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Superfluid transition in a Bose gas with correlated disorder

S. Pilati and S. Giorgini
Dipartimento di Fisica, Università di Trento and CNR-INFM BEC Center, I-38050 Povo, Trento, Italy

N. Prokof’ev
Department of Physics, University of Massachusetts, Amherst, MA 01003, USA and

Russian Research Center “Kurchatov Institute”, 123182 Moscow, Russia

The superfluid transition of a three-dimensional gas of hard-sphere bosons in a disordered medium
is studied using quantum Monte Carlo methods. Simulations are performed in continuous space
both in the canonical and in the grand-canonical ensemble. At fixed density we calculate the shift
of the transition temperature as a function of the disorder strength, while at fixed temperature
we determine both the critical chemical potential and the critical density separating normal and
superfluid phases. In the regime of strong disorder the normal phase extends up to large values of
the degeneracy parameter and the critical chemical potential exhibits a linear dependence in the
intensity of the random potential. The role of interactions and disorder correlations is also discussed.

PACS numbers:

The interplay between superfluidity, interactions and
disorder in quantum degenerate Bose systems (the so-
called dirty boson problem) is a central topic in con-
densed matter physics, many aspects of which are still
unsolved and under scrutiny. Since the seminal work by
Fisher et al. [1], the general understanding is that in-
teractions are essential to stabilize the system and that
superfluidity is lost for strong enough disorder, leading
to a normal phase which at low temperatures is identi-
fied with the Bose glass phase. However, a quantitative
description in terms of the relevant parameters of the
random potential and other matters, such as the criti-
cal behavior and the role of dimensionality, are still open
issues.

On the experimental side a large body of work was
devoted to 4He adsorbed in porous media, such as Vy-
cor glass and aerogels [2, 3]. These studies investigated
the behavior of the heat capacity and of the superfluid
response [2], as well as the dynamic structure factor [3]
as a function of temperature and filling. However, no
clear evidence was observed of a compressible Bose glass
phase. More recently the dirty boson problem has been
addressed using ultracold atoms, which offer unprece-
dented control and tunability of the disorder parameters
and of the interaction strength. Interaction effects were
studied in disordered optical potentials [4], even though
the main effort has been given so far to the suppression
of diffusion for non-interacting particles (Anderson local-
ization) [5].

Many relevant theoretical contributions are based on
quantum Monte Carlo simulations of the Bose-Hubbard
Hamiltonian with disorder[6]. In this lattice model the
physical scenario is more involved than in continuous
space because of the role played by commensurability
and of the existence of the interaction driven phase tran-
sition to the Mott insulating state. Other theoretical
approaches make use of mean-field approximations [7, 8]
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FIG. 1: (color online). Typical shape of the speckle potential
Vdis, with averaged value V0 = ~

2/mℓ2c, shown in the direction
(0,0,1) of the simulation box. We also show schematically
the value of the critical chemical potential µc. Inset: radial
dependence (in units of the inverse momentum cut-off Λ) of
the disorder spatial autocorrelation function Γ. The solid
(black) line refers to an average over many realizations of
the random field, the (green) symbols correspond to a single
realization.

and are not reliable in the regime of strong disorder.

In this Letter we report on a path-integral Monte Carlo
(PIMC) study of an interacting Bose gas in the presence
of correlated disorder produced by 3D optical speckles.
This random potential is relevant for experiments and al-
lows for an independent tuning of intensity and correla-
tion length. By increasing the disorder strength, we find
a sizable reduction of the superfluid transition tempera-
ture and the shift is larger for weaker interactions. We
map out the normal to superfluid phase diagram, both in
the chemical potential vs. disorder and in the density vs.
disorder plane. For strong disorder and in the presence

http://arXiv.org/abs/0902.0696v1
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of small but finite interactions, the critical chemical po-
tential varies linearly with the disorder intensity and is
essentially independent of temperature and interaction
strength, in agreement with the existence of a mobil-
ity edge separating localized from extended states. In
this regime and for chemical potentials below the critical
value, the equilibrium state is a highly degenerate nor-
mal gas which is expected to correspond to the Bose glass
phase. We consider a system of N identical particles of
mass m subject to the random field Vdis and interacting
with a short-range pairwise potential. The Hamiltonian
is given by:

H =

N
∑

i=1

(

− ~
2

2m
∇2

i + Vdis(ri)

)

+
∑

i<j

V (|ri − rj |) . (1)

The interatomic potential is modeled by a hard-sphere
interaction: V (r) = +∞ if r < a and zero otherwise,
where the hard-sphere diameter a corresponds to the s-
wave scattering length. The system is in a cubic box
of volume V = L3 with periodic boundary conditions.
Disorder is modeled by an isotropic 3D speckle potential
defined as follows [9]:

Vdis(r) = V0

∣

∣

∣

∣

1

V

∫

dkϕ̃(k)W (k)eik·r

∣

∣

∣

∣

2

, (2)

where V0 is a positive constant and ϕ̃(k) =
∫

drϕ(r)e−ik·r is the Fourier transform of the complex
field ϕ(r), whose real and imaginary part are indepen-
dent random variables sampled from a gaussian distri-
bution with zero mean and unit variance. The function
W (k) is a low-wavevector filter defined as: W (k) = 1
if k < πΛ and zero otherwise. The random potential in
Eq. (2) is positive definite and the probability distribu-
tion of its intensities is given by the normalized exponen-
tial law P (Vdis) = e−Vdis/V0/V0. If the volume V is large
enough the disorder Vdis is expected to be self-averaging,
i.e. spatial averages coincide with averages over different
realizations, and one has V0 = 〈Vdis〉 = 1/V

∫

drVdis(r).
The mean square displacement is also determined by the
same energy scale: V0 =

√

〈V 2
dis〉 − 〈Vdis〉2. The correla-

tion length ℓc is defined from the spatial autocorrelation
function, Γ(r′) = 〈Vdis(r)Vdis(r + r

′)〉 − 〈Vdis〉2, as the
length scale for which Γ(ℓc/2) = Γ(0)/2. We find the
following relation between the correlation length and the
wave-vector cutoff Λ: ℓc = 1.1/Λ. The length scale ℓc is
typically ∼ 100 times larger than the hard-sphere diam-
eter a, allowing for a wide range of disorder intensities
where interaction effects are well described by the s-wave
scattering length and the details of the interatomic po-
tential are irrelevant. The typical box size used in the
simulations ranges from L ∼ 20ℓc to L ∼ 50ℓc. An in-
dication of self-averaging of disorder for these values of
L is provided by the inset of Fig. 1, where we show the
comparison between the autocorrelation function Γ aver-
aged over many realizations of the random potential and

the one corresponding to a single realization. The typical
shape of the speckle potential Vdis is also shown in Fig. 1:
typical wells have size ℓc and depth V0. We notice that
standard experimental realizations of optical speckles are
2D, i.e. the speckle pattern lies in the plane perpendic-
ular to the propagation of the laser beam. We consider
instead a 3D pattern, having the same correlation length
in the three spatial directions.

The energy ~
2/mℓ2

c , associated with the correlation
length ℓc, and V0 provide the two relevant energy scales
for the disorder potential. In particular, if V0 ≫ ~

2/mℓ2
c

the random potential is classical in nature, with typical
wells that are deep enough to sustain many single-particle
bound states. The opposite regime, V0 ≪ ~

2/mℓ2
c, corre-

sponds instead to quantum disorder, where typical wells
of size ℓc do not have bound states and these can be sup-
ported only by rare wells of size much larger than ℓc or
with depth much larger than V0.

The outcomes of PIMC simulations consist of unbi-
ased estimates of thermal averages of physical quantities,
using the many-particle configurations R = (r1, ..., rN )
sampled from a probability distribution proportional to
the density matrix ρ(R,R, T ) = 〈R|e−H/kBT |R〉 at the
temperature T . In the present study we are interested
in the superfluid density ρs, obtained from the winding
number estimator [10], and in the one-body density ma-
trix (OBDM) n1(r), whose long-range behavior defines
the condensate density n0 = limr→∞ n1(r). Our simula-
tions are based on the worm algorithm [11], which allows
for an efficient sampling of permutation cycles, and on the
pair-product decomposition which is well suited for stud-
ies of dilute systems [12]. We perform calculations both
in the canonical (at fixed density n) and in the grand-
canonical ensemble (at fixed chemical potential µ) [11].

We are now in a position to discuss our results. First
we discuss the simulations carried out at fixed density.
The scattering length and the disorder correlation length
are also kept fixed and for the latter we choose the value
nℓ3

c = 0.24, such that there is typically one particle in
each small sphere of radius ℓc: n4πℓ3

c/3 ≃ 1. Results
for the transition temperature as a function of disor-
der strength are shown in Fig. 2 for two values of the
gas parameter na3. The transition temperature Tc is
expressed in units of T 0

c = (2π~
2/mkB)[n/ζ(3/2)]2/3,

the critical temperature of the non-interacting gas with
ζ(3/2) ≃ 2.612, and the results in the absence of disor-
der are taken from Ref. [12]. At na3 = 10−4, there is no
appreciable change for V0 . 1 compared to Tc in clean
systems. For larger intensities we find a sizable shift that
is well described by a linear dependence in V0. For a
given strength V0 the reduction of the transition temper-
ature is enhanced for smaller values of the gas parameter,
consistently with the instability of the ideal Bose gas in
the presence of disorder [13]. The value of Tc is extracted
from the results of the superfluid fraction ρs/ρ (ρ = mn
is the total mass density), corresponding to systems with
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FIG. 2: (color online). Superfluid transition temperature as
a function of the disorder strength for two values of the gas
parameter na3. Open and solid symbols refer respectively to
Tc determined from the superfluid and from the condensate
fraction. The dashed line is the prediction of Ref. [8] at na3 =
10−4 shifted by (Tc − T 0

c ) in the absence of disorder. Inset:
scaling behavior of the superfluid density for different system
sizes and different realizations of disorder.
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FIG. 3: (color online). Critical chemical potential (shifted by
V0) as a function of the disorder strength for different values of
temperature (in units of ~

2/mℓ2c) and scattering length. The
grey shaded area denotes the superfluid phase. Inset: spatial
dependence of the OBDM for two values of the chemical po-
tential slightly below and above µc. Here kBT = 0.13~

2/mℓ2c
and a/ℓc = 0.016. Two different system sizes are used to
check the role of finite-size effects.

different particle number N , using the scaling ansatz

N1/3ρs(t, N)/ρ = f(tN1/3ν) = f(0) + f ′(0)tN1/3ν + ... .
(3)

Here, t = (T − Tc)/Tc is the reduced temperature, ν is
the critical exponent of the correlation length ξ(t) ∼ t−ν ,
and f(x) is a universal analytic function, which allows
for a linear expansion around x = 0. The validity of the
scaling behavior (3) is presented in the inset of Fig. 2,
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FIG. 4: (color online). Critical density as a function of the
disorder strength for different values of temperature (in units
of ~

2/mℓ2c) and scattering length. The horizontal arrows in-
dicate the critical value n0

c of the non-interacting gas. Inset:
Density dependence of ρs/ρ [(pink) squares] and n0/n [(blue)
circles] for the values V0 = 0 and V0 = 6.4~

2/mℓ2c of the dis-
order strength. Here kBT = 0.13~

2/mℓ2c and a/ℓc = 0.016.
The vertical arrow indicates the corresponding value of the
degenerate density n0

c .

where the effect of different realizations of the random
potential is also shown. The quantity N (1+η)/3n0/n,
involving the condensate fraction n0/n and the corre-
lation function critical exponent η = 0.038 of the XY-
model universality class, is also expected to obey a scal-
ing relation of the form (3). For all reported disorder
strengths V0, the extracted value of the critical exponent
ν is compatible with the result ν = 0.67 corresponding
to clean systems [12]. It is worth noting that the val-
ues of Tc, obtained from the scaling law of the superfluid
ρs/ρ and of the condensate fraction n0/n, coincide within
our statistical uncertainty (see Fig. 2). In Ref. [8] the
shift δTc = Tc − T 0

c of the superfluid transition tempera-
ture is calculated using a perturbative approach for the
δ-correlated disorder 〈∆Vdis(r)∆Vdis(r

′)〉 = κδ(r − r
′),

where ∆Vdis(r) = Vdis(r) − 〈Vdis〉. The Tc shift is found
to be quadratic in κ, implying for our speckle potential
that δTc/T 0

c = (m2V 2
0 ℓ3

c/
√

na~
4)2/[2(12 log 2)3], where

we used a gaussian fit to the radial dependence of the au-
tocorrelation function Γ and considered the limit ℓc → 0.
We report this prediction in Fig. 2 (we also add the inter-
action contribution not accounted for by Ref. [8], so that
in the clean case an exact result is reproduced). Our data
in the regime of very weak disorder do not have enough
precision to allow for a quantitative comparison and di-
verge from the theory before δTc/T 0

c becomes apprecia-
ble. The effect of disorder on the critical temperature
of a hard-sphere gas was also investigated using PIMC
methods in Ref. [14] where, however, no significant re-
duction of Tc was reported. For stronger intensities of
disorder, the calculation of Tc becomes increasingly dif-
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ficult, since the dependence on the realization gets more
important and larger systems are needed in order to have
a satisfactory self-averaging of the random potential.

In Fig. 3 we report results for the critical chemical po-
tential µc obtained from calculations carried out in the
grand-canonical ensemble. A small change of µ around
µc translates into a drastic change in the long-range be-
havior of the OBDM (see inset of Fig. 3): for µ < µc

the OBDM decays to zero and corresponds to a normal
phase, for µ > µc the OBDM reaches a constant value
characteristic of the superfluid state. If interactions are
small but finite, we also find that the value of µc is es-
sentially insensitive to a change of temperature and of
interaction strength. For weak disorder, this result is ac-
companied by a very small critical density (see Fig. 4)
and corresponds to a renormalization of µc due to dis-
order in an extremely dilute gas. For strong disorder, it
is instead consistent with the picture of a mobility edge,
which depends only on the parameters of the random po-
tential and separates localized single-particle states from
extended ones. In this latter regime we find a linear de-
pendence of µc as a function of V0, in agreement with the
qualitative T = 0 prediction of Refs. [15, 16] in the case
of classical disorder.

Finally we analyze the dependence of the critical den-
sity nc on the intensity of the random potential. The
calculations are carried out in the canonical ensemble at
fixed temperature and scattering length. The method
used to determine nc is shown in the inset of Fig. 4. For
a given value of V0 one increases the density and cal-
culates the superfluid ρs/ρ and the condensate fraction
n0/n. The results are then fitted by a power-law de-
pendence ρs/ρ ∼ (n − nc)

ν and n0/n ∼ (n − nc)
ν(1+η)

for n > nc, where the proportionality coefficients are ex-
pected to be non-universal parameters. In the inset of
Fig. 4 we show the results corresponding to a configura-
tion without disorder (V0 = 0) and with strong disorder
(V0 = 6.4~

2/mℓ2
c). The reported values are averaged over

a few realizations of the random potential and their scat-
ter gives an idea of the relevance of this effect. For the
small value of the scattering length used here, the critical
density at V0 = 0 coincides with the non-interacting re-
sult n0

c = ζ(3/2)(mkBT/2π~
2)3/2, while for the large V0

one finds that nc is about a factor of eight greater than
n0

c . It is also worth noticing that for strong disorder one
enters a regime where n0/n is significantly larger than
ρs/ρ. More comprehensive results are shown in Fig. 4
where nc is estimated from the superfluid fraction, which
is less sensitive to finite-size effects. The results clearly
show an increase of the critical density as a function of
V0, from the non-interacting degenerate density n0

c up to
values ∼ 20 times larger. It is also worth noticing that
for strong disorder, an increase of the scattering length a
is accompanied by a decrease of nc resulting in a constant
value of the critical chemical potential (see Fig. 3).

In conclusion, we have investigated the superfluid crit-

ical behavior of an interacting Bose gas in a correlated
random medium. In the regime of strong disorder and
low temperatures we identify a phase, where the gas is
both normal and highly degenerate, which should be re-
lated to the Bose glass phase predicted at T = 0. An im-
portant question that will be addressed in future studies
concerns the equation of state and the thermodynamic
properties of this exotic normal phase.
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M. Modugno and L.P. Pitaevskii. This work, as part
of the European Science Foundation EUROCORES Pro-
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from the CNR and the EC Sixth Framework Programme.
NP acknowledges support from NSF grant PHY-0653183.
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