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Abstract

We study the gravitational scattering of massive particles with and
without spin in the effective theory of gravity at one loop level. Our
focus is on long distance effects arising from nonanalytic components
of the scattering amplitude and we show that the spin-independent
and the spin-dependent long range components exhibit a universal
form. Both classical and quantum corrections are obtained, and the
definition of a proper second order potential is discussed.
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1 Introduction

The gravitational interaction of two massive particles is described by New-
ton’s law

V (r) = −Gmamb

r
(1)

which is a good approximation for the motion of nonrelativistic particles at
large separations. Einstein’s theory of general relativity, however, predicts
important corrections that have been verified experimentally, e.g., in mea-
surements of the precession of the perihelion of Mercury [1]. This effect
can be calculated from the famous Einstein-Infeld-Hoffmann Lagrangian [2]
where the terms beyond Newtonian physics stem from the relativistic O(v2)
corrections to the kinetic energy, from relativistic O(v2) corrections to the
Newtonian potential and from a new piece of the potential proportional to
G2M3/r2 which may be regarded as an O(GM/r) correction to the leading
Newtonian potential. The two small expansion parameters here are v2 and
GM/r which for bound states are related due to the virial theorem. We,
however, will examine scattering processes wherein the classical expansion
parameters v2 and GM/r are independent, and our focus will be on the
components that vanish in the nonrelativistic limit v → 0.

In the weak field limit gravitational dynamics can be described in terms
of a quantum field theory which is based on expanding around flat Minkowski
spacetime and quantizing the metric fluctuation in terms of a massless spin-2
field—the graviton. The resulting theory is an effective field theory whose
predictions are trustworthy only for energies much smaller than the Planck
scale. Nevertheless, one can in this picture calculate well-defined quantum
predictions as well as classical corrections to Newtonian physics. Donoghue
has pioneered the use of the effective field theory of gravity to extract the
leading long distance effects in the nonrelativistic limit [3, 4] (see [5] and [6]
for reviews) which yield corrections of the form

V (r) = −Gmamb

r

(

1 + AC

GM

r
+ AQ

Gh̄

r2

)

(2)

where AC and AQ are the coefficients of the classical and quantum correc-
tions respectively and are evaluated below. Note that while the classical
expansion parameter GM/r ∼ M/MP l × ℓP l/r can give measurable effects
for macroscopic objects (where a large factor multiplies a tiny factor), the
quantum corrections which scale as Gh̄/r2 ∼ (ℓP l/r)

2 are clearly tiny and
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phenomenologically irrelevant for macroscopic systems. The calculations of
these leading long distance corrections are performed by evaluating the lead-
ing nonanalytic components of the scattering amplitude at one loop level,
where O(G2) effects first arise, and by defining a potential in terms of the
Fourier transform of this amplitude.

Once spin is introduced into the calculation, additional interaction struc-
tures arise, such as a spin-orbit coupling and a spin-spin coupling. The
leading effects of order G stemming from the tree level one-graviton exchange
process give rise to the familiar geodetic precession and to the Lense-Thirring
effect [1]. At the two-graviton exchange level, classical O(GM/r) and quan-
tum O(Gh̄/r2) corrections to these leading spin-dependent interactions arise
and are calculated as part of our work.

In earlier work on loop corrections to the form factors of graviton cou-
plings it was found that the long distance corrections to the spin-independent
interactions have the same form for scalars, spin-1/2 fermions and for spin-1
bosons [7, 8]. These NLO form factor interactions constitute one compo-
nent of the calculation of the full scattering amplitude at the two-graviton
exchange level, so the question arises as to whether the full scattering am-
plitude also exhibits such universalities, whereby the form of the corrections
to the spin-independent Newtonian potential is independent of the spins of
the scattered particles — in other words, are the coefficients AC and AQ in
Eq. (2) independent of spin?

This then is the goal of the present work — to evaluate the gravitational
scattering of two massive particles having various spins, in order to check
previous work and to verify the universality hypothesis. In the next section
then we review our calculational methods and reproduce the long range grav-
itational scattering amplitude in the case of a pair of spinless particles. In
the following sections, we generalize these methods to the cases of spin-0 –
spin-1/2, spin-0 – spin-1 and spin-1/2 – spin-1/2 scattering and demonstrate
both the expected universality as well as novel spin-dependent interactions.
We summarize our work and draw general implications in a brief concluding
section. Appendix A encapsulates parts of our calculational methods while
we refer to our companion paper on long distance effects in electromagnetic
scattering [9] for many of the details such as the required Feynman integrals,
the Fourier transformations etc. In Appendix B we demonstrate how the
classical equations of motion in the form of the Einstein-Infeld-Hoffmann
Lagrangian can be extracted from our results.
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p1 p3

a b

p2 = p1 − q p4 = p4 + q

Figure 1: Basic kinematics of gravitational scattering.

2 Spin-Independent Scattering

We first set the kinematic framework for our study. We consider the gravi-
tational scattering of two non-identical particles—particle a with mass ma,
and incoming four-momentum p1 and particle b with mass mb, and incoming
four-momentum p3. After interacting the final four-momentum of particle a
is p2 = p1 − q and that of particle b is p4 = p3 + q—cf. Fig. 1. Now we need
to be more specific.

2.1 Spin-0 – Spin-0 Scattering

We begin by examining the gravitational scattering of two spinless particles.
The gravitational coupling of a spin-0 particle is found by expanding the
minimally coupled scalar field matter Lagrangian

√
−gLm =

√
−g

(

1

2
gµν∂µφ∂νφ− 1

2
m2φ2

)

(3)

in terms of the gravitational field hµν which is a small fluctuation of the
metric about flat Minkowski space defined as

gµν = ηµν + κhµν (4)

with κ =
√

32πG ∝ 1/MP . The inclusion of this factor κ in the definition of
the graviton field hµν gives this field a mass-dimension of unity and thus yields
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a kinetic term of standard normalization without a dimensionful parameter.
For matter interactions, this choice is convenient since the order of κ keeps
track of the number of gravitons involved in an interaction. Once the action
is written in terms of the expansion of the graviton field, all indices are
understood to be lowered or raised using the Minkowski metric ηµν . We also
require the expansion of the inverse metric and square root of the determinant
of the metric tensor—

gµν = ηµν − κhµν + κ2hµαhν
α + O(κ3)

√−g = 1 +
κ

2
h+

κ2

8

(

h2 − 2hµνh
µν
)

+ O(κ3). (5)

Then, expanding in powers of κ, we find

√−gL(0)
m =

1

2
∂µφ∂

µφ− 1

2
m2φ2

√−gL(1)
m =

κ

2
hµν

[

ηµν

(

1

2
∂αφ∂

αφ− 1

2
m2φ2

)

− ∂µφ∂νφ
]

√−gL(2)
m =

κ2

2

[

1

4

(

h2 − 2hµνh
µν
)

(

1

2
∂αφ∂

αφ− 1

2
m2φ2

)

+
(

hµαhν
α − 1

2
hhµν

)

∂µφ∂νφ

]

(6)

where h ≡ ηαβhαβ represents the trace and the one- and two-graviton vertices
are identified as

p1

p2

µν

p1

p2

µν

ρσ

0τ (1)
µν (p2, p1, m) =

−iκ
2

[

p1µp2ν + p1νp2µ − ηµν(p1 · p2 −m2)
]

0τ (2)
µν,ρσ(p2, p1, m) =

iκ2

2

[

2Iµν,κζI
ζ
λ,ρσ(pκ

1p
λ
2 + pλ

1p
κ
2)

− (ηµνIκλ,ρσ +ηρσIκλ,µν)p
κ
1p

λ
2 −Pµν,ρσ(p1 ·p2−m2)

]

(7)
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where we have defined

Iαβ,γδ ≡ 1

2
(ηαγηβδ + ηαδηβγ)

Pαβ,γδ ≡ 1

2
(ηαγηβδ + ηαδηβγ − ηαβηγδ). (8)

The purely gravitational dynamics are derived from the Einstein-Hilbert
action

SGR =
1

16πG

∫

d4x
√−g R (9)

where higher dimensional operators such as R2, which are needed when per-
forming renormalization, are not relevant here [3, 4]. Since general relativity
is invariant under local coordinate transformations, it is a gauge theory and
one must deal with the subtleties that arise in the quantization of gauge
theories—we have to perform gauge fixing. The procedure works analogously
to gauge fixing in Yang-Mills theories. Furthermore, we will make use of the
background field method, which provides a powerful organizational scheme
for the quantization of the effective field theory of gravity: Keeping the back-
ground metric general instead of restricting to the flat Minkowski metric, we
use the expansion

gµν = ḡµν + κhµν . (10)

where ḡµν is the classical background metric (or field) and hµν is the quan-
tum field. A gauge fixing condition is only imposed on the quantum field hµν ,
leaving the general covariance of the background unaffected. This procedure
has the advantage of ensuring that the resulting theory can be renormal-
ized, since the loop expansion then has the same symmetry properties as the
action.

Moreover, the background field method greatly simplifies calculations in-
volving graviton loops. Gravitons running in loops must be derived from
from an expansion involving the quantum field hµν whereas gravitons that
are not within a loop may be derived from expanding the background field

ḡµν = ηµν + κHµν (11)

where Hµν denotes an “external” graviton, i.e., a graviton that is not inside
a loop. At the one loop level, at most two gravitons involved in a vertex are
propagating within a loop, which allows us to use a gauge fixing condition
linear in the quantum field hµν and greatly simplifies the derivation of both
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the triple graviton vertex and the vertex that couples one graviton to the
ghost fields.

In order to fix the gauge, we will use the harmonic gauge—

D̄νhµν −
1

2
D̄µh = 0 (12)

where D̄µ denotes the covariant derivative on the background metric. This
condition leads to an additional gauge fixing piece of the action

SGF =
∫

d4x
√−ḡ

(

D̄νhµν −
1

2
D̄µh

)(

D̄ρh
µρ − 1

2
D̄µh

)

(13)

as well as the ghost action

SGhost =
∫

d4x
√−ḡ η̄µ

(

D̄µD̄ν −Rµν

)

ην (14)

where ηµ is the ghost field that annihilates a ghost particle while η̄µ creates
a ghost particle.1

Now we are in the position to derive the Feynman rules for the effective
field theory of gravity. The complete quantum gravitational action consists
of three components

SGrav = SGR + SGF + SGhost, (15)

and we will illustrate the use of the background field method during the
derivations of the Feynman rules. When deriving the graviton propagator
we expand the action to second order in the quantum fields hµν and to zeroth
order in the external gravitons Hµν and the ghosts, yielding

Dαβ,γδ(q) =
iPαβ,γδ

q2
. (16)

We obtain the ghost propagator expanding the action to second order in the
ghost fields and to zeroth order in the gravitons, whereby

Dµν(q) =
iηµν

q2
. (17)

Our triple graviton vertex is obtained by expanding to second order in the
quantum fields hµν , to first order in the background gravitons Hµν , and to
zeroth order in the ghost fields and reads

1Note that the ghost fields anticommute since they obey Fermi-Dirac statistics and we
have to include a factor of (−1) for each closed ghost loop.
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k + q

k

q

αβ

γδ

µν

τµν
αβ,γδ(k, q) = −iκ

2

{

Pαβ,γδ

[

kµkν + (k + q)µ(k + q)ν + qµqν − 3

2
ηµνq2

]

+2qλqσ

[

Iλσ,
αβI

µν,
γδ + Iλσ,

γδI
µν,

αβ

−Iλµ,
αβI

σν,
γδ − Iσν,

αβI
λµ,

γδ

]

+
[

qλq
µ(ηαβI

λν,
γδ +ηγδI

λν,
αβ)+ qλq

ν(ηαβI
λµ,

γδ +ηγδI
λµ,

αβ)

−q2(ηαβI
µν,

γδ +ηγδI
µν,

αβ)−ηµνqλqσ(ηαβIγδ,λσ+ηγδIαβ,λσ)
]

+
[

2qλ
(

Iσν,
γδIαβ,λσk

µ + Iσµ,
γδIαβ,λσk

ν

−Iσν,
αβIγδ,λσ(k + q)µ − Iσµ,

αβIγδ,λσ(k + q)ν
)

+q2(Iσµ,
αβIγδ,σ

ν + Iαβ,σ
νIσµ,

γδ)

+ηµνqλqσ(Iαβ,λρI
ρσ,

γδ + Iγδ,λρI
ρσ,

αβ)
]

+
[

(k2 +(k+ q)2)
(

Iσµ,
αβIγδ,σ

ν + Iσν,
αβIγδ,σ

µ− 1

2
ηµνPαβ,γδ

)

−((k + q)2ηαβI
µν,

γδ + k2ηγδI
µν,

αβ)
]

}

(18)

where the graviton with Lorentz indices µν represents a background gravi-
ton, and therefore, it is not to be used within any loop!2 The final missing
Feynman rule from the purely gravitational action is the vertex coupling one

2For each closed graviton bubble loop, we also have to include a symmetry factor of
1/2! in the amplitude.
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graviton to two ghost fields which we derive by expanding to second order in
the ghost fields and to first order in Hµν—

k + q

k

q

α

β

µν

τµν
α,β(k, q) =

iκ

2

[

(k2 + (k + q)2 + q2)Iαβ,
µν + 2ηαβ k

λ(k + q)σPλσ,
µν

+2qαk
λIβλ,

µν − 2qβ(k + q)λIαλ,
µν + qαqβη

µν

]

(19)

where the graviton with Lorentz indices µν is again a background graviton
and not to be used as part of any loop.

We begin our calculation with the simplest tree level single-graviton ex-
change which leads to the amplitude3

0M(1)(q) =
−i√

2E12E22E32E4

τ (1a)
µν (p2, p1)

iP µν,αβ

q2
τ

(1b)
αβ (p4, p3)

=
−8πG√

2E12E22E32E4

[

(s−m2
a −m2

b + 1
2
q2)2 − 2m2

am
2
b − 1

4
q4

q2

]

.

(20)

A convenient way to define the nonrelativistic potential is as the Fourier
transform of the nonrelativistic center of mass scattering amplitude. We
utilize a symmetric center of mass frame4 with incoming momenta ~p1 =
~p+ ~q/2 and ~p3 = −~p1 = −~p− ~q/2 and with outgoing momenta ~p2 = ~p− ~q/2

3Our normalization of the amplitude is a nonrelativistic one such that after applying
all Feynman rules we divide the amplitude by a factor of

√
2E12E22E32E4.

4These symmetric momentum labels of the center of mass frame are chosen so that
the leading order coordinate space potential is real in the calculation of spin-0 – spin-1
scattering presented below.
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and ~p4 = −~p + ~q/2. Conservation of energy then requires ~p · ~q = 0 so that
~p 2

i = ~p 2 + ~q 2/4 for i = 1, 2, 3, 4 and q2 = −~q 2. In the nonrelativistic limit—
~q 2, ~p 2 ≪ m2 —the lowest order amplitude reads

0M(1)(~q) ≃ 4πGmamb

~q 2

[

1 +
~p 2

mamb

(

1 +
3(ma +mb)

2

2mamb

)

+ . . .

]

+ Gπ

[

3(m2
a +m2

b)

2mamb

+
~p 2

mamb

(

3 − 5(m2
a +m2

b)
2

4m2
am

2
b

)

+ . . .

]

+ . . .

(21)

yielding the potential

0V
(1)
G (~r) = −

∫

d3q

(2π)3
0M(1)(~q) e−i~q·~r

= −Gmamb

r

[

1 +
~p 2

mamb

(

1 +
3(ma +mb)

2

2mamb

)

+ . . .

]

+Gπδ3(~r)

[

3(m2
a +m2

b)

2mamb

+
~p 2

mamb

(

3 − 5(m2
a +m2

b)
2

4m2
am

2
b

)

+ . . .

]

(22)

The leading component of Eq. (22) is recognized as the usual Newtonian
potential (accompanied by a small kinematic correction) while the second
piece is a short range modification.

Our purpose in this paper is to study the long distance corrections to this
lowest order potential which arise from the two-graviton exchange diagrams
shown in Fig. 2. This problem has been previously studied by Iwasaki using
noncovariant perturbation theory [10], and by Khriplovich and Kirilin [11,
12] and by Bjerrum-Bohr, Donoghue, and Holstein [13] using conventional
Feynman diagrams. Our approach will be similar to that used in [11, 12]
and [13]. That is, using the ideas of effective field theory, we evaluate these
Feynman diagrams by keeping only the leading nonanalytic structure in q2,
since it is these pieces that lead to the long range corrections to the potential
while components analytic in q2 only yield short range contributions, i.e.,
delta functions or derivatives of delta functions. The leading nonanalytic
behavior is of two basic forms

i) terms in 1/
√
−q2 which are h̄-independent and therefore classical

9



(a) (b) (c) (d)

(e)

+

(f) (g)

Figure 2: One loop diagrams of gravitational scattering.

ii) terms in log−q2 which are h̄-dependent and therefore quantum me-
chanical.

The former terms, when Fourier transformed lead to corrections to the non-
relativistic potential of the form Vclassical(r) ∼ 1/r2 while the latter lead to
Vquantum(r) ∼ h̄/mr3 corrections. For typical masses and separations the
quantum mechanical forms are themselves numerically insignificant. How-
ever, they are intriguing in that their origin appears to be associated with
zitterbewegung. That is, classically we can define the potential by measuring
the energy when two objects are separated by distance r. However, in the
quantum mechanical case the distance between two objects is uncertain by
an amount of order the Compton wavelength due to zero point motion—
δr ∼ h̄/m. This leads to the replacement

V (r) ∼ 1

r2
−→ 1

(r ± δr)2
∼ 1

r2
∓ 2

h̄

mr3

which is the form found in our calculations.
The diagrams to be evaluated are shown in Fig. 2 where the “blobs”

shown in diagrams (f) and (g) are explained in Fig. 3. The calculational
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= +

= +

Figure 3: Loop corrections subsumed in vertex and in vacuum polarization
functions.

details including the Feynman integrals are described in an appendix of our
companion paper on electromagnetic scattering [9]. Here we present only the
results. Defining5

S =
π2

√
−q2

and L = log−q2

we have, from diagrams 2(a)-(g) respectively

0M(2)

2a
(q) = G2mamb [−44L]

0M(2)

2b
(q) = G2mamb [28L+ 8maS]

0M(2)

2c
(q) = G2mamb [28L+ 8mbS]

0M(2)

2d
(q) = G2mamb

[(

4mamb

q2
+

8(m2
a +m2

b)

mamb

− 8

)

L+ 4(ma +mb)S

]

− i4πG2m2
am

2
b

L

q2

√

mamb

s− s0

0M(2)

2e
(q) = G2mamb

[(

−4mamb

q2
− 8(m2

a +m2
b)

mamb

− 70

3

)

L− 4(ma +mb)S

]

5Note that our definition of S differs slightly from previous publications [3, 4, 13, 7] in
that it does not include a factor of mass in the numerator.
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0M2f (q) = G2mamb [14L− 2(ma +mb)S]

0M2g(q) = G2mamb

[

−43

15
L
]

(23)

where s = (p1+p3)
2 is the square of the center of mass energy and s0 = (ma+

mb)
2 is its threshold value. The contributions from the form factor diagrams

in Fig. 2(f) have been calculated both directly and using the results from
[7, 8], and the contribution from vacuum polarization diagrams in Fig. 2(g)
have been obtained both by direct evaluation and by using previous results
of ’t Hooft and Veltman [14] for the divergences of the graviton self-energy
that allow us to infer its nonanalytic contributions6. Here we should note
that any massless particle would contribute to the nonanalytic terms of the
graviton vacuum energy since gravitons couple to anything. We choose here
not to include other massless particles besides the graviton—in particular we
do not include the contribution of the photon in the quantum piece of our
potential.

Summing, we find the total result

0M(2)
tot(q) = G2mamb

[

6(ma +mb)S − 41

5
L
]

− i4πG2m2
am

2
b

L

q2

√

mamb

s− s0
(24)

and we observe that, in addition to the expected terms involving L and S,
there arises a piece of the second order amplitude which is imaginary. The
origin of this imaginary piece is, of course, from the second Born approxi-
mation to the Newtonian potential, and reminds us that in order to define
a proper correction to the first order Newtonian potential we must subtract
off such terms. For this purpose we will work in the nonrelativistic limit and
the center of mass frame—~p1 + ~p3 = 0 as defined above. We have then

s− s0 = 2
√

m2
a + ~p 2

1

√

m2
b + ~p 2

1 + 2~p 2
1 − 2mamb (25)

and
√

mamb

s− s0
≃ mr

p0
(26)

where mr = mamb/(ma+mb) is the reduced mass and p0 ≡ |~pi|, i = 1, 2, 3, 4.
The transition amplitude Eq. (24) then assumes the form

0M(2)
tot(~q) ≃ G2mamb

[

6(ma +mb)S − 41

5
L
]

− i4πG2m2
am

2
b

L

q2

mr

p0

. (27)

6In a massless theory the divergences of dimensional regularization are accompanied
by logarithms of the momentum transfer.
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For the iteration we shall use the simple potential

0V
(1)
G (~r) = −Gmamb

r
(28)

which reproduces the long distance behavior of the lowest order amplitude
for spin-0 – spin-0 gravitational scattering—Eq. (22)—in the nonrelativistic
limit. We will employ the momentum space representation

0V
(1)
G (~q) ≡

〈

~pf

∣

∣

∣

0V̂
(1)
G

∣

∣

∣ ~pi

〉

= −4πGmamb

~q 2
= −4πGmamb

(~pi − ~pf )2
(29)

where we identify ~pi = ~p1 and ~pf = ~p2, and the second Born term is then

0Amp
(2)
G (~q) = −

∫ d3ℓ

(2π)3

〈

~pf

∣

∣

∣

0V̂
(1)
G

∣

∣

∣

~ℓ
〉 〈

~ℓ
∣

∣

∣

0V̂
(1)
G

∣

∣

∣ ~pi

〉

E(p0) −E(ℓ) + iǫ

= i
∫

d3ℓ

(2π)3
0V

(1)
G (~ℓ− ~pf)G

(0)(~ℓ) 0V
(1)
G (~pi − ~ℓ ) (30)

where

G(0)(ℓ) =
i

p2

0

2mr
− ℓ2

2mr
+ iǫ

(31)

is the nonrelativistic propagator. Note that in Eq. (30) we take both the
leading order potential as well as the total energies E(p0) and E(ℓ) in the
nonrelativistic limit. The remaining integration can be performed exactly,
yielding7

0Amp
(2)
G (~q) = i

∫

d3ℓ

(2π)3

−4πGmamb

|~ℓ− ~p2|2 + λ2

i
p2

0

2mr
− ℓ2

2mr
+ iǫ

−4πGmamb

|~p1 − ~ℓ|2 + λ2

= H = −i4πG2m2
am

2
b

L

q2

mr

p0
(32)

which precisely reproduces the imaginary component of 0M(2)
tot(~q), as ex-

pected. In order to produce a properly defined second order potential 0V
(2)
G (~r)

we must then subtract this second order Born term from the second order

7Note that the iteration integrals are listed in Appendix A
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transition amplitude, yielding the result

0V
(2)
G (~r) = −

∫

d3q

(2π)3
e−i~q·~r

[

0M(2)
tot(q) − 0Amp

(2)
G (q)

]

=
∫

d3q

(2π)3
e−i~q·~rG2mamb

[

−6S(ma +mb) +
41

5
L
]

= −3G2mamb(ma +mb)

r2
− 41G2mambh̄

10πr3

(33)

The quantum mechanical—∼ h̄/r3—component of the second order po-
tential given in Eq. (33) agrees with that previously given by Bjerrum-Bohr,
Donoghue, and Holstein [13] and by Kirilin and Khriplovich [12]. However,
the classical—∼ 1/r2—contribution quoted by Iwasaki

0V
(2)
IW (~r) =

G2mamb(ma +mb)

2r2
. (34)

differs from that quoted above in Eq. (33) and by Bjerrum-Bohr et al. in [13].
The resolution of this issue was given by Sucher, who pointed out that the
classical term depends upon the precise definition of the first order potential
used in the iteration [15]. Moreover, it depends and on whether one uses
relativistic forms of the leading order potentials and the propagator G(0)(ℓ) in
the iteration. In modern terms, the potential depends on how one performs
the matching—e.g., Iwasaki [10] performs an off-shell matching while we
match on-shell. In our companion paper on electromagnetic scattering [9] we
have provided a more detailed discussion of these ambiguities8. Use of the
simple lowest order form Eq. (29) within a nonrelativistic iteration yields our
result for the iteration amplitude given in Eq. (32) and is sufficient to remove
the offending imaginary piece of the scattering amplitude. In Appendix B
we derive an alternative form of the O(G2) classical potential which results
from an iteration that includes the leading relativistic corrections and which
reproduces the classical equations of motion.

Therefore, a unique definition of the potential does not exist. Of course,
the ambiguities in the form of the second order classical potential should not

8Besides the dependence on the forms used in the iteration, the classical piece also
depends on the coordinates used. The quantum piece however depends neither on the
choice of coordinates [13] nor on the iteration forms [9].
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be a concern, since the potential is not an observable. What is an observable
is the on-shell transition amplitude, which is uniquely defined in each case
as

0Mtot(~q) = −
∫

d3rei~q·~r
[

0V
(1)
i (~r) + 0V

(2)
i (~r)

]

+ 0Ampi(~q) (35)

where the index i denotes differing possible definitions of the potentials and
the iteration. Thus we regard our potential as a nice way to display our re-
sulting scattering amplitudes in coordinate space, but we emphasize that our
main results are the long distance components of the scattering amplitude.

3 Spin-Dependent Scattering: Spin-Orbit In-

teraction

3.1 Spin-0 – Spin-1/2

Having determined the form of the potential for the spinless scattering case
we move on to the case of scattering of particles carrying spin. We begin
with the scattering of a spinless particle a from a spin-1/2 particle b.

For the case of spin-1/2 we require some additional formalism in order
to extract the gravitational couplings, which is necessary because the Dirac
algebra {γa, γb} = 2ηab is defined with respect to the Minkoswki flat space
metric. In this case the Dirac matter Lagrangian coupled to gravity reads

√−gLm =
√−g ψ̄

[

i

2
eµ

a{γa, Dµ} −m
]

ψ (36)

and involves the vierbein eµ
a which links global coordinates with those in

a locally flat space. The vierbein is in some sense the “square root” of the
metric tensor gµν and satisfies the relations

eµ
aeν

b ηab = gµν eµ
ae

ν
b η

ab = gµν

eµ
aeν

b gµν = ηab eµ
ae

ν
b gµν = ηab. (37)

The covariant derivative is

Dµ =
1

2
∂LR

µ +
i

4
ωµ

a
b
ηac σ

cb (38)

with σcb = i
2

[

γc, γd
]

and the partial derivative ∂LR
µ acts only on spinors and

in such a way that
ψ̄∂LR

µ ψ = ψ̄ ∂µψ −
(

∂µψ̄
)

ψ. (39)
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Putting everything together, we find then

√−gLm =
√−g ψ̄

[

i

2
γaeµ

a∂
LR
µ − 1

8
eµ

a′ ωµ
a
b
ηac {γa′

, σcb} −m
]

ψ. (40)

The spin connection ωµ
a
b
ηac can be derived in terms of vierbeins by requir-

ing Dµeν
a = 0 and by antisymmetrization in µ ↔ ν in order to get rid of

Christoffel symbols9. The result is:

ωµ
a
b
ηac =

(

ηab

2
eν

c (∂µeν
a − ∂νeµ

a) +
ηaf

2
eν

ce
ρ
beµ

f ∂ρeν
a

)

−
(

b↔ c
)

(41)

In order to derive the Feynman rules we expand the ingredients in Eq. (40)
that contain graviton couplings, that is we need eµ

a and ωµ
a
b
ηac expanded

up to O(κ2)

eµ
a = δa

µ +
κ

2
ha

µ − κ2

8
hµρh

aρ + . . .

eµ
a = δµ

a − κ

2
hµ

a +
3κ2

8
haρh

µρ + . . .

ωµ
a
b
ηac =

κ

2
∂bhµc +

κ2

8
hρ

b∂µhcρ −
κ2

4
hρ

b∂ρhµc +
κ2

4
hρ

b∂chµρ −
(

b ↔ c
)

(42)

After these expansions are employed, we no longer need to distinguish be-
tween Latin Lorentz indeces and Greek covariant indices and can use the
Minkowski metric to lower and raise all indices.

The matter Lagrangian then has the expansion—(note here that our con-
ventions are γ5 = −iγ0γ1γ2γ3 and ǫ0123 = +1)

√−gL(0)
m = ψ̄

(

i

2
6∂LR −m

)

ψ

√
−gL(1)

m =
κ

2
h ψ̄

(

i

2
6∂LR −m

)

ψ − κ

2
hµν ψ̄

i

2
∂LR

µ γνψ

√−gL(2)
m =

κ2

8

(

h2 − 2hαβh
αβ
)

ψ̄
(

i

2
6∂LR −m

)

ψ

9For our purposes we shall use only the symmetric component of the vierbein matrices,
since these are physical and can be connected to the metric tensor, while their antisym-
metric components are associated with freedom of homogeneous transformations of the
local Lorentz frames and do not contribute to nonanalyticity [16].
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+
κ2

8

(

3hµρhν
ρ − 2hhµν

)

ψ̄
i

2
∂LR

µ γνψ

+
iκ2

16
ǫαβγδ hρ

α(i∂βhργ) ψ̄γδγ5ψ (43)

and the corresponding one- and two-graviton vertices are found to be

p1

p2

µν

k

p1

p2

k + q

µν

ρσ

1

2 τ (1)
µν (p2, p1, m) =

−iκ
2

[

1

4

(

γµ(p1+p2)ν +γν(p1+p2)µ

)

−ηµν

(

1

2
(6p1+ 6p2)−m

)]

1

2 τ (2)
µν,ρσ(p2, p1, m) = iκ2

[

− 1

2

(

1

2
( 6p1+ 6p2) −m

)

Pµν,ρσ

− 1

16

[

ηµν

(

γρ(p1 + p2)σ + γσ(p1 + p2)ρ

)

+ηρσ

(

γµ(p1 + p2)ν + γν(p1 + p2)µ

)

]

+
3

16
(p1 + p2)

ǫρξ(Iξφ,µνI
φ

ǫ,ρσ + Iξφ,ρσI
φ

ǫ,µν)

+
i

16
ǫǫφηλγλγ5

(

Iρσ,φξIµν,η
ξkǫ − Iµν,φξIρσ,η

ξ (k + q)ǫ

)

]

.

(44)

The tree level transition amplitude from one-graviton exchange is then

1

2M(1)(q) =
−16πGmamb√
2E12E2E3E4

[

− mamb

q2
ū(p4)u(p3)

+
s−m2

a −m2
b + 1

2
q2

q2

1

ma

ū(p4) 6p1u(p3)

]

. (45)
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Defining the spin vector as

Sµ
b =

1

2
ū(p4)γ5γ

µu(p3) (46)

we find the identity

ū(p4)γµu(p3) =





1

1 − q2

4m2

b





[

(p3 + p4)µ

2mb

ū(p4)u(p3) −
i

m2
b

ǫµβγδq
βpγ

3S
δ
b

]

(47)

whereupon the nonanalytic part of the transition amplitude in the thereshold
limit s→ s0 = (ma +mb)

2 can be written in the form

1

2M(1)(q) ≃ −4πGmamb

q2

[

ū(p4)u(p3) +
2i

mam2
b

ǫαβγδp
α
1p

β
3q

γSδ
b

]

. (48)

In order to define the potential we require the nonrelativistic amplitude in
the symmetric center of mass frame (~p1 = −~p3 = ~p + ~q/2) where

Sα
b

NR−→ (0, ~Sb) with ~Sb =
1

2
χb†

f ~σχ
b
i , (49)

ū(p4)u(p3)
NR−→ χb†

f χ
b
i −

i

2m2
b

~Sb · ~p× ~q (50)

and

ǫαβγδp
α
1 p

β
3q

γSδ
b

NR−→ (ma +mb)

(

1 +
~p 2

2mamb

)

~Sb · ~p× ~q, (51)

so that

1

2M(1)(~q) ≃ 4πGmamb

~q 2

[

χb†
f χ

b
i +

i(3ma + 4mb)

2mam2
b

~Sb · ~p× ~q + . . .

]

(52)

and the lowest order potential becomes

1

2V
(1)
G (~r) = −

∫

d3q

(2π)3

1

2M(1)(~q ) e−i~q·~r

= −Gmamb

r
χb†

f χ
b
i −

3ma + 4mb

2mam2
b

~Sb · ~p× ~∇
(

−Gmamb

r

)

= −Gmamb

r
χb†

f χ
b
i +

G

r3

3ma + 4mb

2mb

~L · ~Sb (53)
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where ~L = ~r × ~p is the angular momentum—the modification of the leading
spin-independent potential has a spin-orbit character.

In order to determine the second order potential, we must evaluate the
one loop diagrams in Fig. 2. A subtlety that arises in the calculation involv-
ing spin is that two independent kinematic variables arise: the momentum
transfer q2 and s − s0, which is to leading order proportional to p2

0 (where
p2

0 ≡ ~p 2
i , i = 1, 2, 3, 4) in the center of mass frame. We find that our re-

sults differ if we perform an expansion first in s − s0 and then in q2 or vice
versa. This ordering issue occurs only for the box diagram, diagram (d) of
Fig. 2, where it stems from the reduction of vector and tensor box integrals.
Their reduction in terms of scalar integrals involves the inversion of a ma-
trix whose Gram determinant vanishes in the nonrelativistic threshold limit
q2, s−s0 → 0. More precisely, the denominators or the vector and tensor box
integrals (see Appendix A in [9]) involve a factor of (4p2

0−~q 2) when expanded
in the nonrelativistic limit. Since q 2 = 4p2

0 sin2 θ
2

with θ the scattering angle,
we notice that 4p2

0 > ~q 2 unless we consider backward scattering where θ = π
and where the scattering amplitude diverges. And since p2

0 originates from
the relativistic structure s − s0, it is clear that we must first expand our
vector and tensor box integrals in q2 and then in s−s0. With this procedure,
the contributions of the loop diagrams in Fig. 2 to the spin-0 – spin-1/2
scattering amplitude read

1

2M(2)

2a
(q) = G2mamb

[

ū(p4)u(p3)(−10L) +
1

ma

ū(p4) 6p1u(p3)(−24L)
]

1

2M(2)

2b
(q) = G2mamb

[

ū(p4)u(p3)(−maS + 3L)

+
1

ma

ū(p4) 6p1u(p3)(8maS + 20L)
]

1

2M(2)

2c
(q) = G2mamb

[

ū(p4)u(p3)(4mbS + 2L)

+
1

ma

ū(p4) 6p1u(p3)(4mbS + 16L)
]

1

2M(2)

2d
(q) = G2mamb

[

ū(p4)u(p3)

(

− 4mamb

q2
L− mamb(3ma + 4mb)

s− s0
S

−(6ma+11mb)S− 42m2
a+23mamb−4m2

b

6mamb

L

)

+
1

ma

ū(p4) 6p1u(p3)

(

8mamb

q2
L+

mamb(3ma + 4mb)

s− s0

S
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+(9ma + 13mb)S

+
153m2

a − 44mamb + 88m2
b

12mamb

L

)]

− i4πG2m2
am

2
b

L

q2

√

mamb

s− s0

(

2
1

ma

ū(p4) 6p1u(p3) − ū(p4)u(p3)
)

1

2M(2)

2e
(q) = G2mamb

[

ū(p4)u(p3)

(

4mamb

q2
L

+
19ma

4
S +

42m2
a +21mamb−4m2

b

6mamb

L

)

+
1

ma

ū(p4) 6p1u(p3)

(

− 8mamb

q2
L− 33ma + 16mb

4
S

−153m2
a + 268mamb + 88m2

b

12mamb

L

)]

1

2M(2)

2f
(q) = G2mamb

[

ū(p4)u(p3)
(

− 3ma

2
S + 10L

)

+
1

ma

ū(p4) 6p1u(p3)
(

− ma + 4mb

2
S + 4L

)]

1

2M(2)

2g
(q) = G2mamb

[

ū(p4)u(p3)
(

− 1

15
L
)

+
1

ma

ū(p4) 6p1u(p3)
(

− 42

15
L
)]

. (54)

Again, we have calculated the form factor diagrams in Fig. 2(f) both directly
and via the results from [7, 8]. Summing, we find

1

2M(2)
tot(q) = G2mamb

[

L
(

23

5
ū(p4)u(p3) −

64

5

1

ma

ū(p4) 6p1u(p3)
)

+S
(

− 15ma + 28mb

4
ū(p4)u(p3)

+
11(3ma + 4mb)

4

1

ma

ū(p4) 6p1u(p3)
)

−(3ma +4mb)mambS

s− s0

(

ū(p4)u(p3)−
1

ma

ū(p4) 6p1u(p3)
)

]

− i4πG2m2
am

2
b

L

q2

√

mamb

s− s0

(

−ū(p4)u(p3) + 2
1

ma

ū(p4) 6p1u(p3)
)

(55)
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Using the identity Eq. (47) and

p1 · (p3 + p4) = 2mamb + s− s0 +
q2

2

Eq. (55) becomes

1

2M(2)
tot(q) = G2mamb

[

ū(p4)u(p3)
(

6(ma +mb)S − 41

5
L
)

+
i

mam
2
b

ǫαβγδ p
α
1p

β
3q

γSδ
b

(

11(3ma + 4mb)

4
S − 64

5
L
)

+
iS(3ma + 4mb)

mb(s− s0)
ǫαβγδp

α
1p

β
3q

γSδ
b

]

−i4πG2m2
am

2
b

L

q2

√

mamb

s− s0

(

ū(p4)u(p3) +
2i

mam
2
b

ǫαβγδp
α
1 p

β
3q

γSδ
b

)

(56)

Finally, working in the center of mass frame and taking the nonrelativistic
limit, we find

1

2M(2)
tot(~q) ≃

[

G2mamb

(

6(ma +mb)S − 41

5
L
)

− i4πG2m2
am

2
b

L

q2

mr

p0

]

χb†
f χ

b
i

+

[

G2

(

12m3
a +45m2

amb +56mam
2
b +24m3

b

2(ma +mb)
S − 87ma +128mb

10
L

)

+
G2m2

am
2
b(3ma + 4mb)

(ma +mb)

(

−i2πL
p0q2

+
S

p2
0

)]

i

mb

~Sb · ~p× ~q (57)

We note from Eq. (57) that the scattering amplitude consists of two pieces—a
spin-independent component proportional to χb†

f χ
b
i whose functional form

G2mamb

(

6(ma +mb)S − 41

5
L
)

− i4πG2m2
am

2
b

L

q2

mr

p0

(58)

is identical to that of spinless scattering—together with a spin-orbit compo-
nent proportional to

i

mb

~Sb · ~p× ~q
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whose functional form is

G2

(

12m3
a + 45m2

amb + 56mam
2
b + 24m3

b

2(ma +mb)
S − 87ma + 128mb

10
L

)

+
G2m2

am
2
b(3ma + 4mb)

(ma +mb)

(

−i2πL
p0q2

+
S

p2
0

)

(59)

We note in Eq. (59) the presence in the spin-orbit potential of an imaginary
final state rescattering term proportional to i/p0, similar to that found in
the case of spin-independent scattering, together with a completely new type
of kinematic form, proportional to 1/p2

0 which diverges at threshold. The
presence of either term would prevent us from writing down a well defined
second order potential.

The solution to this problem is, as before, to properly subtract the iterated
first order potential—

1

2 Amp
(2)
G (~q) = −

∫ d3ℓ

(2π)3

〈

~pf

∣

∣

∣

1

2 V̂
(1)
G

∣

∣

∣

~ℓ
〉 〈

~ℓ
∣

∣

∣

1

2 V̂
(1)
G

∣

∣

∣ ~pi

〉

p2

0

2mr
− ℓ2

2mr
+ iǫ

(60)

where we now use the one-graviton exchange potential
1

2V
(1)
G (~r) given in Eq.

(53). Splitting this lowest order potential into spin-independent and spin-
dependent components—

〈

~pf

∣

∣

∣

1

2 V̂
(1)
G

∣

∣

∣ ~pi

〉

=
〈

~pf

∣

∣

∣

1

2 V̂
(1)
S−I

∣

∣

∣ ~pi

〉

+
〈

~pf

∣

∣

∣

1

2 V̂
(1)
S−O

∣

∣

∣ ~pi

〉

(61)

where
〈

~pf

∣

∣

∣

1

2 V̂
(1)
S−I

∣

∣

∣ ~pi

〉

= −4πGmamb

~q 2
χb†

f χ
b
i = −4πGmamb

(~pi − ~pf )2
χb†

f χ
b
i

〈

~pf

∣

∣

∣

1

2 V̂
(1)
S−O

∣

∣

∣ ~pi

〉

= −4πGmamb

~q 2

3ma + 4mb

2mamb

i

mb

~Sb · ~p× ~q

= −4πGmamb

(~pi − ~pf )2

3ma + 4mb

2mamb

i

mb

~Sb ·
1

2
(~pi + ~pf) × (~pi − ~pf)

(62)

we find that the iterated amplitude splits also into spin-independent and
spin-dependent pieces. The leading spin-independent amplitude is

1

2 Amp
(2)
S−I(~q) = −

∫

d3ℓ

(2π)3

〈

~pf

∣

∣

∣

1

2 V̂
(1)
S−I

∣

∣

∣

~ℓ
〉 〈

~ℓ
∣

∣

∣

1

2 V̂
(1)
S−I

∣

∣

∣ ~pi

〉

p2

0

2mr
− ℓ2

2mr
+ iǫ
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= i
∑

sℓ

∫

d3ℓ

(2π)3

c2Gχ
b†
f χ

b
sℓ

|~ℓ− ~pf |2 + λ2

i
p2

0

2mr
− ℓ2

2mr
+ iǫ

c2Gχ
b†
sℓ
χb

i

|~pi − ~ℓ|2 + λ2

= χb†
f χ

b
iH = −i4πG2m2

am
2
b

L

q2

mr

p0
χb†

f χ
b
i (63)

where we defined c2G ≡ −4πGmamb, and the leading spin-dependent term is

1

2 Amp
(2)
S−O(~q) = −

∫ d3ℓ

(2π)3

〈

~pf

∣

∣

∣

1

2 V̂
(1)
S−I

∣

∣

∣

~ℓ
〉 〈

~ℓ
∣

∣

∣

1

2 V̂
(1)
S−O

∣

∣

∣ ~pi

〉

p2

0

2mr
− ℓ2

2mr
+ iǫ

−
∫ d3ℓ

(2π)3

〈

~pf

∣

∣

∣

1

2 V̂
(1)
S−O

∣

∣

∣

~ℓ
〉 〈

~ℓ
∣

∣

∣

1

2 V̂
(1)
S−I

∣

∣

∣ ~pi

〉

p2

0

2mr
− ℓ2

2mr
+ iǫ

=
i(3ma + 4mb)

2mam2
b

~Sb ·


i
∫ d3ℓ

(2π)3

c2G

|~ℓ−~pf |2 +λ2

i
p2

0

2mr
− ℓ2

2mr
+ iǫ

c2G
1
2
(~pi +~ℓ)×(~pi−~ℓ)
|~pi−~ℓ|2 +λ2

+i
∫

d3ℓ

(2π)3

c2G
1
2
(~ℓ+~pf)×(~ℓ−~pf )

|~ℓ−~pf |2 +λ2

i
p2

0

2mr
− ℓ2

2mr
+ iǫ

c2G

|~pi−~ℓ|2 +λ2





=
i(3ma + 4mb)

2mam
2
b

~Sb · ~H × ~q

=
G2m2

am
2
b(3ma + 4mb)

(ma +mb)

(

−i2πL
p0q2

+
S

p2
0

)

i

mb

~Sb · ~p× ~q (64)

(In principle we would also have to iterate the leading order spin-orbit piece
twice. However this procedure yields only terms higher order in p2

0.) We
observe that when the amplitudes Eqs. (64) and (63) are subtracted from
the full one loop scattering amplitude Eq. (57) both the terms involving
1/p2

0 and those proportional to i/p0 disappear leaving behind a well-defined
second order potential

1

2V
(2)
G (~r) = −

∫

d3q

(2π)3
e−i~q·~r

[

1

2M(2)
tot(~q) −

1

2 Amp
(2)
G (~q)

]

=
∫

d3q

(2π)3
e−i~q·~r

[

G2mamb

(

−6(ma +mb)S +
41

5
L
)

χb†
f χ

b
i

+G2

(

− 12m3
a + 45m2

amb + 56mam
2
b + 24m3

b

2(ma +mb)
S
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+
87ma + 128mb

10
L

)

i

mb

~Sb · ~p× ~q

]

=

[

−3G2mamb(ma +mb)

r2
− 41G2mambh̄

10πr3

]

χb†
f χ

b
i

+
1

mb

~Sb · ~p× ~∇
[

G2(12m3
a + 45m2

amb + 56mam
2
b + 24m3

b)

4(ma +mb)r2

+
G2(87ma + 128mb)h̄

20πr3

]

=

[

−3G2mamb(ma +mb)

r2
− 41G2mambh̄

10πr3

]

χb†
f χ

b
i

+

[

G2(12m3
a + 45m2

amb + 56mam
2
b + 24m3

b)

2mb(ma +mb)r4

+
3G2(87ma + 128mb)h̄

20πmbr5

]

~L · ~Sb (65)

We observe then that the second order potential for long range gravitational
scattering of a spinless and spin-1/2 particle consists of two components: one
which is independent of the spin of particle b and is identical to the potential
found for the case of spinless scattering, accompanied by a spin-orbit inter-
action involving a new form for its classical and quantum potentials. It is
tempting to speculate that the form of this new spin-orbit potential is also
universal. In order to check this hypothesis we consider the case of spin-0 –
spin-1 scattering.

3.2 Spin-0 – Spin-1

The dynamics of a neutral spin-1 field φµ having mass m is described by the
Proca Lagrangian which, when coupled to gravity via minimal substitution,
takes the form

√−gLm =
√−g

[

−1

4
UµνUρσg

µρgνσ +
1

2
m2φµφνg

µν

]

(66)

where
Uµν = Dµφν −Dνφµ = ∂µφν − ∂νφµ (67)

is the spin-1 field tensor. The last equality in Eq. (67) follows from the
symmetry of the connection coefficients Γα

µν = Γα
νµ. Expanded in terms of
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the graviton field, the matter Lagrangian then has the form

√−gL(0)
m = −1

2
∂µφν∂

µφν +
1

2
∂µφν∂

νφµ +
1

2
m2φµφ

µ

√−gL(1)
m =

κ

2
h
(

−1

2
∂µφν∂

µφν +
1

2
∂µφν∂

νφµ +
1

2
m2φµφ

µ

)

− κhµν

(

−1

2
∂µφα∂νφ

α − 1

2
∂αφµ∂

αφν + ∂µφ
α∂αφν +

1

2
m2φµφν

)

√−gL(2)
m =

κ2

8

(

h2 − 2hαβh
αβ
)

(

−1

2
∂µφν∂

µφν +
1

2
∂µφν∂

νφµ +
1

2
m2φµφ

µ

)

+
κ2

2

(

2hµρhν
ρ − hhµν

)

×
(

−1

2
∂µφα∂νφ

α − 1

2
∂αφµ∂

αφν + ∂µφ
α∂αφν +

1

2
m2φµφν

)

+ κ2hµρhνσ

(

−1

2
∂µφν∂ρφσ +

1

2
∂µφν∂σφρ

)

(68)

and the one- and two-graviton vertices are

p1

p2

µν

β

α

p1

p2

µν

ρσ

β

α

1τ
(1)
β,α,µν(p2, p1, m) = −iκ

2
ηµν

[

(p1 · p2 −m2)ηαβ − p1βp2α

]

+ iκIµν,κλ

[

(p1 · p2 −m2)Iαβ,
κλ +

1

2
(pκ

1p
λ
2 + pλ

1p
κ
2)ηαβ

−(pκ
1p2αδ

λ
β + pκ

2p1βδ
λ
α)
]

1τ
(2)
β,α,µν,ρσ(p2, p1, m) =

iκ2

2
Pµν,ρσ

[

(p1 · p2 −m2)ηαβ − p1βp2α

]
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− iκ2
(

Iµν,
κδIρσ,δ

λ+Iρσ,
κδIµν,δ

λ− 1

2

(

ηµνIρσ,
κλ +ηρσIµν,

κλ
)

)

×
[

(p1 · p2 −m2)Iαβ,
κλ +

1

2
(pκ

1p
λ
2 + pλ

1p
κ
2)ηαβ

−(pκ
1p2αδ

λ
β + pκ

2p1βδ
λ
α)
]

− iκ2

2

(

Iµν,
ηθIρσ,

κλ + Iρσ,
ηθIµν,

κλ
)

×
[

p1ηηακ(p2θηβλ−p2ληβθ)+p2ηηβκ(p1θηαλ−p1ληαθ)
]

.

(69)

If we take the incoming spin-1 particle to have polarization vector ǫbi sat-
isfying ǫbi · p3 = 0 and the outgoing particle to have polarization ǫbf satisfying
ǫbf · p4 = 0, then the one-graviton exchange amplitude can then be written as

1M(1)(q) = − 8πG√
2E12E22E32E4

×
[

− ǫb∗f · ǫbi
(

(s−m2
a −m2

b + 1
2
q2)2 − 2m2

am
2
b +m2

aq
2 − 1

4
q4

q2

)

−
(

ǫb∗f · qǫbi · p1 − ǫb∗f · p1ǫ
b
i · q

) 2(s−m2
a −m2

b + 1
2
q2)

q2

−
(

ǫb∗f · qǫbi · p1 + ǫb∗f · p1ǫ
b
i · q

)

+ 2 ǫb∗f · qǫbi · q
m2

a

q2
+ 2 ǫb∗f · p1ǫ

b
i · p1

]

≃ −4πGmamb

q2

[

− ǫb∗f · ǫbi −
2

mamb

(

ǫb∗f · qǫbi · p1 − ǫb∗f · p1ǫ
b
i · q

)

+
1

m2
b

ǫb∗f · qǫbi · q
]

(70)

where the first expression is exact while the second expression contains only
the nonanalytic part in the threshold limit s → s0 = (ma + mb)

2. Now we
rewrite this expression using the identity

ǫb∗fµ ǫ
b
i ·q−ǫbiµ ǫb∗f ·q =

1

1 − q2

4m2

b

[

i

mb

ǫµβγδ p
β
3q

γSδ
b −

(p3 + p4)µ

2m2
b

ǫb∗f · q ǫbi · q
]

(71)
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where we have defined the spin vector

Sbµ =
i

2mb

ǫµβγδ ǫ
b∗β
f ǫbγi (p3 + p4)

δ (72)

The leading one-graviton exchange amplitude can then be written as

1M(1)(q) ≃ −4πGmamb

q2

[

−ǫb∗f · ǫbi +
2i

mam2
b

ǫαβγδp
α
1 p

β
3q

γSδ
b −

1

m2
b

ǫb∗f · qǫbi · q
]

(73)
In the nonrelativistic limit we have

ǫb0i ≃ 1

mb

ǫ̂bi · ~p3, ǫb0f ≃ 1

mb

ǫ̂bf · ~p4 (74)

so that

ǫb∗f · ǫbi ≃ −ǫ̂b∗f · ǫ̂bi +
1

m2
b

ǫ̂b∗f · ~p4 ǫ̂
b
i · ~p3

≃ −ǫ̂b∗f · ǫ̂bi +
1

2m2
b

ǫ̂b∗f × ǫ̂bi · ~p4 × ~p3

+
1

2m2
b

(

ǫ̂b∗f · ~p4ǫ̂
b
i · ~p3 + ǫ̂b∗f · ~p3ǫ̂

b
i · ~p4

)

(75)

Since
− iǫ̂b∗f × ǫ̂bi =

〈

1, mf

∣

∣

∣

~Sb

∣

∣

∣ 1, mi

〉

, (76)

Eq. (75) becomes

ǫb∗f · ǫbi ≃ −ǫ̂b∗f · ǫ̂bi −
i

2m2
b

~Sb · ~p3 × ~p4 +
1

2m2
b

(

ǫ̂b∗f · ~p4 ǫ̂
b
i · ~p3 + ǫ̂b∗f · ~p3 ǫ̂

b
i · ~p4

)

≃ −ǫ̂b∗f · ǫ̂bi +
1

m2
b

ǫ̂b∗f · ~p ǫ̂bi · ~p +
i

2m2
b

~Sb · ~p× ~q − 1

4m2
b

ǫ̂b∗f · ~q ǫ̂bi · ~q

(77)

and the transition amplitude assumes the form

1M(1)(~q) ≃ 4πGmamb

~q 2

[

ǫ̂b∗f · ǫ̂bi −
1

m2
b

ǫ̂b∗f · ~p ǫ̂bi · ~p+
i(3ma + 4mb)

2mam
2
b

~Sb · ~p× ~q

− 3

4m2
b

ǫ̂b∗f · ~q ǫ̂bi · ~q
]

(78)
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The spin-independent and spin-orbit terms here are identical in form to those
found in the spin-0 – spin-1/2 case but now are accompanied by new terms
which are quadrupole in nature, as can be seen from the identity

T b
cd ≡ 1

2

(

ǫ̂b∗fc ǫ̂
b
id + ǫ̂bic ǫ̂

b∗
fd

)

− 1

3
δcd ǫ̂

b∗
f · ǫ̂bi

= −
〈

1, mf

∣

∣

∣

∣

1

2
(ScSd + SdSc) −

2

3
δcd

∣

∣

∣

∣

1, mi

〉

(79)

The corresponding lowest order potential is then

1V
(1)
C (~r) = −

∫ d3q

(2π)3
1M(1)(~q) e−i~q·~r

≃ −Gmamb

r

(

ǫ̂b∗f · ǫ̂bi −
1

m2
b

ǫ̂b∗f · ~p ǫ̂bi · ~p
)

−3ma + 4mb

2mam2
b

~Sb · ~p× ~∇
(

−Gmamb

r

)

+
3

4m2
b

ǫ̂b∗f · ~∇ ǫ̂bi · ~∇
(

−Gmamb

r

)

≃ − Gmamb

r

(

ǫ̂b∗f · ǫ̂bi −
1

m2
b

~p : T b : ~p

)

+
G

r3

3ma + 4mb

2mb

~L · ~Sb

− G

r5

9ma

4mb

~r : T b : ~r (80)

where we have defined
~w : T b : ~s ≡ wcT

b
cdsd

and which agrees precisely with its spin-1/2 analog in Eq. (53) up to qua-
drupole and tensor corrections.

The calculation of the one loop corrections proceeds as before, but with
increased complexity due to the unit spin. Evaluating the diagrams in Fig.
2, we find then

1M(2)

2a
(q) = G2mamb

[

28Lǫ∗bf · ǫbi −
16L

m2
a

ǫb∗f · p1ǫ
b
i · p1

+
16L

mamb

(ǫb∗f · qǫbi · p1 − ǫb∗f · p1ǫ
b
i · q)

+
8L

m2
a

(ǫb∗f · qǫbi · p1 + ǫb∗f · p1ǫ
b
i · q)
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+
4L

m2
b

ǫb∗f · qǫbi · q
]

1M(2)

2b
(q) = G2mamb

[

(−4maS − 16L)ǫ∗bf · ǫbi +
8maS + 16L

m2
a

ǫb∗f · p1ǫ
b
i · p1

− 8L

mamb

(ǫb∗f · qǫbi · p1 − ǫb∗f · p1ǫ
b
i · q)

−4maS + 8L

m2
a

(ǫb∗f · qǫbi · p1 + ǫb∗f · p1ǫ
b
i · q)

−
((

2ma −
3m2

b

2ma

)

S +

(

2 − 2m2
b

m2
a

)

L

)

1

m2
b

ǫb∗f · qǫbi · q
]

1M(2)

2c
(q) = G2mamb

[

(−8mbS − 12L)ǫ∗bf · ǫbi +
16L

m2
a

ǫb∗f · p1ǫ
b
i · p1

−4mbS + 8L

mamb

(ǫb∗f · qǫbi · p1 − ǫb∗f · p1ǫ
b
i · q)

− 8L

m2
a

(ǫb∗f · qǫbi · p1 + ǫb∗f · p1ǫ
b
i · q)

−mbS + 8L

m2
b

ǫb∗f · qǫbi · q
]

1M(2)

2d
(q) = G2mamb

[

4mamb

q2
L
(

− ǫ∗bf · ǫbi −
2

mamb

(ǫb∗f · qǫbi · p1 − ǫb∗f · p1ǫ
b
i · q)

+
1

m2
b

ǫb∗f · qǫbi · q
)

+
S

s− s0

(

− (3ma + 4mb)(ǫ
b∗
f · qǫbi · p1 − ǫb∗f · p1ǫ

b
i · q)

+
ma(5ma + 7mb)

2mb

ǫb∗f · qǫbi · q
)

−
(

(6ma + 4mb)S +
12m2

a − 6mamb + 24m2
b

3mamb

L
)

ǫ∗bf · ǫbi

+
(

− 4maS +
22ma − 24mb

3mb

L
)

1

m2
a

ǫb∗f · p1ǫ
b
i · p1

−
(

13(ma +mb)S +
25m2

a + 7mamb + 22m2
b

3mamb

L
)

× 1

mamb

(ǫb∗f · qǫbi · p1 − ǫb∗f · p1ǫ
b
i · q)
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+
(

2maS−
11ma−12mb

3mb

L
)

1

m2
a

(ǫb∗f · qǫbi · p1 + ǫb∗f · p1ǫ
b
i · q)

+
((

7ma +9mb−
3m2

b

4ma

)

S +
(

5
ma

mb

+2+9
mb

ma

−m2
b

m2
a

)

L
)

× 1

m2
b

ǫb∗f · qǫbi · q
]

− i4πG2m2
am

2
b

L

q2

√

mamb

s− s0

(

−ǫ∗bf ·ǫbi −
2

mamb

(ǫb∗f ·qǫbi ·p1− ǫb∗f ·p1ǫ
b
i ·q)

+
1

m2
b

ǫb∗f · qǫbi · q
)

1M(2)

2e
(q) = G2mamb

[

4mamb

q2
L
(

ǫ∗bf · ǫbi +
2

mamb

(ǫb∗f · qǫbi · p1 − ǫb∗f · p1ǫ
b
i · q)

− 1

m2
b

ǫb∗f · qǫbi · q
)

+
(

(2ma + 4mb)S +
12m2

a + 52mamb + 24m2
b

3mamb

L
)

ǫ∗bf · ǫbi

−
(

4maS +
22ma + 24mb

3mb

L
)

1

m2
a

ǫb∗f · p1ǫ
b
i · p1

+
((

17

4
ma + 4mb

)

S +
25m2

a + 49mamb + 22m2
b

3mamb

L
)

× 1

mamb

(ǫb∗f · qǫbi · p1 − ǫb∗f · p1ǫ
b
i · q)

+
(

2maS+
11ma+12mb

3mb

L
)

1

m2
a

(ǫb∗f · qǫbi · p1 + ǫb∗f · p1ǫ
b
i · q)

−
((

13

8
ma+

31

8
mb+

3m2
b

4ma

)

S+
(

5
ma

mb

+
16

3
+9

mb

ma

+
m2

b

m2
a

)

L
)

× 1

m2
b

ǫb∗f · qǫbi · q
]

1M(2)

2f
(q) = G2mamb

[

(2(ma +mb)S − 14L)ǫ∗bf · ǫbi

+
((

1

2
ma+2mb

)

S−4L
)

1

mamb

(ǫb∗f · qǫbi ·p1− ǫb∗f ·p1ǫ
b
i · q)

+
((

− 1

4
ma +

1

2
mb

)

S + 4L
)

1

m2
b

ǫb∗f · qǫbi · q
]
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1M(2)

2g
(q) = G2mamb

[

43L

15
ǫ∗bf · ǫbi +

14L

5mamb

(ǫb∗f · qǫbi · p1 − ǫb∗f · p1ǫ
b
i · q)

− 7L

5m2
b

ǫb∗f · qǫbi · q
]

(81)

Combining, we find the full one loop amplitude

1M(2)
tot(q) = G2mamb

[

S

s− s0

(

− (3ma + 4mb)(ǫ
b∗
f · qǫbi · p1 − ǫb∗f · p1ǫ

b
i · q)

+
ma(5ma + 7mb)

2mb

ǫb∗f · qǫbi · q
)

+
(

6(ma +mb)S − 41

5
L
)

(

−ǫb∗f · ǫbi
)

+
(

− 11(3ma + 4mb)

4
S +

64

5
L
)

× 1

mamb

(ǫb∗f · qǫbi · p1 − ǫb∗f · p1ǫ
b
i · q)

+
(

25ma + 37mb

8
S − 101

15
L
)

1

m2
b

ǫb∗f · qǫbi · q
]

(82)

which, using the identity Eq. (71), becomes

1M(2)
tot(q) = G2mamb

[

− ǫb∗f · ǫbi
(

6(ma +mb)S − 41

5
L
)

+
i

mam2
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β
3q

γSδ
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(
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4
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5
L
)

+
1

m2
b

ǫb∗f · qǫbi · q
(

− 53ma + 67mb

8
S +

91

15
L
)

+
i(3ma + 4mb)S

mb(s− s0)
ǫαβγδ p

α
1 p

β
3q

γSδ
b

−ma(ma +mb)S

2mb(s− s0)
ǫb∗f · qǫbi · q

]

− i4πG2m2
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2
b

L

q2

√
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s− s0

(

− ǫ∗bf · ǫbi +
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ǫαβγδ p
α
1 p

β
3q

γSδ
b

− 1

m2
b

ǫb∗f · qǫbi · q
)

(83)
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Notice here that without the ǫb∗f · qǫbi · q terms, Eq. (83) has an identical
structure to that of the case of spin-0 – spin-1/2 scattering—Eq. (56)—
provided we substitute ū(p4)u(p3) −→ −ǫb∗f · ǫbi .

Finally, taking the nonrelativistic limit we find

1M(2)
tot(~q) ≃

[

G2mamb

(

6(ma +mb)S − 41

5
L
)

− i4πG2m2
am

2
b

L

q2

mr

p0

]

×
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ǫ̂b∗f · ǫ̂bi −
1

m2
b

~p : T b : ~p

)

+

[

G2

(

12m3
a +45m2

amb +56mam
2
b +24m3

b

2(ma +mb)
S − 87ma +128mb

10
L

)

+
G2m2

am
2
b(3ma + 4mb)

(ma +mb)

(

−i2πL
p0q2

+
S

p2
0

)]

i

mb

~Sb · ~p× ~q

+

[

G2mamb

(

−21m2
a + 47mamb + 28m2

b

4(ma +mb)
S +

241

60
L

)

+
G2m3

am
3
b

2(ma +mb)

(

i
6πL

p0q2
− S

p2
0

)]

1

m2
b

~q : T b : ~q (84)

As found in the earlier calculations, there exist terms involving both i/p0

and 1/p2
0 which prevent the defining of a simple second order potential. The

solution now is well known—subtraction of the iterated first order potential.
Since the form of the spin-independent—ǫ̂∗B · ǫ̂A—and spin-orbit—~Sb · ~p×~q—
terms is identical to that found for the case of spin-1/2, it is clear that the
subtraction goes through as before and that the corresponding pieces of the
second order potential have the same form as found for spin-1/2. In addition,
there are now two new pieces of the amplitude, the quadrupole structure
~q : T b : ~q which multiplies terms involving both i/p0 and 1/p2

0 and the tensor
structure ~p : T b : ~p multiplying only i/p0. In order to remove these we must
iterate the full first order potential including these quadrupole and tensor
components. However, we find that our simple nonrelativistic iteration fails
to remove them! We suspect the reason to be the presence of the tensor
structure ~p : T b : ~p in the lowest order potential which is in some sense a
relativistic correction but which when iterated yields also quadrupole pieces
~q : T b : ~q. A fully relativistic iteration should thus be performed which is
under study but is beyond the scope of this paper. It would be interesting
to investigate if the requirement of canceling all i/p0 and 1/p2

0 forms in the
quadrupole and tensor pieces could clarify the ambiguity in the iteration of
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the leading order potential as discussed in [15, 9].
Since we did not perform the proper iteration of the quadrupole and

tensor pieces we include only the spin independent and spin-orbit pieces in
the resulting second order potential

1V
(2)
G (~r) = −

∫ d3q

(2π)3
e−i~q·~r

[

1M(2)
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]
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3G2(87ma + 128mb)h̄
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]

~L · ~Sb + 1V
(2)
T (~r) (85)

where 1V
(2)
T (~r) denotes the tensor pieces not explicitly shown. Comparison

with the corresponding form of
1

2V (1)(~r) given in Eq. (65) confirms the
universality which we have suggested—the spin-independent and spin-orbit
terms have identical forms. The next task is to see whether this universality
applies when both scattered particles carry spin. For this purpose we consider
the case of spin-1/2 – spin-1/2 scattering.

4 Spin-Dependent Scattering: Spin-Spin In-

teraction

4.1 Spin-1/2 – Spin-1/2

In the case of scattering of a pair of spin-1/2 particles, the basic vertices have
already been developed in the spin-0 – spin-1/2 scattering section, so we can
proceed directly to our calculation. The one-graviton exchange amplitude at
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tree level reads
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(86)

and with the spin identities Eq. (47) for system b and

ū(p2)γµu(p1) =
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for system a, Eq. (86) can be written as
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. (88)

In the symmetric center of mass frame we take the nonrelativistic limit yield-
ing
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]
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whereby the lowest order potential for spin-1/2 – spin-1/2 scattering becomes
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≃ −Gmamb
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(90)

Note that since the piece proportional to ~Sa · ~Sb in Eq. (89) is analytic in ~q 2

it yields only a short distance contribution which is omitted in the potential
Eq. (90).

In this case when we evaluate the loop diagrams in Fig. 2, we notice that
part of the spin-spin structure piece contains the form q2Sa · Sb multiplying
the nonanalytic structures L and S. Due to the extra factor of q2 in this
form, we must expand all loop integrals to one order higher in q2 than before
in order to be consistent. This has been done and does make a difference in
our results for the spin-spin interaction piece. The results for the individual
diagrams are then found to be
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where we have defined

Ua = ū(p2)u(p1) Ub = ū(p4)u(p3) (92)

and
Ei = ǫαβγδp

α
1p

β
3q

γSδ
i (93)

with i = a, b to keep our notation compact. The sum of all diagrams is found
to be
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Comparing with our finding for spin-0 – spin-1/2 scattering in Eq. (56),
we notice the by now familiar universality of the amplitude: The form of
the component proportional to ū(p4)u(p3) of Eq. (56) is found here in the
component proportional to UaUb, and the form of the structure proportional
to ǫαβγδp

α
1p

β
3q

γSδ
b of Eq. (56) is now found in the component proportional
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to UaEb in Eq. (94). Moreover, the amplitude is symmetric in a ↔ b and
new gravitational spin-spin interaction corrections arise. The quantum part
of the spin-spin component has been calculated previously by Kirilin [17]
whose result disagrees with our result for the numerical prefactors. For the
quantum terms in the spin-orbit components however, we fully agree with
Kirilin’s results in [17]. In the nonrelativistic limit we obtain the expression
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which obviously has to exhibit the universalities of the spin-independent and
the spin-orbit pieces. Therefore, we know that the subtraction of the second
Born iteration successfully removes the unwanted i/p0 and 1/p2

0 structures
for the spin-independent and the spin-orbit components.

The leading spin-spin term of the second Born iteration amplitude is new,
however, and we compute
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where we again defined c2G ≡ −4πGmamb. With this, the full second Born
iteration amplitude becomes
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and we observe that when this amplitude is subtracted from the full one loop
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scattering amplitude Eq. (95), all terms involving 1/p2
0 and i/p0 disappear

leaving behind a well-defined second order potential
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which besides the universal spin-independent and spin-orbit components dis-
plays a new (and presumably universal) gravitational spin-spin interaction.

5 Conclusions

Above we have analyzed the gravitational scattering of two particles hav-
ing nonzero mass. In lowest order the interaction arises from one-graviton
exchange and leads at threshold to the well known Newtonian interaction
V (r) = −Gmamb/r. Inclusion of two-graviton exchange effects means adding
the contribution from box, cross-box, triangle, and bubble diagrams, which
have a rather complex form. The calculation can be simplified, however,
by using ideas from effective field theory. The point is that if one is inter-
ested only in the leading long-range behavior of the interaction, then one
need retain only the leading nonanalytic small momentum-transfer piece of
the scattering amplitude. Specifically, the terms which one retains are those
which are nonanalytic and behave as either 1/

√
−q2 or log−q2. When Fourier

transformed, the former leads to classical (h̄-independent) terms in the po-
tential of order G2M3/r2 while the latter generates quantum mechanical (h̄-
dependent) corrections of order G2M2h̄/r3. (Of course, there are also shorter
range nonanalytic contributions than these that are generated by scattering
terms of order q2n/

√
−q2 or q2n log−q2. However, these pieces are higher

order in momentum transfer and thus lead to shorter distance effects than
those considered above and are therefore neglected in our discussion.)

Specific calculations were done for particles with spin 0−0, 0−1/2, 0−1,
and 1/2− 1/2 and various universalities were found. In particular, we found
that in each case there was a spin-independent contribution of the form

SaSbM(2)
tot(q) =

[

G2mamb

(

6(ma +mb)S − 41

5
L
)

− i4πG2m2
am

2
b

L

q2

√

mamb

s− s0

]

×〈Sa, maf |Sa, mai〉 〈Sb, mbf |Sb, mbi〉 (99)

where L = log−q2 and S = π2/
√
−q2 and with Sa the spin of particle a

and Sb the spin of particle b with projections ma and mb on the quantization
axis. The imaginary component of the amplitude, which would not, when
Fourier-transformed lead to a real potential, is eliminated when the iterated
lowest order potential contribution is subtracted, leading to a well defined
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spin-independent second order potential of universal form

SaSbV
(2)
S−I(~r) =

[

−3G2mamb(ma +mb)

r2
− 41G2mambh̄

10πr3

]

×〈Sa, maf |Sa, mai〉 〈Sb, mbf |Sb, mbi〉 (100)

whose classical component depends on the way the iteration of the leading
order potential is performed. This ambiguity shows that the second order
potential itself is not an observable, but we use it as a nice way to display the
long distance components of the scattering amplitude in coordinate space.

If either scattering particle carries spin then there exists an additional
spin-orbit contribution, whose form is also universal

SaSbV
(2)
S−O(~r) =

[

G2(24m3
a + 56m2

amb + 45mam
2
b + 12m3

b)

2ma(ma +mb)r4

+
3G2(128ma + 87mb)h̄

20πmar5

]

× ~L · ~Sa 〈Sb, mbf |Sb, mbi〉

+

[

G2(12m3
a + 45m2

amb + 56mam
2
b + 24m3

b)

2mb(ma +mb)r4

+
3G2(87ma + 128mb)h̄

20πmbr5

]

× 〈Sa, maf |Sa, mai〉 ~L · ~Sb (101)

where we have defined

~Sa =
〈

Sa, maf

∣

∣

∣

~S
∣

∣

∣Sa, mai

〉

and ~Sb =
〈

Sb, mbf

∣

∣

∣

~S
∣

∣

∣Sb, mbi

〉

.

In this case a well defined second order potential required the subtraction of
infrared singular terms behaving as both i/p0 and 1/p2

0 which arise from the
iterated lowest order potential.

In the calculation of spin-0 – spin-1 scattering we encountered new tensor
structures including a quadrupole interaction. Unfortunately, the subtraction
of the i/p0 and 1/p2

0 tensor pieces in the two-graviton exchange amplitude was
not successful with our simple nonrelativistic iteration of the leading order
potential so that we cannot at this time give the form of the quadrupole
component of the potential. Further work is needed to clarify this issue. The
corrections to the spin-spin interaction have only been calculated in spin-1/2
– spin-1/2 scattering where we found their contributions to the scattering
amplitude and to the potential. Since we verified these forms only for a
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single spin configuration we have not confirmed its universality which we,
however, strongly suspect. Of course, for higher spin configurations, there
also exist quadrupole-quadrupole interactions, spin-quadrupole interactions,
etc. However, the calculation of such forms becomes increasingly cumbersome
as the spin increases, and the phenomenological importance becomes smaller.
Thus we end our calculations here.

One point of view to interpret the universalities of the long distance com-
ponents of the scattering amplitudes and the resulting potentials is that if
we increase the spins of our scattered particles, all we do is to add additional
multipole moments. The spin-independent component can then be viewed as
a monopole-monopole interaction, the spin-orbit piece as a dipole-monopole
interaction etc. As long as we do not change the quantum numbers that
characterize the lower multipoles, an increase in spin of the scattered parti-
cles merely adds new interactions that are less important at long distances.
The same kind of universalities were also found in long distance effects in
electromagnetic scattering [9] and in the long range components of mixed
electromagnetic-gravitational scattering [18].
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A Iteration Integrals

In this appendix we give the integrals

[H ;Hr;Hrs] = i
∫ d3ℓ

(2π)3

−4πGmamb

|~ℓ− ~pf |2 + λ2

i[1; ℓr; ℓrℓs]
p2

0

2mr
− ℓ2

2mr
+ iǫ

−4πGmamb

|~pi − ~ℓ|2 + λ2
(102)

which are needed in order to perform the iteration of the lowest order Newton
potentials. Here we list only the results; for a more detailed derivation, albeit
with a different prefactor, see [9]. The leading expressions for the iteration

44



integrals read

H ≃ −i4πG2m2
am

2
b

L

q2

mr

p0

Hr ≃ (pi + pf )r G
2m2

am
2
b

(

−i2π L
q2

mr

p0

+ S
mr

p2
0

)

Hrs ≃ δrs ~q
2 G2m2

am
2
b

(

iπ
L

q2

mr

p0
− 1

2
S
mr

p2
0

)

+ (pi + pf )r(pi + pf)s G
2m2

am
2
b

(

−iπ L
q2

mr

p0
+ S

mr

p2
0

)

+ (pi − pf)r(pi − pf)s G
2m2

am
2
b

(

−iπ L
q2

mr

p0
+

1

2
S
mr

p2
0

)

. (103)

B Classical Equations of Motion

Above we have argued that the scattering amplitude which is ultimately
related to observables in quantum field theory is a physical result while the
potential we have given is not an observable and depends both on the gauge,
i.e., the choice of coordinates used, and on the way we perform the iteration,
i.e., on the way we perform the matching. While the classical component
of our potential is in fact plagued by these ambiguities, the quantum part
is unique since it is unaffected by how we perform the matching and since
a quantum field theory calculation in any gauge would result in the same
result [13].

In this appendix we will demonstrate how we can recover the classi-
cal equations of motion from our scattering amplitudes by setting up the
Einstein-Infeld-Hoffmann (EIH) Lagrangian [2]. The EIH Lagrangian is it-
self dependent on the choice of coordinates, but can be expressed in the
center of mass frame (~P ≡ ~pa = −~pb, ~r ≡ ~ra −~rb) in a general way as [19, 20]

LEIH = T − V (104)

where the kinetic energy to NLO in the nonrelativistic expansion reads

T =
~P 2

2ma

+
~P 2

2mb

−
~P 4

8m3
a

−
~P 4

8m3
b

(105)

and the potential is
V = V (1) + V (2) (106)
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with

V (1) = −Gmamb

r







1 +

[

1

2
+
(

3

2
− α

)

(ma +mb)
2

mamb

]

~P 2

mamb

+

[

1

2
+ α

(ma +mb)
2

mamb

]

(

~P · r̂
)2

mamb











(107)

V (2) = (1 − 2α)
G2mamb(ma +mb)

2r2
. (108)

The parameter α parameterizes the choice of coordinates used, where α = 0
was the gauge of the original EIH result. The coordinate change

~r → ~r

(

1 − α
G(ma +mb)

r

)

(109)

which implies

~P → ~P + α
G(ma +mb)

r

[

~P −
(

~P · r̂
)

r̂
]

(110)

brings the original EIH Lagrangian into the form above, which is the most
general result.

Since we perform our matching on-shell, i.e., we use the on-shell one-
graviton exchange amplitude to define the leading order O(G) potential,

terms proportional to ~P · r̂ would never arise. Clearly, our result must be in
a gauge such that the coefficient of the structure

(

~P · r̂
)2

mamb

in Eq. (107) vanishes. That is the case if and only if the gauge parameter is

α = − mamb

2(ma +mb)2
(111)

whereby the EIH potential becomes

V (1) = −Gmamb

r







1 +

[

1 +
3

2

(ma +mb)
2

mamb

]

~P 2

mamb







(112)

V (2) =

(

1 +
mamb

(ma +mb)2

)

G2mamb(ma +mb)

2r2
. (113)
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Comparing the EIH potential V (1) in this gauge of Eq. (112) with the long
distance component of the leading order spin-independent potential in Eq.
(22) we find full agreement for the relativistic corrections to the O(G) poten-
tial. However, comparing the EIH potential V (2) in this gauge of Eq. (113)
with the classical component of our spin-independent potential in Eq. (33)
we see that the two do not agree! The reason for this discrepancy is that
we elected to use a nonrelativistic iteration when we performed the second
Born iteration of the leading order potential in Eq. (32). This procedure,
however, is not self-consistent when we are interested in equations of motion
at NLO, for which we must account for the leading relativistic corrections in
the iteration. In particular, we must use expressions for the potential and the
propagator in Eq. (30) which include the leading relativistic corrections10

〈

~pf

∣

∣

∣

0V̂
(1)
NLO

∣

∣

∣ ~pi

〉

≃ −4πGmamb

~q 2

[

1 +
~p 2

i + ~p 2
f

2mamb

(

1 +
3(ma +mb)

2

2mamb

)]

(114)

G
(0)
NLO(ℓ) =

i
p2

0

2mr
− ℓ2

2mr
+ iǫ

×
[

1 +

(

p2
0

4m2
r

+
ℓ2

4m2
r

)(

1 − 3
m2

r

mamb

)]

(115)

which yields a second Born iteration amplitude

0Amp
(2)
NLO(~q) ≃ −

∫

d3ℓ

(2π)3

4πGmamb

|~pf − ~ℓ|2
1

p2

0

2mr
− ℓ2

2mr
+ iǫ

4πGmamb

|~ℓ− ~pi|2

×
[

1 +
(p2

0 + ℓ2)

mamb

(

1

4
+

7

4

mamb

m2
r

)]

≃ H +
1

mamb

(

p2
0H + δrsHrs

)

(

1

4
+

7

4

mamb

m2
r

)

≃ −i4πG2m2
am

2
b

L

q2

mr

p0
+
G2m2

am
2
b

ma +mb

(

1 +
7(ma +mb)

2

mamb

)

S.

(116)

Subtracting this iterated amplitude which includes all corrections to NLO
from the scattering amplitude 0M(2)

tot(~q) of Eq. (21) we find then the second
order potential

0V
(2)
NLO(~r) = −

∫

d3q

(2π)3
e−i~q·~r

[

0M(2)
tot(~q) − 0Amp

(2)
NLO(~q)

]

10The subscript NLO in this sections refers to the iteration being performed at NLO in
the relativistic expansion.
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=
∫ d3q

(2π)3
e−i~q·~r G2mamb

[(

(ma +mb) +
mamb

ma +mb

)

S +
41

5
L
]

=

(

1 +
mamb

(ma +mb)2

)

G2mamb(ma +mb)

2r2
− 41G2mambh̄

10πr3
(117)

and observe that now the classical component agrees with the O(G2) EIH
potential of Eq. (113).

Thus we have shown that if we consistently take into account the v2

and GM/r corrections beyond Newtonian physics we reproduce the EIH
Lagrangian in a certain gauge. From the resulting EIH Lagrangian we could
evaluate observables such as the precession of the perihelion of Mercury which
must clearly be independent of the gauge used. The inclusion of the v2

corrections is required since the equations of motion can be used to describe
bound states where v2 ∼ GM/r by the virial theorem.

However, our methods are clearly clumsy for the calculation of classical
observables. Recently, Goldberger and Rothstein have developed an effective
field theory of gravity which is optimized for calculating classical observables
of bound states called NRGR [21, 22, 23, 24, 25, 26]. Here the external
particles are static sources so that no loops are to be calculated in their theory
when calculating classical observables since the only propagating particles
present are gravitons which are massless and thus the loop expansion in
NRGR corresponds to an expansion in h̄. In the NRGR framework the spin-
dependent classical equations of motion were calculated recently to NLO by
Porto and Rothstein [27, 28, 29, 30] so that we will not continue here to
evaluate the corresponding spin-dependent classical potentials consistently
taking into account all relativistic O(v2) effects in the iteration.
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