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Abstract
Recent experiments in a mixture of two hyperfine states of trapped Bose gases show behavior
analogous to a spin-1/2 system, including transverse spin waves and other familiar Leggett-Rice-
type effects. We have derived the kinetic equations applicable to these systems, including the spin
dependence of interparticle interactions in the collision integral, and have solved for spin-wave
frequencies and longitudinal and transverse diffusion constants in the Boltzmann limit. We find
that, while the transverse and longitudinal collision times for trapped Fermi gases are identical, the
Bose gas shows diffusion anisotropy. Moreover, the lack of spin isotropy in the interactions leads
to the non-conservation of transverse spin, which in turn has novel effects on the hydrodynamic

modes. PACS numbers: 03.75.Mn,05.30Jp,05.60.Gg,51.10.4y,67.20.+k.
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In recent JILA experiments, [1],[2] a mixture of two hyperfine states was found to segregate
by species. The theoretical explanation[3]-|8] for this behavior is based on the two states
playing the role of a pseudo-spin-1/2 system, having transverse spin waves. The theory of
these new effects is based on old ideas of the transport properties of polarized homogeneous
quantum gases of real spins, such as 3He gas and solutions of *He in liquid *He,[9],[10]
transcribed to the trapped gas pseudo-spin case.

Besides spin waves, the theory for homogeneous polarized fermions or bosons led to
the prediction of anisotropic spin diffusion in the degenerate state.[d],[L0],[11] When a spin
nonuniformity is longitudinal, that is, with a variation in the magnitude of the magneti-
zation, the spin diffusion coefficient is D). On the other hand, in a spin-echo experiment,
the magnitude of the magnetization is uniform but it varies spatially in direction. The
corresponding diffusion coefficient, D is less than D when the system is polarized and
degenerate. Experimentally this feature has been seen, but was not always in reasonable ac-
cord with theory.[9] Moreover, Fomin[12] has suggested the effect should not exist. However,
a recent experiment|[9] has overcome several possible experimental objections and finds good
agreement with theory. Moreover Mineev has very recently presented theoretical analysis
that questions the validity of Fomin’s approach.[13]

Thus it seems useful to see whether a similar difference between longitudinal and trans-
verse diffusion in trapped gases might provide an alternative testing ground for this question.
However, what we show here is that the physical possibility of having differing interac-
tion parameters between up-up, down-down, and up-down states (interaction anisotropy)
provides a new physical basis for anisotropic spin diffusion for bosons even in the Boltz-
mann limit.[14] For longitudinal diffusion in the Boltzmann limit only up-down scattering
contributes. However, in the transverse case, two spins at differing angles approach one
another, and the scattering can be analyzed as being a superposition of, say, up-up and up-
down scattering. In the fermion s-wave case, the up-up part gives no contribution, and, in
the Boltzmann limit, the diffusion coefficients are identical. In that case one must go to the
degenerate limit to see the anisotropy, which then is expected to arise because the density
of scattering states differs in longitudinal and transverse cases.[10] On the other hand, for
bosons, for which both the up-up and down-down scattering rates do contribute, we find an
anisotropy even in the Boltzmann limit, but only if the various scattering lengths differ. We

have here the striking effect that, although both gases obey Boltzmann statistics, there is a



macroscopic difference between fermion and boson behavior.

The presence of interaction anisotropy provides another unusual effect, namely that trans-
verse spin is not conserved. [7] This leads to a decay of the transverse spin (a 75 process) that
seriously affects the hydrodynamic modes of the system. Below we first use the moments
method to compute the spectra of the lowest-lying longitudinal and transverse modes. How-
ever, with that method we obtain a transverse decay rate v, that diverges as 7 approaches
zero, in contrast to the usual diffusive behavior where v, oc 7. In this case it is necessary
to solve the local hydrodynamic equations to find the correct behavior, in which the hydro-
dynamic solutions are localized at the low-density regions at the edges of the cloud where
the collision time is longer. The result is a much smaller decay rate than that obtained with
the moments method.

In our previous work, Ref.[10, we derived an analog of the Landau-Silin equation for a 2x2
density operator n, (here acting in the pseudo-spin space), with effective mean-field single
particle energy matrix €,. We can write the density and single-particle energy in a Pauli
representation as 7, = 1 ( fol +m, - &) and &, = (epf +h, - 6)Where 6 is a Pauli matrix,
%( fp £my.) give the diagonal components of the density n,; = n,;, while m, represents the
polarization, which in equilibrium is along the axis z. We find the following approximate

equation for m,,:
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with m,,. (1) = ny1 —nye and nya(r) = niy = smy_(r) = 3(my, — imy,). The 2 x 2 collision
integral is fp. The effective mean magnetic field
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where h{dy = Vi — Vo + [(t11 — ti2) 1 — (ta2 — t12) o]

X (1+mn). In these n is 1 (—=1) for bosons (fermions); M(r) = [dp/h® m,(r); n;(r) =

[ dp/h® n,(r); V; is the external field for species i; U = §(V1+V3); and M, = ny —no. The t’s

can be evaluated in terms of the measured scattering lengths a,g by using t.s = 4mha.s/m.
The equilibrium solution in the Boltzmann limit is m{?) = M (8h)? exp[—3(p*/2m+U)]

where N is the total number of particles, Nj; is the number of species ¢, M = N; — Ny is the

total magnetization, and @ = (wyw,w,)/?.



We have derived the collision integral for the Boltzmann case when the various interaction
paramenters differ. Our expression agrees with the same quantity derived in Refs. [1 and I§,

and reduces properly to previous results if all the t’s are taken equal.[10],[15] We find

. T
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We will linearize the kinetic equation for m, around the global equilibrium value ml(,o)i
and use a moment approach to compute the spin wave and diffusive damping just as done
previously.[d],[7] As in Ref. |5 we assume that the effective longitudinal field €y can be

adjusted experimentally to zero. The linearized longitudinal and transverse equations are
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where [A/p is the linearized form of fp

In the following, for brevity, we compute only results for the monopole and dipole modes
although experiments have detected the quadrupole modes. Similar arguments hold for the
quadrupole case, which we will present in a longer publication.

Longitudinal case: We use a variational function of the form
omy. = (ap + a12+02pz)m§;0) (6)

and take the 1, z, and p, moments of the kinetic equation in both the longitudinal and
transverse cases. The results for the longitudinal case, if we assume a time dependence of

exp(iwt) for a; and ay, are

dao/dt = 0 (7)
wa; — wyay = 0 (8)
iWay + w.a1 = —7| a2 9)
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with v = 470/3 where vy = Tm*w3t7,N/h* comes from integrating the collision integral.
Eq. (@) indicates that the monopole mode does not decay in the longitudinal case, which
is consistent with the conservation of magnetization. The second line is the magnetization
equation of continuity. The relaxation rate 7| agrees with that derived in Ref. 5. The dipole
spectrum is plotted in Fig. [l as a function of 7, =1 /7, the spatially averaged collision time.
In the small 7 limit, one finds

w| = iwa”, (10)

which has the form of the lowest-order solution of a diffusion equation in a harmonic poten-

tial.
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FIG. 1: Real (dashed) and imaginary (solid) components of longitudinal dipole spin wave modes
versus average relaxation time 7). Note the linear dependence of Im(w) for small 7 characteristic
of diffusive behavior. The dash-dotted lines represent the results of a numerical calculation to be

discussed below.

Transverse case: We again use the form of Eq. (@). Taking 1, z, and p, moments of

Eq. () yields the results

dag/dt = —vrag (11)
1
wa; — w,ay = —5ra% (12)
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where vp = y0(1 4+ 1) >, (M)z fo with f, = N,/N, and
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with R = (14+1) 3, t2, fo +(1—n)t3y and S = 2t12[(141) 3y too fo —nt12), and the mean-field
frequency is
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where A is the thermal wavelength.

Comments:

1) If the interactions parameters t;; are all equal, we have v = 0, R = S = 2t* so that
vL =7 Egs. ([)-(T3) then reduce to those of Ref. i and the longitudinal and transverse
relaxation rates are the same, which agrees with the standard result for a homogeneous real
spin system in the Boltzmann limit.

2) For fermions, we have n = —1, so that, even if the t’s are not equal, 7 = 0 and
TL=-

3) For bosons with unequal ¢’s, the spatial averaged transverse relaxation rate is not
generally the same as the longitudinal. Moreover, we have a Th-type relaxation rate for
ap and in the equation of continuity (I2). The interaction anisotropy behaves something
like a dipole-dipole interaction allowing relaxation of the transverse spin, an effect noted
previously in Ref. [7.

If, for now, we take vy = 0, then the lowest mode in the hydrodynamic limit takes the

form
W2 (i — pM)TL
= T (16)
1+ (uM)’]
where 7, = 1/, and the so-called “spin-rotation parameter” p = wy7,. The form of

Eq. (@) is the hydrodynamic frequency as modified by spin rotation. [9],|L0],[15]. The first
term is the effective diffusion frequency while the second is the dipole-mode pseudo-spin-wave
frequency.

The effect of non-zero 7 is to allow a T; relaxation of the transverse spins. The results
are shown in Fig. 2, where we have set 1/7, = v, 70 = 0.02/7,, and wy; = w.. In the small

7, limit, one no longer has the hydrodynamic decay rate approaching zero, but instead it



FIG. 2: Real (dashed) and imaginary (solid) components of transverse dipole spin wave modes
versus average relaxation time 7, when the transverse spin is not conserved. The dotted line
shows the lower imaginary mode when the transverse decay rate yr = 0. The mean-field frequency
wyy is taken as w,. The linear behavior of Im(w) for small 7, characteristic of diffusive behavior is

destroyed and replaced by a divergence within the moments method used here.

diverges at the origin because Im(w) ~ (w27, + vr), and 47 ~ 1/7,. However, although
suitable for finite w7, the moments method is inadequate in the hydrodynamic limit. It
fails because the simple forms assumed for spatial dependence cannot adjust to the spatially
dependent relaxation rates. One must solve local equations numerically for the spatial
behavior.

To obtain the hydrodynamic equations we expand the momentum distribution in terms

of Hermite polynomials

Sy, = e PPN e (2, 8) Hy(p) (17)
k=0

Substituting this into the kinetic equations, integrating over the momentum, and keeping

terms lowest order in 7, gives, in the transverse case,

OOMy + 0.0y = —yr(2)0 M (18)
O Js + %025M+ +w?z0M, + dwy(2)Jy = =y (2) ]y (19)
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where O0M,(z,t) = co(z,t) is the nonequilibrium magnetization density, J(z,t) =
[dp/h3(p/m)dm,, = c1(z,t) is the spin current, and v, (z) = v, (0) exp(—Bmw?2?/2). Anal-
ogous equations hold in the longitudinal case. On the RHS of Eq. ([d) the £ = 1 momentum
distribution has been treated as an eigenfunction of the linearized collision integral. This is
justified by a numerical calculation of the matrix elements of the collision integral, which

gives

L, [Hi(p)] = =v.(0)(1.000H,(p) 4+ 0.123H3(p)
—0.00094Hs(p) + ...) ~ —1 (0)H;(p) (20)

The eigenvalues of the hydrodynamic equations have been calculated numerically for the
dipole mode with boundary conditions M (0) = 0, J(0) = 1, and J(oo) = 0, and the
monopole mode with boundary conditions M (0) = 1, J(0) = 0, and J(co) = 0. For the
longitudinal and isotropic transverse cases this leads to only small corrections to the 7 — 0

part of the spectra obtained by the moments method as shown in Fig. [1l

1 L | L3 T LA B B B L | T T T T T T T
- N N
N N

Im(w/w,)

0.01 0.1 1

FIG. 3: Imaginary part of the spin-wave spectrum vs. w,7| for the monopole and dipole modes
with wy = w,, yr = 0.02v1, and 7, = 7| for both the moments method (thick) and hydrodynamic

calculations (dashed).

However, for vy > 0 the hydrodynamic spectrum differs qualitatively from that of the

moments method calculation. As 7, — 0 the hydrodynamic dipole and monopole modes
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FIG. 4: Profiles |§ M (z2)| of the the dipole modes vs. /fmw?z, normalized with a Hermite weighting
function. Tallest peak is the hydrodynamic mode for v = 0 and 7, = 0.01. Middle peak is the

moments method ansatz. Smallest peak is the hydrodynamic mode for v = 0.02y, and w,7 = 0.01.

do not decay at a rate ~ 1/7,, but instead decay at a slower rate ~ /log (1/w,7,) (See
Fig. B) In fact, at small enough w,7, the T, decay of the magnetization at the center of
the trap causes the monopole and dipole modes to coalesce into spin-waves localized on the
lower density regions on the left and right sides of the trap. (See Fig. Hl)

In experiments on Rb, the interaction anisotropy is very small. To test the novel effects
predicted here one might use Na, [L6] which has a difference in interaction paraments; Numer-
ically we estimate that for 2Na 7, can differ from v, by as much as 14% with 7 /v, ~ 0.04.
Interaction differences might also be induced by using Feshbach resonance methods.

We thank Dr. Jean-Noél Fuchs and Prof. David Hall for useful discussions.
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