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The Influence of Dimension Eight Operators on Weak Matrix Elements

John F. Donoghuea∗

aDepartment of Physics, University of Massachusetts,
Amherst, MA 01003 USA

I describe recent work with V. Cirigliano and E. Golowich on the effect of dimension eight operators on weak

nonleptonic amplitudes. The basic message is that there is an inconsistency in the way that many calculations

are traditionally performed. If one calculates matrix elements involving only physics below some scale µ, then one

needs dimension eight operators explicitly in the weak OPE. On the other hand if one wants to use dimensional

regularization throughout, then one needs all scales to be included within the matrix element, and this results in

the same net effect. A numerical estimate indicates that this is important below µ = 2 GeV, and this calls into

question many of the models that have been used to predict ǫ′/ǫ.

1. Introduction

In a way, the message of this talk is some-
what surprising as it implies that we have of-
ten not been proceeding correctly in calculating
weak nonleptonic matrix elements over the last
25 years. There needs to be a significant modifi-
cation to standard practice in most models. This
is less of an issue for lattice evaluations but may
be fatal for many models that work only at low
scales.

We normally describe the weak Hamiltonian
using the Operator Product Expansion (OPE)[1].
In words, we describe this as separating the
physics into that involving energies above a scale
µ and that below. The physics at high energies is
represented by a series of local operators and one
calculates the coefficients of these operators using
perturbation theory. The physics below the scale
µ goes into the hadronic matrix elements of the
operators. The OPE for weak matrix elements
then reads

〈H(∆S=1)
W 〉 =

GF√
2

VusV
∗

ud

∑

d

∑

i

C(d)
i (µ) 〈Q(d)

i 〉µ .(1)

where {Q(d)
i } represents a complete basis set of

operators of increasing dimension d, and C(d)
i (µ)

are the coefficient functions. Dimension-six oper-
ators enter the OPE with a dimensionless coef-
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ficient, and dimension-eight would have a coeffi-
cient which scales as 1/(mass)2.

Present practice uses dimensional regulariza-
tion in the calculation of the coefficient func-
tions[2–4]. In this case, one has the dimen-
sion eight coefficients of order 1/M2

W and/or
1/m2

c [5,6]. For the matrix elements one employs
a framework which describes physics up to the
scale µ. It is this combination that we will show
is inconsistent. It must be modified in one of the
following ways:

• If one calculates the matrix elements in-
cluding physics only up to the scale µ, one
must include dimension-eight operators in
the OPE with coefficient of order 1/µ2.

• If instead one wants to use dimensional reg-
ularization throughout, one must include
physics of all scales in the matrix elements.
The high energy portion of the matrix el-
ement above the scale µ is the effect of
dimension-eight (and higher) operators.

2. Demonstration in a calculable frame-

work

In our paper[7], we explicitly calculate the
dimension eight operators within the Standard
Model, and we could phrase the argument entirely
within this theory. However, for pedagogical rea-
sons we prefer to present the understanding of

http://arXiv.org/abs/hep-ph/0010111v1
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dimension eight effects using a slightly different
interaction. The reason that this is useful is that
it builds on the theory of QCD sum rules [8,9] in
a simple way that lets us concretely demonstrate
each of the key points. The hamiltonian which we
use has the feature that hadronic matrix elements
can be rigorously related to vacuum polarization
functions, which are well understood.

This hamiltonian[10,11] contains one left-
handed and one right-handed current instead of
the usual Standard Model hamiltonian in which
both currents are left-handed. Specifically we de-
fine2

HLR ≡ g2
2

8

∫

d4x Dµν(x, M2
W ) Jµν(x) ,

Jµν(x) ≡ 1

2
T

[

d̄(x)Γµ
Lu(x) ū(0)Γν

Rs(0)
]

=
1

2
T

[(

V µ
1−i2(x) + Aµ

1−i2(x)
)

(

V ν
4+i5(0) − Aν

4+i5(0)
)

] , (2)

where Dµν is the W -boson propagator and V µ
a ,

Aµ
a (a = 1, . . . 8) are the flavor-octet vector, axi-

alvector currents.
In the chiral limit, the K-to-pi matrix element

is given in the chiral limit of zero momentum and
vanishing light-quark masses by the vacuum ma-
trix element

M ≡ lim
p=0

M(p) =
g2
2

16F 2
π

∫

d4x D(x, M2
W )

〈0|T (V µ
3 (x)Vµ,3(0) − Aµ

3 (x)Aµ,3(0)) |0〉 .(3)

Using properties of the vacuum polarization func-
tion, this can be transformed into momentum
space

M =
3GF M2

W

32
√

2π2F 2
π

∫

∞

0

dQ2 Q4

Q2 + M2
W

[

ΠV,3(Q
2) − ΠA,3(Q

2)
]

. (4)

Here ΠV,A are the vector and axial vector vacuum
polarization functions We will use this simple ex-
pression in our analysis. The reader is interested
in more details of how this result is obtained is re-
ferred to the original papers[10,11]. However the
only essential point for the present argument is

2We define the chiral matrices Γµ

L

R

≡ γ
µ(1 ± γ5).

that this matrix element involves an integration
over all scales of some hadronic quantity.

The usual OPE of this matrix element is ex-
pressed in terms of two LR dimension-six op-
erators. Although it it is easy to perform the
renormalization group summation, for our pur-
pose here I just display the OPE to first order in
αs,

M ≃ GF

2
√

2F 2
π

[

〈O(6)
1 〉µ +

3

8π
ln

(

M2
W

µ2

)

〈αsO(6)
8 〉µ

]

.(5)

where

O(6)
1 ≡ q̄γµ

τ3

2
q q̄γµ τ3

2
q − q̄γµγ5

τ3

2
q q̄γµγ5

τ3

2
q ,

O(6)
8 ≡ q̄γµλa τ3

2
q q̄γµλa τ3

2
q

−q̄γµγ5λ
a τ3

2
q q̄γµγ5λ

a τ3

2
q . (6)

In the above, q = u, d, s, τ3 is a Pauli (flavor)
matrix, {λa} are the Gell Mann color matrices

and the subscripts on O(6)
1 , O(6)

8 refer to the color
carried by their currents.

Now lets look at the direct calculation of the
matrix element using the vacuum polarization
functions. First we will consider the case where
we separate the physics above and below some
value of Q2 = µ2, with µ large enough that we
can use perturbation theory for the high energy
portion. Most interesting for our purposes here
is the high energy contribution. The asymptotic
behavior of the vacuum polarization operator is
described by the operator product expansion, in-
volving a series of local operators ordered by in-
creasing dimension. In the chiral limit the leading
contribution to the difference of vector and axial-
vector correlators is a four-quark operator of di-
mension six[8,12], followed by a series of higher
dimensional operators,

(ΠV,3−ΠA,3)(Q
2) ∼ 2π〈αsO(6)

8 〉µ
Q6

+
E(8)

µ

Q8
+. . . .(7)

Here E(8)
µ represents the combination of local op-

erators carrying dimension eight. These have
been discussed and partially calculated by Broad-
hurst and Generalis [13]. For our purposes, it
is not necessary to know their specific form, but
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only the fact of their existence. Upon performing
the integration over Q2 at high energies, we find

M>(µ) =
3GF

32
√

2π2F 2
π

[ ln

(

M2
W

µ2

)

2π〈αsO(6)
8 〉µ

+
E(8)

µ

µ2
+ . . . ] . (8)

Here is the first indication of the dimension-eight
effect. In this matrix element it clearly appears as
a contribution to the final answer, it is scaled with
1/µ2, and it arises from the high energy portion
of the calculation, above µ.

The low energy portion of the integral goes all

into the matrix element of O(6)
1 . This is more or

less clear, but will be shown explicitly below. The
full amplitude is then becomes

M ≃ GF

2
√

2F 2
π

[ 〈O(6)
1 〉(c.o.)

µ

+
3

8π
ln

(

M2
W

µ2

)

〈αsO(6)
8 〉µ

+
3

16π2

E(8)
µ

µ2
+ . . . ] . (9)

Comparison of this result with the usual OPE
shows that the dimension-eight term was not
properly accounted for in the OPE. This is an
illustration of the first itemized point in the in-
troduction - if one performs a strict separation
of scales, one needs dimension-eight terms in the
OPE, scaled by 1/µ2.

However, we can never get 1/µ2 effects in di-
mensional regularization because the scale that
enters there (which I will call µd.r. from now on)
can only appear in logs in 4 dimensions. The
point is that dimensional regularization is not a
separation of scales. We can see this explicitly in
the calculation of the local operator matrix ele-
ment. We can obtain this amplitude by taking
the x → 0 limit of the vacuum polarization func-
tions as defined in d dimensions, which results in

〈O(6)
1 〉(d.r.)

µd.r.

≡ 〈0|T (V µ
3 (0)Vµ,3(0) − Aµ

3 (0)Aµ,3(0)) |0〉 (10)

=
(d − 1)µ4−d

d.r.

(4π)d/2Γ(d/2)

∫

∞

0

dQ2 Qd (ΠV,3 − ΠA,3) (Q2)

When d < 4, this expression is finite. A key point
is that the integral continues to run over all Q2.
Even without evaluating the integral we can see
that to know its value we must include physics
from above the scale µd.r., since there is no sepa-
ration of scales.

Let us look at the relation of these two schemes
To this end, we split again the Q2 integral into
regions below and above Q2 = µ2. For the part
of the integration below separation scale µ2 the
integral is finite for all dimensions, and we can
take the limit d → 4. This portion of the integra-
tion then reproduces exactly the cutoff version of
the matrix element. The difference between the
cutoff and dimensional regularization comes en-
tirely from the high energy region and again can
be calculated

〈O(6)
1 〉(MS)

µd.r.
= 〈O(6)

1 〉(c.o.)
µ

+
3αs

8π

[

ln

(

µ2
d.r.

µ2

)

− 1

6

]

〈O(6)
8 〉µ

+
3

16π2

E(8)
µ

µ2
. (11)

The mixing with the dimension six operator is ex-
pected. (This result is obtained in the MS−NDR
scheme - see [10] for details.) For our purposes,
the main point here is that the high energy region
does contribute to the matrix element, through
the dimension eight effect. Comparison with
Eq. (9) shows that all of the dimension-eight op-
erator is shifted into the MS definition of the
dimension-six operator. This is seen to be con-
sistent:

1. When one performs a separation of scales,
one has the need for dimension-eight oper-
ators in the OPE scaled by 1/µ2.

2. When one defines instead the OPE us-
ing dimensional regularization, one can-
not get effects proportional to 1/µ2

d.r., but
the same effect appears contained within
the dimension-six operator matrix element.
Overall one obtains the same total matrix
element in either case.3.

3Since we are treating the dimension-six coefficients
at leading-log order, we can ignore the nonlogarithic
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Another way to phrase this result is to note
that, within dimensional regularization, the OPE
is employed as a method for regularizing oper-
ators, not for separating scales. Regularizaton
accounts for the most singular aspects of short
distance physics, but not all of it. The dimension
eight effect represents the leading component of
the residual short distance physics. The two ideas
of the OPE and the separation of scales were both
put forward by Wilson at about the same time
and they have tended to be combined together
in our thinking. It is interesting that in dimen-
sional regularization of nonleptonic operators we
employ one of Wilson’s ideas (the OPE, used a
regularization tool) but not the other.

Within this calculation, we can also calculate
reliably the magnitude of the dimension eight ef-
fect. This is because the vacuum polarization
functions satisfy dispersion relations with the in-
put being given by data on e+e− reactions and
τ decays. The details are found in [7,10]. The
relevant comparison is between the first and last
terms of Eq. (11), i.e. by how much does the di-
mension eight effect shift the matrix element . In
units of 10−7 we find

M =















−0.12 + 0.64 + . . . (µ = 1 GeV)
−0.28 + 0.30 + . . . (µ = 1.5 GeV)
−0.44 + 0.17 + . . . (µ = 2 GeV)
−0.89 + 0.04 + . . . (µ = 4 GeV) .

(12)

where the first entry is the cut-off matrix ele-
ment and the second is the dimension eight ef-
fect. We see that the effect is of order 100% for
µ = 1.5 GeV. At this scale and below, we would
also need to consider yet higher dimension effects,
and the whole calculation is out of control. At
higher values of µ, the dimension-eight effect can
be treated as a perturbation on the usual calcula-
tion, and it is still significant at µ = 2 GeV. Cer-
tainly at µ = 4 GeV, the effect is small enough to
be neglected.

3. The problem with standard practice

The conflict with present practice comes be-
cause we mix these two methods. We use di-

dimension-six portion of Eq. (11). To include it only re-
quires an inclusion of the nonlogarithmic terms in the co-
efficient function.

mensional regularization for the calculation of the
coefficient functions, but we generally calculate
matrix elements using a framework that only in-
cluded physics up to the scale µ. This is incon-
sistent and, one way or the other, some physics is
missing.

The present methods for calculating matrix el-
ements involve either lattice gauge theory or low
energy models. In lattice gauge theory[14], there
is a cutoff of the physics at a momentum scale
p ∼ 1/a, where a is the lattice spacing. Most
weak matrix element calculations are evaluated
at µ ∼ 1/a, and so are missing the physics beyond
this scale. In the lattice community there already
exists the recognition that one needs to add back
in the physics from higher energies. One exam-
ple of this insight is embodied in the Syzmansik
improvement program[15,16], which does involve
adding higher dimension operators. However, it
is my understanding that this is not yet imple-
mented in weak matrix element calculations.

Low energy models[17] use quark models or
models based on low-energy effective field theo-
ries. These involve physics which is valid at low
energies only. Therefore these techniques most
often involve a cut-off that separates low-energy
from high-energy physics, and includes only low
energy physics in the matrix elements. As we
have shown, this is inconsistent when used in con-
nection with the usual OPE. Very often the cut-
off is taken to be very low, µ ∼ 0.7 → 1.0 GeV.
This leads to an enormous uncertainty due to di-
mension eight effects. The uncertainty of such
methods is then far greater than was previously
estimated.

Most of the estimates of ǫ′/ǫ involve low energy
models for the estimate of the gluonic penguin
operator matrix element, often labeled B6. This
matrix element has proven difficult to calculate
on the lattice, and therefore in most of the re-
views one obtains B6 from low energy models of
some sort. However, these are all suspect in light
of their use of a low cut-off and their lack of the
dimension eight effects. At this stage, I certainly
cannot claim that this explains why the theoreti-
cal predictions are below the experimental value,
as we do not even know the sign of the missing
dimension-eight effects. However, I know of no



5

complete evaluation of ǫ′/ǫ that is fully consis-
tent theoretically.

4. What can be done?

Let me assume from now on that we agree to
calculate using dimensional regularization. This
is the most convenient framework for perturbative
calculations. In this case, there are no dimension
eight terms in the OPE and we can use all of the
past results for the coefficients without change.
However, in this case the matrix elements must be
evaluated using a method that includes all scales.
How can this be done?

In the case of lattice methods, there are sev-
eral options. One is to simply push the scale µ
high enough that the residual uncertainty from
dimension-eight operators is small. By our esti-
mates, µ ∼ 4 GeV should be sufficient. Alterna-
tively one may use a range of lattice spacings and
use the data to extrapolate to the continuum limit
at fixed µ. This has been done successfully for the
kaon B parameter[18]. A third option would be to
use the Syzmansik improvement program also for
weak matrix elements. This will involve adding
in dimension-eight operators.

It will be more difficult to improve many of
the quark-model and effective field theory mod-
els. Sometimes these models can be formulated
in a way that includes physics over all scales, even
if the short-distance physics differs from pertur-
bative QCD (for example, see [19]). These “all
scale” models can be used to estimate dimension-
ally regularized matrix elements if treated prop-
erly. However it is more common in such quark
models to use a cut-off, as one recognizes that the
model is not valid at higher energies. In this case,
we would only be able to add back in the physics
at high energies through the use of dimension-
eight operators. This may be a difficult task.

The dispersive approach[10,20] of my collabo-
rators and myself is a special case. Because our
approach to two special matrix elements uses data
as input, at least in the chiral limit, it is not a
model. It can be applied over all energy scales
and hence can readily provide dimensionally reg-
ularized matrix elements. In our previous work
the impact of dimension eight operators was seen

but not fully understood. It was treated as an
uncertainty in the error bars which were quoted.
Now that we have a better understanding of this
effect, we will provide an update to the previous
work which clarifies the proper treatment.

In our paper[7], we have displayed the dimen-
sion eight operators relevant for the Standard
Model at one loop, in a particular method for the
separation of scales. Perhaps these will be use-
ful in estimating the magnitude of such effects,
or correcting existing calculations.
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