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Bold diagrammatic Monte Carlo:
A generic technique for polaron (and many-body?) problems

N.V. Prokof’ev1, 2, 3 and B.V. Svistunov1, 3

1Department of Physics, University of Massachusetts, Amherst, MA 01003, USA
2Theoretische Physik, ETH Zürich, CH-8093 Zürich, Switzerland

3Russian Research Center “Kurchatov Institute”, 123182 Moscow, Russia

We develop a Monte Carlo scheme for sampling series of Feynman diagrams for the proper self-
energy which are self-consistently expressed in terms of renormalized particle propagators. This
approach is used to solve the problem of a single spin-down fermion resonantly interacting with
the Fermi gas of spin-up particles. Though the original series based on bare propagators are sign-
alternating and divergent one can still determine the answer behind them by using two strategies
(separately or together): (i) using proper series re-summation techniques, and (ii) introducing renor-
malized propagators which are defined in terms of the simulated proper self-energy, i.e. making the
entire scheme self-consistent. Our solution is important for understanding the phase diagram and
properties of the BCS-BEC crossover in the strongly imbalanced regime. On the technical side, we
develop a generic sign-problem tolerant method for exact numerical solution of polaron-type models,
and, possibly, of the interacting many-body Hamiltonians.

PACS numbers: 05.30.Fk, 05.10.Ln, 02.70.Ss

I. INTRODUCTION

Modern science has radically changed our view of the
physical vacuum. Instead of näıve “empty space” we
have to deal with a complex groundstate of an interact-
ing system, and, strictly speaking, there is no fundamen-
tal difference between the outer space, helium, or any
other condensed matter system. With this point of view
comes understanding that the notion of a “bare” particle
is somewhat abstract since its coupling to vacuum fluc-
tuations, or environment, may strongly (sometimes radi-
cally) change particle properties at energies addressed by
the experimental probes. The polaron problem [1] is by
now canonical across all of physics with the same ques-
tions about particle energy, effective mass, residue, etc.,
being asked for different types of particles, environments
and coupling between them [2]. In a broader context,
particles are not necessarily external objects unrelated
to a given vacuum, but quasiparticle excitations of the
very same ground state. Thus, the solution of the po-
laron problem paves the way to the effective low energy
theory of a given system, and, to large extent, determines
basic properties of all condensed matter systems at low
temperature.

At the moment, there is no generic analytic or numeric
technique to study quasiparticle properties for arbitrary
strongly interacting system. Analytic solutions are typi-
cally (with few exceptions, see, e.g., [3]) based on pertur-
bative corrections to certain limiting cases [1, 2, 4, 5, 6]
or variational treatment [7]. Several numeric schemes
were suggested in the past, but all of them have limita-
tions either in the system size, system dimension, inter-
action or environment type. Exact diagonalization and
variational methods in the low-energy subspace [8, 9] are
mostly restricted to one-dimensional models with short-
range interactions. The continuous time path integral
formulation [10] works for the lattice model with linear

coupling between the particle and bosonic environment,
but it can not be generalized to fermionic environment,
sign-alternating coupling (as in the t-J model [11]), nor
is it suitable for continuous-space models.

In this article (which follows a short communication
[12]), we develop a Monte Carlo technique which sim-
ulates series of Feynman diagrams for the proper self-
energy. The diagrammatic Monte Carlo (Diag-MC) tech-
nique was used previously to study electron-phonon po-
larons [13, 14]. The essence of Diag-MC is in interpret-
ing the sum of all Feynman diagrams as an ensemble
averaging procedure over the corresponding configura-
tion space. It was considered essential for the method to
work that the series of diagrams for the Green’s function
be convergent and sign-positive. Though the configura-
tion space of diagrams for polarons in Fermi systems is
more complex, similar methods of generating and sam-
pling the corresponding configuration space can be used.
The crucial difference is that in the Fermi system we have
to deal with the sign-alternating and divergent (at least
for strong coupling) series. Under these conditions a di-
rect summation of all relevant Feynman diagrams for the
Green’s functions is not possible, and one has to develop
additional tools for (i) reducing the number of diagrams
by calculating self-energies rather than Green’s functions,
(ii) employing the “bold-line” trick in the form of the
Dyson equation which allows self-consistent summation
of infinite geometric series and further reduces the num-
ber of self-energy diagrams, and, if necessary, (iii) extrap-
olating Diag-MC results to the infinite diagram order for
a divergent series. At the moment we do not see any ob-
vious limitations of the new method since even divergent
sign alternating series can be dealt with to obtain reliable
results. We believe that our findings are important in a
much broader context since the Diag-MC approach to the
many-body problem has essentially the same structure.

As a practical application of the method we consider a

http://arXiv.org/abs/0801.0911v1
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particle coupled to the ideal Fermi sea via a short-range
potential with divergent s-wave scattering length. This
problem was recognized as the key one for understanding
the phase diagram of the population imbalanced resonant
Fermi gas [15, 16]. In particular, to construct the energy
functional describing dilute solutions of minority (spin
down) fermions resonantly coupled to the majority (spin
up) fermions one has to know precisely the quasiparticle
parameters of spin-down fermions since they determine
the coefficients in the energy expansion in the spin-down
concentration x↓: the linear term is controlled by the

polaron energy, and the x
5/3
↓ term is determined by the

polaron mass [16].
The general Hamiltonian we deal with in this article

can be written as

H = HF − ∆R/2m +

∫

drV (r − R) n(r) , (1)

where HF is the Hamiltonian of the ideal spin-up Fermi
gas with density n and Fermi momentum kF , R is the
particle coordinate, and V (r − R) is the interaction po-
tential of finite range r0 between the particle and the
spin-up Fermi gas. In what follows we refer to (1) as the
Fermi-polaron problem. The specifics of the BCS-BEC
crossover physics in the strongly imbalanced regime is
two-fold: one is that the particle and the Fermi gas have
the same bare mass m (in what follows we will use units
such that m = 1/2 and kF = 1), and the other is that
one has to take explicitly the so-called zero-range reso-
nant limit when r0 → 0, but the s-scattering length a
remains finite, i.e. kFa remains fixed for kF r0 → 0. In
this limit, the nature of the interaction potential is irrel-
evant, and the same results will be obtained e.g. for the
neutron matter and Cesium atoms. We note, however,
that the method we develop for the numeric solution of
the resonant Fermi-polaron problem is absolutely gen-
eral and can be used for an arbitrary model described by
Eq. (1).

It turns out that the structure of the phase diagram
is very sensitive to polaron parameters. If the state with
a dilute gas of spin-down fermions is stable at all val-
ues of kFa then the solution of the single-particle prob-
lem would define the phase diagram in the vicinity of
the multicritical point discussed recently by Sachdev and
Yang [17], where four different phases meet. At this point
the spin-down fermion forms a bound state with a spin-
up fermion thus becoming a spin-zero composite boson
(“molecule”); i.e. quasi-particles radically change their
statistics. The multicritical point, however, may be ther-
modynamically unstable if the effective scattering length
between the composite bosons and spin-up electrons is
large enough, and the analysis of Refs. [18, 19] based on
the fixed-node Monte Carlo simulations finds evidence in
favor of this scenario. Phase separation was also found
in calculations based on mean-field and narrow-resonance
approaches (both at finite and zero temperature) see e.g.
Refs. [20, 21, 22, 23, 24, 25], though with strong quan-
titative deviations from results based on the fixed-node

Monte Carlo simulations [19]. On the experimental side,
MIT experiments [26] are in good agreement with the
predictions made in Ref. [19], while Rice experiments [27]
are not. The origin of discrepancy between the two ex-
periments is not understood. Our results for polaron
energies are in excellent agreement with Ref. [19].

It is worth noting that the model (1) (in general, the
particle mass is different from that of the Fermi gas) is
also known as the Anderson orthogonality problem with
recoil [28, 29]. It can be also considered as a specific
example of a particle coupled to the Ohmic dissipative
bath (see monograph [30] for numerous other examples
and connections to realistic systems).

The paper is organized as follows. In Sec. II we dis-
cuss the configuration space of Feynman diagrams for
self-energy in momentum–imaginary-time representation
(both in the particle and molecule channels), and ex-
plain how polaron parameters can be obtained in this
representation. In Sec. III we describe a Monte Carlo
algorithm for generating and sampling the correspond-
ing diagrammatic space. A small technical Section IV
deals with numerically evaluating the effective T -matrix
by bold diagrammatic Monte Carlo. We present and dis-
cuss results in Sec. V. In particular, we show that one can
use re-summation techniques for divergent series of dia-
grams based on bare propagators to determine the final
answer. In Sec. VI we further advance the algorithm by
employing bold-line approach in which the entire scheme
is self-consistently based on renormalized (“bold-line”)
propagators. We present our conclusions and perspec-
tives for future work in Sec. VII.

II. CONFIGURATION SPACE OF

SELF-ENERGY DIAGRAMS

As mentioned above, when coupling between spin-
down and spin-up fermions is strong enough they from
a composite boson, or molecule state. In what follows,
we will be using the term “polaron” in a narrow sense,
i.e. only for the unbound fermionic spin-down excita-
tion. For the composite boson we will be using the
term “molecule”. Since our goal is to calculate parti-
cle properties for arbitrary coupling strength we have to
consider one- and two-particle channels on equal footing.
In the rest of this section we render standard diagram-
matic rules for irreducible self-energy diagrams in both
channels, with an emphasis on specifics of working in the
imaginary-time representation.

A. Polaron channel

We start from the definition of the single-particle
Green’s function (see e.g. [31])

G(τ, r) = −〈Tτψ(τ, r)ψ̄(0)〉 , (2)
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and its frequency-momentum representation

G(ξ,p) =

∫

ei(ξτ−p·r)G(τ, r) drdτ . (3)

Here ψ(τ, r) is the fermion annihilation operator at the
space-time point (τ, r). For the ideal spin-up Fermi gas
at T = 0 we have

G↑(ξ,p) =
1

iξ − p2/2m+ ǫF
. (4)

The vacuum Green’s function for the spin-down po-
laron is

G
(0)
↓ (τ,p, µ) = −θ(τ) e−(p2/2m−µ)τ , (5)

where θ is the step function, and µ is a free parameter.
From Dyson’s equation for the polaron, see Fig. 1, one
finds

G↓(ξ,p, µ) =
1

iξ − p2/2m+ µ− Σ(ξ,p, µ)
, (6)

where self-energy Σ is given by the sum of all irreducible
diagrams (i.e. diagrams which can not be made discon-

nected but cutting through the G
(0)
↓ line) taken with

the negative sign. Taking into account that in the τ -
representation both G↓ and Σ depend on µ only through
exponential factors exp (µτ), one obtains G↓(ξ,p, µ) ≡
G↓(ξ − iµ,p) and Σ(ξ,p, µ) ≡ Σ(ξ − iµ,p).

If polaron is a well-defined quasi-particle, then its en-
ergy E(p) and residue Z(p) can be extracted from the
asymptotic decay

G↓(τ,p, µ) → −Ze−(E−µ)τ , τ → ∞ . (7)

This asymptotic behavior immediately implies that the
function G↓(ξ − iµ,p) has a pole singularity

G↓(ξ − iµ,p) =
Z(p)

iξ + µ− E(p)
+ regular part . (8)

Now setting µ = E(p) in (8) and comparing the result
to (6), we conclude that

iξ/Z = iξ − p2/2m+ E − Σ(0,p, E) + iξA(p, E) , (9)

where (we take into account that ∂Σ/∂ξ = i∂Σ/∂µ)

A(p, E) = − ∂Σ(0,p, µ)

∂µ

∣

∣

∣

∣

µ=E

. (10)

This yields two important relations (see also [31]):

E = p2/2m+ Σ(0,p, E) , (11)

and

Z =
1

1 +A(p, E)
. (12)

= +

-Σ

-G
(0)

-G
(0)-G -G

FIG. 1: Dyson equation for the single-particle Green’s func-
tion.

Equation (11) allows one to solve for E provided
Σ(τ,p, µ) is known. All we have to do is to calculate
the the zero-frequency value of Σ for µ = E

E = p2/2m+

∫ ∞

0

Σ(τ,p, µ) e(E−µ)τ dτ . (13)

After E is found, the residue is obtained from Eq. (12)
using

A(p, E) = −
∫ ∞

0

τΣ(τ,p, µ) e(E−µ)τ dτ . (14)

Note also that the dependence on µ drops out from both
(13) and (14).

A comment is in order here. Strictly speaking, po-
laron and molecule poles exist only for p = 0 because
the fermionic bath they couple to is gapless. However,
the spectrum E(p) is well-defined in the limit p → 0, as
the decay width vanishes faster than [E(p) − E(0)]. To
have stable quasi-particles, one can use a trick of intro-
ducing a gap ∆ in the environment spectrum, e.g. by
redefining the dispersion relation for spin-up fermions:
εk → max(εk,∆). In the p → 0 limit, the system-
atic error vanishes faster than [E(p) − E(0)], provided
∆ ∼ [E(p) − E(0)]. It should be also possible to work
with ∆’s essentially larger than [E(p)−E(0)] and extrap-
olate to ∆ → 0. In particular, such an extrapolation is
possible (and is implicitly implied) at the analytical level
in the relation for the effective mass, which we consider
below.

One way to determine the effective mass is to calculate
the quasi-particle energy as a function of momentum for
a set of small but finite values of p and fit it with the
parabola. It is, however, possible to skip this procedure
and to write a direct estimator for the effective mass in
terms of the calculated self-energy. Acting with the op-
erator ∇2

P on both sides of Eq. (11) and taking the limit
p→ 0 we get

1 +A0

m∗
=

1

m
+B0 , (15)

B0 =
1

3

∫ ∞

0

dτ e(E0−µ)τ [∇2
P Σ(τ,p, µ)]

∣

∣

p=0
, (16)

where A0 ≡ A(p = 0) and E0 ≡ E(p = 0).

B. Molecule channel

In this case we start with the two-particle propagator

K(τ,p) = −〈TτΦp(τ)Φ†
p(0) 〉 , (17)
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= +

-K
-Q

= +

-K
~

-Γ-Q

FIG. 2: Defining functions Q and K̃ in the two-particle chan-
nel.

where

Φp =

∫

dq

2π
ϕq ψ↑(p − q)ψ↓(q) , (18)

and ϕq is the pair wavefunction (in momentum represen-
tation) that localizes the relative distance between two
particles. If there is a bound state (molecule), then

K(τ,p, µ) → −Zmol e
−(Emol−µ)τ , τ → ∞ , (19)

and the pair propagator in the frequency representation
has a pole:

K(ξ − iµ,p) =
Zmol(p)

iξ + µ− Emol(p)
+ regular part . (20)

Now we introduce yet another function, that features
the same molecular pole, but has a simpler diagrammatic
structure. The specifics of the resonant zero-range limit
is that the sum of all ladder diagrams for the interac-
tion potential V (r) has to be considered as a separate
diagrammatic element. We denote this sum by Γ(τ, p)
and consider it as a “bare pair propagator”. Of course,
the same approach can be taken in a general case to re-
place the bare interaction potential with the scattering T -
matrix, but in the zero-range limit we really do not have
any other alternative for the ultra-violet-divergence-free
formulation. The sum of ladder diagrams takes the ultra-
violet physics into account exactly and allows to express
Γ(τ, p) in terms of the s-scattering length a. The ladder
structure of diagrams absorbed in Γ(τ, p) also explains
why we treat it as a “pair propagator” (we will depict
it with a double-line, see Fig 2). The exact expression
for Γ is readily obtained from the geometrical series (in
frequency domain)

− Γ = −U + (−U)2 Π + . . . , (21)

where the polarization operator is defined by

Π(η, p) =

∫

q>kF

dq/(2π)3

q2/2m+ (p − q)2/2m− η
, (22)

and η = ω + εF + µ. Using suitable ultra-violet regular-
ization, one can cast the same expression in the universal
form which depends only on the s-scattering length:

Γ−1(η, p) =
m

4πa
− m

8π

√

p2 − 4mη − Π̄(η, p) , (23)

Π̄(η, p) =

∫

q≤kF

dq/(2π)3

q2/2m+ (p − q)2/2m− η
. (24)

For finite density of spin-up fermions converting Eq. (23)
to the imaginary time domain has to be done numeri-
cally. One possibility is to use the inverse Laplace trans-
form. We employed the bold diagrammatic Monte Carlo
technology [32] to achieve this goal and further details
are provided in Sec. IV. The two-dimensional function
Γ(τ, p) is tabulated prior to the polaron simulation.

In Fig. 2 we define function Q that can be viewed as a
renormalized pair propagator related to Γ by the Dyson
equation. In the upper panel, we show the diagrammatic
structure for K, which includes dotted lines represent-
ing external functions ϕq, grey squares representing sums
of all Γ-irreducible diagrams, and the renormalized pair
propagator Q. By Γ-irreducible diagrams we understand
diagrams which can not be made disconnected by cutting
them through a single Γ-line. All Γ-reducible diagrams
are absorbed in the Q function which is shown in the
lower panel in Fig. 2. The grey circle has nearly the
same structure as the grey square (the zeroth order term
is present in the crossed square, but not in the crossed
circle): since Γ is defined as the sum of ladder diagrams,
all terms which include ladder-type structures based on
free one-particle propagators have to be excluded from Q

and K. With the replacements G↓ → Q, G
(0)
↓ → Γ, and

Σ → K̃ we find an exact analogy between the one- and
two-particle propagators.

The analogy can be carried out further by noting that
the structure of diagrams in Fig. 2 implies that Q has the
same pole as K, while the rest of the functions simply
change the value of the quasi-particle residue. Thus, if
molecule is a well-defined excitation we expect that

Q(ξ − iµ,p) =
Z̃mol(p)

iξ + µ− Emol(p)
+ regular part . (25)

This explains why introducing the function Q is conve-
nient: now Eqs. (12)-(16) are immediately generalized to
the molecule case (up to replacements mentioned above).

III. WORM ALGORITHM FOR FEYNMAN

DIAGRAMS

In this Section we describe how the configuration space
of Feynman diagrams for Σ and K̃ is parameterized and
updated using Diag-MC rules. Our algorithm is designed
to treat polaron and molecule channels on equal footing.
We achieve this goal by introducing auxiliary diagrams
which contain two “loose” ends called “worms”—this was
proven to be an efficient strategy for reducing the MC
autocorrelation time when simulations are performed in
the configuration space with complex topology [33, 34].



5

τa τb τc τd τe τ f

FIG. 3: The backbone of the cyclic diagram.

τa τb τc τd τe τ f

FIG. 4: Forward connection. The arc represents −G↑(τ =
τc + τd + τe).

A. Cyclic diagrams

We start with the introduction of cyclic diagrams.
Though we work in the imaginary time representa-
tion at T = 0 when τ ∈ [0,∞), it is still conve-
nient not to specify the time origin and to consider di-
agrams on the imaginary time circle. The backbone
of each cyclic diagram is a pre-diagram illustrated in
Fig. 3. It consists of a cyclic chain of the struc-

ture G
(0)
↓ (τa) Γ(τb)G

(0)
↓ (τc) Γ(τd)G

(0)
↓ (τe) Γ(τf ) . . . (all

the times are positive). We do not explicitly show “direc-
tions” of the propagators, since these are unambiguously
fixed by the global direction of all the backbone lines,
which we select—without loss of generality—to be from
right to left. With this convention, the left (free) spin-
up end of any Γ-line is outgoing, while the right end is
incoming. A physical diagram is obtained by pairwise re-
placing free spin-up ends with propagatorsG↑. There are
two ways to connect incoming and outgoing lines: (i) for-
ward, i.e., in the direction of the backbone propagators,
and (ii) backward (opposite to forward). Forward (back-
ward) connections result in propagators G↑ with positive
(negative) times, see Figs. 4 and 5 for illustrations. They
represent particle (hole) excitations in the fermionic en-
vironment. It is important to emphasize that in cyclic
diagrams the only time-variables are the positive time-

lengths of G
(0)
↓ ’s and Γ’s. There is no absolute time, and,

correspondingly, all moments in time are equivalent.

B. Worms

To have a MC scheme which simulates diagrams in
one- and two-particle channels on equal footing we ex-
tend the space of physical diagrams by allowing diagrams
with two special end-points, or “worms”. They will be
denoted I and M and stand for the unconnected incom-
ing (outgoing) spin-up ends, see Fig. 6 for an illustration.
Correspondingly, the entire updating scheme is based on

τc τd τe τ f τa τb

FIG. 5: Backward connection. The pair of Γ-ends being con-
nected is precisely the same as in Fig. 4, but the direction is
opposite, and the arc represents −G↑(τ = −τf − τa − τb).

I M

FIG. 6: A diagram with two worms, I and M.

manipulations with I and M. As it will become clear
soon, of special importance for normalization of MC re-
sults is the first-order diagram with the worm, see Fig. 7.

Its weight consists of just two factors, G
(0)
↓ (τa) and Γ(τb).

C. Parametrization of diagrams

Apart from the diagram order and its topology, we se-

lect time intervals of Γ’s and G
(0)
↓ ’s, and momenta of the

spin-up propagators as independent variables. The mo-

menta of Γ’s and G
(0)
↓ ’s are then unambiguously defined

by the momentum conservation law, while the time in-
terval of a spin-up propagator is obtained by summing

up the time intervals of Γ’s and G
(0)
↓ ’s covered by this

propagator. Technically, we find it convenient to work ex-
plicitly in the particle-hole representation for the spin-up
propagators when backward spin-up propagator is under-
stood as a forward hole propagator with the opposite mo-
mentum. This is achieved by introducing a non-negative
function,

G̃(τ,p) =

{

−G↑(τ,p) , p ≥ pF ,
G↑(−τ,−p) , p < pF ,

(26)

which is assigned to all spin-up lines (the global fermionic
sign of the diagram is defined separately, by standard
diagrammatic rules). All momenta assigned to the spin-
up lines are understood as momenta of the corresponding
G̃-propagators; i.e. they are either momenta of particles
(for forward propagators they are non-zero only for p ≥
pF ), or momenta of holes (for backward propagators they

are non-zero only for p < pF ). An explicit formula for G̃
(subject to the above conditions) is

G̃(τ,p) = θ(τ) e−|p2/2m−εF |τ . (27)
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M I

τb τa

FIG. 7: “Normalization” diagram. It is the simplest diagram

with the worm; its weight is a product of G
(0)
↓ (τa) and Γ(τb).

To simplify the description of updates below we will

generically refer to G
(0)
↓ - and Γ-propagators as backbone

lines (BBLs) and denote them as D. The diagram order
N is given by the total number of spin-down propagators.
We also use special counters to characterize the topology
of the diagram. For each BBL we define a cover num-
ber, Nc, equal to the total number of G̃-lines covering a
given BBL. A backbone line with Nc = 0 is called un-
covered. Finally, physical diagrams—the ones without
worms—are divided into polaron (0) and molecule (1)
sectors; the diagram sector is defined by the difference
between the number of particle and hole spin-up propa-

gators covering any of the G
(0)
↓ -lines (the same result is

obtained by analyzing propagators covering Γ-lines after
adding unity for the spin-up particle participating in the
ladder diagrams).

D. Updates

The cyclic structure of diagrams in combination with
the possibility of considering non-physical diagrams al-
lows one to construct a very simple ergodic set of updates.
The minimal set consists of two complementary pairs, In-
sert/Delete and Open/Close, and one self-complementary
update Reconnect. The description that follows aims at
the most transparent and straightforward realization of
updates. Standard performance enhancement tricks and
optimization protocols are not mentioned. In particular,
we base our considerations on the updating scheme which
may propose a change leading to a forbidden configura-
tion. Such proposals are rejected as if they result in zero
acceptance ratio.

Insert: This update applies only to physical—no
worms—diagrams and is rejected otherwise. First, con-

sider the polaron sector. Select at random one of the G
(0)
↓

propagators; if it is covered, the update is automatically
rejected. If the selected propagator is uncovered, insert

a pair of new propagators, Γ(τ1,p) and G
(0)
↓ (τ2,p), right

after the selected one. The new Γ(τ1,p)-propagator is
supposed to contain I and M at its ends. Worms radi-
cally simplify this diagram-order increasing update since
due to conservation laws the momenta of new BBLs are
equal to the global momentum of the diagram p. The
times τ1 and τ2 are drawn from normalized probabil-
ity distributions WΓ(τ1) and W↓(τ2) (arbitrary at this
point). Note that WΓ(τ1) and W↓(τ2) can depend on p

as a parameter. The acceptance ratio for this update is

Pins = NCN+1

Γ(τ1,p)G
(0)
↓ (τ2,p)

WΓ(τ1)W↓(τ2)
, (28)

where CN is an artificial weighing factor ascribed to all
worm diagrams of order N (it can be used for optimiza-
tion purposes and depend on p too). A natural choice
for W -functions is to make them proportional to BBL,
i.e.

WΓ(τ) =
Γ(τ,p)

∫

Γ(τ ′,p)dτ ′
, W↓(τ) =

G
(0)
↓ (τ,p)

∫

G
(0)
↓ (τ ′,p)dτ ′

.

(29)
Then, to have an acceptance ratio of order unity and
independent of p we choose

CN =
1

NΛ
, Λ =

∫

Γ(τ1,p)dτ1

∫

G
(0)
↓ (τ2,p)dτ2 . (30)

In the rest of the paper, we will refer to this choice of
W and CN as “optimized”, though we do not mean that
it is the best one possible for the entire scheme. For the
“optimized” choice

Pins = N/(N + 1) . (31)

In the molecule sector, we essentially repeat all steps,
up to minor modifications. Now the propagator being
selected is Γ (once again, the update is rejected if the se-
lected propagator is covered.) Then, a pair of new prop-

agators, G
(0)
↓ (τ1,p) and Γ(τ2,p), is inserted in front of

the selected uncovered propagator. The new propagator
Γ(τ2,p) inherits the outgoing spin-up line previously con-
nected to the selected Γ; the latter gets instead the M-
end of the worm while the I-end is attached to the new
Γ. The acceptance ratio is identical to (28) [for the opti-
mized choice it is N/(N +1)]. The polaron and molecule
sectors are mutually exclusive due to particle conserva-
tion, thus only one type of the Insert update is applicable
to a given diagram.

Delete: This update converts worm diagrams to phys-
ical ones while reducing the diagram order. It applies
only to diagrams of order N > 1 with worms being sep-
arated by one uncovered BBL. Otherwise, the update is
rejected. If worms are separated by an uncovered BBL,
then the left and right neighbor BBLs are also uncovered,
and an update opposite to Insert is possible. In Delete
we simply remove two consecutive BBL and worms from
the diagram. Its acceptance probability is the inverse of
Eq. (28),

Pdel =
1

(N − 1)CN

WΓ(τ1)W↓(τ2)

Γ(τ1,p)G
(0)
↓ (τ2,p)

. (32)

With Eqs. (29), (30), we have

Pdel = N/(N − 1) . (optimized) (33)
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Close: The update applies only to diagrams with the
worms. The proposal is to connect I and M with a line
G̃(τ,q) and eliminate worms from the diagram. The mo-
mentum variable q is drawn from the probability distri-
bution W↑(q), while τ is the time interval between I and
M to be covered by the new propagator. There are two
ways of connecting I and M, forwards and backwards.
The ambiguity is automatically resolved by the absolute
value of the momentum variable q: if q ≥ pF (q < pF ),
the propagator is supposed to go forwards (backwards).
In practice, we first select the direction (with equal prob-
abilities), and then generate the momentum variable q
accordingly: either q ≥ pF or q < pF .

The acceptance ratio for this update is

Pcl =
2

(2π)3NCN

G̃(τ,q)

W↑(q)

∏

ν

Dν(τν ,p
′
ν)

Dν(τν ,pν)
, (34)

where the subscript ν runs through all BBLs to be cov-
ered by the new propagator (clearly, τ =

∑

ν τν). Primes
indicate new values of the corresponding momenta:

p′
ν = pν − q . (35)

As usual, the distribution function W↑(q) can depend on
τ and the direction of the propagator. The natural choice
for this function would be

W↑(q) =
G̃(τ,q)

Ω(τ)
, (36)

Ω(τ) =

{

∫

q≥pF

G̃↑(τ,q) dq (forward) ,
∫

q<pF

G̃↑(τ,q) dq (backward) ,
(37)

leading to the optimized acceptance ratio

Pcl =
2ΛΩ(τ)

(2π)3

∏

ν

Dν(τν ,p
′
ν)

Dν(τν ,pν)
. (38)

In this Section we deal with diagrams based on bare
propagators. To avoid double-counting, we have to ex-
clude all cases which can be reduced to ladders already
summed in Γ’s. When M and I are on the nearest-
neighbor BBL the proposal to connect them with the
spin-up particle propagator is rejected. The last rule to
be monitored it to restrict all physical diagrams to be
either in the polaron or molecule sectors, i.e. sectors dif-
ferent from 0 and 1 are not allowed.

Open: The update applies only to physical diagrams
and proposes to create a worm by selecting at random
and removing one of the spin-up propagators. The ac-
ceptance ratio is given by the inverse of (34), (38)

Pop =
(2π)3NCN

2

W↑(q)

G̃↑(τ,q)

∏

ν

Dν(τν ,p
′
ν)

Dν(τν ,pν)
, (39)

where the subscript ν runs through all BBLs covered by
the propagator, τ =

∑

ν τν , and q is the momentum of

the selected spin-up propagator. Primes indicate new
values of the BBL momenta:

p′
ν = pν + q . (40)

In the optimized version, we have

Pop =
(2π)3

2ΛΩ(τ)

∏

ν

Dν(τν ,p
′
ν)

Dν(τν ,pν)
. (41)

Reconnect: The purpose of this update is to change
the topology of diagrams with the worm. The proposal is
to select at random one of the G̃-propagators and swap its
outgoing end with M; the momentum of the propagator
remains the same, only its time variable changes from τ0
to τ ′0. The acceptance ratio is given by:

Prec =
G̃(τ ′0,q)

G̃(τ0,q)

∏

ν

Dν(τν ,p
′
ν)

Dν(τν ,pν)
. (42)

The subscript ν runs through all BBLs that will change
their momenta (and cover numbers Nc’s) as a result of
the update. Topologically, there are two different situa-
tions (the two a complementary to each other in terms
of the update): (i) M is covered by the propagator in
question, and (ii) M is not covered by the propagator.
Correspondingly, the new values of the diagram variables
are calculated as

(τ ′0,p
′
ν) =

{

(τ0 − τ, pν + q) (i) ,
(τ0 + τ, pν − q) (ii) ,

(43)

with τ =
∑

ν τν .
The above set of updates is ergodic. It can be sup-

plemented by additional updates that may improve the
algorithm performance by more efficient sampling of the
diagram variables and topologies. Over-complete sets of
updates are also useful for meaningful tests of the de-
tailed balance. The possibilities are endless, and here we
simply mention two updates we have been using.

Time shift: We propose new time variables, τν → τ ′ν ,
for all uncovered BBLs (labeled here with the subscript
ν). The acceptance probability is

Psh =
∏

ν

Wν(τν ,p)Dν(τ ′ν ,p)

Wν(τ ′ν ,p)Dν(τν ,p)
. (44)

All uncovered propagators have the same momentum p.
With the optimized choice for Wν(τν ,p) ∝ Dν(τν ,p) the
acceptance ratio becomes unity.

Redirect: Here we propose to select at random one
of the G̃-propagators and change its direction to the op-
posite. Simultaneously, we change the momentum of the
selected propagator (resulting in new momenta for all
BBL it covers or will cover as a result of the update). Let

the selected propagator be G̃(τ,q), and the new one be

G̃(τ ′,q′) with τ =
∑

ν τν , and τ ′ =
∑

λ τλ, where ν runs

through all BBLs covered by the propagator G̃↑(τ,q) and
λ runs through all BBLs to be covered by the propagator
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τa τb τc τd τe τ f

FIG. 8: A GΣ-diagram contributing to the polaron self-

energy. It factorizes into a product of G
(0)
↓ (τa) and Σ(τ =

τb + τc + τd + τe + τf ).

G̃↑(τ
′,q′). We assume that q′ is drawn from the distri-

bution W↑ introduced above. In this case, the acceptance
ratio is given by

Prdr =
W↑(τ,q) G̃(τ ′,q′)

W↑(τ ′,q′) G̃(τ,q)
×

[

∏

ν

Dν(τν ,p
′
ν)

Dν(τν ,pν)

][

∏

λ

Dλ(τλ,p
′
λ)

Dλ(τλ,pλ)

]

, (45)

p′
ν = pν + q , p′

λ = pλ − q′ . (46)

For the optimized choice of W↑, see Eq. (36),

W↑(τ,q) G̃(τ ′,q′)

W↑(τ ′,q′) G̃(τ,q)
→ Ω(τ ′)

Ω(τ)
. (47)

Diagram sign: The sign of a diagram with worms
is somewhat arbitrary since it is not physical. The am-
biguity is resolved by assuming that M is always con-
nected to I in the backward direction by an auxiliary
unity propagator. Then, to comply with the diagram-
matic rules, we change the configuration sign each time
any of the following updates are accepted: (i) Reconnect,
(ii) Open/Close updates dealing with spin-up propaga-
tors in the forward direction, (iii) Insert/Delete in the
molecule sector, and (iv) Redirect. For Open/Close up-
dates dealing with spin-up propagators in the backward
direction the sign remains the same, because here the
sign coming from changing the number of closed spin-up
loops is compensated by the sign in Eq. (26); the same is
also true for Insert/Delete updates in the polaron sector
(due to our choice of the auxiliary propagator sign). For
precisely the same sign compensation reason, the Redi-
rect update does change the sign despite the fact that it
preserves the number of loops.

E. Estimators

Only physical diagrams with one uncovered G
(0)
↓ prop-

agator contribute to the polaron self-energy. We will
call them GΣ-diagrams. An example is shown in Fig. 8.
[Depending on restrictions imposed on the configuration
space (easy to implement in any scheme) physical dia-

grams with more than one uncoveredG
(0)
↓ propagator are

τb τc τd τe

FIG. 9: A ΓK̃-diagram contributing to the molecule self-
energy. It factorizes into a product of Γ(τb) and K̃(τ =
τc + τd + τe). The vertical dashed lines cut (for the sake
of better visual perception) the same Γ(τb)-line.

either filtered out at the time when the contribution to
the self-energy histogram is made, or, are not produced
in the simulation at all.] They factorize into a product of

G
(0)
↓ and some diagram contributing to the self-energy Σ.

The utility of cyclic representation is that the uncovered
propagator can be anywhere on the backbone. In view
of factorization, it is easy to write the MC estimator for
the integral (to simplify notations we omit irrelevant to
the discussion momentum p)

I =

∫ ∞

0

f(τ)Σ(τ) dτ , (48)

where f(τ) is some function [see, e.g., Eqs. (13), (14)].
Indeed, consider the estimator

EI = δGΣ f(τ) . (49)

which counts all instances of GΣ-diagrams with an ad-
ditional weight f(τ). Here δGΣ is unity for each GΣ-
diagram and zero otherwise, and τ is the total duration
in time of the Σ-part of the GΣ-diagram. The Monte
Carlo average of this estimator is

〈 EI 〉MC ∝
∫ ∞

0

G
(0)
↓ (τ ′) dτ ′

∫ ∞

0

f(τ)Σ(τ) dτ . (50)

Similarly, within the same scheme, we collect statistics of
all “normalization” diagrams, see Fig. 7, using an estima-
tor projecting to the first-order diagram with the worm,
δnorm. Then,

〈 δnorm 〉MC ∝ C1

∫ ∞

0

G
(0)
↓ (τ ′) dτ ′

∫ ∞

0

Γ(τ) dτ . (51)

The proportionality coefficient cancels in the ratio of the
two averages, leading to

I = C1
〈 EI 〉MC

〈 δnorm 〉MC

∫ ∞

0

Γ(τ) dτ . (52)

In particular, for the optimal choice of CN , we have

I =
〈 EI 〉MC

〈 δnorm 〉MC

[
∫ ∞

0

G
(0)
↓ (τ) dτ

]−1

. (53)

Imaginary-time integrals for the product of Σ(τ) and
exponentials, see Eqs. (13) and (14), is all we need to
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determine the polaron energy and residue. For the bold-
line generalization of the scheme described in the next
Section we need the entire dependence of self-energy on
time and momentum. This is achieved by differentiating
partial contributions of GΣ-diagrams. For example,

EΣ,i = δGΣ δτ∈bini
, (54)

is an estimator counting contributions with τ within the
i-th imaginary-time bin of width ∆τi centered at the
point τi. Due to linear relation between I and Σ(τ) we
immediately realize that (for optimized choice)

Σ(τi) =
〈 EΣ,i 〉MC

〈 δnorm 〉MC

[

∆τi

∫ ∞

0

G
(0)
↓ (τ) dτ

]−1

. (55)

In complete analogy with the polaron case, we consider
ΓK̃-diagrams that contain one, and only one, uncovered
Γ-propagator, see Fig. 9, and use them to collect statis-
tics for the molecule self-energy. Up to straightforward

replacements G
(0)
↓ ↔ Γ, Σ ↔ K̃ all relations of this sub-

section hold true.

IV. SIMULATING T -MATRIX Γ(τ, p) BY BOLD

DIAGRAMMATIC MONTE CARLO

Despite relatively simple form of Eqs. (23) and (24),
tabulating the two-dimensional function Γ(τ, p) with high
accuracy using the inverse Laplace transform of Γ(ω, p)
turns out to be a time consuming job. In this work we
have used an alternative route based on the bold dia-
grammatic Monte Carlo technology introduced recently
in Ref. [32]. The crucial observation is that the T -matrix
Γ(τ, p) can be diagrammatically related to its vacuum
counterpart Γ0(τ, p), see Fig. 10, with the latter is known
analytically:

Γ0(τ, p) =
4π

m3/2
e(ǫF +µ−p2/4m)τg∓(τ) , (56)

were

g∓(τ) = − 1√
πτ

±
√
E eEτerfc(±

√
Eτ ) , (57)

for negative/positive values of the scattering length, E =
1/ma2, and erfc(x) is the error-function. [The Fermi-
energy and the chemical potential in Eq. (56) come from
the global energy shift necessary for compliance with the
Dyson equation shown in Fig. 10.]

With the explicit expression for the product of two vac-
uum propagators the relation shown in Fig. 10 reads (the
momentum argument of Γ(τ, p) is suppressed for clarity)

− Γ(τ) = −Γ0(τ) +

∫ τ

0

ds

∫ τ

s

ds′ Γ0(s) Γ(τ − s′)

×
∫

q<kF

dq

(2π)3

(

−e−[(p−q)2+q
2](s′−s)/2m

)

. (58)

= -
-Γ -Γ0

FIG. 10: Diagrammatic equation for the T -matrix Γ(τ, p).
The arc is the vacuum spin-up propagator with the constraint
q < kF on its momentum q. The meaning of this equation is
nothing but correcting the vacuum result Γ0 by subtracting
contributions from the spin-up fermions with momenta q <
kF .

Equation (58) is one of the simplest examples of prob-
lems solvable by bold diagrammatic Monte Carlo [32].
We refer the reader to Ref. [32], where the algorithm of
solving such equations is described in detail. Here we just
mention some specific details. We find it helpful to start
from a good trial function for obtaining high-accuracy
results in a short simulation time. We achieve this goal
using the following protocol. We start the simulation by
restricting imaginary time to be smaller than τmax and
select relatively short τmax. When the result is accurate
enough, we extrapolate it to longer times, increase τmax,
and restart the simulation with the extrapolated func-
tion, Γext serving as the trial function, i.e. we substitute
Γ = Γext + δΓ to Eq. (58) and solve for δΓ. If necessary,
this procedure can be repeated several times.

V. SIMULATION RESULTS AND SERIES

CONVERGENCE PROPERTIES

Nearly all results in this paper were obtained by simu-
lating diagrams built on bare one- and two-particle prop-

agators G
(0)
↓ and Γ. We observed that the correspond-

ing series are likely to be divergent. This, however, does
not mean that the entire idea of calculating contributions
from diagrams of higher and higher order and extrapolat-
ing results to the infinite order is useless and ill-defined.
On the contrary, it was recognized long ago that appro-
priate re-summation techniques allow one to determine
reliably the function standing behind the divergent series.
Moreover, all re-summation techniques (formally, there
are infinitely many!), if applicable, have to agree with
each other on the final result. This important observa-
tion vastly increases the utility of the Diag-MC technique
we are developing here. In the next Section we demon-
strate that making the series for Σ self-consistent with
the use of Dyson equation—bold-line technique—is an-
other way to improve series convergence properties.

For the resonant Fermi-polaron considered here the
Cesàro-Riesz summation method solves the convergence
problem. In general, for any quantity of interest—in our
case they are polaron or molecule self-energy—one con-
structs partial sums

Σ(N∗) =

N∗
∑

N=1

DNF
(N∗)
N , (59)
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0.0 0.1 0.2 0.3 0.4

-2.64

-2.62

-2.60

-2.58

-2.56

-2.54

-2.52

-2.50

-2.48

-2.46

-2.44    Em

1/N*

kFa = 1.0

FIG. 11: The molecule energy (at kF a = 1) as a function
of the maximum diagram order N∗ for different summation
techniques: Cesàro (open squares), Riesz δ = 2 (filled circles,
fitted with the parabola y = −2.6164+0.28013x+0.01638x2 ),
Riesz δ = 4 (open circles, fitted with the parabola y =
−2.6190 + 0.61635x − 0.3515x2), and Eq. (61) (stars fitted
with the horizontal dashed line). Reproduced from Ref. [12].

defined as sums of all terms up to order N∗ with the N -

th order terms being multiplied by the factor F
(N∗)
N . In

the limit of large N∗ and N ≪ N∗ the multiplication fac-
tors F approach unity while for N → N∗ they suppress
higher-order contributions in such a way that Σ(N∗) has
a well-defined N∗ → ∞ limit. There are infinitely many
ways to construct multiplication factors satisfying these
conditions. This immediately leads to an important con-
sistency check: Final results have to be independent of
the choice of F . In the Cesàro-Riesz summation method
we have

F
(N∗)
N = [(N∗ −N + 1)/N∗]

δ , (Cesàro-Riesz) . (60)

Here δ > 0 is an arbitrary parameter (δ = 1 corresponds
to the Cesàro method). The freedom of choosing the
value of Riesz’s exponent δ can be used to optimize the
convergence properties of Σ(N∗).

We proceed as follows. For the series truncated at or-
der N∗ we first determine the polaron and molecule ener-
gies and then study their dependence on N∗ as N∗ → ∞.
In Fig. 11 we show results for the molecule energy at
kF a = 1. Without re-summation factors the data are
oscillating so strongly that any extrapolation to the infi-
nite diagram order would be impossible; we consider this
as an indication that the original series are divergent. Os-
cillations remain pronounced for δ = 1, but are strongly
suppressed for larger values of δ, so that for δ = 4 we were
not able to resolve odd-even oscillations any more. How-
ever, the smoothness of the curve for large δ = 4 comes
at the expense of increased curvature, which renders the
extrapolation to the 1/N∗ → 0 limit more vulnerable to
systematic errors. Empirically, we constructed a factor

F
(N∗)
N which leads to a faster convergence [see an example

0 0.1 0.2 0.3

-0.618

-0.616

-0.614

-0.612

-0.61

-0.608

E

1/N*

a  = 0-1

FIG. 12: (Color online) The polaron energy (at the uni-
tarity point a−1 = 0) as a function of the maximum dia-
gram order N∗ using Eq. (61). The data are fitted using
linear −0.618 + 0.033/N∗ (red) and exponential −0.6151 +
0.026e−0.39N∗ (black) functions to have an estimate of sys-
tematic errors introduced by the extrapolation procedure.

in Fig. (11)]:

F
(N∗)
N = C(N∗)

N∗
∑

m=N

exp

[

− (N∗ + 1)2

m(N∗ −m+ 1)

]

, (61)

where C(N∗) is such that F
(N∗)
1 = 1. The most impor-

tant conclusion we draw from Fig. 11 is that in our case
the series are subject to re-summation methods and the
result of extrapolation is method independent. We con-
sider small variations in the final answer due to different
re-summation techniques and extrapolation methods as
our systematic errors. An example is shown in Fig. 12.
In the next section we will present evidence that the ac-
tual answer is closer to the upper bound of −0.615. We
see that in the absence of additional information one has
to allow for different ways of extrapolating the answer.

Apart from consistency checks, one can test numeri-
cal results against an analytic prediction for the strong
coupling limit kFa → 0 corresponding to a compact
molecule scattering off majority spins. In this limit the
molecule energy is given by the expression

Em = − 1

ma2
− εF +

2πã

(2/3)m
n↑ (kF a → 0 ) , (62)

where the first term is the molecule binding energy in vac-
uum, the second term reflects finite chemical potential of
spin-up fermions, and the last term comes from the in-
teraction between the composite molecule with the Fermi
gas. The molecule-fermion s-scattering length ã ≈ 1.18a
[35, 36] is obtained from the non-perturbative solution of
the three-body problem. Agreement with Eq. (62) pro-
vides a robust test for the entire numerical procedure of
sampling asymptotic diagrammatic series. Our data are
in a perfect agreement with the ã ≈ 1.18a result within
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FIG. 13: (Color online) Polaron (black circles) and molecule
(red triangles) energies (in units of εF ) as functions of kF a.
The dashed line on the lower panel corresponds to Eq. (62).
Reproduced from Ref. [12].

the statistical uncertainty of the order of 5%, see the
lower panel in Fig. 13.

Somewhat surprising outcome is that Em is described
by Eq. (62) very accurately all the way to the crossing
point. This fact can be used to approximate the energy
density functional of the superfluid polarized phase in
the strongly imbalanced gas for kFa < 1 as that of the
miscible dilute molecule gas coupled to spin-up fermions
[19] (see also Refs. [39, 40])

E =
3

5
ǫFn↑−

[

1

ma2
− 2πã

(2/3)m
n↑

]

n↓+
πaMM

m
n2
↓ , (63)

where n↑, n↓ are densities of unpaired spin-up fermions
and molecules, and aMM ≈ 0.6a is the molecule-molecule
scattering length [38]. Within this approach it is found
that the system undergoes phase separation for kF a >
0.56 [19].

Phase separation precludes one from investigating the
crossing point between the polaron and molecule curves

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

kFa

m
*/m

FIG. 14: (Color online) Polaron (black circles) and molecule
(red triangles) effective mass as functions of kF a. The vertical
dotted line stands for (kF a)c = 1.11. The dashed line is the
contribution from the first diagram [37]. Reproduced from
Ref. [12].

in trapped imbalanced Fermi gases. It also rules out the
multi-critical point on the phase diagram predicted in
Ref. [17]. This issues, however, are not directly relevant
to our study of properties of one spin-down particle. In
Fig. 13, we present polaron and molecule energies in the
region of kFa ∼ 1 where the nature of the quasiparti-
cle state changes. The crossing point is found to be at
(kFa)c = 1.11(2). Overall, both curves are in excellent
agreement with the variational Monte Carlo simulations
[16, 19]. There is a certain degree of accidental coinci-
dence in the fact that the polaron self-energy is nearly ex-
hausted by the first-order diagram considered in Ref. [37],
see also Fig. 12. As we show in the next section, both
second-order and third-order diagrams make considerable
contributions to the answer but they happen to nearly
compensate each other, i.e. Green’s function renormal-
ization and vertex corrections have similar amplitudes
and opposite signs.

The intersection of the polaron and molecule curves
can be determined very accurately because both solutions
are describing well-defined quasiparticles at the crossing
point. This is because matrix elements connecting the
two branches involve at least four particles and their
on-resonance phase volume is zero at (kF a)c. Indeed,
the energy, momentum, and particle number (for each
spin direction) conservation laws dictate that polaron de-
cays into molecule, two holes and one spin-up particle
(molecule decays into polaron two spin-up particles and
one hole). For this process the final-state phase volume
gets negligibly small as compared to the energy difference
|Ep − Em| at and in the vicinity of the crossing point.

The data for the effective mass is presented in Fig. 14.
At the crossing point the effective mass curve is discontin-
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uous as expected for the exact crossing between two solu-
tions. One important observation is that good agreement
with Eq. (62) for molecule energy in the entire region
kFa < 1 does not guarantee yet that the compact-boson
approximation is accurate in the same region if proper-
ties other than energy are addressed. In this sense, even
good agreement with Eq. (62) has to be taken with a
grain of salt since (62) assumes that the molecule mass
is 2m and independent of kFa. The actual effective mass
is significantly enhanced in the vicinity of (kF a)c.

VI. NUMERIC REALIZATION OF THE

“BOLD-LINE” TRICK

The success of the Diag-MC method for fermi-polarons
is, to large extent, due to small error bars we have for the
sign-alternating sums of high-order diagrams. In gen-
eral, it is expected that the computational complexity of
getting small error bars for sign-alternating sums in the
limit of large N is exponential (or factorial) in N since it
usually scales with the configuration space volume. Any
tricks that reduce the configuration space while keeping
the scheme exact are worth investigating. In fact, we
have already used one of such tricks above when we intro-
duced Γ summing up all ladder diagrams. As a result, the
diagram order was defined by the number ofG↓-lines, not
bare interaction potential vertexes, and ladder-reducible
diagrams were excluded from the configuration space.

In this Section we go one step further and apply an-
other method, well-known in analytic calculations (but
virtually never carried out analytically to high-order; for
first-order diagrams it is known as the self-consistent
Born approximation). It is called the “bold-line” trick.

The relation between G↓, G
(0)
↓ and Σ accounts for the in-

finite sum of diagrams forming geometrical series. Now,
if one-particle lines in self-energy diagrams are represent-
ing exact Green’s function (in this case they are drawn in
bold) then many diagrams have to be excluded to avoid
double counting. Namely, any structure which can be in-
terpreted locally as part of the Dyson equation for G↓ has
to be crossed out. Though formally the diagram order
is still defined by the number of G↑, it is in fact repre-
senting a whole class of diagrams (up to infinite order) in
the original, or bare, terms. Clearly, the MC scheme is
now self-consistently defined and potentially even finite
number of “bold” diagrams can capture non-perturbative
effects.

Recently, we have demonstrated that the bold-line
trick is compatible with Diag-MC and the corresponding
scheme has been termed the bold diagrammatic Monte
Carlo (BMC) [32]. There are two routes for implement-
ing the bold-line technique. The first one is to arrange
two (running in parallel) coupled Monte Carlo processes:
one sampling the series for the self-energy in terms of ex-
act propagators, and the other one sampling propagators
from the Dyson equation. The latter process is essentially
the same as the process we use for pre-calculating Γ, with

an important new feature that the self-energy used in
the sampling is permanently updated. The second route
is specific for Dyson-type equations which allow trivial
algebraic solution in momentum representation. In the
present work, we use the second route.

The implementation of the bold-line trick requires that
we introduce an update which changes the global mo-
mentum p of the diagram. This update applies only to
the simplest normalization diagrams, see Fig. 7. The
integrated weight of normalization diagrams is given by
Λ(p), see Eqs. (30) and (51). In the update, we select the
new value for the global momentum from the probabil-
ity distribution Λ(p) and propose new time variables for
the spin-down and pair propagators from the optimized
probability distributions WΓ(τ1,p) and W↓(τ2,p). Since
new variables are seeded using the exact diagram weight
the acceptance ratio is unity. In practice, the modulus of
the global momentum variable is defined on the discrete
set of points.

We start the simulation with G↓ = G
(0)
↓ , and collect

statistics to the momentum-time histogram of Σ from
bold-line diagrams. After a certain number of updates,
we perform fast Fourier transform of Σ(τ, p) to obtain
Σ(ω, p), calculate G↓(ω, p) using Dyson equation, which
is then transformed back toG↓(τ, p). The simulation pro-
ceeds as before with the G↓(ω, p) function being recalcu-
lated at regular time intervals to reflect additional statis-
tics accumulated in Σ. Obviously, the self-consistent
feedback present in the bold-line scheme at the beginning
of the simulation violates the detailed balance equation
each time the function G↓ is updated. Only in the long
simulation time limit when both Σ and G do not change
any more is the detailed balance satisfied.

The other point which requires special care is the treat-
ment of ladder-reducible diagrams. In the bold-line im-
plementation we have to allow ladder diagrams back, but
each spin-down line in the ladder-reducible structure now

has to be understood as a difference G↓ −G
(0)
↓ . Indeed,

ladder diagrams included in Γ are built on bare propa-
gators and thus have to be corrected for the difference
between the bare and exact propagators.

Finally, we apply the bold-line approach in the
molecule channel as well. In fact, the scheme was de-
signed to be identical in the one- and two-particle sec-
tors. Now, in all self-energy diagrams we have to substi-

tute G
(0)
↓ for G↓ and Γ for Q, with both G and Q being

periodically recalculated to reflect additional statistics
statistics accumulated to the Σ- and K̃-histograms. Cor-
respondingly, diagrams which can be locally interpreted
as part of the Dyson equation in the molecule sector have
to be excluded. [Ironically, this means that ladder dia-
grams are not allowed once again with the exception for
the first-order diagram in K̃ which ensures that ladders
are built on G↓, see previous paragraph.] The updates
and acceptance ratios do not change in the bold-line rep-
resentation, but in the optimized version the probability
distributions W↓ and WΓ (and their normalization inte-
grals) are now proportional to G↓ and Q, i.e. they have
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to be changed each time the new solutions of the Dyson
equations are generated.

As discussed in Ref. [32], the Monte Carlo procedure
of solving self-consistent equations is more robust and
has better convergence properties then standard itera-
tions, especially for sign-alternating series. There are
additional tools to improve the efficiency and conver-
gence, some are self-explanatory. It definitely helps to
start with the initial function G↓ as close as possible to
the actual solution (the final answer should not depend
on small variations of the initial choice). For example,
the simulation for a given value of kF a may start with
the final solution for the neighboring kF a point. The ini-
tial statistics has to be discarded or “erased” according
to some protocol. If analytic expressions in special cases
are available, e.g. in the perturbation theory or strong
coupling limits, they can be used to match numeric data
and restrict the parameter range probed in the simula-
tion.
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FIG. 15: (Color online) Polaron energy as a function of the
maximum diagram order N∗ at the unitary point kF a = ∞

within the bold-line approach. Black squares show results
when the bold-line approach was implemented only for the
polaron propagator. When both polaron and molecule prop-
agators in diagrams are given by G↓ and Q one obtains results
shown by red circles.

In Fig. 15 we present data for the polaron energy at the
unitary point calculated using the self-consistent scheme.
As before, the diagram order is defined by the num-
ber of spin-down propagators. To see the difference be-
tween various approaches we first calculated E with the
bold-line trick implemented only for spin-down propaga-
tors (black squares) and then for both spin-down and
molecule propagators (red circles). This plot makes it
clear that the perturbation theory result [37] is accurate
because corrections to spin-down propagators nearly can-
cel vertex corrections. Figure 15 is also telling the story
which we observe happening over and over again for other
strongly-correlated condensed matter problems: it does
not really make any sense to propose “better” approxi-

mations which account only for some incomplete set of
diagrams. For example, if in the first-order diagram Γ is
replaced with Q (self-consistent Born approximation in
the molecule sector), the answer is getting much worse!
Moreover, using exact expressions for G↓ and Q in ir-
reducible diagrams up to third-order (!) results in an
oscillation (the highest circle in Fig. 15) which forces one
to think that the final answer is probably even further
up. Fortunately, with the bold-line Diag-MC technique
developed in this article we can see how different ap-
proximations work and what their actual value is, term
by term.

VII. CONCLUSIONS

The sign-problem in MC simulations is the problem of
obtaining small error-bars for system parameters which
allow reliable extrapolation of results to the thermody-
namic limit. Most MC schemes are based on simulations
of finite-size systems (of linear size L) with the configura-
tion space volume growing exponentially/factorially with
L3 and inverse temperature 1/T (for quantum models).
Since error bars grow with the configuration space vol-
ume they are completely out of control before a mean-
ingful extrapolation to the thermodynamic limit can be
done.

Computational complexity of the Diag-MC technique
for sign-alternating series is also exponential/factorial in
the diagram order and final results have to be extrap-
olated to the N∗ → ∞ limit. In this sense the tech-
nique does not solve the sign-problem, but offers a better
route for handling it. One important difference between
the configuration space volume for finite-size systems and
connected Feynman diagrams is that the latter deals with
the thermodynamic limit directly. Moreover, the same
diagrams describe systems of different dimensions and
temperature. The list of advantages does not end here
because one can employ all known analytic tools to re-
duce the configuration space, and thus make an expo-
nential advance towards acceptable solution of the sing-
problem. By simulating the self-energy instead of the
Green’s function (this was not done before) the configu-
ration space is reduced to that of G-irreducible graphs.
Using ladder diagrams we convert the standard pertur-
bation theory in the bare potential V into the series ex-
pansion in terms of Γ. Finally, the entire scheme is made
self-consistent by writing diagrams in terms of exact G
and Q. Since self-consistency accounts for infinite sums
of diagrams forming geometrical series the configuration
space of bold-line diagrams is reduced further. All com-
bined, the final formulation is compact enough to perform
the N∗ → ∞ extrapolation reliably before error bars ex-
plode. Strictly speaking, having convergent series is not
a requirement because re-summation techniques are well-
defined mathematically and their work is guaranteed by
theorems based on properties of analytic functions.

At the moment we do not see any obvious limitations
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of the method described here. On the contrary, we be-
lieve that it can be used to study a generic interacting
many-body system, Bose or Fermi. Of course, the struc-
ture of diagrams and the optimal strategy of applying
analytic tools are Hamiltonian dependent and have to
be studied case-by-case. For example, in lattice mod-
els there is no urgent need to deal with the ultra-violet
limit explicitly and one can proceed with the expansion
in the bare interaction potential V ; the so-called ran-
dom phase approximation can be used to replace V with
the screened interaction potential; the latter can be com-
bined with ladder diagrams, etc. The bold-line trick for
Green’s functions can be implemented in any scheme.

To summarize, we have shown that polaron type prob-
lems can be studied numerically with high accuracy us-
ing Diag-MC methods even when the corresponding dia-

grammatic expansion is not sign-positive and divergent.
Previously such series were regarded as hopeless numeri-
cally, to such an extent that nobody was actually try-
ing! Using Diag-MC approach we calculated energies
and effective masses of resonant Fermi-polarons in the
BCS-BEC crossover region and determined that the point
where the groundstate switches from the single-particle
(fermionic) sector to two-particle (bosonic) sector is at
kFa = 1.11(2). This point falls inside the phase separa-
tion region for the dilute mixture of spin-down fermions
in the Fermi gas of spin-up particles [19].
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