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Abstract

Recent experiments in a mixture of two hyperfine states of trapped Bose gases show behavior

analogous to a spin-1/2 system, including transverse spin waves and other familiar Leggett-Rice-

type effects. We have derived the kinetic equations applicable to these systems, including the spin

dependence of interparticle interactions in the collision integral, and have solved for spin-wave

frequencies and longitudinal and transverse diffusion constants in the Boltzmann limit. We find

that, while the transverse and longitudinal collision times for trapped Fermi gases are identical, the

Bose gas shows diffusion anisotropy. Moreover, the lack of spin isotropy in the interactions leads

to the non-conservation of transverse spin, which in turn has novel effects on the hydrodynamic

modes. PACS numbers: 03.75.Mn,05.30Jp,05.60.Gg,51.10.+y,67.20.+k.
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In recent JILA experiments,[1],[2] a mixture of two hyperfine states was found to segregate

by species. The theoretical explanation[3]-[8] for this behavior is based on the two states

playing the role of a pseudo-spin-1/2 system, having transverse spin waves. The theory of

these new effects is based on old ideas of the transport properties of polarized homogeneous

quantum gases of real spins, such as 3He gas and solutions of 3He in liquid 4He,[9],[10]

transcribed to the trapped gas pseudo-spin case.

Besides spin waves, the theory for homogeneous polarized fermions or bosons led to

the prediction of anisotropic spin diffusion in the degenerate state.[9],[10],[11] When a spin

nonuniformity is longitudinal, that is, with a variation in the magnitude of the magneti-

zation, the spin diffusion coefficient is D‖. On the other hand, in a spin-echo experiment,

the magnitude of the magnetization is uniform but it varies spatially in direction. The

corresponding diffusion coefficient, D⊥ is less than D‖ when the system is polarized and

degenerate. Experimentally this feature has been seen, but was not always in reasonable ac-

cord with theory.[9] Moreover, Fomin[12] has suggested the effect should not exist. However,

a recent experiment[9] has overcome several possible experimental objections and finds good

agreement with theory. Moreover Mineev has very recently presented theoretical analysis

that questions the validity of Fomin’s approach.[13]

Thus it seems useful to see whether a similar difference between longitudinal and trans-

verse diffusion in trapped gases might provide an alternative testing ground for this question.

However, what we show here is that the physical possibility of having differing interac-

tion parameters between up-up, down-down, and up-down states (interaction anisotropy)

provides a new physical basis for anisotropic spin diffusion for bosons even in the Boltz-

mann limit.[14] For longitudinal diffusion in the Boltzmann limit only up-down scattering

contributes. However, in the transverse case, two spins at differing angles approach one

another, and the scattering can be analyzed as being a superposition of, say, up-up and up-

down scattering. In the fermion s-wave case, the up-up part gives no contribution, and, in

the Boltzmann limit, the diffusion coefficients are identical. In that case one must go to the

degenerate limit to see the anisotropy, which then is expected to arise because the density

of scattering states differs in longitudinal and transverse cases.[10] On the other hand, for

bosons, for which both the up-up and down-down scattering rates do contribute, we find an

anisotropy even in the Boltzmann limit, but only if the various scattering lengths differ. We

have here the striking effect that, although both gases obey Boltzmann statistics, there is a
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macroscopic difference between fermion and boson behavior.

The presence of interaction anisotropy provides another unusual effect, namely that trans-

verse spin is not conserved.[7] This leads to a decay of the transverse spin (a T2 process) that

seriously affects the hydrodynamic modes of the system. Below we first use the moments

method to compute the spectra of the lowest-lying longitudinal and transverse modes. How-

ever, with that method we obtain a transverse decay rate γ⊥ that diverges as τ approaches

zero, in contrast to the usual diffusive behavior where γ⊥ ∝ τ . In this case it is necessary

to solve the local hydrodynamic equations to find the correct behavior, in which the hydro-

dynamic solutions are localized at the low-density regions at the edges of the cloud where

the collision time is longer. The result is a much smaller decay rate than that obtained with

the moments method.

In our previous work, Ref. 10, we derived an analog of the Landau-Silin equation for a 2×2

density operator n̂p (here acting in the pseudo-spin space), with effective mean-field single

particle energy matrix ǫ̂p. We can write the density and single-particle energy in a Pauli

representation as n̂p = 1
2

(
fpÎ + mp · σ̂

)
and ε̂p =

(
epÎ + hp · σ̂

)
where σ̂ is a Pauli matrix,

1
2
(fp ±mpz) give the diagonal components of the density npi = npii, while mp represents the

polarization, which in equilibrium is along the axis ẑ. We find the following approximate

equation for mp:

∂mp

∂t
− 2

h̄
h× mp +

∑

i

[
pi

m

∂mp

∂ri
− ∂U

∂ri

∂mp

∂pi

]

= Tr
{
σ̂Îp

}
(1)

with mpz(r) = np1 −np2 and np12(r) = n∗
p21 = 1

2
mp−(r) = 1

2
(mpx − impy). The 2× 2 collision

integral is Îp. The effective mean magnetic field

h =
h̄Ω0

2
ẑ + η

t12
2

M (2)

where h̄Ω0 = V1 − V2 + [(t11 − t12) n1 − (t22 − t12)n2]

× (1 + η). In these η is 1 (−1) for bosons (fermions); M(r) =
∫

dp/h3 mp(r); ni(r) =
∫

dp/h3 np(r); Vi is the external field for species i; U = 1
2
(V1+V2); and Mz = n1−n2. The t’s

can be evaluated in terms of the measured scattering lengths aαβ by using tαβ = 4πh̄aαβ/m.

The equilibrium solution in the Boltzmann limit is m(0)
p = M(βh̄ω̄)3 exp[−β(p2/2m+U)]

where N is the total number of particles, Ni is the number of species i, M = N1 −N2 is the

total magnetization, and ω̄ ≡ (ωxωyωz)
1/3.
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We have derived the collision integral for the Boltzmann case when the various interaction

paramenters differ. Our expression agrees with the same quantity derived in Refs. 7 and 8,

and reduces properly to previous results if all the t’s are taken equal.[10],[15] We find

(σ|Îp|σ′) =
π

h̄

∫
dp1dp2dp3δ(p1 + p2 − p3 − p4)δ(ǫp1

+ ǫp21
− ǫp31

− ǫp4
)

∑

σ2

{
−t2σσ2

[(np1
)σσ′(np2

)σ2σ2
+ η(np2

)σσ2
(np1

)σ2σ′ ]

−t2σ′σ2
[(np1

)σσ′(np2
)σ2σ2

+ η(np1
)σσ2

(np2
)σ2σ′ ]

+2tσσ2
tσ′σ2

[(np3
)σσ′(np4

)σ2σ2
+ η(np3

)σσ2
(np4

)σ2σ′ ]
}

(3)

We will linearize the kinetic equation for mp around the global equilibrium value m(0)
p ẑ

and use a moment approach to compute the spin wave and diffusive damping just as done

previously.[5],[7] As in Ref. 5 we assume that the effective longitudinal field Ω0 can be

adjusted experimentally to zero. The linearized longitudinal and transverse equations are

∂δmpe

∂t
+
∑

i

[
pi

m

∂δmpe

∂ri
− ∂U

∂ri

∂δmpe

∂pi

]

=
∑

σ

σ(σ|L̂p|σ) (4)

and

∂δmp+

∂t
+ iηt12

(
m(0)

p δM+ − M0δmp+

)

+
∑

i

[
pi

m

∂δmp+

∂ri

− ∂U

∂ri

∂δmp+

∂pi

]

= 2(2|L̂p|1). (5)

where L̂p is the linearized form of Îp

In the following, for brevity, we compute only results for the monopole and dipole modes

although experiments have detected the quadrupole modes. Similar arguments hold for the

quadrupole case, which we will present in a longer publication.

Longitudinal case: We use a variational function of the form

δmpz = (a0 + a1z+a2pz)m
(0)
p (6)

and take the 1, z, and pz moments of the kinetic equation in both the longitudinal and

transverse cases. The results for the longitudinal case, if we assume a time dependence of

exp(iωt) for a1 and a2, are

da0/dt = 0 (7)

iωa1 − ωza2 = 0 (8)

iωa2 + ωza1 = −γ‖a2 (9)
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with γ‖ = 4γ0/3 where γ0 = πβm3ω̄3t212N/h4 comes from integrating the collision integral.

Eq. (7) indicates that the monopole mode does not decay in the longitudinal case, which

is consistent with the conservation of magnetization. The second line is the magnetization

equation of continuity. The relaxation rate γ‖ agrees with that derived in Ref. 5. The dipole

spectrum is plotted in Fig. 1 as a function of τ
‖
≡ 1/γ‖, the spatially averaged collision time.

In the small τ
‖

limit, one finds

ω‖ = iω2
i τ‖

, (10)

which has the form of the lowest-order solution of a diffusion equation in a harmonic poten-

tial.

2
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0
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ωzτ

FIG. 1: Real (dashed) and imaginary (solid) components of longitudinal dipole spin wave modes

versus average relaxation time τ‖. Note the linear dependence of Im(ω) for small τ‖ characteristic

of diffusive behavior. The dash-dotted lines represent the results of a numerical calculation to be

discussed below.

Transverse case: We again use the form of Eq. (6). Taking 1, z, and pz moments of

Eq. (5) yields the results

da0/dt = −γT a0 (11)

iωa1 − ωza2 = −1

2
γT a1 (12)
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i(ω − ωM)a2 + ωza1 = −γ⊥a2 (13)

where γT = γ0(1 + η)
∑

σ

(
tσσ−t12

t12

)2
fσ with fσ = Nσ/N, and

γ⊥ = γ‖

[
7R − 3S

8t212

]

(14)

with R = (1+η)
∑

σ t2σσfσ+(1−η)t212 and S = 2t12[(1+η)
∑

σ tσσfσ−ηt12], and the mean-field

frequency is

ωM = η
t12M

h̄

(
βh̄ω̄√

2λ

)3

(15)

where λ is the thermal wavelength.

Comments:

1) If the interactions parameters tij are all equal, we have γT = 0, R = S = 2t2 so that

γ⊥ = γ‖. Eqs. (11)-(13) then reduce to those of Ref. 5 and the longitudinal and transverse

relaxation rates are the same, which agrees with the standard result for a homogeneous real

spin system in the Boltzmann limit.

2) For fermions, we have η = −1, so that, even if the t’s are not equal, γT = 0 and

γ⊥ = γ‖.

3) For bosons with unequal t’s, the spatial averaged transverse relaxation rate is not

generally the same as the longitudinal. Moreover, we have a T2-type relaxation rate for

a0 and in the equation of continuity (12). The interaction anisotropy behaves something

like a dipole-dipole interaction allowing relaxation of the transverse spin, an effect noted

previously in Ref. 7.

If, for now, we take γT = 0, then the lowest mode in the hydrodynamic limit takes the

form

ω⊥ =
ω2

z(i − µM)τ⊥[
1 + (µM)2

] . (16)

where τ⊥ ≡ 1/γ⊥ and the so-called “spin-rotation parameter” µ = ωMτ⊥. The form of

Eq. (16) is the hydrodynamic frequency as modified by spin rotation. [9],[10],[15]. The first

term is the effective diffusion frequency while the second is the dipole-mode pseudo-spin-wave

frequency.

The effect of non-zero γT is to allow a T2 relaxation of the transverse spins. The results

are shown in Fig. 2, where we have set 1/τ⊥ = γ‖, γT = 0.02/τ⊥, and ωM = ωz. In the small

τ⊥ limit, one no longer has the hydrodynamic decay rate approaching zero, but instead it
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FIG. 2: Real (dashed) and imaginary (solid) components of transverse dipole spin wave modes

versus average relaxation time τ⊥ when the transverse spin is not conserved. The dotted line

shows the lower imaginary mode when the transverse decay rate γT = 0. The mean-field frequency

ωM is taken as ωz. The linear behavior of Im(ω) for small τ⊥ characteristic of diffusive behavior is

destroyed and replaced by a divergence within the moments method used here.

diverges at the origin because Im(ω) ≈ (ω2
zτ⊥ + γT ), and γT ∼ 1/τ⊥. However, although

suitable for finite ωτ , the moments method is inadequate in the hydrodynamic limit. It

fails because the simple forms assumed for spatial dependence cannot adjust to the spatially

dependent relaxation rates. One must solve local equations numerically for the spatial

behavior.

To obtain the hydrodynamic equations we expand the momentum distribution in terms

of Hermite polynomials

δmpz = e−βp2/2m
∑

k=0

ck(z, t)Hk(p) (17)

Substituting this into the kinetic equations, integrating over the momentum, and keeping

terms lowest order in τ⊥ gives, in the transverse case,

∂tδM+ + ∂zJ+ = −γT (z)δM+ (18)

∂tJ+ +
kT

m
∂zδM+ + ω2

zzδM+ + iωM (z)J+ ≈ −γ⊥(z)J+ (19)
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where δM+(z, t) = c0(z, t) is the nonequilibrium magnetization density, J(z, t) =
∫

dp/h3(p/m)δmpz = c1(z, t) is the spin current, and γ⊥(z) = γ⊥(0) exp(−βmω2
zz

2/2). Anal-

ogous equations hold in the longitudinal case. On the RHS of Eq. (19) the k = 1 momentum

distribution has been treated as an eigenfunction of the linearized collision integral. This is

justified by a numerical calculation of the matrix elements of the collision integral, which

gives

L⊥[H1(p)] = −γ⊥(0)(1.000H1(p) + 0.123H3(p)

−0.00094H5(p) + ...) ≈ −γ⊥(0)H1(p) (20)

The eigenvalues of the hydrodynamic equations have been calculated numerically for the

dipole mode with boundary conditions δM(0) = 0, J(0) = 1, and J(∞) = 0, and the

monopole mode with boundary conditions δM(0) = 1, J(0) = 0, and J(∞) = 0. For the

longitudinal and isotropic transverse cases this leads to only small corrections to the τ → 0

part of the spectra obtained by the moments method as shown in Fig. 1.

0.1

1

Im
(ω

/ω
z)

0.01 0.1 1
ωzτ

FIG. 3: Imaginary part of the spin-wave spectrum vs. ωzτ⊥ for the monopole and dipole modes

with ωM = ωz, γT = 0.02γ⊥, and γ⊥ ≈ γ‖ for both the moments method (thick) and hydrodynamic

calculations (dashed).

However, for γT > 0 the hydrodynamic spectrum differs qualitatively from that of the

moments method calculation. As τ⊥ → 0 the hydrodynamic dipole and monopole modes
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0.1

0.0

|δ
M

(z
)|

43210

(βmωz
2)1/2 z

FIG. 4: Profiles |δM(z)| of the the dipole modes vs.
√

βmω2
zz, normalized with a Hermite weighting

function. Tallest peak is the hydrodynamic mode for γT = 0 and τ⊥ = 0.01. Middle peak is the

moments method ansatz. Smallest peak is the hydrodynamic mode for γT = 0.02γ⊥ and ωzτ = 0.01.

do not decay at a rate ∼ 1/τ⊥, but instead decay at a slower rate ∼
√

log (1/ωzτ⊥) (See

Fig. 3.) In fact, at small enough ωzτ⊥ the T2 decay of the magnetization at the center of

the trap causes the monopole and dipole modes to coalesce into spin-waves localized on the

lower density regions on the left and right sides of the trap. (See Fig. 4.)

In experiments on Rb, the interaction anisotropy is very small. To test the novel effects

predicted here one might use Na,[16] which has a difference in interaction paraments; Numer-

ically we estimate that for 23Na γ⊥ can differ from γ⊥ by as much as 14% with γT /γ⊥ ≈ 0.04.

Interaction differences might also be induced by using Feshbach resonance methods.

We thank Dr. Jean-Noël Fuchs and Prof. David Hall for useful discussions.
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