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Abstract. We investigate the thermodynamic properties of a dilute Bose gas
in a correlated random potential using exact path integral Monte Carlo methods.
The study is carried out in continuous space and disorder is produced in the
simulations by a 3D speckle pattern with tunable intensity and correlation length.
We calculate the shift of the superfluid transition temperature due to disorder and
we highlight the role of quantum localization by comparing the critical chemical
potential with the classical percolation threshold. The equation of state of the gas
is determined in the regime of strong disorder, where superfluidity is suppressed
and the normal phase exists down to very low temperatures. We find a T 2

dependence of the energy in agreement with the expected behavior in the Bose
glass phase. We also discuss the major role played by the disorder correlation
length and we make contact with a Hartree-Fock mean-field approach that holds
valid if the correlation length is very large. The density profiles are analyzed as a
function of temperature and interaction strength. Effects of localization and the
depletion of the order parameter are emphasized in the comparison between local
condensate and total density. At very low temperature we find that the energy
and the particle distribution of the gas are very well described by the T = 0
Gross-Pitaevskii theory even in the regime of very strong disorder.
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1. Introduction

The dirty boson problem has become a central and fascinating subject in condensed
matter physics starting from the first theoretical investigations more than 20 years
ago [1, 2, 3]. The interplay between quantum degeneracy, interactions and quenched
disorder in a bosonic system gives rise to a rich scenario that exhibits new and
peculiar features compared to the much older problem of the metal/insulator transition
with electrons [4, 5, 6]. An important difference is that bosons can not rely on the
Pauli pressure and repulsive interactions are crucial to avoid collapse in the lowest
localized single-particle state. As a result perturbation schemes starting from the non-
interacting model, that are most useful for fermions, are completely inappropriate in
the case of bosons.

Theoretical investigations, including quantum Monte Carlo simulations, have
mainly addressed the problem of bosons on a lattice with on site bound disorder,
the so-called disordered Bose-Hubbard model. In this case commensurability, i.e. the
integer ratio of the number of particles to the number of lattice sites, plays a major role
allowing for a superfluid/insulator (of the Mott type) transition also in the absence
of disorder that is purely driven by interaction effects. Furthermore, depending
on the value of the interaction strength, disorder can act in favor of superfluidity,
by randomizing the insulating state close to the Mott transition, or in opposition
to it by localizing almost free particles into single-particle levels. The insulating
phases occurring in the two regimes of strong and weak interactions are respectively
often referred to as the Bose glass, when interactions suppress superfluidity, and the
Anderson glass, when interactions compete with disorder enhancing superfluidity [7, 8].
The disorder driven quantum phase transition occurring at T = 0 has been investigated
in a series of numerical studies both at incommensurate and commensurate densities
and in various dimensionalities [7, 9, 10, 11, 12, 13, 14, 8]. The picture emerging from
these studies, together with the crucial role of interactions to stabilize the system, is
that superfluidity is lost for strong enough disorder, leading to a gapless normal phase
different from the incompressible Mott insulator.

Random potentials in continuous systems have been considered using perturbative
approaches based on the Bogoliubov theory [15, 16, 17, 18, 19]. These methods are
reliable when both interactions and disorder are weak and allow for the determination
of the effect of disorder on the thermodynamic properties, including the fraction of
atoms in the condensate, the superfluid density and other thermodynamic functions.
Exact numerical methods have also been applied both at zero [21] and at finite
temperature [22, 23]. In particular, the path-integral Monte Carlo simulations carried
out at finite T addressed the problem of the elementary excitations [22] and of the
transition temperature [23] of a Bose fluid in a random environment. In the case of
the continuous-space liquid phase, disorder always acts against superfluidity, whereas
interaction helps make the superfluid state more robust. For strong disorder and low
temperatures one expects the system to enter an insulating phase (Bose glass) that
is smoothly connected with the high-temperature normal phase existing when the
disorder is weak.

On the experimental side a large body of work was devoted to 4He adsorbed
in porous media, such as Vycor glass and aerogels. These studies investigated
the behavior of the heat capacity and of the superfluid response [24, 25, 26], as
well as the dynamic structure factor [27, 28] as a function of temperature and
filling. A suppression of the λ transition is observed and the critical coverage for
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the onset of superfluidity is determined as a function of temperature, however, no
clear evidence is found of a compressible Bose glass phase. More recently the dirty
boson problem has been addressed using ultracold atoms, which offer unprecedented
control and tunability of the disorder parameters and of the interaction strength.
Transport and phase-coherence properties of an interacting gas in disordered optical
potentials are investigated and an insulating state is reached by increasing the
strength of disorder [29, 30, 31, 32, 33, 34, 35]. A large experimental effort has also
been devoted to the suppression of diffusion for non-interacting particles (Anderson
localization) [36, 37].

In this work we report on a path-integral Monte Carlo (PIMC) study of an
interacting Bose gas in the presence of correlated disorder produced by 3D optical
speckles. This random potential is relevant for experiments and allows for an
independent tuning of intensity and correlation length. By increasing the disorder
strength, we find a sizable reduction of the superfluid transition temperature and the
shift is larger for weaker interactions. We map out the normal to superfluid phase
diagram, both in the chemical potential vs. disorder and in the density vs. disorder
plane. For strong disorder and in the presence of small but finite interactions, the
critical chemical potential varies linearly with the disorder intensity and is essentially
independent of temperature and interaction strength, in agreement with the existence
of a mobility edge separating localized from extended states. We also find that the
critical chemical potential is much larger than the classical percolation threshold
for the same random potential, implying that a major role is played by quantum
localization effects. In the regime of strong disorder and for chemical potentials
below the critical value, the equilibrium state is a highly degenerate normal gas. We
investigate the thermodynamic properties of this phase, finding a T 2 dependence of
the equation of state in agreement with the peculiar feature expected for the Bose
glass phase. The effect of the disorder correlation length is discussed in detail and
we show that a non-trivial behavior is obtained only when the correlation length
is comparable with the mean interparticle distance. At T = 0 we also carry out
calculations using the Gross-Pitaevskii (GP) equation and at finite T using a self-
consistent mean-field approach based on Hartree-Fock theory and on the local density
approximation. The results of the GP equation for the ground-state energy and the
spatial distribution of particles are accurate even in the regime of strong disorder with
short-range correlations. This conclusion might be useful in view of investigating the
structural properties of the Bose glass phase.

We consider a system of N identical bosons of mass m, subject to the random
field Vdis and interacting with a repulsive pairwise potential. The Hamiltonian of the
gas takes then the form:

Ĥ =

N
∑

i=1

(

− ~
2

2m
∇2

i + Vdis(ri)

)

+
∑

i<j

V (|ri − rj |) . (1)

Interatomic interactions are modeled using a hard-sphere potential:

V (r) =

{

+∞ (r < a)
0 (r > a) ,

(2)

where the diameter a coincides with the s-wave length of the two-body scattering
problem. Furthermore, the system is in a cubic box of volume Ω = L3 with periodic
boundary conditions.
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Figure 1. (color online). Radial dependence (in units of the inverse momentum
cut-off Λ) of the disorder spatial autocorrelation function Γ. The solid (black)
line refers to an average over many realizations of the random field, the (green)
symbols correspond to a single realization. The (blue) line is a Gaussian fit.

The structure of the paper is as follows. In section 2 we introduce the random
potential and its statistical properties. In section 3 we discuss classical percolation for
the speckle potential and we estimate the percolation threshold in 3D. Some details
of the PIMC numerical method are presented in section 4. In section 5 we report our
results on the superfluid transition: shift of the critical temperature, critical chemical
potential and critical density. Most of these results were already presented in a
previous publication of some of us [38]. In section 6 we introduce a mean-field approach
based on the GP equation at T = 0 and on a Hartree-Fock self-consistent theory at
finite T and for long-correlated disorder. The low temperature thermodynamics is
discussed in section 7, including the equation of state, the condensate and total density
profiles and the behavior of superfluid density and condensate fraction as a function
of temperature and interaction strength in the disordered phase. Finally, we draw our
conclusions in section 8.

2. Speckle potential

The random external field we consider is the one produced by 3D optical speckles.
The local intensity is obtained from the following expression [39]:

Vdis(r) = V0

∣

∣

∣

∣

1

Ω

∫

dkϕ̃(k)W (k)eik·r
∣

∣

∣

∣

2

, (3)

where V0 is a positive constant and

ϕ̃(k) =

∫

drϕ(r)e−ik·r (4)

is the Fourier transform of the complex field ϕ(r), whose real and imaginary part are
independent random variables sampled from a gaussian distribution with zero mean
and unit variance. The function W (k) is a low-wavevector filter defined as

W (k) =

{

1 (k < πΛ)
0 (k > πΛ) .

(5)
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Figure 2. (color online). Typical shape of the speckle potential Vdis, with
averaged value V0 = ~

2/mℓ2c , shown in the direction (0,0,1) of the simulation box.
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Figure 3. (color online). Energy per particle of a classical non-interacting gas
subject to the speckle potential. The homogeneous value E/N = 3kBT/2 is also
shown as a reference.

The random potential in equation (3) is positive definite and the probability
distribution of intensities is given by the normalized exponential law [40]

P (Vdis) =
1

V0
e−Vdis/V0 . (6)

If the system’s size is large enough the above defined disordered potential is self-
averaging, i.e. spatial averages coincide with averages over different realizations. For
a generic function f(Vdis) of the disorder intensity one can thus write the following
identity

1

Ω

∫

drf [Vdis(r)] =

∫ ∞

0

dVdisP (Vdis)f(Vdis) ≡ 〈f(Vdis)〉 . (7)

According to this property, the spatial average and the corresponding root-mean-
square displacement of the speckle potential are both determined by the energy scale
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V0: 〈Vdis〉 = V0 and
√

〈V 2
dis〉 − 〈Vdis〉2 = V0. The correlation length ℓc of the random

field is defined from the spatial autocorrelation function,

Γ(r) = 〈Vdis(r′)Vdis(r′ + r)〉 − 〈Vdis〉2 (8)

as the length scale for which Γ(ℓc/2) = Γ(0)/2.
The above equations characterizing the speckle intensity field in 3D can be

straightforwardly generalized to 2D and 1D. In particular, in 1D the autocorrelation
function Γ(x) takes the simple form [40]

Γ(x) =

(

sin(πΛx)

πΛx

)2

, (9)

and ℓc = 0.88/Λ. In 3D we find that the autocorrelation function Γ(r) is well
approximated by a gaussian (see figure 1) and we obtain numerically ℓc = 1.1/Λ.
It is important to notice that standard experimental realizations of optical speckles
are 2D, i.e. the speckle pattern lies in the plane perpendicular to the propagation of
the laser beam, featuring equal correlation lengths in the x and y planar directions
and a much larger ℓc in the z direction. We consider instead a 3D pattern, having
the same correlation length in the three spatial directions. This random field can be
realized, for example, by adding speckle patterns generated from different directions.

The typical shape of the speckle potential Vdis is shown in figure 2: typical
wells have size ℓc and depth V0. The energy ~

2/mℓ2c, associated with the correlation
length ℓc, and V0 provide the two relevant energy scales for the disorder potential. In
particular, if V0 ≫ ~

2/mℓ2c the random potential is classical in nature, with typical
wells that are deep enough to sustain many single-particle bound states. The opposite
regime, V0 ≪ ~

2/mℓ2c, corresponds instead to quantum disorder, where typical wells
of size ℓc do not have bound states and these can be supported only by rare wells of
size much larger than ℓc or with depth much larger than V0.

The root-mean-square intensity V0 and the correlation length ℓc are the
relevant parameters characterizing in general the various types of disorder. For
example, the delta-correlated disorder, which has been considered in many theoretical
investigations [15, 18, 19, 20], is defined by the following autocorrelation function:

〈∆Vdis(r)∆Vdis(r′)〉 = κδ(r− r′) , (10)

where ∆Vdis(r) = Vdis(r) − 〈Vdis〉 is the displacement from the average. By
approximating the speckle Γ function (8) using a gaussian function, Γ(r) =

V 2
0 e

−r2/2σ2

, with σ = ℓc/
√
8 log 2 to recover the same half width at half maximum, one

finds that the speckle field in the limit ℓc → 0 reproduces a delta-correlated disorder
with the strength κ given by

κ =

(

π

4 log 2

)3/2

V 2
0 ℓ

3
c . (11)

In our simulations the length scale ℓc is typically∼ 100 times larger than the hard-
sphere diameter a, allowing for a wide range of disorder intensities where interaction
effects are well described by the s-wave scattering length and the details of the
interatomic potential are irrelevant. The typical box size used in the simulations
ranges from L ∼ 20ℓc to L ∼ 50ℓc. An indication of self-averaging of disorder for
these values of L is provided by figure 1, where we show the comparison between the
autocorrelation function Γ averaged over many realizations of the random potential
and the one corresponding to a single realization.
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Figure 4. (color online). Percolation in a 2D speckle potential: the left and right
panel correspond respectively to an accessible volume (shown in red) below and
above the percolation threshold.

The self-averaging property (7) allows one to calculate the thermodynamics of a
classical non-interacting gas. For example, the average energy per particle obtained
from the spatial average of the disordered potential over the Boltzmann factor

E

N
=

3

2
kBT +

∫

drVdis(r)e
−Vdis(r)/kBT

∫

dre−Vdis(r)/kBT
, (12)

yields the following simple result

E

N
=

3

2
kBT +

V0
1 + V0/kBT

. (13)

In figure 3 we compare the above analytical prediction with the results obtained from
a direct spatial integration using a typical size of the simulation box. The good
agreement found shows that in our simulations the self-averaging property is well
satisfied for non-trivial functions of the disorder intensity.

3. Classical percolation

In this Section we investigate the problem of the conducting/insulating transition in a
speckle potential from the point of view of classical percolation. The relevant question
is to determine the mobility edge of a classical particle subject to the random field [41].

Given the disordered potential Vdis(r), the fraction of space accessible to particles
of energy ǫ is defined as the fractional volume where the reference energy exceeds the
external field:

Φ(ǫ) =
1

Ω

∫

Vdis(r)<ǫ

dr . (14)

The percolation threshold corresponds to the critical value Φc of the fractional volume
such that, if Φ(ǫ) > Φc, there are infinitely extended volumes of allowed space and
particles having energy ǫ can move across the whole system. In terms of energy, the
value ǫc determines the percolation threshold: Φ(ǫc) = Φc. It corresponds to the
classical mobility edge separating localized states with energy ǫ < ǫc from delocalized
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Figure 5. (color online). Fraction of configurations of a 3D speckle pattern
where percolation occurs in one of the spatial directions as a function of the
accessible volume. Results are shown for two different system sizes. The estimated
percolation threshold is 4(1) · 10−4 and is shown with the shaded area.

ones with energy ǫ > ǫc. In the case of speckles the function Φ(ǫ) can be simply
expressed in terms of the disorder intensity V0 using the property (7). One finds

Φ(ǫ) = 1− e−ǫ/V0 . (15)

The determination of the percolation threshold for lattice or continuum models
is in general a difficult numerical task and the study of percolation has become a
mature branch of statistical physics (see e.g. [42]). Our discussion here is limited to
the calculation of Φc and of the corresponding thereshold energy ǫc for the speckle
potential. The role of dimensionality is crucial for this problem. In 1D the unbound
nature of the disordered field implies that, approaching the thermodynamic limit,
potential barriers occur higher than any finite energy ǫ and consequently ǫc = +∞
and Φc = 1. In 2D the percolation threshold of laser speckles was investigated
experimentally [43] using photolithography on a conducting film obtaining the value
Φc = 0.407. This result was later confirmed by a numerical study [44]. To our
knowledge there are no determination of Φc for 3D speckle patterns.

We estimate the percolation threshold in the continuum by mapping the accessible
and unaccessible regions of space on a finite grid. This is done by simply comparing the
local value of the external field Vdis(ri) at the grid point ri with the reference energy
ǫ. One then investigates the percolation of accessible grid points of the corresponding
matrix. In figure 4 we show two typical configurations in the case of 2D speckles:
panel a) corresponds to Φ = 0.30 well below the percolation threshold and panel b)
to Φ = 0.50 where percolation, i.e. existence of an uninterrupted path of accessible
points across the whole system in at least one of the spatial directions, has clearly
occurred. Two issues have to be considered with care: i) the size L in units of the
correlation length ℓc must be increased in order to extrapolate to the thermodynamic
limit and ii) for a given size L the grid points must be dense enough. In figure 5
we plot the fraction of configurations exhibiting percolation in 3D speckle patterns
as a function of the accessible volume Φ and for different system sizes. An estimate
of the threshold gives Φc ≃ ǫc/V0 = 4(1) · 10−4. For comparison, we estimated the
percolation threshold in 2D obtaining the value Φc ≃ 0.4 in agreement with previous
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determinations [43, 44]. The value found for Φc in 3D is rather small, suggesting the
presence of many long valleys where particles with a tiny fraction of the energy V0 can
freely move across the whole system. One should notice that a similar 3D continuum
model, the percolation of voids between overlapping spheres (the so called “Swiss
cheese” model), gives the much larger value Φc ≃ 0.03 [45, 46] for the percolation
threshold.

4. PIMC method

The partition function Z of a bosonic system with inverse temperature β = (kBT )
−1

is defined as the trace over all states of the density matrix ρ̂ = e−βĤ properly
symmetrized. The partition function satisfies the convolution equation

Z =
1

N !

∑

P

∫

dRρ(R, PR, β) =
1

N !

∑

P

∫

dR (16)

×
∫

dR2...

∫

dRMρ(R,R2, τ)...ρ(RM , PR, τ) ,

where τ = β/M , R collectively denotes the position vectors R = (r1, r2, ..., rN ),
PR denotes the position vectors with permuted labels PR = (rP (1), rP (2), ..., rP (N))
and the sum extends over the N ! permutations of N particles. The calculation of
the partition function in equation (16) can be mapped to a classical-like simulation
of polymeric chains with a number of beads M equal to the number of terms of the
convolution integral. In a PIMC calculation, one makes use of suitable approximations
for the density matrix ρ(R,R′, τ) at the higher temperature 1/τ in equation (16) and
performs the multidimensional integration over R, R2,...,RM as well as the sum over
permutations P by Monte Carlo sampling [51]. The statistical expectation value of a
given operator O(R),

〈O〉 = 1

Z

1

N !

∑

P

∫

dRO(R)ρ(R, PR, β) , (17)

is calculated by generating stochastically a set of configurations {Ri}, sampled from
a probability density proportional to the symmetrized density matrix, and then by
averaging over the set of values {O(Ri)}.

An approximation for the high temperature density matrix, which is particularly
well suited for studies of dilute gases, is based on the pair-product ansatz [51]

ρ(R,R′, τ) =

N
∏

i=1

ρ1(ri, r
′
i, τ)

∏

i<j

ρrel(rij , r
′
ij , τ)

ρ0rel(rij , r
′
ij , τ)

. (18)

In the above equation ρ1 is the single-particle ideal-gas density matrix

ρ1(ri, r
′
i, τ) =

( m

2π~2τ

)3/2

e−(ri−r′i)
2m/(2~2τ) , (19)

and ρrel is the two-body density matrix of the interacting system, which depends on
the relative coordinates rij = ri − rj and r′ij = r′i − r′j , divided by the corresponding
ideal-gas term

ρ0rel(rij , r
′
ij , τ) =

( m

4π~2τ

)3/2

e−(rij−r′ij)
2m/(4~2τ) . (20)
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The two-body density matrix at the inverse temperature τ , ρrel(r, r
′, τ), can be

calculated for a given spherical potential V (r) using the partial-wave decomposition

ρrel(r, r
′, τ) =

1

4π

∞
∑

ℓ=0

(2ℓ+ 1)Pℓ(cos θ) (21)

×
∫ ∞

0

dke−τ~2k2/mRk,ℓ(r)Rk,ℓ(r
′) ,

where Pℓ(x) is the Legendre polynomial of order ℓ and θ is the angle between r and
r′. The functions Rk,ℓ(r) are solutions of the radial Schrödinger equation

− ~
2

m

(

d2Rk,ℓ

dr2
+

2

r

dRk,ℓ

dr
− ℓ(ℓ+ 1)

r2
Rk,ℓ

)

+ V (r)Rk,ℓ =
~
2k2

m
Rk,ℓ , (22)

with the asymptotic behavior

Rk,ℓ(r) =

√

2

π

sin(kr − ℓπ/2 + δℓ)

r
, (23)

holding for distances r ≫ R0, where R0 is the range of the potential. The phase shift
δℓ of the partial wave of order ℓ is determined from the solution of equation (22) for
the given interatomic potential V (r).

For the hard-sphere potential (2) a simple analytical approximation of the high-
temperature two-body density matrix due to Cao and Berne [52] has been proven
to be highly accurate [53]. The Cao-Berne density matrix ρCB

rel (r, r
′, τ) is obtained

using the large momentum expansion of the hard-sphere phase shift δℓ ≃ −ka+ ℓπ/2
and the large momentum expansion of the solutions of the Schödinger equation (22)
Rk,ℓ(r) ≃

√

2/π sin[k(r − a)]/r. This yields the result

ρCB
rel (r, r

′, τ)

ρ0rel(r, r
′, τ)

= 1− a(r + r′)− a2

rr′
(24)

× e−[rr′+a2−a(r+r′)](1+cos θ)m/(2~2τ) .

Simulations are based on the worm algorithm [54], which allows for an
efficient sampling of permutation cycles. In this scheme one samples both diagonal
configurations, contributing to averages of the type (17) where all paths are closed,
and off-diagonal configurations where one path is open. These latter configurations
contribute to the one-body density matrix (OBDM) defined as

n1(r1, r
′
1) =

N

Z

1

N !

∑

P

∫

dr2 · · · drNρ(R, PR, β) , (25)

where rP (1) = r′1. The long-range behavior of the OBDM determines the condensate
density

n0 = lim
|r−r′|→∞

n1(r, r
′) . (26)

In our simulations the largest displacement of the OBDM we consider is |r−r′| = L/2.
If the size L is large enough the number N0 of condensate particles can be written as

N0 =

∫

drn1(r, r
′) , (27)
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where r′ is fixed by the constraint |r − r′| = L/2 and we perform an average over
the solid angle. The quantity under the integral corresponds to the local condensate
density at position r, which could be highly non uniform in the presence of a random
potential.

Beside the condensate density n0, in the present study we consider also the
superfluid density ρs. The superfluid component is the part of the fluid that remains
at rest when an infinitely slow movement is applied to the walls that contain the
system. In the path-integral formalism, the superfluid fraction of a fluid contained in
a box with periodic boundary conditions can be related[51] to the fluctuations of the
winding number via the equation

ρs
ρ

=
m〈W2〉
3~2βN

. (28)

The winding number W is defined as:

W =

N
∑

i=1

M
∑

m=1

(

rim+1 − rim
)

. (29)

It is a topological property of the configuration. It counts the net number of paths
that cross any plane perpendicular to one axis. The worm algorithm is particularly
suitable to perform ergodic random walks that span all possible winding numbers
since it extends the configurations space by including configurations with an open
path. Only the Monte Carlo moves that modify the open path can efficiently change
the winding number.

We perform calculations both in the canonical (at fixed density n) and in the
grand-canonical ensemble (at fixed chemical potential µ) [54]. We supplement the
worm algorithm with two additional Monte Carlo updates that change the particle
number N . The first update adds one particle to the system by placing a closed path
at a randomly selected position. The second update erases a randomly selected closed
path. The acceptance probability of the first (second) update is fixed by the fugacity
eβµ (by its inverse), by the change in the interaction energy due to the path to be
inserted (erased) and by the factor ΩC

N+1 ( N
ΩC ) that takes into account the density

change and the normalization of the free particle propagator C ≡
(

2π~2β/m
)− 3

2 .

5. Superfluid transition

The effect of disorder is to suppress both the superfluid and the condensate density. In
figure 6 we illustrate the behavior of these two quantities when the disorder strength
is increased. The value of ρs/ρ and n0/n in the absence of disorder is determined by
the temperature T and by the value of the gas parameter na3. The figure shows a
linear decrease of the superfluid and condensate components with increasing disorder
in the classical regime V0 > ~

2/mℓ2c. An important question is to understand whether
disorder also affects the superfluid transition temperature. The results are shown in
figure 7. The transition temperature Tc is expressed in units of

T 0
c =

2π~2

mkB

[

n

ζ(3/2)

]2/3

, (30)

the critical temperature of the non-interacting gas with ζ(3/2) ≃ 2.612. In these
calculations the value of the scattering length and of the disorder correlation length
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Figure 7. (color online). Superfluid transition temperature as a function of the
disorder strength for two values of the gas parameter na3. Open and solid symbols
refer respectively to Tc determined from the superfluid and from the condensate
fraction. The dashed line is the prediction of Ref. [18] at na3 = 10−4 shifted by
(Tc − T 0

c ) in the absence of disorder.

are kept fixed and for the latter we choose the value ℓc = 0.6n−1/3, such that there
is typically one particle in each sphere of radius ℓc: n4πℓ

3
c/3 ≃ 1. We show results

corresponding to two different densities. The reported values of Tc in the absence of
disorder are taken from Ref. [55]. At the density corresponding to the gas parameter
na3 = 10−4 we find no appreciable change of the transition temperature compared
to clean systems by increasing the disorder strength up to V0 ∼ ~

2/mℓ2c . For larger
intensities we find a sizable shift that is well described again by a linear dependence
in V0. For a given strength V0 the reduction of the transition temperature is enhanced
for smaller values of the gas parameter, consistently with the instability of the ideal
Bose gas in the presence of disorder [16]. The value of Tc is extracted from the results
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and of the scattering length. The grey shaded area denotes the superfluid phase
and the (pink) solid line corresponds to the classical percolation threshold.

of the superfluid fraction ρs/ρ (ρ = mn is the total mass density), corresponding to
systems with different particle number N , using the scaling ansatz

N1/3ρs(t, N)/ρ = f(tN1/3ν) = f(0) + f ′(0)tN1/3ν + ... . (31)

Here, t = (T − Tc)/Tc is the reduced temperature, ν is the critical exponent of the
correlation length ξ(t) ∼ t−ν , and f(x) is a universal analytic function, which allows
for a linear expansion around x = 0. The validity of the scaling behavior (31) is shown
in figure 8, where the effect of different realizations of the random potential is also
shown. The quantity N (1+η)/3n0/n, involving the condensate fraction n0/n and the
correlation function critical exponent η = 0.038 of the XY-model universality class,
is also expected to obey a scaling relation of the form (31). For all reported disorder
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strengths V0, the extracted value of the critical exponent ν is compatible with the
result ν = 0.67 corresponding to clean systems [55]. It is worth noting that the values
of Tc, obtained from the scaling law of the superfluid ρs/ρ and of the condensate
fraction n0/n, coincide within our statistical uncertainty (see figure 7). The presence
of disorder reduces the quantum delocalization of particles occupying the deepest
wells of the potential and, consequently, their contribution to the superfluid behavior.
Superfluidity takes place when the degeneracy condition is met for the effectively
smaller density of “delocalized” particles, resulting in a suppressed value of Tc. In
Ref. [18] the shift δTc = Tc−T 0

c of the superfluid transition temperature is calculated
using a perturbative approach for the δ-correlated disorder 〈∆Vdis(r)∆Vdis(r′)〉 =
κδ(r− r′), where ∆Vdis(r) = Vdis(r)− 〈Vdis〉. The Tc shift is found to be quadratic in
κ, implying for our speckle potential that δTc/T

0
c = (m2V 2

0 ℓ
3
c/
√
na~4)2/[2(12 log 2)3],

where we used a gaussian fit to the radial dependence of the autocorrelation function
Γ and considered the limit ℓc → 0. We report this prediction in figure 7 (we also
add the interaction contribution not accounted for by Ref. [18], so that in the clean
case an exact result is reproduced). Our data in the regime of very weak disorder
do not have enough precision to allow for a quantitative comparison and diverge
from the theory before δTc/T

0
c becomes appreciable. The effect of disorder on the

critical temperature of a hard-sphere gas was also investigated using PIMC methods
in Ref. [23] where, however, no significant reduction of Tc was reported. For stronger
intensities of disorder, the calculation of Tc becomes increasingly difficult, since the
dependence on the realization gets more important (see figure 8) and larger systems
are needed in order to have a satisfactory self-averaging of the random potential.

In figure 9 we report results for the critical chemical potential µc obtained from
calculations carried out in the grand-canonical ensemble. A small change of µ around
µc translates into a drastic change in the long-range behavior of the OBDM (see
figure 10): for µ < µc the OBDM decays to zero and corresponds to a normal
phase, for µ > µc the OBDM reaches a constant value characteristic of the superfluid
state. If interactions are small but finite, we also find that the value of µc is
essentially insensitive to a change of temperature and of interaction strength. For
weak disorder, this result is accompanied by a very small critical density (see figure 11)
and corresponds to a renormalization of µc due to disorder in an extremely dilute
gas. For strong disorder, it is instead consistent with the picture of a mobility
edge, separating localized single-particle states from extended ones, that depends
only on the parameters of the random potential. In this latter regime we find a
linear dependence of µc as a function of V0, in agreement with the qualitative T = 0
prediction of Refs. [57, 56] in the case of classical disorder. The figure also shows
the classical percolation threshold µ = ǫc, whose value for the speckle potential has
been determined in section 3. One should notice that in the whole range of disorder
intensities the critical chemical potential is significantly larger than ǫc as a consequence
of quantum localization effects. In fact, in terms of a mobility edge, classical particles
with energy larger than ǫc can freely move across the entire system, while in the
quantum world extended states appear only for significantly larger energies bound by
the inequality ǫ > µc.

To conclude the study of the critical behavior, we analyze the dependence of
the critical density nc on the intensity of the random potential. The calculations are
carried out in the canonical ensemble at fixed temperature and scattering length. The
method used to determine nc is shown in the inset of figure 11. For a given value
of V0 one increases the density and calculates the superfluid ρs/ρ and the condensate
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fraction n0/n. The results are then fitted by a power-law dependence ρs/ρ ∼ (n−nc)
ν

and n0/n ∼ (n − nc)
ν(1+η) for n > nc, where the proportionality coefficients are

expected to be non-universal parameters. In the inset of figure 11 we show the results
corresponding to a configuration without disorder (V0 = 0) and with strong disorder
(V0 = 6.4~2/mℓ2c). The reported values are averaged over a few realizations of the
random potential and their scatter gives an idea of the relevance of this effect. For the
small value of the scattering length used here, the critical density at V0 = 0 coincides
with the non-interacting result n0

c = ζ(3/2)(mkBT/2π~
2)3/2, while for the large V0

one finds that nc is about a factor of eight greater than n0
c . More comprehensive

results are shown in figure 11 where nc is estimated from the superfluid fraction,
which is less sensitive to finite-size effects. The results clearly show an increase of the
critical density as a function of V0, from the non-interacting degenerate density n0

c

up to values ∼ 20 times larger. It is also worth noticing that for strong disorder, an
increase of the scattering length a is accompanied by a decrease of nc resulting in a
constant value of the critical chemical potential (see figure 9).

6. Mean-field approach

A simple description of the thermodynamic properties of disordered systems can be
provided in terms of a mean-field approach. At T = 0 this approach is based on the
solution of the Gross-Pitaevskii (GP) equation for the order parameter in the random
external field and it yields quantitatively reliable results for both the chemical potential
and the density profiles. At finite temperature the mean-field theory can be efficiently
applied in the case of random potentials with exceedingly long-range correlations where
the local density approximation holds valid.
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6.1. Zero temperature

The relevant equation is the stationary GP equation for the order parameter ψ(r) in
the presence of the random potential

[

− ~
2

2m
∇2 + Vdis(r) + g|ψ(r)|2

]

ψ(r) = µψ(r) , (32)

where g = 4π~2a/m is the coupling constant. Within the GP approach one does not
distinguish between order parameter and particle density and the following identity
holds valid: n(r) = |ψ(r)|2. The GP equation can be obtained from the following
energy functional [47]

E[ψ] =

∫

d3rψ∗(r)

[

− ~
2

2m
∇2 + Vdis(r)

]

ψ(r)

+
1

2
g|ψ(r)|4 (33)

using the variational ansatz

δ

δψ∗

(

E[ψ]− µ

∫

d3r|ψ|2
)

= 0 (34)

that corresponds to finding configurations that minimize the energy functional (34)
with the normalization constraint

∫

d3r|ψ(r)|2 = N . The solutions of the GP equation
are obtained numerically by discretizing the wave function ψ on a 3D box of size L
(the number of grid points ranges from 643 to 1283). Then, the energy functional
E[ψ] is minimized by using a conjugate gradient algorithm as described in [48, 49],
for a given realization of the potential and a given particle density n = N/L3. The
numerical solution yields the value of the chemical potential µ as well as the spatial
particle distribution. Averages over disorder are obtained by repeating the calculation
for various realizations of the random field.
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It is useful to rewrite the GP equation (32) in terms of the dimensionless variables
vdis(r) = Vdis(r)/V0, r̃ = r/ℓc, Ṽ0 = V0/(~

2/mℓ2c) and µ̃ = µ/(~2/mℓ2c). One finds
[

−1

2
∇̃2 + Ṽ0vdis(r̃) +

ℓ2c
2ξ2

|φ(r̃)|2
]

φ(r̃) = µ̃φ(r̃) , (35)

where we have used the wavefunction φ(r) = ψ(r)/
√
n rescaled in terms of the average

density n and the healing length ξ = 1/
√
8πna. From the above equation two regimes

can be investigated analytically. On the one hand, if the correlation length ℓc is much
smaller than the length

√

~2/mV0 fixed by the disorder strength or equivalently for

weak enough disorder (Ṽ0 ≪ 1), the order parameter is almost uniform |φ(r̃)|2 ≃ 1
and the effect of the random potential on the chemical potential is just a shift of the
mean-field energy

µ = gn+ V0 . (36)

On the other hand, if ℓc ≫ ξ, one can neglect the kinetic energy term in the GP
equation (35) and use the Thomas-Fermi approximation

µ = gn(r) + Vdis(r) , (37)

yielding the following result for the local particle density

n(r) =
1

g
[µ− Vdis(r)]Θ[µ− Vdis(r)] . (38)

Here Θ(x) is the Heaviside function: Θ(x) = 1 if x > 0 and zero otherwise. The
normalization condition n = 1/L3

∫

drn(r) determines the chemical potential µ in
terms of the average density n. By using the self-averaging property (7) one obtains
the equation

µ

V0
+ e−µ/V0 = 1 +

gn

V0
, (39)

relating the chemical potential to the disorder strength V0.
i) If V0 ≪ gn then µ = gn+ V0 and the disorder acts as a small shift of the pure

interaction term, similarly to the short-ℓc regime of equation (36).
ii) If V0 ≫ gn one finds to the lowest order

µ =
√

2gnV0 , (40)

corresponding to an energy per particle E/N = 2µ/3.
The variation of µ with the disorder correlation length is shown in figure 12,

where we report the results of the GP equation for the fixed value na3 = 10−6 of the
gas parameter and disorder strength V0 = 10kBT

0
c . In this case ξn1/3 ∼ 1 and the

figure clearly shows the two limiting regimes of short and long correlation length. For
the same disorder strength, in figure 13, we show instead the density dependence of
the chemical potential for a fixed value of ℓc. The equations of state corresponding to
large and small correlation lengths are also shown as a reference.

In the regime ℓc ≫ ξ one can make use of the Thomas-Fermi approximation
for the order parameter which is expected to become more and more accurate as
ℓc increases. Within this approximation one can make contact with the classical
percolation problem of section 3 by noticing that, if µ is larger than the threshold
energy ǫc, the condensate density represented by equation (38) is different from zero
on a percolating path ensuring thus the superfluid behavior of the system. For large
V0 the chemical potential increases as

√
V0 according to equation (40), while ǫc is

proportional to V0. The small value of the ratio ǫc/V0 implies though that the quantum
phase transition to the insulating state takes place only at extremely large disorder
intensities.
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Figure 14. (color online). Equation of state energy vs. temperature of a gas
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Results corresponding to different values of ℓc are reported. The limiting cases of
large correlation length: HF results with LDA (black line) and of small correlation
length: clean system results shifted by V0 (red symbols and line) are also shown.
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arrows indicate the superfluid transition temperature. The green line is a T 2 fit
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6.2. Finite temperature

At T 6= 0 one should combine the GP equation for the condensate with a proper
description of the thermally excited states in the random potential. The theory
becomes simple if the disorder is correlated over large distances, as one can apply the
local density approximation (LDA) within standard mean-field techniques suitable for
dilute gases. At low temperatures the validity condition requires ℓc to be much larger
than the healing length ξ, while at higher temperatures the correlation length must
exceed the thermal wavelength λT .

We use the self-consistent Hartree-Fock (HF) scheme within LDA. This mean-
field approach is based on the following expression for the elementary excitations of
the system in terms of their momentum p and position r [50]

ǫ(p, r) =
p2

2m
+ Vdis(r) − µ+ 2gn(r) . (41)

The thermal density of atoms nT (r) is obtained from the momentum integral of the
distribution of elementary excitations

nT (r) =

∫

dp

(2π~)3
1

eǫ(p,r)/kBT − 1
. (42)

The condensate density n0(r) is determined by the finite-T extension of the GP
equation (38) in the Thomas-Fermi approximation

n0(r) =
1

g
[µ− Vdis(r)− 2gnT (r)]

× Θ[µ− Vdis(r)− 2gnT (r)] . (43)
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The sum of thermal and condensate density gives the total density n(r), which must
satisfy the overall normalization

N =

∫

drn(r) =

∫

dr[n0(r) + nT (r)] , (44)

providing the closure relation of the mean-field equations. The total energy E of the
system can be calculated from the following integral

E =

∫

dp dr

(2π~)3
p2/2m

eǫ(p,r)/kBT − 1
+

∫

drVdis(r)n(r)

+
g

2

∫

dr[2n2(r)− n2
0(r)] . (45)

The HF scheme defined by the above equations neglects the quantum depletion
of the condensate and at T = 0 yields n0(r) = n(r), in agreement with
section 6.1. Furthermore, it neglects the contribution of collective modes (phonons)
to thermodynamics since all excitations are single particle. This approximation is
known to be very accurate in dilute non-uniform systems both at high and low
temperatures [50]. In particular, at low temperatures, one can neglect the thermal
density contribution to the expression (41) of the elementary excitations and one finds
the simple spectrum ǫ(p, r) = p2/2m + |Vdis(r) − µ(T = 0)|. The term in modulus
vanishes at the condensate boundaries and thermal excitations accumulate at these
minima of the effective potential. The single-particle excitations close to these minima
are the dominant ones at low temperature, being more important than the phonons
of the bulk condensate. In fact, one can show that at low energy the single-particle
excitations have the following density of states

g(ǫ) =
4

3

Ωm3/2

√
2π2~3

e−µ(T=0)/V0
ǫ3/2

V0
, (46)

proportional to ǫ3/2 in contrast to g(ǫ) ∝ ǫ2 of phononic excitations. A similar
situation occurs in harmonically trapped condensates [50].

The above semiclassical approach provides an estimate of the temperature at
which Bose-Einstein condensation sets in locally in some deep well. This temperature
is defined as the point where the local density n(r), corresponding to some deep well
in the random field, reaches the critical value n(r)λ3T = ζ(3/2) ≃ 2.612. By neglecting
interactions one finds the following implicit equation for the temperature T ∗

n

(

2π~2

mkBT ∗

)3/2

=

∞
∑

j=1

1

j3/2
1

1 + jV0/kBT ∗
. (47)

The temperature T ∗ is always larger than the temperature T 0
c of the occurrence

of Bose-Einstein in non-interacting clean systems. In particular, for large disorder
strength one finds T ∗ = T 0

c [ζ(3/2)V0/ζ(5/2)kBT
0
c ]

2/5. This effect comes from the
reduced available volume and the corresponding higher local particle density. In
the presence of weak interactions, local Bose-Einstein condensation sets in at a
temperature slightly lower that T ∗, because density is reduced in the wells of the
random field due to repulsion and a lower temperature is needed to reach the critical
value. We would like to stress that the temperature scale T ∗ corresponds to the
appearance of local condensates at the minima of Vdis(r) and should not be confused
with the critical temperature Tc at which extended superfluidity sets in. Within
the above semiclassical approach this latter temperature corresponds to the chemical
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Figure 15. (color online). Particle density profiles in the (x = 0, y, z) plane
at different temperatures and for a given realization of disorder characterized by
V0 = 10kBT 0

c and ℓc = 0.6n−1/3. The T = 0 profile is obtained using the GP
equation. The average density corresponds to the value na3 = 10−6 of the gas
parameter.

potential reaching the percolation threshold of the effective potential Vdis(r)+2gnT (r)
where, according to equation (43), the condensate density n0(r) is different from zero
on a percolating path. For weakly-interacting systems though, because of the small
value of the percolating volume fraction Φc, the temperatures Tc and T ∗ are very
close, unless for extremely large disorder intensities. As an example we consider the
configuration shown in figure 14 corresponding to na3 = 10−6 and V0 = 10kBT

0
c in the

regime of extremely long-range correlation length ℓc. The value of the temperature
T ∗ obtained from equation (47) is given by T ∗ = 3.63T 0

c . The self-consistent solution
of the HF equations yields a temperature TBEC for the local onset of Bose-Einstein
condensation in the range 3.5T 0

c < TBEC < T ∗. The transition temperature Tc where
the condensate density percolates is found to be in the range 3.4T 0

c < Tc < TBEC.
The HF equation of state and the corresponding transition temperature are shown

in figure 14 for a fixed density of the gas and for large disorder strength. In the
figure is also reported the equation of state corresponding to the regime of a very
short correlation length ℓc, where the energy is merely shifted by the average disorder
intensity V0 from the value of the clean system. This result is consistent with the
T = 0 prediction (32) and the corresponding transition temperature coincides with Tc
in the absence of disorder.

7. Low temperature thermodynamics

The energy per particle obtained from PIMC simulations is reported in figure 14 as a
function of temperature and for random potentials with different correlation lengths in
the range of the mean interparticle distance. In particular, for the value ℓc = 0.6n−1/3

we also indicate the value of the superfluid transition temperature. The equation of
state and the value of Tc corresponding to the limiting regimes of exceedingly long
and short correlation lengths are also shown as a reference. Three important remarks
about this figure are worth stressing. a) At fixed particle density and for a given
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Figure 16. (color online). Particle and condensate density profiles in the
(x = 0, y, z) plane at two different temperatures, above and below Tc. The
configuration is the same as in figure 15.
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Figure 17. (color online). Particle and condensate density profiles along the
(x = 0, y = 0, z) axis corresponding to the configuration of figure 16 at T = 0.1T 0

c .

Figure 18. (color online). Particle density profiles in the (x = 0, y, z) plane
for different values of the gas parameter and for a given realization of disorder
characterized by V0 = 10kBT 0

c and ℓc = 0.6n−1/3. The temperature is T = 0.1T 0
c .
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area shows the estimated range of temperatures where the superfluid transition
takes place. Solid and open symbols refer to two different system sizes to check
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are the predictions of a self-consistent mean-field calculation, while the dotted
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disorder strength the largest suppression of Tc is achieved with ℓc on the order of
the interparticle distance. b) At low temperature the energetics of the system is well
described by the GP equation even when the disorder is strong and n1/3ℓc ∼ 1. c)
For random potentials of large strength and with spatial correlations in the range
n1/3ℓc ∼ 1, a window of temperatures opens up where the system is normal (i.e. not
superfluid), though highly degenerate (nλ3T > 1).

The properties of the ”exotic” normal phase displayed at low temperatures for
strong disorder are worth investigating. We find that the equation of state is well
fitted by a quadratic temperature dependence as shown in figure 14. This T 2-law for
the energy, and consequently linear dependence of the specific heat, is a remarkable
feature of the phase. In a clean superfluid, or in a dirty one with short-range disorder
correlations (see figure 14), the energy at low temperatures exhibits the T 4-law typical
of the thermal excitation of phonons. In the opposite regime of long-range disorder
correlations one can apply the HF-LDA approach described in section 6.2, which is
expected to become more and more accurate as ℓc increases. Within this approach the
system consists of large condensate lakes that may or may not be connected through
a percolating path, the relevant excitations at low temperature are of single-particle
nature and are localized at the boundary of the condensate lakes. These excitations
contribute to the energy with a T 7/2-law‡. A Bose glass is predicted to exhibit a
non-vanishing density of states at zero energy[3], which results in a T 2-law for the low
temperature equation of state. We interpret the quadratic dependence found in the
low temperature normal phase as an evidence of the Bose glass phase.

Another important output of PIMC simulations with the random potential is
the spatial particle distribution and the distribution of particles contributing to the
condensate density. In figure 15 we show the results of the particle density n(r)
for a given realization of the random potential. Starting from a high temperature
distribution spread over the entire system, as temperature is decreased, the density
becomes more and more peaked in correspondence of the minima of the external
potential. Around T ≃ 0.4T 0

c the system turns superfluid (see figure 19) and the
density changes only slightly down to the lowest temperatures. Remarkably, the
comparison with the findings of the GP equation for the same realization of the random
field is rather good both for the position and the relative intensity of the peaks.

The comparison between particle density and condensate density profiles is
reported in figure 16 for two temperatures, above and below Tc. The result at the
lowest temperature shows that the condensate density follows the particle distribution,
but does not exhibit its pronounced peaks. This behavior is clearly represented in
figure 17, where we show the profiles along a cut through the plane of figure 16.
Notice that the particles contributing to the condensate are only a small fraction
(∼ 20%) of the total number of particles (see figure 19). Finally, in figure 18 we report
the density profiles as a function of the interaction strength. The figure clearly shows
the effect of particle localization in the deepest wells of the random field as the value
of the gas parameter is reduced.

The behavior of the superfluid and condensate fraction in the proximity of the
phase transition with and without disorder are shown in figure 19. It is interesting to
notice the large depletion of ρs and n0 even at the lowest temperatures and the fact
that, in the regime of strong disorder, the superfluid component becomes significantly

‡ In the insulating Bose glass phase the asymptotic low-temperature law is expected to be ∼ T 2

independent of the value of the correlation length. However, for increasing ℓc, the range of
temperatures where the asymptotic law applies is suppressed.
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smaller than the condensate one. Similar results are reported in figure 20 for a fixed
temperature and for varying values of the interaction strength. The figure clearly
shows that by making interactions weaker the system will eventually turn normal and
that the difference between superfluid and condensate fraction disappears with strong
enough interactions.

To complete the picture we would like to mention the limit of weak disorder
(V0mℓ

2
c/~

2) ≪ 1 and weak interactions na3 → 0 considered in Ref. [56]. It explains
how interactions stabilize the superfluid phase starting from the localized phase of the
non-interacting gas. At zero temperature the boundary between the insulating (Bose
glass) and superfluid phases is set (up to logarithmic corrections) by percolation at the
Larkin energy scale V 4

0 m
3ℓ6c/~

6 which has to be compared with the chemical potential
of the weakly interacting gas gn. This leads to the relation for the critical density
(na)c ∼ V 4

0 , i.e. for small V0 only a tiny density of particles is required to off-set
the localization effects. In practice, one observes extremely robust superfluidity of
the weakly-interacting Bose gas even in the presence of relatively large disorder, see
Figs. 7, 19, 20; for na ≫ (na)c the critical temperature is essentially the same as in
the ideal Bose gas.

8. Conclusions

We find that in a quantum degenerate bosonic gas a random potential is most efficient
in suppressing superfluidity if it is correlated over length scales comparable with the
mean interparticle distance. However, for the typical diluteness conditions of ultracold
gases, disorder intensities significantly larger than the energy scale kBT

0
c set by the

BEC transition of the ideal gas are required for a significant reduction of the superfluid
critical temperature and stronger interactions make the superfluid state more robust.
In the regime of weak interactions and strong disorder, the superfluid transition turns
out to be well characterized by the existence of a mobility edge, separating localized
from extended states, that is largely independent of temperature and interaction
strength. This picture is similar to the percolation threshold of classical particles,
but we find that quantum localization effects drive the system normal in a large
region of energies where classical states would be extended. Furthermore, most of the
particles are localized in the deepest wells of the random potential and only a small
proportion contributes to the extended condensate state. The effective density of these
delocalized particles is much smoother due to the screening of the external field from
the other particles and sets the critical density of superfluidity which however starts
at significantly lower temperatures compared to clean systems. For larger disorder
intensities an ”exotic” normal phase appears in the degenerate regime, even though
we can not reach T = 0. This phase is characterized by a peculiar T 2 dependence
of the equation of state, that is markedly different from the T 4 law of homogeneous
superfluids and from the T 7/2 law found for large condensate lakes within LDA and is
in agreement with the predictions for the Bose glass phase. Remarkably, some aspects
of this phase, such as the T = 0 equation of state and the spatial distribution of
particles can be correctly described using the mean-field GP theory.
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