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Commensurate Two-Component Bosons in Optical Lattice:

Groundstate Phase Diagram

Anatoly Kuklov1, Nikolay Prokof’ev2,3, and Boris Svistunov2,3

1 Department of Engineering Science and Physics, The College of Staten Island,

City University of New York, Staten Island, New York 10314
2 Department of Physics, University of Massachusetts, Amherst, MA 01003

3 Russian Research Center “Kurchatov Institute”, 123182 Moscow

Two sorts of bosons in an optical lattice at commensurate filling factors can form five stable
superfluid and insulating groundstates with rich and non-trivial phase diagram. The structure of
the groundstate diagram is established by mapping d-dimensional quantum system onto a (d + 1)-
dimensional classical loop-current model and Monte Carlo (MC) simulations of the latter. Surpris-
ingly, the quantum phase diagram features, besides second-order lines, first-order transitions and
two multi-critical points. We explain why first-order transitions are generic for models with pair-
ing interactions using microscopic and mean-field (MF) arguments. In some cases, the MC results
strongly deviate from the MF predictions.

PACS numbers: 03.75.Kk, 05.30.Jp

Ultracold atoms trapped in an optical lattice (OL)
[1, 2] form an intriguing strongly correlated quantum
system. The unprecedented control over parameters of
the effective Hubbard-type Hamiltonian renders this sys-
tem an important object for the study of quantum phase
transitions [3]. Single-component bosons without inter-
nal degrees of freedom have only two phases in a regu-
lar lattice: superfluid (SF) and Mott-insulator (MI) (at
commensurate filling factor [4]). When several bosonic

species are combined in the OL, the näive expectation
that their groundstates are straightforward mixtures of
MI and SF with respect to participating components is
wrong—the phases of spinor and multi-component sys-
tems are far more subtle [5, 6, 7, 8, 9, 10].

In this Letter, we study a commensurate two-
component bosonic system described by the on-site Hub-
bard Hamiltonian:

H = −
∑

<ij> σ

(tσa
†
iσajσ + H.c.) +

1

2

∑

i σσ′

Uσσ′ niσniσ′ . (1)

Here a†iσ creates a boson of the sort σ = A,B on site

i, niσ = a†iσaiσ, and < ij > denotes pairs of nearest-
neighbor sites. In what follows, we consider only equal
filling factors of the components, nA = nB = n, with n
integer, and, for brevity, denote UAB = −V , Uσσ = Uσ.
Similar (incommensurate) two-species bosonic model has
been studied recently to look at the differences with the
fermionic Hubbard model [11].

At double commensurate filling, recent mean-field
analysis of the model (1) in [12] failed to reveal phases
and, correspondingly, phase transitions which can not be
reduced to simple mixtures of single-component states.
This conclusion is disappointing considering predictions
of other strongly correlated superfluid groundstates for
two-component inconvertible bosons: a paired super-
fluid vacuum (PSF), which is equivalent to the superfluid
state of diatomic molecules and to BCS superconductor
[6, 7, 9, 13]; and a super-counter-fluid (SCF), in which

the net atomic superfluid current is zero, and yet the
equal currents of the components in opposite directions
are superfluid [8, 13].

In this Letter, we perform MC simulations of the
(d + 1)-dimensional classical analog of the on-site Hub-
bard model (1) and find five stable superfluid and insu-
lating phases: (i) MI, (ii) MI of sort A and SF of sort B
(MIB + SFA) and its A↔ B analog, (iii) SF of sort A and
SF of sort B (2SF), (iv) PSF, and (v) SCF. An interact-
ing mixture of two mutually penetrable superfluids (2SF)
exists even without the optical lattice and corresponds to
the t≫ Uσ,σ′ limit. This state has two non-zero complex
order-parameters 〈ψA〉 and 〈ψB〉. By increasing either
UB or UA one drives the corresponding component from
the superfluid to the Mott-insulating state; accordingly,
in MIB + SFA we have finite 〈ψA〉, and zero 〈ψB〉. When
both UA and UB are strong, the groundstate is MI with
all order parameters being zero. Our proof then concerns
the existence of PSF and SCF phases; in both phases
〈ψA〉 = 〈ψB〉 = 0, while ΦPSF = 〈ψAψB〉 6= 0 in PSF,

and ΦSCF = 〈ψAψ
†
B〉 6= 0 in SCF. It is worth noting

that, while the PSF, representing atomic A+B pairing,
requires V > 0, the SCF describes pairing of particles A
and holes B and occurs when V < 0.

The most surprising MC result is that 2SF–MI tran-
sition may be I-order. This result also follows from the
mean field (MF) analysis of the problem along the lines
suggested in [3] for the single-component case. Finally,
we develop microscopic arguments explaining why the I-
order transition is generic for models with pairing inter-
actions, and show that MI groundstates may be further
classified in terms of their excitation spectrum.

To prove that possible groundstates of Eq. (1) include
PSF, we assume the inter-exchange symmetry A←→ B,
implying tA = tB = t and UA = UB = U , and consider
the limit described by two strong inequalities: t/U ≪ 1
and γ/U ≪ 1, with γ = U − V [here V > 0 and γ > 0;
at γ < 0 the system collapses.] Then, the effective low-
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energy Hilbert space is determined by states were on each
site niA = niB; these are separated from other states by
a large pair-breaking gap ≈ U . We thus naturally arrive
at the description in terms of pairs. In the second-order
perturbation theory in t/U (cf., e.g., [8]) the dynamics
of pairs is given by the effective Hamiltonian (we omit
terms proportional to the total number of particles):

Hp = −t̃
∑

<ij>

[(O−
i O

+
j + H.c.) + 2mimj ] + γ

∑

i

m2
i . (2)

Here mi are pair occupation numbers, the raising oper-
ator O+

i is defined by 〈m′
i|O+

i |mi〉 = (mi + 1) δm′

i
,mi+1,

O−
i = (O+

i )†, and t̃ = 2t2/U . In contrast to the standard
single-boson hopping that scales linearly with the typi-
cal occupation number the hopping amplitude for pairs is
quadratic in mi. If potential energy terms in Eq. (2) were
omitted, the groundstate would collapse to a droplet with
the diameter comparable to the lattice constant. The
second term in the brackets, Eq. (2), describes nearest-
neighbor attraction, and further enhances collapse insta-
bility. A stable groundstate arises only when the on-site
repulsion γ is strong enough. On the other hand, at very
large γ the commensurate groundstate is MI. The ques-
tion is then whether for some t̃/γ, the groundstate is PSF
rather then MI or collapsed. The positive answer is read-
ily seen in the limit of very large molecular filling factor
m = n/2≫ 1. In the region t̃ ≪ γ ≪ m2t̃ the system is
stable against collapse; the nearest-neighbor attraction is
negligible. Since the maximum insulating gap ∼ γ does
not depend on m [4], we conclude that for γ < m2t̃ the
groundstate must be superfluid. [Using mapping to the
quantum rotor model [3] we know, in fact, that MI state
requires γ > m2 t̃]. Finally, for m = 1 we have performed
quantum MC simulations of Eq. (2) in d = 2 and found
that at γ = 10t̃ the groundstate is superfluid.

Similarly, the existence of the SCF phase can be shown
in the limit t/U ≪ 1 and |γ̃|/U ≪ 1 [where γ̃ = U + V
and V is negative] studied in Ref. [8]. The effective
Hamiltonian can be now written in terms of the spin-
S = (nA + nB)/2 operators, HS = −t̃

∑

<ij> SiSj +

γ̃
∑

i(Siz)
2, which for small positive γ̃ has the easy-plane

ferromagnetic groundstate, or SCF [8]. Furthermore, one
can show that PSF and SCF are qualitatively similar and
SCF may be viewed as the result of pairing between parti-
cles of one component and holes of another [13]. Because

of this equivalence, we discuss below only the V > 0 case,

that is, the case of the PSF.

To reveal the global structure of the phase diagram
we performed Monte Carlo simulations for the (d + 1)-
dimensional classical analog of the bosonic Hubbard
model. The so-called J-current model [14] is built on
particle worldlines (space-time currents) in discrete imag-
inary time, and we straightforwardly generalize it to the
two-component case:

S =
∑

σ,σ′

∑

i

Ũσσ′
~J

(σ)
i · ~J (σ′)

i . (3)

Here ~J
(σ)

i are integer-value currents [(d+1)-dimensional
vectors] subject to the local zero-divergence constraint,

∇· ~J (σ)
i = 0, and Ũσσ′ ∼ Uσσ′/t relate the effective action

parameters to the original Hubbard Hamiltonian. This
model has the same superfluid and insulating phases as
Eq. (1), and we use it to understand the topology of
phase boundaries, the existence of multicritical points,
and first-order lines. We find it convenient to fix UA and
UB and to plot results in the (V, ν)-plane, where ν ∼ 1/t
is the scaling factor for all three dimensionless param-
eters. The superfluid phases are identified by looking

at various superfluid stiffnesses, ρ
(σ)
s = 〈[ ~W (σ)]2〉/dLd−2,

ρ
(PSF/SCF )
s = 〈[ ~W (A) ± ~W (B)]2〉/DLD−2, expressed in

terms of the winding number fluctuations [15], where
~W (σ) = L−1

∑

i
~J

(σ)
i (superfluid stiffness and compress-

ibility are equal in the space-time symmetric model).
In Fig. 1, we present the phase diagram of the two-

component J-current model in (d + 1 = 3)-dimensions.
Corresponding superfluid stiffness goes to zero continu-
ously when approaching the lines of the critical points
labeled as U(1). The correlation radius exponent (ob-
tained from finite-size corrections) is consistent with the
known value for the U(1) universality class in 3D. The
first-order transition was identified by (i) double-peak
structure of the energy distribution function (in small-
size systems), and (ii) hysteresis loops in all quantities
(in large-size systems). Though we have not performed
exhaustive MC study of the phase diagram in other di-
mensions we found (i) the I-order 2SF–MI transition in
d = 3, and (ii) no evidence for the first-order 2SF–MI
transition in d = 1.

The I-order 2SF–MI line in the symmetric case ( UA =
UB), becomes strongly suppressed by the anisotropy,
UA−UB 6= 0, between the components. For UB/UA = 2,
the point where all four phases meet is already a simple
cross of two U(1) lines — decoupled U(1) × U(1) tetra-
critical point (see, e.g., [16]). Points where the I-order
line starts and ends represent multicritical points.

Normally, first-order transitions can be qualitatively
accounted for in simple mean-field models, and we pro-
pose such a model for our case. Away from the multi-
critical region, all transitions are of the U(1)-universality
class and, thus, described by the corresponding |ψ|4 ac-
tions [4] for atomic, ψA, ψB, and molecular, Φ, fields. We
arrive at the simplest effective free energy by combining
three |ψ|4 actions and writing the interaction term in the
form of the molecule “creation/annihilation” process out
of A- and B-particles. Omitting gradient terms:

F =
1

2

[

rA|ψA|2 + rB |ψB|2 + rM |Φ|2
]

+
1

4

[

gA|ψA|4

+ gB|ψB |4 + gM |Φ|4
]

− g(Φ∗ψAψB + c.c.) . (4)

The mean-field phase diagram follows from minimiza-
tion of F . In Fig.2, taking advantage of the scaling free-
dom for all the fields and F , we set ga = gB = gM =
g = 1. It reproduces correctly the topology of bound-
aries between the phases and some of their properties. If
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FIG. 1: Phase diagrams of the d = 2 two-component J-current model in the (V, ν)-plain for the symmetric, UA = UB = 2 (left),
slightly asymmetric, UA = 1.6, UB = 2 (center), and strongly asymmetric, UA = 1, UB = 2 (right) models. The 1st-order phase
transition line is dramatically reduced in the presence of weak anisotropy, and completely disappears for strong anisotropy
between the components. All horizontal errorbars are smaller than point sizes (typically of order 10−3), and lines are used to
guide the eye and to distinguish between different phase boundaries. The insert shows more clearly the region where 2SF, PSF
and MI phases meet. (Commensurability and intrinsic symmetry of the J-current model result in a straightforward mapping
of the SCF regime onto PSF one: V → −V .)
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FIG. 2: The mean-field diagram for rA = r, rB = r +0.5 The
bold solid line corresponds to the first-order transition, and
dashed lines describe continuous transitions. In the limit of
rB → rA, the SFA + MIB domain vanishes.

the A-B asymmetry is not large, it features a I-order line,
see Fig. 2. In the strongly anisotropic case, |rB−rA| > 1,
the MF theory also captures the disappearance of the I-
order transition. On another hand, the prediction of the
pronounced I-order 2SF–PSF line does not agree with
the numerical data in 3D. With our system sizes up to
1283 sites we did not find any evidence for the I-order
2SF–PSF or 2SF–(MIB + SFA) transitions, see insert in
Fig. 1. It is probably too early to draw the final conclu-
sion on the structure of the multicritical point, because
a similar study in 4D (for the system size 324) revealed
a tiny (but finite) I-order 2SF-PSF line. In any case, the
suppression of the I-order 2SF-PSF transition constitutes
a strong deviation from the MF prediction.

First-order SF–MI transition in the single-component

system. It is generally accepted that in the single-
component, commensurate Bose system the SF–MI tran-
sition is continuous [4]. Numerous simulations of the on-
site Hubbard and J-current models perfectly agree with
this picture (for the latest simulation see [17]).

Excitations in MI are gapped and described as quasi-
particles and quasiholes with the relativistic disper-
sion law at small momenta (for small gaps): ǫ(k) =√

∆2 + c2k2, where c is the velocity of sound in the
SF phase. The dilute gas of quasiparticles is charac-
terized by the effective mass m∗ = ∆/c2 and some s-
wave scattering amplitude, a∗ (to be specific, we as-
sume that d = 3). If the scattering length is positive,
the state of the dilute excitation gas with density nqp

is stable, and the energy density cost of creating it is
Eqp = (∆−µ)nqp +(2πa∗/m∗)n

2
qp, where µ is the chem-

ical potential. Since the effective longwave action for the
U(1)-transition has positive coefficient in front of the |ψ|4
term, in the vicinity of the critical point the MI state is
always described by positive a∗. As the chemical poten-
tial is increased above the threshold value ∆, the system
state becomes superfluid (this continuous MI-SF transi-
tion, induced by adding extra particles/holes, is mean-
field like [4]).

Imagine now a MI state with gaped quasiparticle
excitations, but now with negative effective scattering
length. Although the MI vacuum itself may remain sta-
ble, the state of the quasiparticle gas at any small den-
sity nqp|a∗|3 ≪ 1 is unstable against collapse to a dense
droplet. We thus conclude that this MI will undergo a
first-order phase transition to the superfluid state at some
µ = µc finite distance below ∆ to gain negative poten-
tial energy. Furthermore, if for some system parameters
∆ 6= 0, but µc = 0, the MI–SF transition in the commen-
surate system will happen by I-order scenario too.

We now argue that MI states with negative a∗ nat-
urally arise in models with strong pairing interactions
when potential energy favors two bosons on the same
site, but increases fast for occupation numbers ni > 2 to
prevent collapse. For sufficiently strong pairing, one may
have a superfluid state of tight molecules, or PSF (cf.
[18]). When repulsion between molecules is increased,
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FIG. 3: Sketch of possible MI phases in the commensurate,
n =even, single-component Hubbard model with pairing in-
teractions and phase transition lines from MI to the SF and
PSF phases. The region between crosses is characterized by
first-order MI–SF transition as a function of µ.

PSF undergoes a standard continuous PSF–MI transi-
tion. In the vicinity of the transition point the lowest
excitations above MI are bound bosonic pairs. We ob-
serve then, that depending on the value of the pairing
interaction there should exist at least three MI ground-
states distinguished by the value of the effective scatter-
ing length of its quasiparticles: as we go along the line C
in Fig. 3, a∗ starts from positive value (the quasiparticle
gas is stable), then changes sign and becomes negative
(the quasiparticle gas is unstable against collapse), and
finally goes through the pole and changes sign again (the
quasiparticle gas of molecules is stable). It seems unlikely
that SF, PSF, and three different MI phases meet at the
same point. In our view, the intersection of the SF–MI
and |a∗| = 0 lines marks the beginning of the first-order
SF–MI transition, while the intersection of the PSF–MI
and |a∗| = ∞ lines marks its end. In this picture, the
critical point where the SF–MI line changes from con-
tinuous to first-order is characterized by the continuous
Lorentz-invariant action with zero |ψ|4 term.

In d = 2, the weak logarithmic dependence of a∗ on
quasiparticle density does not change the qualitative pic-
ture, because the first-order transition involves finite par-
ticle density jumps. In d = 1, the notion of the scattering
length is ill-defined, and two quasiparticles in the long-
wave limit either form a bound state or repel each other
like hard-core spheres. We conjecture then, that in d = 1
(i) MI with first-order transition in µ does not exist, (ii)
the SF–MI transition is always continuous.

The above considerations readily generalize to the A-
B symmetric two-component case. Now, the criterion
for the MI groundstate, which is unstable against light
doping by A- and B-particles (for the symmetric case
∆A = ∆B = ∆), follows from the scattering matrix
(a∗)σσ′ becoming non-positive definite due to increasing
attraction between the components. We note, that this
criterion must be satisfied in a finite region in param-
eter space since existence of AB-molecules implies that
(a∗)AB can be arbitrarily large and negative before going
through the pole corresponding to the formation of the
bound state. This consideration, in complete analogy
with the single-component case, suggests that PSF–MI
and 2SF–MI lines are “bridged” by the first-order line in
agreement with MC simulations and MF analysis.

To explain the suppression and disappearance of the
first-order region when the symmetry between the A and
B components is broken (see Fig. 1) we suggest that,
for strong anisotropy, the lowest excitations above the
MI groundstate in the whole parameter range are either
A-particles or AB-molecules, and there is no reason for
collective instability in the quasiparticle gas. Formally,
this corresponds to pushing the |(a∗)AB| = ∞ line into
the SFA + MIB phase — this possibility does not exist in
the symmetric case.

We are grateful to A. Patashinskii and S. Sachdev
for fruitful discussions and valuable comments. This
work was supported by the National Science Founda-
tion and PSC CUNY grants. B.S. acknowledges also a
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