasonable expectation, given current technologies for 

environmental sampling of molecular sequences.  SSU-rDNAs in Amoebozoa are often 

very divergent, exhibiting over 2,000 base pairs, and reaching 3,000-4,000 bp in some 

taxa (e.g. Pelomyxa, Trichosphaerium, Lindbladia).  Additionally, many of these exhibit 

unusual secondary structure features (Nikolaev et al. 2006). In our experience, many 

amoeboid taxa are not easily amenable to routinely used molecular techniques, even the 

model organism Dictyostelium discoideum requires special techniques for reliable DNA 

preparation (Charette and Cosson 2004).  Key amoebozoan taxa likely have divergent 

SSU-rDNAs and will not be detected by current environmental sequencing methodology, 

but rather will need to be isolated and specifically targeted until better tools are 

developed for environmental sequencing.  We provide in this paper two new 

methodologies that might simplify this task, by using single cell genome amplification as 

well as single cell cDNA extraction, while maintaining an acceptable morphological 

record through photodocumentation.  These methods are superior to single cell PCR 

because they allow extraction of multiple genes from the same organism, crucial to the 

reconstruction of deep phylogenies.   
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What course of action should be taken to resolve the deep relationships within 

amoeboid organisms remains an open question.  Our analyses demonstrate that single or 

few genes are not sufficient to unravel the relationships between deep groupings.  Single 

gene analyses may however be enough to characterize relationships within well-

supported lineages such as the Myxogastrea and Tubulinea.  Morphological data are 

useful to establish synapomorphies among lower-level lineages, but also does not (at this 

point) help resolve the deeper relationships.  Whether phylogenomic approaches 

(analyzing alignments of entire genomes) hold the key to resolve these ancient 

relationships remain to be seen.  It is not clear as yet that such analyses actually result in 

more signal or yield strongly supported biased answers (Delsuc et al. 2005), another 

option may be using a selection of well chosen genes as in Parfrey et al. (Parfrey et al. 

2010b).  An additional important factor in unraveling the phylogenetic relationships 

within the Amoebozoa is comprehensive taxon sampling.  The recognition that 

protosteloid amoebae are an integral part of the Amoebozoa (Brown et al. 2010; 

Shadwick et al. 2009) opens up many possibilities for exploring possible taxa with key 

phylogenetic positions, as suggested by the stabilization of three homeless amoeboid taxa 

(Gocevia fonbrunei, Cochliopodium sp. and Grellamoeba robusta) due to inclusion of 

protosteloid amoebae in our analyses (Figure 3.4, Table 3.3).  This integration will most 

likely be useful not only in phylogeny, but also allow more meaningful studies on several 

aspects of Amoebozoa evolution, such as the evolution of the many diverse life cycle 

strategies (Lahr et al. 2011b). 
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4.6 Taxonomic summary of proposed hypotheses. 

Remarks on nomenclature: At the time of writing of this report, there is no widely 

agreed upon consensus on how microbial eukaryote taxa should be named and treated.  

Some advocate a rankless approach while others continue to propose categorical ranks 

along with their taxon names.  The International Code of Zoological Nomenclature, 

International Code for Botanical Nomenclature and the Bacterial Code do not assume 

direct responsibility for new microbial eukaryote names, they merely suggest ways to 

deal with names that were originally described under their provisions.  We have taken a 

pluralistic approach with the aim to stabilize and make the taxa we propose available 

under many circumstances.  We suggest taxa under categorical ranks, but those who wish 

to create a 94ankles taxonomy are welcome to ignore the proposed ranks, and be guided 

by the Hypotheses in Figure 3.  Names are suggested in accordance with the ICZN: we 

provide diagnosis, etymology and name-bearing types.  Additionally, we provide putative 

synapomorphies (where possible), which are not required by the ICZN. 

 

Phylum Amoebozoa Luhe, 1913 
 
Class Tubulinea Smirnov et al. 2005 
 
Order Poseidonida ord. nov. Lahr and Katz 2011 
Diagnosis: marine limax amoebae; small (5-20 um); pseudopods with a cylindrical or 

semi-cylindrical cross-section and monoaxial streaming. 
Type species: Nolandella hibernica (Page 1980) 
Etymology: in reference to the Greek god of the seas, Poseidon.  All organisms in this 

group are marine, or capable of tolerating high-levels of salinity. 
Putative Synapomorphy: marine limax Tubulinea. 
 
Family Nolandellidae fam. nov. Lahr and Katz 2011 
Included taxa: Nolandella; ‘Hartmannella’ abertawensis. 
Diagnosis: with characters of the order Poseidonida.  
Type species: Nolandella hibernica (Page 1980) 
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Etymology: in direct reference to the type species. 
 
Incertae sedis Amoebozoa 
 
Order Fractovitellida ord. nov. Lahr and Katz 2011 
Diagnosis: uninucleate amoebae without coloration, irregularly triangular with sharply 

pointed hyaline sub-pseudopodia, lobed nucleoli, and absence of a microtubular 
organizing center (MTOC).  

Type species: Soliformovum irregularis (Olive and Stoianovich 1969) Spiegel 1994 
Etymology: From the Latin fractus (broken) and vitellum (yolk), in reference to the 

appearance of the nucleoli.  Also to acknowledge the etymology of the genus 
Soliformovum, which alludes to the resemblance of the pre-spore to a fried egg 
“sunny-side up” (Spiegel et al. 1994). 

Putative Synapomorphy: presence of lobed nucleoli in at least one stage of the life-cycle. 
 
Family Soliformoviidae fam. nov. Lahr and Katz 2011 
Included taxa: Soliformovum, Grellamoeba 
Diagnosis: with characters of the order Fractovitellidae. 
Type species: Soliformovum irregularis (Olive and Stoianovich 1969) Spiegel 1994 
Etymology: in direct reference to the type species. 
 
Order Gracilipodida ord. nov. Lahr and Katz 2011 
Included taxa: Flamellidae fam. nov. Lahr and Katz 2011, Filamoebidae Cavalier-Smith 

2004 
Diagnosis: gross morphological features outlined in Kudryavtsev 2009: flattened 

locomotive form either with expanded fan-shaped hyaloplasm regions producing thin 
sub-pseudopodia, or pseudopods coming out from cell body.  Pseudopods are thin, 
filiform.  Single or multinucleated. 

Type species: Flamella magnifica Schaeffer 1926 
Etymology: from the Latin gracilis (slender) and pedes (feet), in reference to the ability 

shared by these organisms to produce thin pseudopodia. 
Putative Synapomorphy: filiform pseudopodia. 
 
Family Flamellidae fam. nov. Lahr and Katz 2011 
Included taxa: Flammella, Arachnula ATCC  50593 
Diagnosis: flattened, sometimes fan-shaped amoebae that can produce digitiform sub-

pseudopodia from an anterior wide hyaloplasm margin, or can produce thin 
pseudopods from the cell body. Central, non-diffuse nucleolus in trophozoites. 

Type species: Flamella magnifica Schaeffer 1926 
Etymology: in direct reference to the type species, and most well described genus. 
 
Order Himatismenida Page 1987 emend. 
Diagnosis: amoebae with a locomotive lens-like shape, with an organic covering that 

does not enclose the cell completely, and may be organized in scales. 
Type species: Cochliopodium bilimbosum Auerbach 1856 
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Putative Synapomorphy: an organic outer covering which does not completely seal the 
amoeba. 

 
Family Cochliopodidae Hertwig and Lesser 1874 emend. 
Included taxa: Cochliopodium 

Diagnosis: himatismenid amoebae capable of producing an organic tectum composed of 
structured scales. 

Type species: Cochliopodium bilimbosum Auerbach 1856 
Putative Synapomorphy: structured scales composing the outer covering. 
 
Family Goceviidae fam. nov. Lahr and Katz 2011 
Included taxa: Gocevia, Endostelium 

Diagnosis: himatismenid amoebae capable of producing non-organized outer cuticle, 
hyaline or granular. 

Type species: Gocevia fonbrunei Pussard 1965 
Etymology: in direct reference to the type species. 
Putative Synapomorphy: an outer cuticle made of non-structured organic material. 



 

 97 

 
Table 4.1: Newly characterized Amoebozoa lineages. 

Organism Source SSU-rDNA Actin genes 
    
Cryptodifflugia operculata commercial culture  JF694280 JF694297-305 
Pyxidicula operculata Hiddensee Germany JF694284 JF694316-318 
Arcella mitrata Hawley Bog, MA JF694279 JF694293-296 
Arcella discoides Hawley Bog, MA - JF694287-292 
Arcella gibbosa Hawley Bog, MA JF694278 - 
Hyalosphenia papilio Hawley Bog, MA JF694282 JF694311 
Nebela carinata Hawley Bog, MA JF694283 JF694312 
Gocevia fonbrunei ATCC  50196 JF694281 JF694306-310 
Stereomyxa ramosa ATCC  50982 - JF694320-321 
Stygamoeba regulata ATCC  50892 JF694285 JF694322 
‘Thecamoeba’ sp. ATCC  50185 JF694286 JF694323-326 
Paraflabellula hoguae ATCC  30733 AF293899a JF694313-315 
CHINC-5 isolateb ATCC  50979 - JF694319 
a The SSU-rDNA for Paraflabellula hoguae ATCC  30733 has been published previously (Amaral Zettler 
et al. 2000). We have obtained an identical sequence from our independently retrieved DNA. 
b Morphological analysis confirms this isolate is not Sexangularia, mislabeled in the ATCC  collection. 
Source indicates origin of the organism, GenBank numbers are listed for both SSU-rDNA and actin genes. 
Name in single quotes indicate that identification provided by ATCC  may be incorrect.  
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Table 4.2: Concatenated datasets generated to perform phylogenetic analyses. 

Dataset name Taxa # Sites SSU-rDNA Sites Actin Removal of amb sites 
     
A53 53 989 265 Automated 
M53 53 1270 265 Manual 
A101 101 989 265 Automated 
M101 101 1270 265 Manual 
A139 139 989 265 Automated 
M139 139 1270 265 Manual 
M139-7 139 1115 265 Manual 
M139-76 139 1003 265 Manual 
M139-765 139 860 265 Manual 
A139-LB 129 1270 265 Automated 
M139-LB 129 989 265 Manual 
A139-us 129 1270 265 Automated 
M139-us 129 989 265 Manual 
A139-LB-us 120 1270 265 Automated 
M139-LB-us 120 989 265 Manual 
MEnv 164 1260 265 Manual 
A list detailing which taxa were included in each reconstruction is available as Supplementary Table S1.  
Taxa # - number of taxa included in reconstruction; Sites – number of sites included in alignment for each 
of SSU-rDNA and actin genes; Removal of amb sites – method used for dealing with ambiguously aligned 
sites: Manual indicates that sites were hand curated, and Automated indicates usage of the GUIDANCE 
algorithm (Penn et al. 2010). 
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Table 4.3: Summary of bootstrap values obtained in all 18 reconstructions for 
previously proposed relationships and hypothesis suggested in the current report. 
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Higher-level hypot.                   
Amoebozoa 92 89 84 90 81 1 85 1 90 49 nm 85 93 78 94 84 93 87 
Myxogastrea (FD) - - 94 96 93 1 96 1 94 97 95 - - 97 97 - - 95 
Tubulinea (S) 81 74 53 nm 66 0.79 60 0.84 54 59 26 66 65 72 55 67 75 4 
Archamoebae (CS) 40 nm nm 54 nm nm 53 0.81* 55 55 nm 37* 61 nm 49 53* 45* 54 
Mycetozoa (CS) 51 67 nm nm nm nm nm nm nm nm nm - - nm nm - - nm 
Flabellinea (S) - - nm nm nm nm nm nm 6 nm nm nm nm 19 21 21 24 nm 
Conosea (CS) nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm 
Discosea (CS) - - nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm 
Dermamoebida (CS) nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm 
Stellamoebia (CS) - - nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm 
Variosea (CS) nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm 
Varipodida (CS) - - nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm 
Protamoebae (CS) nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm 
                   
Proposed Hypotheses                   
H1 ‘Poseidonida’ - - 100 100 100 1 100 1 100 100 100 100 100 100 100 100 100 100 
H2 ‘Fractovitellida’ - - 100 100 100 1 100 1 100 100 100 100 100 100 100 100 100 100 
H3 ‘Flamellidae’ - - 57 82 nm nm 76 0.89 nm 64 77 54 76 nm 69 52 75 67 
H4 ‘Gracilipodida’ - - nm nm 43 1 34 0.83 46 19 nm 48 41 40 41 42 50 24 
H5 ‘Goceviidae’ - - - - 90 1 83 0.88 88 76 34 97 96 - - - - 80 
H6 ‘Himatismenida+’ - - nm nm 59 1 35 0.51 nm 44 18 49 30 - - - - 28 
                   
Morphogroups                   
Amoebidae 100 100 100 100 100 1 100 1 100 100 100 100 100 100 100 100 100 99 
Hartmannellidae** 100 100 100 100 100 1 100 1 100 100 100 100 100 100 100 100 100 79 
Dictiosteliida 100 100 96 96 97 1 97 1 96 96 98 97 97 100 100 100 100 96 
protosporangiids - - - - 100 1 100 1 100 100 100 100 100 100 100 100 100 100 
DS Myxogastrea - - 96 98 95 1 97 1 96 98 98 100 100 99 98 100 100 96 
soliformoviids - - - - 100 1 100 1 100 99 97 100 100 100 100 100 100 100 
Leptomyxida 100 100 94 96 98 1 96 1 96 92 87 97 95 99 97 99 96 96 
schizoplasmodiids - - - - 100 1 100 1 99 97 96 100 100 99 100 100 100 97 
Himatismenida - - 100 100 100 1 100 1 100 100 100 100 100 - - - - 100 
protosteliids - - - - 100 1 100 1 99 98 89 91 96 100 100 91 98 100 
Tubulinida (Am+Hart) 100 100 80 69 75 1 82 1 86 92 nm 81 85 79 83 97 82 69 
Dactylopodiida - - - - 97 1 92 0.99 80 47 36 45 90 99 98 99 97 92 
Thecamoebidae 96 90 79 51 87 1 80 1 44 81 59 88 77 86 74 86 78 64 
LS Myxogastrea - - - - 84 1 84 1 70 87 83 - - 94 91 - - 79 
Echinamoeboidea - - 64 nm 73 0.96 77 0.97 83 70 44 75 81 75 80 80 84 70 
Vannellida 100 100 99 99 68 1 54 0.99 42 36 nm 66 59 59 71 66 68 28 
Centramoebida - - 58 42 77 1 73 1 33 30 nm 76 64 77 71 75 73 64 
Mastigamoebidae - - nm 39 nm nm 66 0.58 71 77 59 nm 28 nm 64 nm nm 59 
Pelobiontidae 27 78 nm 36 nm nm 58 0.91 71 78 13* - - nm 56 - - 56 
cavosteliids - - - - nm nm 60 1 54 nm nm nm 37 nm 50 nm  51 
Arcellinida nm nm 30 31 31 0.95 35 nm 27 nm nm 33 32 37 36 36 34 2 
Sty + Ver - - nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm nm 
Dic + pro - - nm 54 nm nm 69 1 62 47 45 nm 64 nm 78 nm 84 70 

1. denotes that the group is invaded by one incertae sedis taxon;  
** excluding Saccamoeba limax ATCC  30942 
All reconstructions performed on RaxML, except the two indicated by (B) on Mr. Bayes.  Bootstrap and 
posterior probability values above 95 and 0.95 respectively are in bold.  Notes: nm – non-monophyletic; - 
not enough taxa to test the group in reconstruction; DS Myxogastrea – dark spored myxogastrids; LS 
Myxogastrea – light spored myxogastrids; Am+Hart – Amoebidae + Hartmannellidae; Sty + Ver – 
Stygamoeba + Vermistella; Dic + pro – Dictyosteliida + protosporangiids; FD – taxon as defined in Fiore-
Donno et al. (Fiore-Donno et al. 2010); S – taxon as defined in Smirnov et al. (Smirnov et al. 2005); CS – 
taxon as defined in Cavalier-Smith et al. (Cavalier-Smith et al. 2004).



 

 100 

 

Table 4.4: Summary of values obtained from approximately unbiased test. 

Hypothesis wkh au wsh 
    
Conosa (CS) 0.153 0.185 0.632 
Dermamoebida (CS) 0.354 0.482 0.893 
Discosea (CS) 0.127 0.144 0.480 
Flabellinea (S) 0.250 0.503 0.882 
Glycosteliida (CS) 0.132 0.184 0.514 
Macromycetozoa (FD) 0.254 0.450 0.806 
Mycetozoa (CS) 0.130 0.250 0.669 
Protamoeba (CS) 0.153 0.146 0.632 
Stellamoeba (CS) 0.284 0.494 0.825 
Variosea sensu (CS) 0.068 0.062 0.318 
Varipodida sensu (CS) 0.254 0.423 0.794 
Stygamoeba + Vermistella 0.253 0.387 0.743 
Values are comparing our best phylogeny against phylogenies where proposed relationships were 
constrained.  None of the hypothesis can be rejected, since all p values are above the 0.05 threshold. wkh – 
weighted Kishino-Hasegawa test; au – approximately unbiased test; wsh – weighted Shimodaira-Hasegawa 
test; FD – taxon as defined in Fiore-Donno et al. (Fiore-Donno et al. 2010); S – taxon as defined in 
Smirnov et al. (Smirnov et al. 2005); CS – taxon as defined in Cavalier-Smith et al. (Cavalier-Smith et al. 
2004). 
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Table 4.5: Summary of tree indices obtained for 16 RAxML reconstructions. 
Analysis Tree Length Treeness LStability 95% CI 
     
A53 9.47 0.35 0.84 0.02 
M53 12.00 0.30 0.84 0.01 
A101 21.66 0.36 0.82 0.02 
M101 26.13 0.35 0.86 0.01 
A139 31.48 0.40 0.80 0.01 
M139 38.83 0.35 0.84 0.01 
M139-7 21.05 0.34 0.86 0.01 
M139-76 11.30 0.32 0.77 0.01 
M139-765 7.78 0.32 0.73 0.01 
A139-LB 26.77 0.45 0.80 0.01 
M139-LB 30.73 0.41 0.85 0.01 
A139-us 27.56 0.41 0.80 0.01 
M139-us 34.36 0.37 0.85 0.01 
A139-LB-us 24.14 0.45 0.83 0.01 
M139-LB-us 27.76 0.41 0.88 0.01 
MEnv 49.66 0.38 0.85 0.01 
Tree length is the total length of the tree.  Treeness index is the ratio of tree length that is in internal 
branches over the total tree length.  Leaf Stability values are averaged over all taxa in 1000 boostrap 
reconstructions.  The 95% Confidence Interval refers to Leaf Stability values. 
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Figure 4.1:  A summary of previously proposed relationships between the 
Amoebozoa. 
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Figure 4.2:  Morphology of the amoeboid lineages isolated for this study.  

1a-c. Cryptodifflugia operculata: a) Scanning electron micrograph (SEM) of C. 

operculata in ventral view, showing the distinctive mucous operculum covering the 
aperture; b) Dorsal view of two C. operculata with a cytoplasmic connection, this state is 
often seen in culture; c) Differential interference contrast images (DIC) of 3 connected C. 

operculata individuals. Scale bars are 5 μm.  1d-f. Light microscopy images of the 
Arcella mitrata individual that was genome amplified to generate the sequences used in 
this study: d) lateral view showing the typical polygonal profile; e) top view of the same 
individual, focal plane at the middle of test height; f) top view of the same individual, 
focal plane at bottom of test height, showing the characteristic rippled apertural margin. 
Scale bars are 100 μm.  1g-i. Hoffman interference contrast (HIC) images of cultured 
individuals of Arcella gibbosa: g) lateral view showing hemispherical profile and 
pseudopods; h) another individual showing the shell’s ridges and depressions; i) lateral 
view of a third individual. Scale bars are 60 μm.  1j-l. Arcella discoides: j) HIC image of 
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a cultured individual; k) SEM image showing the thin lateral profile; l) close-up on the 
apertural margin of individual in k, showing pores surrounding the aperture. Scale bars 
for j, k are 30 μm, for l 3 μm.  1m-n. DIC images of cultured Pyxidicula operculata: m) 
focal plane at middle of test height showing the nucleus and one contractile vacuole; n) 
focal plane at the bottom of a different individual, surrounded by bacteria on which it was 
feeding. Scale bars are 10 μm.  1o-r. DIC images of ‘Govecia fonbrunei’ ATCC  50196: 
o) Encysted individual; p) resting individual, note the hyaline covering visible at the top 
margin; q) individual shape immediately after excystation; r) initial stages of locomotion. 
Scale bars are 10 μm.  1s-t. HIC images of Hyalosphenia papilio: s) close up on one of 
the individuals that was genome amplified to obtain sequences in this study, scale bar 30 
μm; t) a more general view of the same individual, scale bar 50 μm. 1u-y. Images of 
‘Stereomyxa ramosa’ ATCC  50982: u,v) Phase contrast images of a cultured individual; 
x) protargol staining, showing the single nucleus; y) DIC image of a ‘S. ramosa’ showing 
the variety of pseudopods it can produce. Scale bars are 20 μm.  1z-a’. HIC images of 
Nebela carinata: z) a lateral profile of one of the individuals used to obtain sequences in 
this study, this image shows the characteristic rim around the margin of the shell; a’) 
same individual observed in the typical raised shell locomotive position. Scale bars are 20 
μm.  1b’-e’. ‘Stygamoeba regulata’ ATCC  50892: b’) sedentary shape; c’) beginning of 
movement morphology; d’) start of monopodial movement; e’) polypodial movement. 
Scale bars are 5 μm.  1f’-h’. Three images of isolate CHINC-5 ATCC  50979 
(misidentified as Sexangularia) showing locomotive form.  The absence of a shell, 
among other significant characters, indicates the identification as Sexangularia is 
incorrect.  Note the finger-like pseudopods, similar to dactylopodids. Scale bars are 10 
μm.  Images of ATCC  isolates were generated by Jeffrey Cole and kindly provided by 
Robert Molestina, director of ATCC  collections, except for images on isolate CHINC-5 
ATCC  50979 provided by O. Roger Anderson. 
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Figure 4.3: Computational pipeline implemented for phylogenetic analysis. 
Grey boxes indicate a dataset, grey arrows indicate phylogenetic analyses performed on 
that dataset.  Black arrows and boxes indicate other types of analyses performed on 
particular datasets, and the black dotted lines indicate the final analyses performed to 
obtain scores for each phylogenetic reconstruction. 
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Figure 4.4: Phylogenetic reconstruction of the Amoebozoa, based on concatenated 
analysis of SSU-rDNA and actin genes of 139 lineages. 
This reconstruction is the best maximum likelihood tree obtained from the dataset 
Manual139, which we consider exhibits the optimal combination of tree indices and 
taxonomic coverage.  Both Bayesian posterior probabilities and bootstrap supports are 
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plotted on branches of interest.  Branches without any support indication had bootstrap 
support of less than 70.  The three well-supported higher-level groupings are shaded gray.  
The lower-level, morphologically consistent relationships are indicated.  The novel 
relationships uncovered in the current study are in bold, and the suggested name for the 
group is shown in single quotes.  Terminals in bold indicate lineages for which we are 
providing novel molecular information.  Dashed brackets represent lower-level groups 
that are morphologically consistent but not recovered in this reconstruction.  All branches 
are drawn to scale, except the branches leading to Myxomycetes, Lindbladia, Vannella 
CAZ6/I and Clydonnella which were trimmed to half-length for display purposes. 
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Figure 4.5: Reconstruction of actin gene family evolution in Amoebozoa, using 140 
paralogs. 
Triangles indicate multiple paralogs (number indicated in parenthesis), the length of 
triangle is equal to the length of longest branching paralog within the group. 
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CHAPTER 5 

 

 INTERPRETING THE EVOLUTIONARY HISTORY OF THE TUBULINEA 

(AMOEBOZOA), IN LIGHT OF A MULTIGENE PHYLOGENY 

 

5.1 Abstract 

The Tubulinea are a higher-level group of amoeboid organisms characterized by 

monoaxially streaming cylindrical pseudopods.  They emerge in molecular phylogenetic 

reconstructions as one of the few stable, highly supported groups within Amoebozoa.  

However, contemporary reconstructions have largely relied on SSU-rDNA, and to a 

lesser extent, actin genes, to reveal the relationships among these organisms.  

Additionally, one of the most species rich amoebozoan groups is nested within 

Tubulinea, the test (shell) forming Arcellinida, still suffers from substantial 

undersampling of taxa.  Here, we aim to increase both taxonomic and gene sampling 

within the Tubulinea, by characterizing novel molecular data for 21 taxa and 6 genes 

(SSU-rDNA, actin,  and  tubulin, elongation factor 2  and the regulatory 14-3-3).  We 

perform concatenated phylogenetic analyzes using these genes and assess alternative 

hypothesis of relationships within the Tubulinea using approximately unbiased tests.  We 

confirm the monophyly of Tubulinea and five of the six included lineages (Amoebida, 

Arcellinida, Echinamoeboidea, Leptomyxida, and Poseidonida).  We show instances of 

non-monophyly for well-defined morphological groups at various hierarchical levels.  

Most strikingly, relationships within Arcellinida seem to be more consistent with general 

test and aperture (opening) shape than on test composition as previously proposed.  Our 
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multigene analyses yield two large groups with high support: the 

Nebelidae/Hyalosphenidae (with inclusion of Quadrulella) that have an elongate and 

flattened shell with an ellipsoid aperture; and a novel grouping of Arcella and Netzelia, 

both of which have a more rounded shell with circular aperture.  The group composed of 

silica biomineralizers (Lesquereusiidae) is non-monophyletic, indicating multiple origins 

of silica biomineralization within the Arcellinida.  We also discuss the implications of 

this phylogeny for interpretations of the Precambrian fossil record of testate amoebae. 

5.2 Introduction 

The Tubulinea are a monophyletic lineage within the Amoebozoa (Smirnov et al. 

2005).  Unlike many other eukaryotic groups proposed in recent years, the clade 

Tubulinea has a defining morphological character, or synapomorphy: monoaxial 

streaming of cytoplasm within a roughly cylindric pseudopod (Smirnov et al. 2005).  

Some organisms in this group can produce several cylindrical pseudopods, as in the 

genus Amoeba, while others have a single semi-cylindrical pseudopodial protrusion that 

comprises the entire body, giving them a slug-like (limax) shape as in the genus 

Saccamoeba.  Tubulinea emerged from phylogenetic reconstructions based on SSU-

rDNA (Amaral Zettler et al. 2000; Bolivar et al. 2001), and has been corroborated 

subsequently in multiple analyses (Cavalier-Smith et al. 2004; Fahrni et al. 2003).  This 

assemblage of organisms has been referred in some instances as Lobosea (Bolivar et al. 

2001) or Gymnamoebia (Amaral Zettler et al. 2000).  However, given the historical 

instability of these alternative names (Pawlowski 2008), we follow the classification of 

Smirnov et al. (2011) for clarity. 
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The Tubulinea are composed of six major groups with defining morphological 

characteristics and varying levels of support in molecular reconstructions: 

Echinamoeboidea, Leptomyxida, Amoebidae, Hartmannellidae, Poseidonida and 

Arcellinida.  The Tubulinida, Echinamoebida, Leptomyxida and the recently described 

Poseidonida are recovered with high levels of support in most studies (see Lahr et al. 

2011a).  The Arcellinida are the most species-rich assemblage and are characterized by 

the ability to secrete or agglutinate a test (shell). In molecular reconstructions, the 

Arcellinida are either not monophyletic or exhibit low to moderate levels of support, with 

more comprehensive taxon sampling tending to decrease support, (Lahr et al. 2011a).  

Finally, a core group of organisms within the Hartmannellidae are often recovered with 

high levels of support, but with the lineage Saccamoeba limax ATCC 30942 often falling 

outside of the main group, rendering the Hartmannellidae paraphyletic (Bolivar et al. 

2001; Cavalier-Smith et al. 2004; Fahrni et al. 2003; Lahr et al. 2011a; Pawlowski and 

Burki 2009; Smirnov et al. 2005; Tekle et al. 2008). 

Taxonomic instability extends further to impact genera within the Tubulinea.  The 

genus Hartmannella (and Family Hartmannellidae by consequence) is probably one of 

the most affected by recent molecular reconstructions.  Many small (10-30um) amoebae 

that present a limax-like locomotive form were described as different species in the genus 

Hartmannella (Page 1987).  Based on morphological evidence, several species were 

removed from the genus (eg. Nolandella (Page 1983) and Echinamoeba (Page 1975)).  

More recently, molecular studies showed that Hartmannella vermiformis (now 

transferred to Vermamoeba (Smirnov et al. 2011)), a common freshwater amoeba, is in 

fact more closely related to Echinamoeba than to other limax-shaped amoebae now 
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considered “core-hartmannellids” (Glaeseria, Saccamoeba; (Amaral Zettler et al. 2000; 

Fahrni et al. 2003).  Further, marine species of Nolandella and H. abertawensis were 

shown to form the highly-supported Poseidonida, a distinct lineage from other 

hartmannellids (Lahr et al. 2011a).  Even more surprisingly, the sorocarpic (fruiting body 

producing) slime mold Copromyxa protea is very closely related to H. cantabrigiensis, 

prompting transfer of the latter to the genus Copromyxa (Brown et al. 2010). 

Taxonomic instability is also seen within the Arcellinida.  These are conspicuous 

and abundant amoebae that build distinctive shells (tests), which have been argued to be 

valuable structures for both species delimitations and phylogenetic inferences 

(Meisterfeld 2002).  In this group, molecular evidence does not corroborate 

morphological predictions in three significant and distinct instances: 1) some genera 

appear not to be monophyletic, including Heleopera and Nebela (Lara et al. 2008; 

Nikolaev et al. 2005); 2) relationships proposed based on shell form and composition are 

not recovered.  Genera (e.g. Pyxidicula, Arcella and Spumochlamys) within the Suborder 

Arcellina, which is defined based on the possession of a organic membranous shell, are 

not monophyletic (Lahr et al. 2011a), and finally; 3) at the most inclusive level, increased 

taxonomic sampling results in reduction of support for the entire group, opening up a 

possibility of non-monophyly for the Arcellinida (Lahr et al. 2011a).  However, 

taxonomic sampling is still far from comprehensive in this species-rich group, making 

difficult to evaluate these taxonomic instabilities. 

A further limitation of previous work is that phylogenetic inference in the 

Tubulinea has relied mostly on SSU-rDNA and to a lesser extent on actin genes.  The 

problems associated with single gene reconstructions are well known and have been 
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extensively dealt with elsewhere (eg. Baldauf et al. 2000; Philippe and Douady 2003).  

The actin gene family in Amoebozoa poses challenges as the high levels of paralogy 

present in many members of the group complicates phylogenetic reconstruction (Lahr et 

al. 2010).  Here, we present a phylogenetic reconstruction of the Tubulinea that 

capitalizes on sampling of SSU-rDNA, actin and an additional 4 protein-coding genes (  

and  tubulin, elongation factor 2  and the regulatory protein 14-3-3).  We provide 

molecular data for 21 taxa from all six groups contained in the Tubulinea, with greatest 

emphasis on the diverse Arcellinida (15 taxa), adding a total of 112 gene sequences.  We 

perform phylogenetic reconstructions including a representative sample of eukaryotes to 

test monophyly at higher taxonomic levels, as well as specific hypotheses of evolution 

within the Tubulinea. 

 

5.3 Methods 

5.3.1 Taxon sampling 

Amoebae were obtained by two methods: 1) culturing of newly isolated or 

deposited strains and 2) isolation, photo-documentation and genome amplification or 

construction of cDNA libraries of individuals or small groups of freshly isolated 

organisms (Table 1, Fig. 1).  Arcella hemisphaerica, Cryptodifflugia operculata and 

Hartmannella vermiformis were isolated and cultured as previously described (Lahr et al. 

2010; Lahr and Katz 2009).  Chaos carolinensis (Cat. no 131324), Amoeba proteus (Cat. 

No 131306) and Lesquereusia spiralis  (Cat. no 131334, listed as Difflugia) cultures were 

obtained from Carolina Biological Supply.  These amoebae were cleaned by multiple 

transfers of sterilized pond water and allowed to sit overnight to finish digestion of prey 
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organisms before being subjected to cDNA construction.  Arcella gibbosa, Difflugia 

bryophila, Difflugia lanceolata and Difflugia sp., Heleopera sphagni, Hyalosphenia 

papilio, Lesquereusia modesta, Nebela carinata, Nebela penardiana, Netzelia wailesi, 

Netzelia tuberculata and Quadrulella were isolated from natural sources (details in Table 

1), cleaned through successive transfers, photodocumented and then subjected to genome 

amplification and/or construction of cDNA libraries.  Saccamoeba lacustris CCAP 

1572/4, Rhizamoeba saxonica CCAP 1570/2 and Nolandella hibernica CCAP 1534/10 

were obtained from the Culture Collection of Algae and Protozoa.  These cultures were 

grown according to instructions from the repository, and large numbers of amoebae were 

harvested for cDNA construction. 

 

5.3.2 DNA and cDNA isolation 

Genetic material was obtained by three methods: 1) genomic extraction; 2) 

genomic amplification and 3) construction of cDNA.  For genomic extraction (gEXT), 

cultures were grown either in liquid media or agar plates as previously described (Lahr et 

al. 2011a), amoebae were harvested and cleaned either through several washes or by 

filtering, and subjected to a standard phenol/chloroform protocol (Lahr et al. 2011a).  For 

genomic amplification (gAMP), one or a small group of organisms was isolated, cleaned 

through washes in sterile water, left overnight to finish digestion of prey organisms, and 

subjected to amplification using a Repli-g Genomic amplification kit (Qiagen, Cat. No. 

150023) following manufacturer’s directions.  The same strategy for isolation and 

cleaning of organisms was adopted for construction of cDNA libraries, but in the final 

step organisms were subjected to lysis and cDNA contruction protocol through a 
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SuperScript III Cells Direct kit (Invitrogen, Cat. No. 18080-200), following 

manufacturer’s instructions. 

 

5.3.3 Amplification of target genes, cloning and sequencing 

We performed amplification of genes of interest using Phusion Hot Start DNA 

polymerase (New England BioLabs, Cat. no. F540), following manufacturer’s 

instructions.  We targeted 6 genes using a variety of previously described and novel 

primers (Table 2).  In general, reactions were performed on serial dilutions of starting 

material (1x, 1:10x, 1:100x, 1:500x) to determine the lowest amount of starting DNA 

necessary for amplification, in an attempt to minimize the formation of chimeras as 

recommended in (Lahr and Katz 2009).  Successfully amplified products were then gel 

isolated using the Millipore Ultra Free DA spin column, and cloned using the Zero Blunt 

TOPO cloning kits (Invitrogen, Cat. No. K280020) according to manufacturer’s 

instructions.  Colonies were then screened by PCR and positive colonies were sequenced 

in a ABI3100 sequencer (Applied Biosystems, Foster City, CA, USA) at the Smith 

College Center for Molecular Biology. 

 

5.3.4 Analytical methods 

With the resulting set of 112 new sequences (Table 1), we reconstructed the 

genealogy of each gene independently to determine possible ancient paralogy and chose 

the most appropriate paralogs to be concatenated.  Taxon sampling for Amoebozoa is 

identical to the dataset used in Lahr et al. (2011), with the addition of the taxa sampled in 

the current study.  For ougroups we used a dataset of representative eukaryotic organisms 
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proposed by Parfrey et al. (2010b), the dataset (named 10-16) is available for download at 

Treebase (www.treebase.org).  For each protein coding gene, alignments were 

constructed in SeaView (Galtier et al. 1996; Gouy et al. 2010) with alignment algorithm 

MAFFT (Katoh et al. 2009) using the L-INS-I setting.  Alignments were then subjected 

to automated removal of ambiguously aligned sites using the software GUIDANCE 

(Penn et al. 2010).  We performed maximum likelihood phylogenetic reconstruction for 

each gene using RAXML HPC 7.2.7 (Stamatakis 2006; Stamatakis et al. 2008) as 

implemented in the online server CIPRES (Miller et al. 2009).  We ran a 100-replicate 

bootstrap analysis using the GTRCAT approximation followed by a slow maximum 

likelihood search using the GTRGAMMA model for the SSU-rDNA partition and the LG 

model with gamma distribution of site heterogeneity for the protein partition.  The most 

appropriate model for amino-acid evolution was determined using model testing 

implemented both in the software ProtTest 3.0 (Darriba et al. 2011) and the online server 

Datamonkey (Delport et al. 2010), which gave similar results.  Bootstrap values of the 

GTRCAT search were then plotted on the best tree found by maximum likelihood search 

for comparative analysis. 

Each gene genealogy was analyzed to determine which paralogs should be used 

for concatenation.  In most cases, there was no indication of ancient paralogy so we chose 

the shortest branching paralog for concatenation (Table 3).  In the few cases where 

duplication predated species divergence, we took care to choose orthologous genes 

(Table 3).  We concatenated all six genes into one file and performed the analyses using 

RAXML HPC 7.2.7 with two partitions: one for the SSU-rDNA gene and one large 

partition with all 5 protein coding genes and LG model of substitution with gamma 
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distribution of site heterogeneity, as determined by the software ProtTest 3.0 (Abascal et 

al. 2005; Darriba et al. 2011).  The analysis consisted of 250 rapid bootstraps followed by 

a slow maximum likelihood search.  We have also performed a slower, more accurate 

search in RAXML HPC 7.2.7 consisting of 100 multiparametric bootstraps using 

GTRGAMMA (as opposed to rapid bootstraps based on the GTRCAT approximation), 

followed by 25 maximum likelihood searches, each starting from an independent 

maximum parsimony starting tree.  The resulting topology from this slower, more 

accurate approach was identical to the topology obtained from the faster approach, with 

minimal increases in bootstrap values.  The faster approach is at least one order of 

magnitude less time consuming and less computationally intensive.  We present results 

from the faster approach, because these are more logically comparable to the 33 

constrained reconstructions we generated for the approximately unbiased test (AU, see 

below). 

With the results from the unconstrained reconstruction at hand, we designed 

constraints to several proposed groups as well as non-monophyletic groups to be tested 

by the approximately unbiased (AU) test (Shimodaira 2002; Shimodaira 2004).  The AU 

test provides a statistical measure whether the current dataset is able to reject the 

monophyly of specifically constrained groups.  We tested 36 relationship hypotheses that 

were not monophyletic in the most likely tree. For each, we generated constrained 

maximum likelihood reconstructions.  Parameters for tree searching in RAxML HPC 

7.2.7 were identical to the standard reconstruction (here the advantages of a less 

computationally intensive approach become critical).  These trees were then compared to 

the best tree found on the standard analysis using RAxML to calculate per-site 
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likelihoods.  The per-site likelihoods were then analyzed in CONSEL (Shimodaira and 

Hasegawa 2001) with standard parameters to obtain p-values.  We use a conservative  

of 0.05 for rejection of hypothesis. 

5.4 Results 

5.4.1 Genes characterized 

We characterized 112 sequences from six genes, representing a total of 21 taxa 

(Table 1): 11 SSU-rDNAs for 8 taxa; 44 actin genes from 17 taxa; a total of 18 a-tubulin 

genes for 14 taxa; 10 b-tubulin genes for 8 taxa; 9 elongation factor 2-a genes for 9 taxa 

and; 20 regulatory 14-3-3 genes for 13 taxa.  For the SSU-rDNA, both Lesquereusia 

spiralis and Heleopera sphagni yielded multiple sequences: the 2 SSU-rDNAs for H. 

sphagni are identical except that one contains a group I intron; two of the three L. spiralis 

SSU-rDNAs are very similar (0.6% divergence) and a third one is more divergent with 

average 2.4% divergence from the other two.  As the DNA extraction for both taxa was 

performed from a pool of individuals, the yield of multiple divergent SSU-rDNAs 

suggests intra-population variation. 

We found varying levels of paralogy in protein-coding genes.  There is extensive 

paralogy of actin genes as expected based on previous work on the genus Arcella (Lahr et 

al. 2010), with 11 out of the 17 sampled taxa containing duplicated genes.  For -tubulin 

the taxa Difflugia sp. and Quadrulella symmetrica contained paralogs; for -tubulin the 

taxa Difflugia sp. and Chaos carolinensis contained paralogs, for 14-3-3 the taxa 

Difflugia sp., Hyalosphenia papilio, Nebela penardiana and Netzelia wailesi had paralogs 

(Table 1).  We found no indication of paralogy for the gene EF2 . 
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5.4.2 Single gene trees results 

We performed phylogenetic reconstructions on each of the genes sampled, with 

the objective of looking for cases of ancient gene duplication events so we could choose 

appropriate genes for concatenation.  These single-gene trees are generally not efficient 

in reconstructing deep relationships, and the variable taxon sampling for each gene makes 

comparisons difficult (Figure 2).  In most cases, paralogy seems to occur independently 

at shallow levels, without evidence for ancient duplications.   For both actin and 14-3-3, 

there is evidence of duplication events that predate the divergence of genera within the 

Nebelidae and so we used the single-gene topologies to choose putative orthologs here 

for concatentation. In other cases where multiple paralogs for an isolate were 

monophyletic, we chose the shortest branching paralog. 

 

5.4.3 Concatenated trees results 

5.4.3.1 General topology 

The topology obtained from concatenated analyses (Figure 3) is largely congruent 

with comprehensive eukaryotic analyses (Hampl et al. 2009; Parfrey et al. 2010b; Yoon 

et al. 2008) and Amoebozoa specific reconstructions (Lahr et al. 2011a; Shadwick et al. 

2009; Smirnov et al. 2005; Tekle et al. 2008).  The Tubulinea appear monophyletic with 

low support (31% BS, Figure 3); four of the six major included lineages are moderately 

to highly supported (Figure 3b): Amoebida (100% BS), Echinamoeboidea (79% BS), 

Leptomyxida (98% BS), and Poseidonida (100% BS); while the Arcellinida are poorly 

supported (27% BS).  The remaining lineage (Hartmannelidae) is non-monophyletic due 

to a single taxon (Saccamoeba limax, Figure 3) falling outside a highly supported core 
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group containing Saccamoeba lacustris, Glaeseria mira and Copromyxa spp. (100% BS, 

Figure 3).  An approximately unbiased test (AU) cannot reject the possibility that 

Hartmannellidae sensu strictu (including S. limax ATCC 30942) is monophyletic (Table 

4).  

 

5.4.3.2 Topology of the major Tubulinea lineages 

The internal topology of major Tubulinea lineages (Figure 3) is generally 

concordant with morphological observations as well as previous phylogenetic 

reconstructions, with a few exceptions detailed below.  Within the Echinamoeboidea, the 

genus Echinamoeba is monophyletic (98% BS) and our newly isolated Vermamoeba 

vermiformis SC groups with the other available V. vermiformis strain (100% BS).  The 

Echinamoeboidea is not only monophyletic (Figure 3b), but also an the AU test rejects 

the possibility of its sister grouping with any other major Tubulinea lineage (Table 4, 

except with Leptomyxida in one out of three tests).   

The topology of Leptomyxa is generally concordant with previous phylogenetic 

reconstructions, except for positioning of the isolate Rhizamoeba saxonica CCAP 1570/2 

characterized here.  We recover two highly supported groups within the Leptomyxida 

(Figure 3). The isolate Rhizamoeba saxonica CCAP 1570/2, considered as the most 

morphologically accurate representative of the Rhizamoeba genus (Smirnov et al. 2008), 

falls within a highly supported group sister to representatives of Paraflabellula, 

Flabellula and the isolate ‘Rhizamoeba’ sp. ATCC 50933 (Figure 3, BS 100%).  This 

result contrasts with previous reconstructions using only SSU-rDNA, where R. saxonica 

falls sister to the Leptomyxida (Dykova et al. 2008a; Smirnov et al. 2008), or sister to the 
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group comprising Leptomyxa reticulata, Rhizamoeba neglecta and two strains identified 

as Ripidomyxa sp. (Smirnov et al. 2009).  The second group within the Leptomyxida 

contains the isolate Leptomyxa reticulata ATCC 50242; one Ripidomyxa sp. isolate (RP-

010) as well as Rhizamoeba neglecta, consistent with the reconstruction in (Smirnov et 

al. 2009). 

The Hartmannellidae topology recovered here is congruent with previous 

reconstructions as the strain Saccamoeba limax ATCC 30942 falls outside a well 

supported group of “core hartmannelids”, comprising Copromyxa cantabrigiensis, 

Saccamoeba lacustris CCAP 1572/4 and Glaeseria mira (Figure 3b).  This result is 

consistent with the majority of previous reconstructions (Amaral Zettler et al. 2000; 

Bolivar et al. 2001; Brown et al. 2010; Cavalier-Smith et al. 2004; Corsaro et al. 2010; 

Fahrni et al. 2003; Shadwick et al. 2009; Tekle et al. 2008).  However, the AU test does 

not reject the possibility that the Hartmannellidae sensu strictu (i.e. including S. limax) is 

monophyletic (Table 4). 

The Poseidonida appear monophyletic and strongly supported (100% BS, Figure 

3b), with the addition of a partial SSU-rDNA sequence for the isolate Nolandella 

hibernica CCAP 1534/10.  This is the strain used in the original description of the 

species, though the original designation was Hartmannella hibernica in Page (1980) and 

then transferred to Nolandella hibernica in Page (1983).  This result validates 

taxonomically the Family Nolandellidae Lahr & Katz 2011 and Order Poseidonida Lahr 

& Katz 2011, since the type strain is now shown to nest within the previously 

characterized lineages.  The AU test shows Poseidonida is likely not included within any 
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other major Tubulinea lineage, as monophyly can be rejected with all but Arcellinida 

(Table 4). 

The Amoebidae are monophyletic (100% BS, Figure 3).  The SSU-rDNA 

sequence for the isolate of Chaos carolinense presented here is identical to the 

previously-characterized SSU-rDNA (GB# AJ314607).  Two moderately supported 

groups emerge within the Amoebidae, corresponding to the genera Chaos (55% BS) and 

Amoeba (BS 67%), a result contradictory to previous reconstructions where lineages of 

Amoeba and Chaos interdigitate (Smirnov et al. 2005), but consistent with the results of 

Fahrni et al. (2003) where both genera also appear monophyletic. 

The Arcellinida are monophyletic, albeit with a low bootstrap support (27%). 

Despite the low value, monophyletic Arcellinida were recovered multiple times with 

widely varying taxon sampling (Kudryavtsev et al. 2009a; Lahr et al. 2010; Lahr et al. 

2011a; Lara et al. 2008; Nikolaev et al. 2005).  Two groups within the Arcellinida show 

high support: a group uniting Netzelia and Arcella (80% BS, Figure 3) and a group 

uniting the Hyalosphenidae and Nebelidae (100% BS, Figure 3).  These two highly 

supported groups are in disagreement with the morphologically based classification of 

Meisterfeld (2002), where the Hyalosphenidae and Nebelidae are independent lineages, 

and Arcella and Netzelia fall within distinct clades due to differences in shell 

composition. 

Three previously proposed groups within the Arcellinida are not recovered: the 

Suborders Arcellina and Difflugina; and the Family Lesquereusiidae. The Arcellina 

comprise amoebae capable of producing organic membranous or chitinoid shells, and are 

represented in the current sampling by the genera Arcella, Pyxidicula and Spumochlamys.  
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The group appears polyphyletic (Figure 3): Arcella is in a well-supported clade with 

Netzelia (80% BS), Spumochlamys is in a poorly-supported clade (41% BS) with 

Difflugia, and Pyxidicula appears at the base of the Arcellinida clade.  Monophyly of the 

Arcellina can be marginally rejected by AU tests (Table 4), while combinations of any 

two taxa within cannot be rejected with the exception of Arcella+Pyxidicula which can 

be marginally rejected.  The group Difflugina comprise the majority of Arcellinida, 

uniting amoebae that construct the shell by agglutination and are represented in the 

present survey with members of 9 out of 11 putative included families (Heleoperidae, 

Hyalospheniidae, Difflugiidae, Nebelidae, Lesquereusiidae, Paraquadrulidae, 

Centropyxidae, Plagiopyxidae, Trigonopyxidae).  The Suborder is non-monophyletic in 

our reconstruction (Figure 3), and monophyly of the group can be rejected by the AU test 

(Table 4).  The Lesquereusiidae, defined as the Arcellinida capable of biomineralizing 

silica (Ogden 1979), originally included the genera Lesquereusia, Quadrullela and 

Netzelia, with the later additions of Microquadrulla and the marine Pomoriella 

(Meisterfeld 2002).  This group is not monophyletic in our multigene reconstructions: 

Quadrulella appears within the Nebelidae, Lesquereusia is sister to a poorly-supported 

Difflugia+Spumochlamys clade, and Netzelia is in a well-supported position sister to the 

genus Arcella.  Additionally, AU tests reject the possibility that Lesquereusiidae 

(Lesquereusia+Quadrulella+Netzelia) is monophyletic (Table 4).  However, the 

monophyly of Netzelia+Lesquereusia is rejected the two least conservative statistical 

tests (Table 4).  The remaining taxon, Quadrulella is nested within the Hyalosphenidae, a 

result confirmed by studies on cytochrome oxidase 1 (Kosakyan et al. Submitted), and 
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the fact that its monophyly with either of the other two taxa can be rejected by AU tests 

(Table 4). 

Monophyly of genera within the Arcellinida is variable: while the genera Arcella 

and Spumochlamys are monophyletic (80% and 100% BS respectively, Figure 3), the 

other three genera represented by more than one species are non-monophyletic: 

Heleopera, Hyalosphenia and Nebela (Figure 3).  However the AU test cannot reject the 

monophyly of any of these three genera (Table 4). 

 

5.5 Discussion 

The addition of taxa combined with larger gene sampling reveals a phylogeny that 

is generally consistent with hypotheses on the six principal Tubulinea lineages (Figure 3), 

albeit with low resolution at deep nodes.  The monophyly of Echinamoebidae, 

Leptomyxida, Poseidonida, “Hartmannellidae” (excluding Saccamoeba limax) and 

Amoebidae that were previously recovered in numerous SSU-rDNA and actin gene 

reconstructions (Amaral Zettler et al. 2000; Brown et al. 2010; Cavalier-Smith et al. 

2004; Corsaro et al. 2010; Dykova et al. 2008a; Dykova et al. 2008b; Fahrni et al. 2003; 

Kudryavtsev et al. 2009a; Lahr et al. 2010; Lahr et al. 2011a; Lara et al. 2008; Nikolaev 

et al. 2005; Smirnov et al. 2005; Smirnov et al. 2009; Tekle et al. 2008) are confirmed 

here with the addition of sequences for four genes (  and  tubulins, EF2  and 14-3-3).  

The Arcellinida appear in our most likely tree as monophyletic with low support (27% 

BS, Figure 3).  With the exception of a strongly supported relationship between the 

Amoebidae and the “Hartmannelidae” (83% BS), together comprising the taxon 
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Tubulinida (Smirnov et al. 2005), the relationships between the six main lineages remain 

uncertain as evidenced by low support for the backbone of the tree (Figure 3). 

The more comprehensive sampling presented here also enables scrutiny of more 

fine-grained hypotheses within each of the six major lineages.  Higher level relationships 

within the Arcellinida are currently defined according to shell composition, though this 

classification was proposed as explicitly provisional (Meisterfeld 2002).  The three more 

inclusive groups are: 1) Difflugina, characterized by an agglutinated shell composed of 

either collected particles (xenosomes, e.g. Difflugia) or biomineralized particles 

(idiosomes, e.g. Lesquereusia); 2) Arcellina, characterized by a secreted organic 

membranous (e.g. Microchlamys) or chitinoid shell (e.g. Arcella); and 3) Phryganelina, 

which are classified separately by their distinctive pseudopodial morphology rather than 

by features of the shell (Cryptodifflugia and Phryganella) (Meisterfeld 2002).  The 

Arcellina (represented here by the genera Arcella, Pyxidicula and Spumochlamys) do not 

appear monophyletic, though monophyly is not rejected by the AU test (Figure 3, Table 

4).  The monophyly of Difflugina can be rejected by the AU test (Figure 3, Table 4), 

indicating that agglutination is either an ancestral character state in the group or evolved 

several times convergently.  The current topology indicates that agglutination is the 

ancestral state because this would require fewer transitions (Figure 4). 

The monophyly of the Lesquereusiidae can also be rejected by AU tests (Table 4), 

indicating at least two origins of silica biomineralization within the Arcellinida (the 

monophyly of Lesquereusia and Netzelia cannot be rejected, but Quadrulella falls within 

the Nebelidae, separate from the other two).  This contrasts with the hypothesized single 

origin of biomineralization in a clade of testate amoebae in Rhizaria: the Euglyphida 
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(Heger et al. 2010; Lara et al. 2007).  The results presented here and elsewhere regarding 

multiple independent origins of silica biomineralization will make interpretation of fossil 

Arcellinida more difficult, as biomineralization is one of the few characters that can be 

unambiguously determined in poorly preserved fossil tests (Bosak et al. 2011). 

The current reconstruction, as well as other recent phylogenies based on SSU-

rDNA, actin and Cox1 (Gomaa et al. Submitted; Kosakyan et al. Submitted; Lahr et al. 

2011a), reveals that shell shape might be more indicative of relationships than shell 

composition (Figure 4). Organisms with similar shell shape group together: Arcella and 

Netzelia both have shells that are round in cross-section with a round aperture.  

Quadrulella and other Nebelidae (Hyalosphenia, Nebela, Apodera, Porosia) have vase-

shaped shells that are flattened in cross-section and ellipsoid apertures (Figure 4).  Of 

further evolutionary interest, there are a number of “intermediate” taxa, that is taxa 

displaying shell shape of a group and shell composition of another, which have yet to be 

sampled for molecular data.  Lesquereusia mimetica’s shell has the typical Lesquereusia 

shell, with the neck bent over the body of the test.  However L. mimetica’s shell is built 

with roughly agglutinated material, in a manner more similar to Difflugia (figures 21-28 

in (Lahr and Lopes 2007)).  Similarly, Difflugia gramen and Difflugia achlora have 

shells similar in shape to Netzelia (round shell with lobed aperture) but agglutination is 

more like Difflugia, (ie., with the absence of idiosomes; figures 11-15 in (Lahr and Lopes 

2006)).  Pseudonebela africana and Nebela nebeloides are both shaped like pyriform 

Difflugia, i.e., vase-shaped shells, with round cross-section and round apertures, 

respectively figures 1b-m in Lahr and Souza (2011) and figures 6-11 in Todorov et al. 



 

 127 

(2010)) but the shell composition is more akin to that of Nebela, with agglutinated 

biomineralized plates. 

Certain assumptions about test construction in the Arcellinida may need to be 

revised in light of the current results.  The siliceous plates in Nebela are assumed to be 

collected either from the environment or from prey organisms, rather than autogenously 

produced (Meisterfeld 2002).  However, the current results placing Quadrulella amidst 

the Nebelidae prompts a re-evaluation of this assumption, as it is possible that at least 

some members of the Nebelidae are actually able to synthesize silica.  If so, a case of 

parallel evolution can be drawn by comparing the order of events in the two well 

supported clades shown here (Figure 4): Netzelia biomineralizes silica and the sister 

group Arcella secretes an organic shell; in the Nebelidae/ Hyalosphenidae, the Nebela, 

Quadrulella, Porosia and Apodera biomineralize silica while Hyalosphenia produces an 

organic shell.  Assuming agglutination is the ancestral character state in the group, the 

evolution of the ability to biomineralize silica in both of these clades may have been 

followed by loss of this character independently in the Arcella and Hyalosphenia. 

Within the Arcellinida there is extensive non-monophyly of well-established 

genera: Nebela, Heleopera and Hyalosphenia all appear non-monophyletic in the current 

and previous reconstructions (Lahr et al. 2011a; Lara et al. 2008), though the AU test 

does not allow rejection of monophyly for Hyalosphenia and Heleopera, while for 

Nebela the two out of three tests are able to reject the monophyly (Table 4).  All three 

genera are well defined morphologically, and it comes as a surprise that multiple isolates 

end up in disparate portions of the tree (Figure 4).  One possibility is that some of the 

isolates are contaminants or misidentifications.  This hypothesis is unlikely, for in all 
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cases at least two independent laboratories have generated the sequences (e.g. both ssu-

rDNA and actin genes for Heleopera sphagni were generated independently by the 

Edward Mitchell lab in Switzerland and the Laura Katz lab in the USA).  One key aspect 

to keep in mind is that adding representatives of the 44 unsampled genera Meisterfeld 

(2002) will most certainly resolve/change the topology of the Arcellinida, as the majority 

of the tree is currently unsupported. 

Non-monophyly of less inclusive lineages (e.g. genera and species) runs rampant 

in the Tubulinea beyond the Arcellinida.  The genus Hartmannella is probably the most 

striking example, with taxa scattered in three of the five major Tubulinea lineages.  

Taking into account that the type strain Hartmannella hyalina is lost (Brown et al. 2010; 

Page 1967b), it is going to be extremely difficult to determine which of the many lineages 

should retain the taxon name and Hartmannella may qualify as nomen nudum.  Perhaps 

the best solution will be to invalidate the genus, by transferring or proposing novel genera 

for each of the three major lineages.  Hartmannella abertawensis stands out as an 

immediate candidate to be transferred to Nolandella, given its stable position in the 

current reconstruction as well as morphological characteristics and ecology—such 

transfer has also been recently suggested by Smirnov et al. (2011).  Another case of non-

monophyletic genus is Rhizamoeba, at least given the current taxon and gene sampling.  

The type strain Rhizamoeba saxonica CCAP 1570/2, which previously did not group with 

Rhizamoeba sp. ATCC 50742 (Dykova et al. 2008a; Smirnov et al. 2009; Smith et al. 

2008), does so in the current reconstruction (Fig. 4).  Morphologically, the CCAP isolate 

is distinct from the ATCC isolate, hence further taxonomic sampling will be necessary 

clarify the extent of morphological convergence within this group. 
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Observations of diverse testate amoebae in the Precambrian combined with the 

phylogeny of Arcellinida presented here generate several hypotheses on the early 

evolution of this taxon.  Arcellinida fossils in marine sediments from 750 million years 

ago represent some of the most ancient and unambiguous records of eukaryotic life 

(Bosak et al. 2011; Porter and Knoll 2000; Porter et al. 2003).  There is considerable 

taxonomic diversity in these marine sediments, including putative representatives 

morphologically similar to the modern genera Arcella, Difflugia, Heleopera, 

Lesquereusia, Nebela and Trigonopyxis (Bosak et al. 2011; Porter et al. 2003).  These 

fossil marine morphologies interdigitate with the freshwater species characterized for this 

study, yet very few extant marine representatives have been described (e.g. Pomoriella 

valkanovi (Golemansky 1970)).  Further, the monophyly of Arcellinida and the marine 

Poseidonida cannot be rejected (Table 4).  Together, these observations lead to two 

related hypotheses: 1) Arcellinida evolved in a marine environment, perhaps from a 

common ancestor with the Poseidonida, and after extensive diversification each 

independent lineage switched to freshwater environments; 2) there is considerable 

diversity of extant marine Arcellinida yet to be discovered. 
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Table 5.1: Distribution of the 112 sequences characterized from 21 taxa.  

Taxon Source 
SSU-
rDNA Actin tub tub EF2  14-3-3 

Arcella gibbosa Bear Swamp JF694278 2 1 - 1 - 

Arcella hemisphaerica ATCC EU273445 HM853688 1 1 1 1 
Cryptodifflugia 

operculata comm. Cult. JF694279 JF694297 1 1 - 1 

Difflugia bryophila Hawley Bog - 1 1 - 1 - 

Difflugia lanceolata Hawley Bog - 3 - - - - 

Difflugia sp. Hawley Bog - 6 3 2 - 3 

Heleopera sphagni Hawley Bog 2 3 1 - - 1 

Hyalosphenia papilio Hawley Bog JF694282 1 1 - - 2 

Lesquereusia modesta Bear Swamp - 7 1 1 1 1 

Lesquereusia spiralis CB 131334 3 2 - - - - 

Nebela penardiana Hawley Bog 1 3 1 - - 4 

Netzelia wailesi Hawley Bog 1 2 - - - 2 

Netzelia tuberculata Hawley Bog 1 3 - - 1 - 

Quadrulella symmetrica Hawley Bog 1 1 3 1 - 1 
Hartmannella 

vermiformis Smith Coll. 1 5 1 1 1 1 

Saccamoeba lacustris CCAP 1572/4 GQ221845 2 1 1 1 1 

Rhizamoeba saxonica CCAP 1570/2 EU719197 1 - - - 1 

Nolandella hibernica 

CCAP 
1534/10 1 - - - - - 

Chaos carolinense CB 131324 AJ314607 1 1 2 1 1 

Amoeba proteus CB 131306 - 1 1 - - - 

Nolandella sp. ATCC 50913 EU273451 EU273446 EU273448 EU273450 1 - 
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Table 5.2: List of primers used to amplify genes in the current study. 

Gene 
Primer 
name 

Primer sequence Reference 

SSU SSU5' ACC TGG TTG ATC CTG CCA GT (Medlin et al. 1988) 

 SSU3' GAT CCT TCT GCA GGT TCA CCT AC  

 SSU Int -2 TTY YCC GTG TTG ART CAR ATT RAG 
(Snoeyenbos-West et al. 

2002) 

 SSU Int +1 YGG AGA RDS RGC YTG AKA RAY GGC  

    

Btub 318F TGGGCTAAGGGTCAYTAYACNGARGG (Tekle et al. 2007) 

 734F CTCCGTTTCCCNGGNCARYTNAA  

 792R GAAGAAGTGNAGNCKNGGRAANGG  

 1191R GGTGTACCAGTGNARRAARGCYTT  

    

atub AtubF94 
GGC AAG GAG GAC GCN GCN AAY AAY TWY 
GC 

(Tekle et al. 2007) 

 AtubR341 
TTG AAG CCT GTC GGR CAC CAR TCN ACR 
AAY TG 

 

 AtubR400 
ACC TTC GCC GAC RTA CCA RTG NAC RAA 
NGC 

 

    

Actin Actin245F AAC TGG GAY GAY ATG GAR AAG AT (Tekle et al. 2007) 

 Actin1080R ATC CAC ATY TGY TGG AAN GT  

    

14-3-
3 

34 
CTG AGC AAG CTG ARM GNT AYG ANG ARA 
TGG 

(Yoon et al.  2008) 

 130 GTT GCC TAC AAR AAY GTY RTY GGN GC  

 455 AGT GCA AGA CCN ARN CGG ATN GGG TG  

 541 GCG ATG GCA TCA TCG AAN GCN TGR TTN GC  

    

ef2 351 GAA GTC ACT GCT GCN CTN CGN GTN ACN GA (Yoon et al.  2008) 

 411 GGT GTT TGC GTC CAA ACN GAR ACN GTN CT  

 1285 CGC CCG AAG GCA TAG AAN CGN CCY TTR TC  

 1756 AAA TCT CCA GGT GNA GYT CNC CNG CNC C  
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Table 5.3: List of genes chosen for concatenation. 

Taxon actin -tubulin -tubulin ef2-  14-3-3 

      

A. proteus JG11.44_f4 SSU_JG11.60_abcd4 - - - 

A. gibbosa 

DL.133_JG10.86_b8_
f8 

JG10.89_a1_b1_c1_d1_e
1_f1 - JG10.150_b3 - 

A. 

hemisphaeri

ca HM853688 
JG8.93_a11_b11_c11_e1

1_a1 
JG8.116_4clon

es JG8.114 
JG10.126_a1b1c

1d1 
C. 

carolinesis Act_JG10.98_a1_b1 A6_JG10.105_a5_e5 
JG11.60_b1_d

1 JG11.46_a4_b4_c4 JG11.66_abcd6 
C. 

operculata JF694279 Crypto_atub 
JHL_119_AB

CD - JG11.5_7clones 
Difflugia 

(comb) DL121_JG40_DL131 JG10.25 JG8.126_btub2 JG11.38 JG11.66_b3 
H.vermiform

is 

DL3.133_JG10.89_a2
_c2 JG10.132_b5_c5_g5_h5 Hverm_btub JG10.150_g4 

JG10.126_a3c3b
3 

H. sphagni JG11.28_a4_b5 JG10.105_a10_b10_c10_ - - JG11.5_f6g6h6 

H. papilio 

DL3.121.2_JG10.25_f
11 JG10.25_a3 - - 

JG11.34_e7_f7_h
7 

Lesquereusi

a (comb) DL3.139_JG10.98_b5 
JG19.68_a3_b3_c3_d3_g

2_ JG10.68_b3 JG10.68_c2e3 JG11_34 
N. 

penardiana JG11.33_e1_b1_d1 A6_JG11.33 - - JG11.33_f3_d3 
Netzelia 

(comb) DL3.99_JG8.138_h4 - - JG11.58_a3_e3 JG11.28_b4_f4 
Q. 

symmetrica JG8.127_b4_b5 DL137_JG10.86_b4__h4 
JG10.86_c6f6h

6 - JG11.39_a10 

R. saxonica 

DL3.145_JG10.147_g
3 - - - DL_Rd3 

S. lacustris 

DL3.141_JG10.115_a
9 JG11.5_a3_b3_c3_e3 

JG11.5_e2f2g2
h2 

JG11.38_c6_e6_b7_d
7_e JG10.147_a7a8 

Nolandella 

sp. 50913 EU273446 EU273448 EU273450 JG8.29 - 
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Table 5.4: Results from the approximately unbiased test. 

Constraint tested wkh au wsh 
    
Amoebidae+Arcellinida 0.00 0.00 0.00 
Amoebidae+Echinamoeboidea 0.00 0.00 0.00 
Amoebidae+Hartmannelidae core 0.46 0.58 0.99 
Amoebidae+Hartmannellidae s.s. 0.36 0.50 0.98 
Amoebidae+Leptomyxidae 0.00 0.00 0.00 
Arcellinida+Echinamoeboidea 0.00 0.00 0.00 
Arcellinida+Leptomyxida 0.00 0.00 0.00 
Leptomyxida+Echinamoeboidea 0.01 0.01 0.08 
Hartmannellidae s.s. 0.36 0.45 0.98 
Hartmannellidae core+Echinamoeboidea 0.00 0.00 0.00 
Hartmannellidae s.s.+Echinamoeboidea 0.00 0.00 0.00 
Hartmannellidae core+Leptomyxida 0.00 0.00 0.00 
Hartmannellidae s.s.+Leptomyxida 0.00 0.00 0.00 
Hartmannellidae core+Arcellinida 0.00 0.00 0.00 
Hartmannellidae s.s.+Arcellinida 0.00 0.00 0.00 
Poseidonida+Amoebidae 0.00 0.00 0.01 
Poseidonida+Echinamoeboidea 0.00 0.00 0.00 
Poseidonida+Hartmannellida core 0.00 0.00 0.01 
Poseidonida+Hartmannellida s.s. 0.00 0.00 0.00 
Poseidonida+Leptomyxida 0.00 0.00 0.00 
Poseidonida+Arcellinida 0.35 0.43 0.98 
Lesquereusiidae 0.00 0.00 0.00 
Lesquereusia+Quadrulella 0.00 0.00 0.00 
Netzelia+Quadrulella 0.00 0.00 0.00 
Lesquereusia+Netzelia 0.02 0.01 0.19 
Difflugina 0.00 0.00 0.00 
Arcellina 0.02 0.02 0.25 
Arcella+Pyxidicula 0.04 0.04 0.33 
Arcella+Spumochlamys 0.21 0.22 0.83 
Spumochlamys+Pyxidicula 0.19 0.19 0.83 
Hyalosphenia 0.44 0.51 0.99 
Heleopera 0.29 0.35 0.96 
Nebela 0.03 0.04 0.33 
The constraints tested column lists the taxa that were tested for monophyly, if p<0.05 
then the monophyly of the constrained group can be rejected.  wkh – weighted Kishino-
Hasegawa test; au – Approximatelly unbiased test; wsh – weighted Shimodaira-
Hasegawa test.  The tests are listed in increasing order of conservativeness, that is, the 
wkh test is the least conservative, most prone to type I error.  The wsh is the most 
conservative, most prone to type II error. The au test is the most balanced test.  In bold 
are p values smaller than 0.05, indicating that monophyly of the group can be rejected. 
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Figure 5.1: Images of organisms used in this study.  
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a) Chaos carolinensis, stack of eight images under differential interference contrast 
(DIC); b) two Amoeba proteus individuals, DIC; c, d) Individuals of Difflugia bryophila 
that were genome amplified, Hoffman Modulation Contrast (HMC); e) individuals of 
Heleopera sphagni that were genome amplified, HMC image; f, g) details of Heleopera 

sphagni shell under scanning electron microscopy; h, i) individuals of Lesquereusia 
modesta that were genome amplified, HMC images; j, k, l, m) individuals of Quadrulella 

symmetrica that were genome amplified (j, k) and had their cDNA libraries constructed 
(l, m); n) Lesquereusia spiralis individual that was genome amplified (HMC); o) 
Hyalosphenia papilio that was genome amplified (HMC); p) Nebela carinata; q) 
representative individual from culture of Saccamoeba lacustris CCAP 1572/4 (DIC); r, s) 
representative individuals from Rhizamoeba saxonica CCAP 1570/2 (DIC); t, u) Netzelia 

wailesi individual that was genome amplified; v, x) Netzelia tuberculata individual that 
was genome amplified, although images don’t quite show the characteristic 
protuberances of the shell, these were prominent while observing the living individual.  
Scale bars are 100μm for a, b, c, d, e, i, n, o, p, t; 50μm for h, j, k, l, m, u, v, x; 30μm for 
f; 25μm for q, r; and 10μm for g. 



 

 136 

 
Figure 5.2: Gene-genealogies for each of the protein coding genes surveyed in the 
present study, including all characterized paralogs. 

A) actin; B) -tubulin; C) -tubulin; D) elongation factor 2 ; E) 14-3-3. Scale bar for 
each genealogy is indicated underneath the respective tree.  Note: GenBank numberswill 
be substituted for paralog names as soon as available. Only bootstrap supports above 70% 
are shown.
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Figure 5.3: Most likely reconstruction of the Amoebozoa phylogeny. 
The Tubulinea, focus of the current research, are highlighted by a gray box.  Taxa in bold 
are taxa for which the present work has contributed novel data.  Tree was rooted with 
eukaryotic outgroups (not shown).  Branches are drawn to scale, except in cases indicated 
by a dash, where branches where cut in half, or two dashes, where branches were cut to a 
quarter of original length.  Dashed lines indicate non-monophyletic groupings. Only 
bootstraps supports above 70% are shown. 
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Figure 5.4: Relationships among the Tubulinea, illustrating morphological traits. 
Morphological aspect for testate amoebae is illustrated from both the lateral and apertural 
views.  Method used for shell construction is indicated in the third column: Agg – 
agglutinated, Bio – biomineralized, Sec – secreted.  Branches were collapsed to 
polytomies where support is less than 70%.  Thus, all resolved relationships shown have 
higher than 70% bootstrap support.  Branches are not drawn to scale. 
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CHAPTER 6 

 

 THE CHASTITY OF AMOEBAE: RE-EVALUATING EVIDENCE FOR SEX 

IN AMOEBOID ORGANISMS 

 

6.1 Abstract 

Amoebae are generally assumed to be asexual.  We argue that this view is 

relictual of early classification schemes that lumped all amoebae together inside the 

‘lower’ protozoa separated from the ‘higher’ plants, animals, and fungi.  This artificial 

classification allowed microbial eukaryotes, including amoebae, to be dismissed as 

primitive, and implied that the biological rules and theories developed for 

macroorganisms need not apply to microbes.  Eukaryotic diversity is made up of 70+ 

lineages, most of which are microbial.  Plants, animals and fungi are nested among these 

microbial lineages.  Theories that apply to macroorganisms should in fact apply to 

microbial eukaryotes, though the theories may need to be refined and generalized (e.g. to 

account for the variation in sexual strategies and prevalence of facultative sex in natural 

populations of many microbial eukaryotes).  We use a revised phylogenetic framework to 

assess evidence for sex in several amoeboid lineages that are traditionally considered 

asexual, and we interpret this evidence in light of theories on the evolution of sex 

developed for macroorganisms.  We emphasize that the limited data available for many 

lineages coupled with natural variation in microbial life cycles have led to overestimate 

the extent of asexuality.  Mapping sexuality onto the eukaryotic tree of life demonstrates 

that the majority of amoeboid lineages are, contrary to popular belief, anciently sexual 
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and that most asexual groups have probably arisen recently and independently.  

Additionally, several unusual genomic traits are prevalent in amoeboid lineages, 

including cyclic polyploidy, that may serve as alternative mechanisms to minimize the 

deleterious effects of asexuality. 

 

“Let us consider for a moment, a single Ameba … 
not as a cause of disease, but as a unit mass of protoplasm 
which … performs all of the fundamental vital activities 
common to living things … there is no reason to doubt that 
[the chemical composition of these unit masses] agrees 
with that of other living substances, since the 
accompanying properties of protoplasm—metabolism, 
growth and reproduction—are obviously performed in the 
same way.” 

Gary N. Calkins, 1916 
 

6.2 Introduction 

Microbial eukaryotes were historically classified as primitive plants and animals 

(Haeckel 1866) or separated into their own kingdom (Corliss 1984; Margulis and 

Schwartz 1988; Whittaker 1969).  This view received wide support with Whittaker’s five 

kingdom classification system (Whittaker 1969) and continues to be popular in many 

circles.  One consequence of lumping microbial eukaryotes into an artificial taxonomic 

unit (variously called Protista, Protoctista, or Protozoa) is the implicit view that microbes 

are fundamentally different entities than plants, animals, and fungi.  As a result, microbial 

eukaryotes have been either dismissed as primitive or ignored in much of the theoretical 

work on eukaryotes, such as speciation theory (Mayr 1964) and theories on the evolution 

of sex (Maynard Smith 1978), with the notable exception of Bell (1988).  However, given 

the current classification of eukaryotes, this dismissal is no longer acceptable.  In recent 
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analyses, the eukaryotic tree of life is divided into a number of high-level lineages in 

which macroorganisms nest within predominantly microbial clades, demonstrating that 

the evolution of multicellularity has occurred multiple times (Adl et al. 2005; Baldauf 

2003; Bonner 1998; Cavalier-Smith 1998; Keeling et al. 2005; Parfrey et al. 2010a).  

Hence, there is no evidence to suggest that unicellularity represents a “primitive” 

condition in eukaryotes.   

The realization that there is no fundamental distinction between macro- and 

micro- eukaryotes calls for reassessment of the applicability of theories on the evolution 

of sex that were developed in macroorganisms to their microbial relatives.  Differences 

between macroorganisms and microbial eukaryotes must be understood, as suggested by 

Calkins (1916), in terms of cell characteristics, habit and life cycle rather than an artificial 

and outdated taxonomic split.  Current evidence suggests that sex has a single 

evolutionary origin and was present in the last common ancestor of eukaryotes (Dacks 

and Roger 1999).  Hence, sex is a synapomorphy for extant eukaryotes and, where sex is 

absent, it must have been secondarily lost.  The patchy distribution of sexual and asexual 

amoeboid lineages in current phylogenetic reconstructions requires many independent 

losses of sex (Figure 5.1), or may indicate that sex is present but not reproted in many 

lineages.  We argue here that the amoeboid lineages are ideal candidates to investigate 

whether asexuality has been lost many times, because amoebae have generally been 

assumed to be asexual and are widespread in the tree of eukaryotes. 

The body of theory developed from macroorganismal observations holds that 

sexuality should be pervasive and that asexuality should be limited to recent twigs on the 

tree of life (Schwander and Crespi 2009).  We define sex as the presence of a meiotic 
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reduction of the genome complement followed eventually by karyogamy (nuclear fusion) 

in an organism’s life cycle.  In contrast to amphymyxis (Kondrashov 1997), our 

definition allows autogamy to be considered sex.  Sex is argued to be advantageous 

because it generates variability by allowing independent assortment of genetic material 

through recombination (the advantage of sex, (Muller 1932; Weismann 1889)).  

Conversely, asexual lineages are argued to be subject to the accumulation of deleterious 

mutations through a process described as Muller’s ratchet (Muller 1932; Muller 1964), 

leading to the prediction that asexual lineages should be short-lived and hence ancient 

asexuals will be rare (Judson and Normark 1996; Maynard Smith 1978; Muller 1964).  

On the other hand, sex is not beneficial for the individual in the short term, because only 

half of its genetic material is transmitted to the next generation (the cost of meiosis, 

(Maynard Smith 1978)).  Recent efforts in modeling the evolution of sex show that 

incorporating genetic drift is essential to understand the dynamics of populations with 

finite size: when both drift and selection are taken into account, sex and recombination 

bring together alleles with higher selection coefficients that tend to be found in different 

individuals, outcompeting asexual lineages (Otto 2009).  Thus, there are two main 

situations where asexuality is expected: 1) in relatively young lineages such as several 

species of scale insects with obligate apomictic thelytoky (Ross et al. 2010); and 2) in 

systems with very large population sizes, which rely on strategies for rapid reprodution 

(cell/organism replication) (Judson and Normark 1996).   

We posit that the purported advantages and disadvantages of sex observed in 

multicellular macroorganisms should also apply to microbial eukaryotes.  However, some 

caveats must be taken into account when comparing them.  Firstly, life cycles are much 
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more varied and complex in microbial eukaryotes (Parfrey et al. 2008).  For instance, in 

most plants and animals sex and growth are tightly linked, i.e., they cannot complete 

development without sex (Dacks and Roger 1999).  Conversely, many microbial 

eukaryotes are only facultatively sexual, i.e., they may turn sex on or off depending on 

environmental conditions. 

Knowledge about the natural history of microbial eukaryotes is deeply hindered 

by the difficulties of observation, when compared to macroorganisms.  In most cases, 

organisms are assumed to be asexual because no sex has been observed; the gold standard 

for establishing sexuality remains direct observation of sexual phases of the life cycle.  

Proving that sex occurs in microbial eukaryotes is further hindered as there are often no 

sexually dimorphic forms and sexual life cycle stages may not occur readily in laboratory 

conditions, or they may be cryptic (Dunthorn and Katz 2010).  Further, many amoebae 

are not culturable (e.g. polycystine radiolaria (Anderson 1981)).  Despite these 

difficulties, sex has been observed in several microbial and non-microbial taxa long 

considered asexual when culturing conditions were modified or appropriate mating types 

were made available, including Darwinullid ostracods (Smith et al. 2006), arbuscular 

mycorrhizal fungi (Croll and Sanders 2009) and the filamentous mold Aspergillus 

(O'Gorman et al. 2009), and Dictyostelium (see below).  Thus, it may not be prudent to 

rely on the absence of evidence as evidence for the absence of sex (Dunthorn and Katz 

2010; Judson and Normark 1996). 

Given the long history of study and diversity of methods used, evidence for sex in 

amoeboid lineages comes in a wide range of forms.  We divide the continuum of 

evidence for sex into three categories: 1) confirmed sexual life cycle, 2) direct evidence 
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for sex, and 3) indirect evidence that suggest a sexual life cycle but is inconclusive.  A 

confirmed sexual life cycle is the irrefutable compilation of both meiosis and karyogamy 

(nuclear fusion).  Direct evidence for sex is provided by microscopic observations of 

either meiosis or karyogamy without confirmation of the other, or the presence of meiosis 

specific genes.  We realize that for many biologists documenting meiosis alone is enough 

to confirm sexuality.  However we feel that observation of both parts of the cycle are 

necessary given the variation in sexual mechanisms found in microbial eukaryotes.  We 

are defending a more logical stance: if we define a phenomenon by the union of two 

elements, then we must expect to see the two elements for confirmation of said 

phenomenon.  Conversely, the confirmation of karyogamy alone may indicate a 

parasexual system (one where subsequent haploidization occurs by some other means 

than meiosis (Pontecorvo 1956), also see the case of Giardia (Birky 2010)) but more 

strongly indicates the possibility of sex.  Finally, many characteristics provide indirect 

evidence for the hypothesis that an organism is sexual, but fall short of conclusively 

demonstrating sex.  These include molecular evidence of recombination, cytoplasmic 

fusion, evidence for complex life cycles with more than one trophic stage and production 

of putative reproductive cells (e.g. swarmer cells that can be interpreted as gametes). 

 

6.3 Amoeboid lineages 

The broad distribution of amoeboid organisms across the eukaryotic tree of life 

make them an ideal system for assessing the applicability of theories on sex to microbial 

lineages.  Amoeboid organisms are defined by the ability to produce pseudopodia for 

locomotion or feeding.  They were historically lumped into a single group, named 
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Sarcodina or Rhizopoda depending on the classification system (Pawlowski and Burki 

2009).  However, recent work demonstrates that amoebae are found in at least 30 distinct 

lineages (i.e. close to half of all described eukaryotic lineages) that are scattered 

throughout the tree of eukaryotes (Patterson 1999; Pawlowski and Burki 2009) (Figure 

5.1). The majority of these lineages are clustered in the Amoebozoa and Rhizaria 

(Pawlowski and Burki 2009), with the remaining lineages scattered across the tree 

(Figure 5.1).  The term “amoeba” is used here descriptively as a morphological category 

and has no phylogenetic meaning.  Here, we reexamine the sexuality of amoebae in the 

context of the current phylogenetic framework of eukaryotes.  We review evidence for 

sex in lineages traditionally considered asexual, and discuss reports of sexual life cycles 

that were originally considered exceptions or misinterpretations. 

 

6.3.1 Amoebozoa 

The Amoebozoa are a higher-level grouping encompassing over 5,000 species 

and are currently divided in ~14 lineages (Figure 5.2a).  These lineages include familiar 

amoebae, such as the star of high school biology classes Amoeba proteus and the human 

enteric parasite Entamoeba histolytica.  The majority of organisms shown to belong 

within Amoebozoa have amoeboid characteristics (Pawlowski and Burki 2009), although 

these encompass a wide range of morphologies, such as slime molds, lobose testate 

amoebae (Arcellinida), and amoeboflagellates.  Asexuality in this group is thought to be 

either a defining characteristic (Hurst et al. 1992) or unknown (Cavalier-Smith 2002).  

However, deep inspection of the literature reveals evidence for sex in several Amoebozoa 

lineages: the dictyostelid sorocarpic slime molds and myxogastrid plasmodial slime 
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molds, Thecamoebida, Arcellinida, Leptomyxida, the genera Entamoeba, Pelomyxa, 

Mastigamoeba, Trichosphaerium, the sorocarpic slime mold Copromyxa and a number of 

protosteloid amoebae (Figure 5.2a, Table 5.1).  We will briefly review the evidence for 

each of these groups. 

Confirmed sexual life cycles are described for two lineages: the dictyostelid 

sorocarpic slime molds and the myxogastrid plasmodial slime molds.  The dictyostelids 

illustrate the difficulty of observing sex in the laboratory.  Known for their asexual life 

cycles (Bonner 1944; Bonner 1947), it was only in the 1970s that appropriate mating 

types of Dictyostellium were brought into culture and the sexual life cycle was fully 

documented (Erdos et al. 1973; Erdos et al. 1975; Macinnes and Francis 1974).  The 

Myxogastria go through meiosis and fuse to form diploid plasmodia (Fiore-Donno et al. 

2005; Martin and Alexopoulos 1969).  Myxogastria have complex mating systems, with 

up to 13 mating types (roughly equivalent to sexes) described (Collins and Tang 1977).  

Three lineages within Amoebozoa have direct evidence of sexual life cycles: the 

free-living thecamoebids, the sorocarpic slime mold Copromyxa, and the testate lobose 

amoebae (Arcellinida).  The thecamoebid Sappinia diploidea makes a bicellular cyst 

where zygote formation is thought to occur (Goodfellow et al. 1974; Michel et al. 2006; 

Wenrich 1954), similar cysts have been reported in the related Sappinia pedata (Brown et 

al. 2007).  The slime mold Copromyxa, has a life cycle that is consistent with sex 

although no secondary confirmation of meiosis has been described (Brown et al. 2007).  

Copromyxa was initially thought to be related to the acrasids sensu lattu, which in their 

turn were recognized as polyphyletic (Spiegel and Olive 1978) and are currently limited 

to the species placed in Excavata: Heterolobosea (Adl et al. 2005).  However, molecular 
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studies demonstrate that Copromyxa is closely related to the Tubulinea (Brown et al. 

2007).  Multiple lines of evidence indicate that the Arcellinida are sexual: Arcella 

vulgaris shows microscopic evidence of synaptonemal complexes (Mignot and Raikov 

1992), a typical structure that forms only during meiosis (Moses 1969).  Molecular data 

from both A. hemispherica and A. vulgaris also demonstrate recombination in the actin 

gene (Lahr et al. 2010). Paraquadrulla and Heleopera go through nuclear division and 

subsequent fusion (Lüftenegger and Foissner 1991; Meisterfeld 2002).  Finally, cell 

fusion (which we consider indirect evidence for sex, see below) has been reported for 

many genera of Arcellinida, though it is unclear whether karyogamy also occurs when 

cells fuse, or whether gamete formation occurs at other time points, (reviewed in 

(Wenrich 1954)).  The most complete report of karyogamy following cytoplasmic fusion 

is for Difflugia lobostoma (Dangeard 1937), though Rhumbler (1898) reports not 

observing fusion during long-term culturing of this species.  This apparent contradiction 

may indicate that these were different strains, a probable situation given the prevalence of 

cryptic species and other uncertainty in the taxonomy of Arcellinida (Heger et al. 2009; 

Lahr and Lopes 2009).  Different life cycle observations may also be due to different 

culturing conditions.   

A number of lineages have described complex life cycles, with the formation of 

multiple types of trophic cells that are consistent with sex, these are: the polyphyletic 

protosteloid amoebae Clastostelium recurvatum, Protosporangium spp., Cavostelium 

apophysatum and Ceratiomyxella tahitiensis (Shadwick et al. 2009) and the archamoebae 

Pelomyxa palustris (Whatley and Chapman-Andresen 1990) 
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Finally, three taxa have direct, but controversial evidence for sex: cell fusion 

reports in the free-living naked amoebae Leptomyxida, a complement of meiotic gene in 

the human pathogen Entamoeba histolytica, and a life cycle consistent with sex in 

Trichosphaerium.  Cell fusion is widely reported for Amoebozoa (Seravin and Goodkov 

1984a; Seravin and Goodkov 1984b), among the Leptomyxids, Leptomyxa reticulata 

(Seravin and Goodkov 1984a), Flabellula baltica (Smirnov and Goodkov 1999), and 

multiple strains of flabellulids (Dykova et al. 2008a) are observed to fuse.  Subsequently 

the cells separate or persist as multinucleate stages.  It is unclear whether this fusion 

facilitates genetic exchange or serves another purpose (Cavalier-Smith 2002), hence we 

consider this as only supporting evidence for sex. 

Entamoeba histolytica has long been considered asexual despite numerous pieces 

of evidence pointing to the contrary, such as appearance of putative heterozygote 

populations after mixing of homozygotic populations for certain isozyme classes (Blanc 

et al. 1989; Sargeaunt et al. 1988).  The availability of the whole genome (Loftus et al. 

2005) shows that E. histolytica has the full complement of genes required for meiosis 

(Ramesh et al. 2005; Stanley 2005), which should have decayed if E. histolytica 

abandoned a sexual life cycle.  The enigmatic genus of marine amoebae Trichosphaerium 

is reported to have an alternation of generations with gamont (sexual, including 

karyogamy) and schizont (asexual) stages (Angell 1976).  Since meiosis has not been 

properly documented (Schaudinn 1899; Schuster 1976), we consider there is only direct 

evidence for sex in Trichosphaerium. 
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6.3.2 Rhizaria 

The Rhizaria are a heterogeneous assemblage encompassing lineages such as 

Foraminifera, radiolarians and euglyphid testate amoebae, chlorarachniophytes, parasitic 

groups (Phytomyxea, Haplosporidia) as well as a multitude of other lesser-known 

flagellates (Figure 5.2b) that emerge as having fundamental ecological roles (Bass et al. 

2009; Ekelund and Patterson 1997; Foissner 1991; Parfrey et al. 2010a).  Filamentous 

pseudopodia are a recurrent morphological feature among amoeboid members of 

Rhizaria, in contrast to the lobose or broad pseudopodia of many Amoebozoa.  Complete 

sexual life cycles are documented for two lineages: Foraminifera and Gromia; 

karyogamy or meiosis (direct evidence) was observed in five lineages: Euglyphida, 

Thecofilosea, Chlorarachniophyta, Plasmodiophorida and Phaeodaria; and indirect 

evidence such as cell fusion or formation of putative gametes in five lineages: 

Acantharia, Polycistinea, Cercomonas, Helkesimastix and Lateromyxa.  

There are at least two lineages in the Rhizaria with confirmed sexual life cycles.  

Foraminifera are marine amoebae defined by a dynamic network of anastomosing 

pseudopodia (Bowser and Travis 2002), and well-known for producing intricate shells.  

They exhibit complex sexual life cycles with meiosis and gamete production occurring at 

separate stages (Goldstein 1999).  The Gromiidae also have confirmed sexual life cycles 

(Arnold 1972).  These large protists (up to several centimeters) have been observed in 

shallow and deep-sea sediments (Matz et al. 2008), where they are capable of 

denitrification in anoxic environments (Pina-Ochoa et al. 2010).  Gromia was originally 

classified as a genus of Foraminifera based on gross morphology, but lacks the distinctive 

anastomosing pseudopods of Foraminifera and branches separately in molecular 
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phylogenies (Bass et al. 2009).  The life cycle of Gromia resembles that of Foraminifera, 

with meiosis and gamete fusion occurring at different stages. 

The Euglyphid testate amoebae and the Thecofilosa have many reports of 

cytoplasmic fusion, which we consider indirect evidence, and also reports of karyogamy, 

a form of direct evidence.  Euglyphid testate amoebae have primarily been studied from a 

faunistic perspective, as bioindicators of past and present environmental conditions 

(Mitchell et al. 2008; Tolonen et al. 1992), and recently from a molecular phylogenetic 

perspective (Heger et al. 2010; Lara et al. 2007; Wylezich et al. 2002).  In the family 

Euglyphidae, Euglypha alveolata (Reukauf 1912), Euglypha scutigera (Penard 1902) and 

Euglypha sp. (Awerintzew 1906) combine their cellular contents to form a cyst, or in one 

case a third larger shell (E. alveolata (Blochmann 1887)).  Similar processes have been 

observed in other closely related families: Assulinidae (Awerintzew 1906), Trinematidae 

(Cash et al. 1915; Penard 1902), Cyphoderiidae (Cash et al. 1915; Rhumbler 1898); and 

in the unclassified Tracheleuglypha dentata (Chardez 1965).  The formation of a third, 

larger cell has been reported only in Assulinidae and Euglyphidae (Schonborn and 

Peschke 1990; Valkanov 1962a), and not in Trinematidae and Cyphoderiidae, where cell 

fusion occurs within one of the copulating cells.   

In some Euglyphids, cytoplasmic fusion is followed by karyogamy, providing 

direct evidence for sex.  In Trinema lineare, Valkanovia delicatula (Valkanov 1962b), 

Assulina muscorum and Valkanovia elegans (Schonborn and Peschke 1990), karyogamy 

was documented but the ultimate fate of the synkaryon (fused nuclei) remains unknown.  

In Corythion delamarei (familiy Trinematidae) the synkaryon divides into four nuclei, 

interpreted as the result of meiosis (Iudina and Sukhanova 2000).  The cytoplasm is then 
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distributed around the four nuclei, and four naked daughter cells leave the mother shell, 

which is left empty.  These naked cells eventually secrete a test.  If the interpretation is 

correct and C. delamarei indeed goes through meiosis after cytoplasmic and karyogamy, 

these organisms spend most of their life cycle in a haploid stage, being diploid only when 

karyogamy occurs. In contrast, Trinema lineare (Trinematidae) performs “conventional” 

binary divisions in addition to a sexual life cycle similar to Corythion delamarei 

(Sukhanova and Cheban 1990).  Binary divisions were not observed in Corythion 

delamarei, or its sister species Corythion dubium (Iudina and Sukhanova 2000).  This 

suggests that Corythion is a genus of obligate sexual organisms.  In sum, there is direct 

evidence for sex in four families out of the five that compose Euglyphida. 

The other lineage of filose testate amoebae, Thecofilosea (sensu (Cavalier-Smith 

and Chao 2003)) present direct evidence for sex.  Recent phylogenetic analyses show 

they are not sister to the Euglyphida (Bass et al. 2009; Parfrey et al. 2010a).  These 

amoebae may have proteinaceous or agglutinated tests and are often overlooked in 

environmental samples due to their small size.  Cytoplasmic fusion followed by 

karyogamy has been observed in both Pseudodifflugia gracilis and P. fascicularis.  The 

fate of the synkaryon is unknown (Valkanov 1962b). 

Chlorarachniophytes, a group known for their ancient secondary endosymbiosis 

(Archibald 2009), go through an elaborate alternation of flagellate and amoeboid life 

stages and show indirect evidence for sex.  In Chlorarachnion reptans flagellate cells 

fuse with coccoid cells, these are interpreted as “male” and “female” gametes (Grell 

1990).  In Cryptochlora perforans, two morphologically identical amoeboid cells fuse 

and produce a cyst where meiosis is thought to occur in a manner similar to euglyphids.  
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The DNA content of the cyst is double that of the amoeboid stages, suggesting 

karyogamy (Beutlich and Schnetter 1993).  As meiosis has not been confirmed, we 

consider this direct evidence as opposed to confirmed sexual life cycle.  The 

Plasmodiophorida are obligate intracellular parasites of plants, characterized by a specific 

type of mitotic division named cruciform nuclear division (Braselton 2002).  They have a 

complex life cycle with a plasmodial amoeboid phase, and meiosis has been confirmed in 

the group.  However, karyogamy has not yet been observed (Braselton 2002). 

The organisms collectively designated “Radiolaria”, a non-monophyletic 

assemblage containing Phaeodarea, Acantharia and Polycistinea, are large pelagic cells 

ubiquitous in the oceans. These organisms are extremely difficult to maintain in 

laboratory conditions, and their full life cycle has never been documented, but 

observations reveal evidence that suggests sex.  All three groups of radiolarians generally 

produce small bi-flagellated cells, whose fate remains unclear (Anderson 1981; Raikov 

1982), but may be gametes that are released into the water column. 

The strongest evidence for sex within the ‘Radiolaria’ is found in Phaeodaria, 

specifically in the well-studied species Aulacantha scolymantha, which falls in the 

Cercozoa (Bass et al 2009).  Synaptonemal complexes have been documented between 

the numerous (1000+) composite chromosomes.  Each of these composite chomosomes 

subsequently segregates into developing bi-flagellated swarmer cells (Grell and 

Ruthmann 1964) and divides into eight chromosomes.  However, complete evidence for 

sex is still lacking for this group, as cellular fusion and karyogamy have not been 

documented. Production of small bi-flagellated swarmer cells has also been observed in 

Polycystinea and Acantharea, which are closely related to Foraminifera (Parfrey et al. 
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2010).  These have been interpreted as “isogametes” in the case of Acantharea (Febvre et 

al. 2002), but cell fusion has not been observed for either lineage (Anderson et al. 2002).   

Evidence for sex becomes scarce as organisms get smaller and more difficult to 

observe.  For the small amoeboflagellate forms there are reports of cell fusions with 

subsequent encystment: Helkesimastix faecicola (Woodcock and Lapage 1915) and 

Cercomonas longicauda (Woodcock 1916).  In Cercomonas, cells can aggregate and fuse 

in some species, thus forming plasmodia containing up to 100 nuclei (Karpov 1997; 

Shirkina 1987).  Such plasmodia have also been documented in the vampyrellid 

Lateromyxa gallica (Hulsmann 1993; Ropstorf et al. 1993), though the fate of these 

nuclei is unknown. 

 

6.3.3 Other amoeboid lineages: Heliozoa, Heterolobosea, Stramenopila and 

Opisthokonta 

There are other amoeboid lineages scattered in the tree of eukaryotes, most with 

limited information on sex.  The Heliozoa have been split in four morphological lineages 

(Patterson 1999), three of which have been confirmed in molecular reconstructions 

(Nikolaev et al. 2004).  One lineage, the Actinophryida nested within the Stramenopila, is 

reported to go through autogamy in the cyst (Mikrjukov and Patterson 2001).  The life 

cycles of all three remaining “heliozoan” lineages, the Desmothoracida, Centrohelida and 

Gymnosphaerida remain poorly documented. 

The Heterolobosea are a lineage of amoeboflagellates nested within the Excavata 

(Simpson 2003).  Heteramoeba clara is reported to have a sexual life cycle consisting of 

a two mating-type system (Droop 1961), although there is a certain amount of doubt to 
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these experiments.  The genome of Naegleria gruberi was recently sequenced, and 

reveals the presence of meiosis specific genes, supporting the presence of sex in this 

clade (Fritz-Laylin et al. 2010).  The acrasid cellular slime molds have been shown to fall 

within the Heterolobosea rather than with other sorocarpic slime molds in Amoebozoa 

(Adl et al. 2005).  Complete life cycles have been documented for acrasids, but these 

contain no evidence for meiosis or karyogamy.  Hence, we consider there is no evidence 

pointing to sex in this group.   

The Labirynthulidae and Thraustochytriidae are amoeboid organisms currently 

placed within the Stramenopiles (or Heterokonta), which also includes the diatoms, 

brown algae and water molds.  A complete sexual cycle is described, with well 

documented meiosis (Moens and Perkins 1969; Perkins and Amon 1969). 

A number of orphan amoeboid lineages have recently been placed amidst the 

Opisthokonts (which also includes the Fungi and Metazoa).  Amoebidium parasiticum, 

originally thought to be a fungus, has a multi-stage life cycle, but no sex has been 

reported (Sumbali 2005).  Similarly, the nucleariid amoebae and Fonticula alba have 

shown no evidence of sex (Brown et al. 2009).  However, only a limited number of 

studies have focused on these taxa. 

 

6.4 Conclusion 

Evolutionary theory predicts that long-lived lineages should be sexual (Maynard 

Smith 1978), and that asexual lineages derived from sexual ancestors will be short-lived 

due to the negative effects of Muller’s ratchet on the genome (Felsenstein 1974; 

Hamilton 2001).  The two major clades that are dominated by amoebae, the Rhizaria and 
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Amoebozoa, (Figure 5.2) are certainly very ancient.  Fossil Arcellinida, a clade of testate 

amoebae within the Amoebozoa, have been found in 750 Million year old rocks (Porter 

and Knoll 2000);  Foraminifera and Polycystinea, two clades within Rhizaria, have fossil 

records that extend back at least to the Cambrian, i.e. 488-542 Mya (Anderson 1981; Sen 

Gupta 1999).  Sex is a complex character and it is unlikely to have evolved independently 

in multiple lineages, or lost and regained multiple times (Dunthorn and Katz 2010).  

Thus, the presence of sexual lineages scattered across Amoebozoa and Rhizaria suggest 

that these clades were ancestrally sexual.  As in other branches of the eukaryotic tree sex 

may then have been lost independently in derived lineages. 

Some amoeboid lineages may be genuinely asexual.  One candidate for asexuality 

is Amoeba proteus, which is the textbook example of binary fission in eukaryotes.  A 

multitude of research groups have been culturing Amoeba proteus and its relatives for 

more than a century without uncovering evidence supporting the existence of sex in this 

group.  Yet, assuming asexuality may be precarious given the uncertainties regarding 

culturing conditions. Although the ultimate proof for sex, as defined here, is the 

observation of meiosis and subsequent karyogamy, genomic data from populations of A. 

proteus could reveal evidence of recombination.  Such data is yet lacking for these and 

the majority of amoeboid protists.  

The logical equation “lack of evidence=asexual” is precarious, but the opposite 

stance is perhaps equally dangerous.  Assuming that all lineages in Amoebozoa are 

sexual may mean discarding the possibility that alternative means to deal with Muller’s 

ratchet have independently arisen.  Microbial eukaryote lineages may well have different 

strategies, such as lateral gene transfer and cyclic polyploidy.  Bdelloid rotifers, a clade 
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of asexual microscopic animals, provide the most famous example of an alternative 

mechanism to avoid the ratchet: during rehydration following anhydrobiosis (a suspended 

animation state that allows the organism to survive dehydration), these organisms acquire 

foreign DNA and reorganize genomic regions (Gladyshev and Arkhipova 2010).  This 

may well be a remarkable example of an evolutionary approach to reap the benefits of 

recombination, and could represent one of many strategies that eukaryotes have explored 

to avoid the deleterious effects of Muller’s ratchet.  If such an unusual mechanism 

appeared in Metazoa, comparably non-canonical mechanisms may have probably have 

evolved among 30+ amoeboid lineages.  

Cyclic polyploidy may be another evasion method for avoiding the impact of 

Muller’s ratchet.  Ploidy cycles may reduce the mutational load usually associated with 

high ploidy, and maintain the selective advantages of haploid genetic transmission 

(Kondrashov 1997).  Many microbial eukaryotes (amoeboid and others) experiment with 

ploidy changes that go far beyond the metazoan n-2n fluctuation (Parfrey et al. 2008).  

For instance, Amoeba proteus shows up to 3n variation during interphase, suggesting a 

cycle of polyploidization and return to haploidy before mitosis; and Entamoeba 

histolytica shows heterogeneity in nuclear ploidy due to varying levels of endomitosis: 

within a population, individual trophozoites exhibit continuous variation from 4n to 40n 

(Lohia 2003).  The consequences of these phenomena are still poorly understood, as 

implications about the dynamics of eukaryotic genomes are only beginning to be 

explored (Parfrey et al. 2008). 

An open question is whether lateral gene transfer (LGT) through endosymbiotic 

organisms may supply genetic variability to populations of amoebae.  Diverse amoebae 
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(e.g. Acanthamoeba spp., Hartmannella spp., Arcella spp., Amoeba spp.) harbor a wide 

variety of bacterial endosymbionts and viruses during their life cycle (Corsaro and 

Venditti 2009; Greub and Raoult 2004; Jeon 2004).  The possibility of genetic 

recombination between the amoeba and their multiple cytoplasmic inhabitants has just 

begun to be studied, as is the case of the giant amoeba-infecting Marseillevirus and 

Mimivirus that show evidence of chimeric genomes, with fragments of DNA acquired 

from multiple sources (Boyer et al. 2009). 

Well-resolved phylogenetic trees may be used as a framework to investigate 

possible sexual and identify truly asexual lineages.  Amoeba proteus is a member of the 

Amoebidae clade, for which no evidence for sex has been uncovered.  The closely related 

Arcellinida are most likely sexual.  Hence, the Amoebidae make an ideal group for 

deeply searching for signs of sex/asexuality.  Documentation of the complete life cycle is 

difficult, but suitable alternative methods to identify the presence of sex include intense 

culturing and/or surveying of natural populations to document recombination (as 

predicted by meiosis) and genetic studies to identify a set of meiosis genes.  In this case, 

there are three possible outcomes: 1) the Amoebidae are indeed sexual and we failed to 

document sex so far; 2) the Arcellinida-Amoebidae ancestral was sexual and the 

Amoebidae became truly asexual independently; or 3) the Amoebidae use a distinct 

strategy for evading Muller’s ratchet, which might involve extensive LGT and/or ploidy 

cycles. 

We conclude that the generalization about asexuality of amoeboid organisms is a 

superficial one and a product of two main forces: 1) an intrinsic practical difficulty in 

studying microbial organisms, and 2) the long held belief that amoeboid organisms are a 
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single unit of evolution, as opposed to an evolutionary strategy that was adopted by a 

wide variety of independent lineages.  Amoebae are not fundamentally chaste.  The 

timing and flow of events that lead each independent lineage to adopt an asexual or 

sexual life cycle must be evaluated separately.  A multiple evidence approach, using a 

phylogenetic framework, gathering evidence on life cycles, genetic information on 

recombination and/or suits of meiotic genes will be more efficient in reconstructing the 

history of eukaryotic sexual life cycles.  In line with Calkin’s reasoning almost a century 

ago about the chemical constitution of amoebae (Moreira and Brochier-Armanet 2008), 

there is no reason to doubt that the rules of evolution governing sex in amoeboid 

organisms agree with that of other living beings.  We predict that thorough and careful 

study of amoeboid organisms will reveal even more unusual ways of performing sex or 

otherwise exchanging genetic information.  When discussing the sex of amoeboid 

protists, the existing evidence does not evoke chastity but rather Kama Sutra. 
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Table 6.1: Summary of evidence for sex in amoeboid organisms.  Quoted names 
represent paraphyletic lineages. 
Clade Organisms Evidence References 
Amoebozoa    
Dictyosteliida Dictyostelium Full cycle Erdos et al. 1973, Erdos et 

al. 1975, Macinnes and 
Francis 1974 

Myxogastriida several Full cycle Fiore-Donno et al. 2005, 
Martin and Alexopoulos 
1969, Collins and Tang 
1977 

Thecamoebida Sappinia diploidea, S. 

pedata 

Nuclear fusion Goodfellow et al. 1974, 
Michel et al. 2006, 
Wenrich 1964, Brown et 
al. 2007 

"Hartmannellida" Copromyxa protea Life cycle with multiple 
trophic stages 

Brown et al. 2011 

Arcellinida Arcella Meiosis, actin gene 
recombination 

Mignot and Raikov 1992, 
Lahr et al. 2011a 

 Paraquadrulla, Heleopera Nuclear fusion Luftenegger and Foissner 
1991 

 Difflugia lobostoma, 
several others 

Cellular fusion Wenrich 1954, Dangeard 
1937, Rhumbler 1898, 
Meisterfeld 2002 

"Protosteloids" several Life cycle with multiple 
trophic stages 

Shadwick et al. 2009 

Archamoebae Pelomyxa palustris Life cycle with multiple 
trophic stages 

Whatley and Chapman-
Andresen 1990 

 Entamoeba histolytica Heterozygosity, full 
complement of meiotic 
genes 

Blanc et al. 1989, 
Sargeaunt et al. 1988, 
Loftus et al. 2005, 
Ramesh et al. 2005, 
Stanley 2005 

Leptomyxida Leptomyxa reticulata, 

Flabelulla baltica + others 

Cell fusion Seravin and Goodkov 
1984a, b, Smirnov and 
Goodkov 199, Dykova et 
al. 2008 

Insertae Sedis Trichosphaerium Life cycle with multiple 
trophic stages, 
karyogamy 

Schaudinn 1899, Schuster 
1976 

    
Rhizaria    
Foraminifera several Full cycle Goldstein 1999 
Gromiidae Gromia Full cycle Arnold 1972 
Euglyphida Euglypha, Trinema, 

Tracheleuglypha, 

Cyphoderia 

Cytoplasmic fusion Reukauf 1912, Penard 
1902, Awerintzew 1906, 
blochmann 1887, Cash et 
al. 1915, Rhumbler 1898, 
Chardez 1965, Shconborn 
and Peschke 1990, 
Valkanov 1962a 

 Trinema, Valkanovia, 

Corythion 

Nuclear fusion Valkanov 1962b, 
Schonborn and Peschke 
1990, Iudina and 
Sukhanova 2000, 
Sukhanova and Cheban 
1990 

Thecofilosea Pseudodifflugia Nuclear fusion Valkanov 1962b 
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Chlorarachniophyta Chlorarachnion reptans, 

Cryptochlora perforans 

Life cycle with multiple 
trophic stages, cell fusion 

Grell 1990, Beutlich and 
Schnetter 1993 

Plasmodiophorida several Life cycle with multiple 
trophic stages, meiosis 

Braselton 2002 

Acantharia, Polycistinea several Putative gametes Anderson 1981, Raikov 
1982, Anderson et al. 
2002, Febvre et al. 2002 

Phaeodaria Aulacantha scolymantha Meiosis Grell and Ruthmann 1964 
Vampyrellids Lateromyxa gallica Cell fusion Hulsmann 1993, Ropstorf 

et al. 1993 
Insertae Sedis Helkesimastix faecicola, 

Cercomonas longicauda 

Cell fusion Woodcock and Lapage 
1915, Woodcock 1916, 
Karpov 1997, Shirkina 
1987 

    
Actinophryiida several Nuclear fusion Mikrjukov and Patterson 

2001 
Labirynthulidae, 
Thraustochytriidae 

several Full cycle Moens and Perkins 1969, 
Perkins and Amon 1969 

    
Excavata    
Heterolobosea Heteramoeba clara Life cycle with multiple 

trophic stages 
Droop 1961 

 Naegleria gruberi Full complement of 
meiosis genes 

Fritz-Laylin et al 2010 

Acrasida several Life cycle with multiple 
trophic stages 

Adl et al. 2005 

    
Opisthokonta    
Insertae Sedis Amoebidium parasiticum Life cycle with multiple 

trophic stages 
Sumbali 2005 

“nucleariids” several, including 
Fonticula 

Life cycle with multiple 
trophic stages 

Brown et al. 2009 
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Figure 6.1: Distribution of amoeboid lineages in the eukaryotic tree of life. 

This phylogenetic hypothesis of eukaryotic evolution is adapted from Parfrey et al. 
(2010), and depicts the well-supported higher-level groupings of eukaryotes.  The 
lineages that have members with amoeboid morphology are in bold.  Images depict 
exemplary amoeboid organisms and were retrieved from micro*scope. 
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Figure 6.2: Distribution and types of evidence for sex in the main lineages of the two 
largest amoeboid groups: a) Amoebozoa and b) Rhizaria.   
The topology of these illustrative trees are a consensus of well-supported lineages derived 
from Tekle et al. 2008; Burki and Pawlowski 2009; Shadwick et al. 2009 and Parfrey et 
al. 2010. Dashed lines represent non-monophyletic taxa. 
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