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New Physics contributions to the lifetime difference in D
0-D

0

mixing
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2Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822
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The first general analysis of New Physics contributions to the D
0-D

0

lifetime difference (equiv-
alently ∆ΓD) is presented. The extent to which New Physics (NP) contributions to |∆C| = 1
processes can produce effects in ∆ΓD, even if such NP contributions are undetectable in the current
round of D

0 decay experiments, is studied. New Physics models which do and do not dominate the
lifetime difference in the flavor SU(3) limit are identified. Specific examples are provided.

PACS numbers:

Quantum mechanical meson-antimeson oscillations are
sensitive to heavy degrees of freedom which propagate in
the underlying mixing amplitudes. The observation of
mixing in the K0 and Bd systems thus implied the ex-
istence respectively of the charm and top quarks before
these particles were discovered. In like manner, by com-
paring observed meson mixing with predictions of the
Standard Model (SM) modern experimental studies have
been able to constrain models of New Physics (NP).

Which system of mixed mesons is likely to produce ev-
idence for NP? It has become clear from B-factories and
the Tevatron collider that hopes for spectacular NP con-
tributions to Bd and Bs oscillations have come to naught.
The large SM mixing succesfully describes all available
experimental data. The only flavor oscillation not yet
observed is that of the charmed meson D0, where SM
mixing is very small and the NP component can stand
out. [1]

Charm mixing arises from |∆C| = 2 interactions that
generate off-diagonal terms in the neutral D mass matrix.

To second order, the D0-to-D
0

matrix element is

(
M − i

2
Γ

)

12

=
1

2MD
〈D0|H∆C=−2

w |D0〉 (1)

+
1

2MD

∑

n

〈D0|H∆C=−1
w |n〉 〈n|H∆C=−1

w |D0〉
MD − En + iǫ

where H|∆C|=1,2
w is the effective |∆C| = 1, 2 hamiltonian.

The most natural place for NP to affect mixing ampli-
tudes is in the |∆C| = 2 piece, which corresponds to a
local interaction at the charm quark mass scale. This
local interaction cannot, however, affect ∆ΓD because it
does not have an absorptive part.

Let us introduce standard notation for ∆ΓD and ∆MD

by employing the dimensionless forms,

y =
∆ΓD

2ΓD
, x =

∆MD

ΓD
. (2)

Given CP-conservation, we can express y as an absorptive

D0 D̄0

q

q̄′

FIG. 1: Loop diagram for D
0 → D

0

.

part of Eq. (1),

y =
1

ΓD

∑

n

ρn〈D
0|H∆C=−1

w |n〉〈n|H∆C=−1
w |D0〉, (3)

where ρn is a phase space function that corresponds to
charmless intermediate state n. This relation shows that
∆ΓD is driven by transitions D0, D

0 → n, i.e. physics
of the |∆C| = 1 sector. It turns out that experimentally
observed D0 decays agree reasonably well with SM es-
timates [2]. To date, no clear signals of NP have been
observed [4]. As such, it is currently accepted that ∆ΓD

is dominated by the SM contribution. In this Letter, we
show that this is not necessarily so and consider several
NP models to illustrate our point.

Consider a D0 decay amplitude which includes a small

NP contribution, A[D0 → n] = A
(SM)
n + A

(NP)
n . Here,

A
(NP)
n is assumed to be smaller than the current exper-

imental uncertainties on those decay rates. Then it is a
good approximation to write Eq. (3) in the form

y≃
∑

n

ρn

ΓD
A(SM)

n Ā(SM)
n + 2

∑

n

ρn

ΓD
A(NP)

n Ā(SM)
n . (4)

The first term in this equation corresponds to SM inter-
actions at both vertices in Fig. 1, whereas for the second
term, there is one SM vertex and one NP vertex.

The SM contribution to y is known to vanish in the
limit of exact flavor SU(3) [5]. Moreover as was shown
in [6], the first order correction is also absent, so the SM
contribution arises only as a second order effect. Thus,
those NP contributions which do not vanish in the flavor
SU(3) limit must determine the lifetime difference there,

http://arXiv.org/abs/hep-ph/0610039v1
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even if their contibutions are tiny in the individual decay
amplitudes. The same reasoning can be applied to x since
a dispersion relation relates x to y [7].

Of course, flavor SU(3) symmetry is broken in the real

world. Just how large this effect is on D0-D
0

mixing in
the SM is controversial, with estimates for y ranging from
a percent [7] to orders of magnitude smaller [2, 8]. The
current experimental bounds on y and x are [3]

y < 0.008 ± 0.005 , x < 0.029 (95% C.L.) .

A NP |∆C| = 1 interaction can have a measureable effect
on the value of y (and of x) if the true SM value for y
does not near the top of the range of predictions. We
shall assume that this is the case.

Using the completeness relation and Eq. (3), the NP

contribution to the D0-D
0

lifetime difference becomes

y =
2

MDΓD
〈D0|Im T |D0〉 , (5)

T = i

∫
d4xT

(
H∆C=−1

SM (x)H∆C=−1
NP (0)

)
.

We represent the NP ∆C = −1 hamiltonian as1

H∆C=−1
NP =

∑

q,q′

Dqq′

[
C1(µ)Q1 + C2(µ)Q2

]
, (6)

Q1 = uiΓ1q
′
j qjΓ2ci , Q2 = uiΓ1q

′
i qjΓ2cj ,

where the spin matrices Γ1,2 can have arbitrary Dirac
structure, C1,2(µ) are Wilson coefficients evaluated at en-
ergy scale µ and the flavor sums on q, q′ extend over the
d, s quarks. We shall expand the time-ordered product
of Eq. (5) in an operator product expansion (OPE), i.e.
in terms of local operators of increasing dimension [9].

The leading term in the OPE is simply that depicted
in Fig. 1. For a generic NP interaction, we calculate that

y =− 4
√

2GF

MDΓD

∑

q,q′

V∗
cq′VuqDqq′ (K1δikδjℓ

+ K2δiℓδjk)

5∑

α=1

Iα(x, x′) 〈D0| Oijkℓ
α |D0〉, (7)

where {Kα} are combinations of Wilson coefficients,

K1 =
(
C1C1Nc +

(
C1C2 + C1C2

))
, K2 = C2C2 (8)

with the number of colors Nc = 3. The operators {Oijkℓ
i }

in Eq. (7) are defined as

Oijkℓ
1 = ukΓµγνΓ2cj uℓΓ1γ

νΓµci

1 Throughout this paper, we reserve indices i, j, k, ℓ for color.

Oijkℓ
2 = ukΓµ6 pcΓ2cj uℓΓ1 6 pcΓ

µci

Oijkℓ
3 = ukΓµΓ2cj uℓΓ16 pcΓ

µci (9)

Oijkℓ
4 = ukΓµ6 pcΓ2cj uℓΓ1Γ

µci

Oijkℓ
5 = ukΓµΓ2cj uℓΓ1Γ

µci ,

where pc is the charm-quark momentum operator, Γµ ≡
γµPL, PL ≡ (1 + γ5)/2 and later we also use PR ≡ (1 −
γ5)/2. The coefficients Iα(x, x′) in Eq. (7) are

I1(x, x′)=−k∗mc

48π

[
1 − 2 (x + x′) + (x − x′)

2
]

I2(x, x′)=− k∗

24πmc

[
1 + (x + x′) − 2 (x − x′)

2
]

I3(x, x′)=
k∗

8π

√
x (1 + x′ − x) (10)

I4(x, x′)=− k∗

8π

√
x′ (1 − x′ + x)

I5(x, x′)=
k∗mc

4π

√
xx′ ,

where k∗ ≡ (mc/2)[1 − 2(x + x′) + (x − x′)2]1/2 with
x ≡ m2

q/m2
c and x′ ≡ m2

q′/m2
c .

Equations (7)-(10) represent the basic formulas in our
analysis. Hereafter, we take md = 0 and express re-
sults in terms of the Wolfenstein parameter λ ≡ Vus =
−Vcd ≃ 0.22 and xs ≡ m2

s/m2
c ≃ 0.006. All our results

are presented to leading order in xs. Finally, predictions
using NP masses and couplings other than the ones as-
sumed here can be obtained via simple scaling.

The SM hamiltonian H∆C=−1
SM is recovered in Eq. (6)

by setting Dqq′ = −(GF /
√

2)V∗
cqVuq′ , Ci → Ci, Γ1,2 →

Γµ, and the known SM result y
(LO)
SM easily follows,

y
(LO)
SM =

G2
F m2

cλ
2x3

s

2πMDΓD
(K2 − K1) [〈Q〉 + 4〈QS〉] ,

〈Q〉=〈D0|uiΓµci ujΓ
µcj |D0〉 , (11)

〈QS〉=〈D0|uiPRci ujPRcj |D0〉 .

Note that this contribution is suppressd by six powers

of ms and is therefore tiny, y
(LO)
SM ∼ 10−8 [1]. This

is because the GIM mechanism requires four chirality
flips (strange quark mass insertions) for the intermedi-
ate quarks plus additional helicity flip due to the pseu-
doscalar initial state. [6].

Examples of New Physics Models

In what follows, we distinguish between NP models
which vanish in the limit of SU(3) flavor symmetry from
those which do not.

Nonzero SU(3) Limit: For NP models with flavor-
dependent couplings Dqq′ , it is possible to obtain contri-
butions that are nonzero in the flavor SU(3) limit. For
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these, the main contibution will come from the opera-
tors O1,2 (as O3,4,5 are suppressed by powers of ms/mc).
The two most common scenarios involve (V-A)⊗(V-A)
and (S-P)⊗(S+P) couplings.

As an example, consider a NP model whose low energy
effective hamiltonian is represented by a four-fermion op-
erator with vectorial left-handed interactions, i.e. Γ1 =
Γ2 = γµPL and Dqq′ = λqq′/Λ2, where Λ is the NP mass
scale. We find

yVLH =
Cλ̃

Λ2

[
K1 + 2K2

2
〈Q〉 + (K2 − K1) 〈QS〉

]
, (12)

where C ≡
√

2GF m2
c/(3πMDΓD) and

λ̃ = λsd − λ (λdd − λss) − λ2 (λds + λsd) (13)

is the combination of NP couplings to the s, d quarks.
It follows from Eq. (13) that if all NP couplings λqq′

are of the same order, yVLH is nonzero in the flavor SU(3)
limit. The result for a penguin-like NP contribution can
be obtained if one sets λsd = λds = 0. In this case the
same conclusion holds if λdd 6= λss (which is however not

easy to arrange) unless a (generally tiny) |A(NP)
n |2 term

is also included in Eq. (4). In what follows, we will be
neglecting QCD running of the local operators generated
by the NP interaction (i.e. C1 = 0 and C2 = 1).

Models with extra vector-like quarks: Consider a model
of the above type which extends the SM by including new
singlet quarks in a vector-like representation [10]. In this
instance, the Z-boson has additional flavor-changing cou-
plings. For example, assume both up-type and down-
type exotic quarks Ua,i, Da,i are present (indices a, i
denote flavor and color respectively). Then the flavor-
changing couplings are described by

LxQ = − g

2 cos θW
J (NC)

µ Zµ + h.c. , (14)

J (NC)
µ = U

(u)
ab Ua,iΓµUb,i + U

(d)
ab Da,iΓµDb,i ,

with flavor-changing couplings in both up and down sec-
tors. The lifetime difference for this model can be ob-
tained from Eq. (12) by substituting λsd = U

(u)
cu U

(d)†
sd ,

λds = λdd = λss = 0 and Λ =
√

2/GF . This model
is well-constrained from measurements of the mass dif-
ferences in KK and DD mixing. For U

(u)
cu ∼ 10−3 and

U
(d)
sd ∼ 10−4 we get y ∼ 10−8, of the same order of mag-

nitude as y
(LO)
SM above. It is worth noting that the little

Higgs models, which have similar low-energy signatures,
are not constrained by the measurements of lifetime dif-
ference, as they do not have flavor-changing couplings for
the down quark sector (flavor-conserving contributions
cancel out in y).

SUSY without R-parity (slepton exchange): Another
example of a contribution which survives in the flavor
SU(3) limit is SUSY without R-parity [11]. In this

model, there are flavor-changing interactions of sleptons
that can be obtained from the lagrangian

L6R = λ′
ijkLiQjD

c
k , (15)

as well as the interactions mediated by squarks discussed
below. The slepton-mediated interaction is not sup-
pressed in the flavor SU(3) limit and leads to

y 6R =
C′λ̃

M2

ℓ̃

[
(C2 − 2C1) 〈Q′〉 + (C1 − 2C2) 〈Q̃′〉

]
,(16)

where C′ = −GF m2
c/(6

√
2πMDΓD), M

ℓ̃
is a slepton

mass, λ̃ is given by Eq. (13) with λsd = λ′
i12λ

′
i21 ≤

1 × 10−9, λss = λ′
i11λ

′
i21 ≤ 5 × 10−5, λdd = λ′

i21λ
′
i22 ≤

5 × 10−5, λds = λ′
i11λ

′
i22 ≤ 5 × 10−2 [11], and 〈Q′〉 is

〈Q′〉 = 〈D0|uiγµPLci ujγ
µPRcj |D0〉 . (17)

Operators with a tilde are obtained by swapping color
indices in the charm quark operators. Using factoriza-
tion to estimate matrix elements of the above operators
and taking for definiteness M

ℓ̃
= 100 GeV, we arrive at

y 6R ≃ −3.7%. The contribution due to squark exchange
vanishes in the flavor SU(3) limit and is given below.

Zero SU(3) Limit: There are several reasons that
some NP models vanish in the flavor SU(3) limit. First,
the structure of the NP interaction might simply mimic
the one of the SM. Effects like that can occur in some
models with extra space dimensions. Second, the chiral
structure of a low-energy effective lagrangian in a par-
ticular NP model could be such that the leading, mass-
independent contribution vanishes exactly, as in a left-
right model (LRM). Third, the NP coupling might explic-
itly depend on the quark mass, as in a model with mul-
tiple Higgs doublets. There, the charged Higgs couplings
explicitly depend on quark mass. However, most of these
models feature second order SU(3)-breaking already at
leading order in the 1/mc expansion. This should be
contrasted with the SM, where the leading order is sup-
pressed by six powers of ms and the second order only
appears as a 1/m6

c-order correction.
Left-right models: Left-right models (LRM) provide

new tree-level contributions mediated by right-handed
(W (R)) bosons [12]. The relevant effective lagrangian is

LLR = − gR√
2

V
(R)
ab ua,iγ

µPRdb,i W (R)
µ + h.c. , (18)

where V
(R)
ik are the coefficients of the right-handed CKM

matrix. This leads to a local ∆C = −1 hamiltonian as
in Eq. (6) with Γ1 = Γ2 = γµPR. Since current experi-
mental limits allow W (R) masses as low as a TeV [3], a
sizable contribution to y is quite possible. Using Eq. (7),
we obtain

yLR = −CLRV(R)
cs V(R)∗

us

[
C1〈Q′〉 + C2〈Q̃′〉

]
, (19)



4

where CLR ≡ λG
(R)
F GF m2

cxs/(πMDΓD), G
(R)
F /

√
2 ≡

g2
R/8M2

WR
, C1,2 are the SM Wilson coefficients and the

operators appearing in Eq. (19) are given in Eq. (17).
Using [3], we obtain numerical values for two possi-
ble realizations: (i) ’Manifest LR’ (V(L) = V(R)) gives
yLR = −4.8 · 10−6 with MWR

= 1.6 TeV and (ii) ’Non-

manifest LR’ (V
(R)
ij ∼ 1) gives yLR = −8.8 · 10−5 with

MWR
= 0.8 TeV. In both cases we take gR = gL.

Multi-Higgs models: A popular realization of this type
is the two Higgs doublet model (2HDM) with natural fla-
vor conservation. This model provides new tree-level con-
tributions mediated by charged Higgs bosons and leads
to the local four fermion interaction [13]

H∆C=−1
ChH = −

√
2GF

M2
H

uiΓ1q
′
i qjΓ2cj , (20)

where the vertices Γ1,2 are

Γ1=mq′ cotβ Vuq′ PR − mu tan β Vuq′ PL ,

Γ2=mq cotβ V ∗
cq PL − mc tan β V ∗

cq PR . (21)

There are four possible contributions involving the var-
ious terms in Γ1,2. However, three of these, including
the potentially large tan2 β term, vanish for assorted rea-
sons (e.g. flavor cancellation, zero matrix element). This
leaves

yChH =
λ2G2

F m4
cx

3/2
s

πMDΓDM2
H

cot2 β [C1 + C2] 〈Q〉 , (22)

where 〈Q〉 is as in Eq. (11). Assuming values MH =
85 GeV and cotβ = 0.05, consistent with constraints
obtained from the observation of B → τντ [3], we obtain
yChH ≃ 2 · 10−10.

SUSY without R-parity (squark exchange): The
baryon-number violating squark exchanges arise from the
lagrangian [11]

L6R = λ′′
ijkU c

i Dc
jD

c
k . (23)

This interaction has the same Dirac structure as the LRM
discussed earlier and leads to

y′
6R = −xsC

′′ λ
′′
22kλ′′

12k

M2

s̃q

[
C2〈Q′〉 + C1Nc〈Q̃′〉

]
, (24)

where C′′ = GF λ/(2mDπΓ), M
s̃q

is a squark mass and

the matrix elements 〈Q′〉, 〈Q̃′〉 are given earlier. Us-
ing factorization for the matrix elements, λ′′

22kλ′′
12k ∼

3 ·10−4 [14], and taking M
s̃q

= 100 GeV, we arrive at the

result y′
6R ≃ 6.4 · 10−6.

In conclusion, we have explored how NP contributions
can influence the lifetime difference y in the charm sys-
tem. We argued that the NP signal is dominant in the

formal flavor SU(3) limit. We also showed that, for some
NP models, it is possible that small NP contributions to
|∆C| = 1 processes produce substantial effects in the

D0D
0

lifetime difference, even if such contributions are
currently undetectable in the experimental analyses of
charmed meson decays. Coupled with a known difficulty
in computing SM contributions to D-meson decay am-
plitudes, it might be advantageous to use experimental
constraints on y in order to test various NP scenarios due
to better theoretical control over the NP contribution and
SU(3) suppression of the SM amplitude.
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U.S. Department of Energy under Contract DE-FG02-
04ER41291. A.P. was supported in part by the U.S.
National Science Foundation CAREER Award PHY–
0547794, and by the U.S. Department of Energy under
Contract DE-FG02-96ER41005.
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