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Bold Diagrammatic Monte Carlo: When Sign Problem is Welcome

Nikolay Prokof’ev1, 2 and Boris Svistunov1, 2

1Department of Physics, University of Massachusetts, Amherst, MA 01003, USA
2Russian Research Center “Kurchatov Institute”, 123182 Moscow, Russia

We introduce a Monte Carlo scheme for sampling bold-line diagrammatic series specifying an
unknown function in terms of itself. The range of convergence of this bold(-line) diagrammatic
Monte Carlo (BMC) is significantly broader than that of a simple iterative scheme for solving
integral equations. With BMC technique, a moderate “sign problem” turns out to be an advantage
in terms of the convergence of the process. For an illustrative example, we solve one-particle s-
scattering problem. As an important application, we obtain T -matrix for a fermipolaron (one
spin-down particle interacting with the spin-up fermionic sea).

PACS numbers: 02.70.Ss, 05.10.Ln, 02.70.Tt

Diagrammatic Monte Carlo (DiagMC) [1] is a tech-
nique that allows one to simulate quantities specified in
terms of convergent diagrammatic sums, i.e., sums of in-
tegrals with integrands represented by a diagrammatic
structure. Formally, it is a set of generic prescriptions for
organizing a systematic-error-free Metropolis-type pro-
cess that samples the series/sum without explicitly tak-
ing the integrals over the internal variables in each par-
ticular term. In addition to the natural requirement of
convergence, the diagrammatic sums should be either es-
sentially finite (have only a few leading terms) or positive
definite; otherwise the sign problem suppresses the effi-
ciency of the numeric procedure. One of the key tools
in the analytical diagrammatic techniques is the trick of
bold lines [2] that allows one to (partially or completely)
sum the series even if it is formally divergent. The bold-
line trick looks also very attractive for the sign-indefinite
series since it can substantially reduce the number of
leading diagrams, and thus alleviate the sign problem.

In this Letter, we explore the possibility of employing
the bold-line trick in the DiagMC approach. We propose
a scheme which we call bold(-line) diagrammatic Monte
Carlo (BMC). In essence, BMC is a generalized iterative
scheme in which the iteration protocol depends on the
number of iteration steps, or, equivalently, in which the
next iteration is a function of not only its immediate an-
cestor, but of the (properly weighted) whole list of earlier
iterations. The crucial difference between BMC and a
näıve iteration protocol—when one simply uses DiagMC
to perform an integration for a given iteration step—is
that the convergence of BMC has essentially broader pa-
rameter range. We present general arguments why this is
the case and perform an illustrative simulation for one-
particle s-scattering problem. Despite its formal simplic-
ity, the problem contains all the ingredients one can meet
in a general case: the perturbative series diverges if the
scattering potential is strong enough, and—in the case of
a repulsive potential—the series is not positive definite.
The simplifications which we have here are mainly quan-
titative rather than qualitative. The bold-line trick re-
duces the infinite perturbative series to just two terms. In
the case of a strong attractive potential, two more terms

appear in the right-hand side to secure the convergence.
Incidentally, with these extra terms a sign problem arises
for strong attractive potential as well.

Before turning to the realistic simulation, we start with
discussing a generalized iterative procedure which is most
close to the actual BMC scheme. To analyze the conver-
gence issues, we can confine ourselves with a linearized
problem and write

| f 〉 = | b 〉 + A | f 〉 , (1)

where | f 〉 is some unknown vector, | b 〉 is a known vector,
and A is a linear operator. Expanding all the vectors in
terms of the operator A eigenvector basis {|φξ 〉}, we get

fξ = bξ + aξ fξ , (2)

where A|φξ 〉 = aξ|φξ 〉, | b 〉 =
∑

ξ bξ |φξ 〉, | f 〉 =
∑

ξ fξ |φξ 〉. The vector equation thus decouples into a
set of independent equations for each ξ. From now on the
label ξ can be omitted. From the convergence point of
view, it is advantageous to work with iterative schemes
that involve—at least at the theoretical level—an aver-
aging of the iterations. Let fn be the n-th generator for
the (n + 1)-st iteration

f̃(n+1) = b + a fn . (3)

The quantity fn is supposed to be a function of all f̃j’s
with j ≤ n. As a characteristic example we choose

fn =

∑n

j=1 jα f̃j
∑n

j=1 jα
(4)

where α > −1 is a fixed parameter of the scheme. We can
exclude f̃ ’s and explicitly relate f(n+1) to fn to see that
for the deviation δn = f − fn of the n-th generator from
the exact solution f = b/(1 − a) the following recursive
relation takes place

δ(n+1) = δn +
(1 + α)(a − 1)

n + 1
δn . (5)

It implies the asymptotic behavior

δn ∝ e(1+α)(a−1) ln n (n → ∞) . (6)
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Hence, the condition of convergence is

Re aξ < 1 . (7)

Here we restore the subscript ξ to emphasize that condi-
tion (7) has to be satisfied for all the eigenvalues of the
matrix A. We see that the value of α does not determine
the fact of convergence, but does effect the asymptotic
rate of convergence—the larger is α, the higher the rate.
It is important that the convergence does not depend on
the imaginary parts of aξ’s. Finally, negative real parts
of aξ are desirable for convergence: the larger is the ab-
solute value of the negative real part, the better. [Note

that the plain iterative method (fn ≡ f̃n) converges only
when |aξ| < 1.]

If condition (7) is not met, one can use an equation
equivalent to (1), but with convergent iterative proce-
dure. For the s-scattering problem, the matrix A is Her-
mitian and thus all its eigenvalues are real. In this case,
rewriting Eq. (1) as

| f 〉 = | b 〉 + A | f 〉 + λA ( | f 〉 − | b 〉 − A | f 〉 ) (8)

and fine-tuning the value of the constant λ, one can
render the iterative process converging. Indeed, the
new equation has the same form as the original one,
up to replacements | b 〉 → | b 〉 − λA| b 〉 and A →
(1 + λ)A − λA2. Correspondingly, condition (7) for the
new matrix will be met if the original eigenvalues satisfy
the inequality

(1 + λ)aξ − λa2
ξ < 1 . (9)

As is easily checked, condition (9) is met provided λ ∈
(λ1, λ2), where

λ−1
1 = min

aξ>1
{aξ} , λ−1

2 = max
aξ∈(0,1)

{aξ} . (10)

Hence, if the eigenvalues are real and separated from
unity by a finite gap, there exists a value of λ at which
convergence is guaranteed. Incidentally, the problem (1)
can always be re-formulated in such a way that the new
matrix is Hermitian:

| f 〉 = (1 − A†) | b 〉 + (A + A† − A†A) | f 〉 . (11)

The s-scattering problem can be formulated (see, e.g.,
Ref. [3]; for simplicity, we work with a spherically sym-
metric potential) as Eq. (1) with | f 〉 ≡ f(q) being
the zero-energy scattering wave function in the momen-
tum representation. In this case | b 〉 ≡ −u(q), where
u(q) = U(q)/2π, and U(q) is the Fourier transform of
the scattering potential; the Plank’s constant and parti-
cle mass are set equal to unity. The operator A here is
the integral operator

Af = −
1

π

∫ 1

−1

dχ

∫ ∞

0

u (|q − q1|) f(q1) dq1 , (12)

where |q − q1| ≡
√

q2 + q2
1 − 2qq1χ; Eq. (8) then reads

f = −u + λAu + (1 + λ)Af − λA2f . (13)

The potential we use in simulations is a flat spherical
well/bump defined as U(r) = U0 at r < 1 and zero oth-
erwise. For this potential,

u(q) =
2U0

q3
(sin q − q cos q) . (14)

Monte Carlo procedure. Here we discuss how generic Di-
agMC rules are used to calculate f(q) self-consistently.
For brevity, let us index the four terms in the right-rand-
side of Eq. (13) as terms A, B, C, and D. Correspond-
ingly, the “configuration space” of the problem is defined
by the term index and all continuous variables associated
with it. The goal of the Monte Carlo procedure is to per-
form stochastic summation over this configuration space.
The contribution of each state to the answer is charac-
terized by the weight with the sign which in our case is
given by the product of u- and f -functions; for example,
the weight and sign of the (B, q, q′, χ) state is determined
by the modulus and sign of u(|q − q

′|)f(q′).
The standard Metropolis-type protocol consists of up-

dates which change the current configuration state fol-
lowed by measurements which evaluate contributions of
the current state to the answer. The updating scheme de-
scribed below generates states with probabilities propor-
tional to their weight. In this case, the Monte Carlo esti-
mator for f(q) is given by the state sign. The statistics of
±1 contributions is accumulated into the f(q)-histogram
with bins covering the positive-q axis. Apart from repre-
senting the final result of the simulation, the histogram is
used self-consistently to generate random variables from
the probability density |f(q)| and to determine the sign
of B and D states.

A straightforward accumulation of data into the his-
togram corresponds to α = 1 in Eq. (4). However, large
values of α result in faster convergence, see Eq. (6). Nu-
merically, the limit of α → ∞ is implemented by simply
erasing “old” histogram data.

The simplest updating scheme contains three pairs of
complementary updates [A → B,B → A], [A → C, C →
A], [C → D,D → C] which change the term index, and
one self-complementary update A ↔ A changing the
variable q.
A ↔ A update. A new value for the variable q in state

A is generating from the normalized probability density

p(q) = |u(q)|/Iu , Iu =

∫ ∞

0

|u(q)| dq , (15)

The acceptance ratio for the A ↔ A update is unity.
A → B update. First, we select the value of χ from

the uniform probability density on the [−1, 1] interval.
Next, we select the value q′ from the histogram based
probability distribution |f(q′)|. The acceptance ratio for
this update is

RA→B =
2|1 + λ| If

πpAB

∣

∣

∣

∣

u(q − q
′)

u(q)

∣

∣

∣

∣

, (16)

where pAB is the probability to apply the A → B update
while in state A (we do not mention the probability of
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applying an update to the current configuration if it is
unity; in this scheme pBA = 1).

If =

∫ ∞

0

|f(q)| dq (17)

is the normalization integral proportional to the sum of
absolute values of all histogram contributions (its proper
normalization is discussed below).
B → A update. Here we propose to change the term

index back to A; the acceptance ratio for this move is
simply the inverse of RA→B.
A → C and C → A updates. Formally, this pair of

updates is identical in implementation to the previous
one with the only difference that the value of q′ in the
A → C move is generated from the probability density
|u(q′)|. Correspondingly, the acceptance ratio is based
on the Iu integral:

RA→C =
1

RC→A
=

2|λ| Iu pCA
π pAC

∣

∣

∣

∣

u(q − q
′)

u(q)

∣

∣

∣

∣

, (18)

C → D and D → C updates are an exact copy of the
A → B and B → A pair in terms of how new variables
are proposed and removed. The acceptance ratio is

RC→D =
1

RD→C

=
2If

π pCD

∣

∣

∣

∣

u(q′ − q
′′)

u(q′)

∣

∣

∣

∣

, (19)

The above set of updates is ergodic, i.e. it sam-
ples the entire configuration space. In the practical
implementation of the algorithm we used pAA = 0.2,
pAB = pAC = 0.4, and pCA = pCD = 0.5. To complete
the description we have to explain how to find the nor-
malization integral If in Eq. (21). Let ZMC be the total
number of Monte Carlo states in the simulation and ZA

be the number of A-states. In the statistical limit,

ZA

ZMC
=

Iu

I
, (20)

I = If +
|1 + λ|

π

∫

|u(q − q
′)f(q′)|dχdqdq′

+
|λ|

π

∫

|u(q − q
′)u(q′)|dχdqdq′ (21)

+
|λ|

π2

∫

|u(q − q
′)u(q′ − q

′′)f(q′′)|dχdχ′dq dq′dq′′ .

is the auxiliary “global partition function” which drops
out from all final answers. If Hs is the sum of all con-
tributions to the s-th bin of the histogram then in the
statistical limit,

Hs

ZMC
= I−1

∫

q∈bins

f(q) dq . (22)

If we now write the normalization integral as a sum over
the histogram (in the limit of infinitesimally small bin
size the relation is exact)

If =
∑

s

∣

∣

∣

∣

∫

q∈bins

f0(q) dq

∣

∣

∣

∣

= (Z/ZMC)
∑

s

|Hs| , (23)

and use Eq. (20) to eliminate I/ZMC we finally arrive at

If =

∑

s |Hs|

ZA

Iu . (24)

Similarly, the physical result for the scattering wave func-
tion is given by

f(qs) =
Hs

ZA

Iu . (25)

The s-wave scattering length can be obtained in two
ways: from the q → 0 limit, a = −f(q = 0), and as a
histogram sum (the last procedure gives better accuracy
since it is based on all Monte Carlo data and thus is not
susceptible to the noise in a particular bin)

a = u(0)+
2

π

∫ ∞

0

u(q)f(q)dq → u(0)+
2Iu

πZA

∑

s

u(qs)Hs .

(26)
We have tested our BMC scheme against the analyti-

cal answer for the scattering length in different regimes
which included strong repulsive and attractive potentials
outside of the convergence limits for the standard iter-
ative scheme. For example, one can easily get results
for a with four-digit (or higher) accuracy for the repul-
sive potential U0 = 10; a straightforward summation of
the series expansion for large positive values of U0 would
be impossible because of the divergence and/or the sign
problem. Series divergence will also prevent one from
going across the resonance and getting results for poten-
tials with bound states. In Fig. 1 we present data for
the scattering wave function obtained for U0 = −3, i.e.
for the potential well with the bound state. In this sim-
ulation a was obtained with the 4-digit accuracy. For
negative values of U0 < −10 we found that good initial
conditions, e.g. results of the previous run for smaller
|U0|, are important for convergence which was very slow
and required that λ ≈ 1. In view of Eq. (10), we con-
clude that in this parameter range we face the problem
of having matrix A eigenvalues being too close to unity.

Fermipolaron T -matrix. The fermipolaron is a spin-
down particle interacting with the sea of spin-up
fermions. Of special interest is the case when the spin-up
sea is an ideal Fermi gas while the interaction between
spin-up and spin-down particles is short-ranged but res-
onantly strong. In this regime—relevant to the notorious
problem of BCS-BEC crossover in the limit of extreme
population imbalance between the two fermionic compo-
nents [4]—there is, in particular, a critical point in the
interaction strength when the groundstate of the polaron
becomes a bound spin-zero state (molecule). The fer-
mipolaron problem allows an unbiased numeric solution
by DiagMC. The relevant diagrams are constructed out
of the three types of propagators (in the imaginary-time–
momentum representation): (i) spin-up Green’s func-
tions, (ii) spin-down vacuum propagators, and (iii) the T -
matrix of the pair interaction between spin-up and spin-
down particles [5]. While simple analytic expressions for
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FIG. 1: (Color online). Scattering wave function at zero en-
ergy (solid line) and scattering potential (dashed line) for the
attractive potential well with one bound state (U0 = −3).

= -

FIG. 2: The diagrammatic equation for the T -matrix (heavy
dashed line) in terms of the vacuum T -matrix (light dashed
line), spin-down vacuum propagator (straight solid line), and
truncated (to the momenta less than Fermi momentum) spin-
up propagator (solid arc).

type (i) and (ii) propagators are available, the T-matrix
has to be tabulated numerically; this tabulation repre-
sents the performance bottleneck for the whole scheme.
Noting that the equation defining the T -matrix through
itself (see Fig. 2) is analogous to that for the scattering
amplitude, one can directly apply the above-described
BMC procedure for obtaining the T -matrix. We have
successfully done that, which ultimately allowed us to
solve the fermipolaron problem [5].

Conclusions and outlook. We have found a numeric
counterpart to the bold-line trick of diagrammatic tech-
nique. The resulting scheme simulates unknown func-
tions specified by diagrammatic series in terms of them-
selves. We illustrated our approach by solving the s-
scattering problem in strong repulsive and attractive po-

tentials. We introduced tools to secure convergence of
the process. With these tools we were able to solve the
s-scattering problem even in an attractive potential with
a bound state—an essentially non-groundstate problem.

The standard many-body diagrammatic technique
deals with three functions that are expressed through
each other: Green’s function, self-energy, and the four-
point vertex. The generalization of the scheme to this
case is theoretically straightforward, since formally one
can think of all these functions as different components
of the vector |f〉. The three practical questions that are
immediately seen—in the order of their importance—are:
(i) regularization of bold-line series, (ii) convergence of
the scheme, (iii) optimal data structure. Formally, the
convergence of the bold-line series may depend on the
summation order and in certain cases be achievable at
the expense of controllable systematic error. One may
keep the expansion-order, m, of irreducible diagrams fi-
nite and extrapolate results to the m → ∞ limit, work
with a finite-size system and extrapolate to the thermo-
dynamic limit, introduce constraints on continuous vari-
ables not allowing them to be either very small or very
large and apply renormalization techniques (ultra-violet
divergences would be a typical example), etc. The con-
vergence of the scheme may be achieved by the tools
described in this paper. If the initial approximation to
unknown functions is close enough to the exact answer—
which will be the case if one starts with an almost ideal
system and moves to a strongly interacting regimes by
small steps in the interaction constant, then one may
rely on linearization for constructing the correcting part
of the right-hand side operator, using prescriptions of
Eq. (8). If unknown functions depend on many con-
tinuous variables, histograms may well be not the best
method. Instead one may use a variable-step meshes
and, correspondingly, re-weighing techniques for collect-
ing statistics. Another option is to approximate unknown
functions with analytic expressions and permanently op-
timize their parameters to best fit coarse-grained his-
togram sampling coming from the BMC process.

The work was supported by the National Science Foun-
dation under Grants PHY-0426881 and PHY-0653183.
NP acknowledges support from PITP, Vancouver.
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