
University of Massachusetts - Amherst
ScholarWorks@UMass Amherst

Physics Department Faculty Publication Series Physics

2001

The weak ope and dimension-eight operators
E Golowich
golowich@physics.umass.edu

Follow this and additional works at: http://scholarworks.umass.edu/physics_faculty_pubs
Part of the Physical Sciences and Mathematics Commons

This Article is brought to you for free and open access by the Physics at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Physics
Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Golowich, E, "The weak ope and dimension-eight operators" (2001). Physics Department Faculty Publication Series. Paper 465.
http://scholarworks.umass.edu/physics_faculty_pubs/465

http://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/physics_faculty_pubs?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/physics?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/physics_faculty_pubs?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/physics_faculty_pubs/465?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


ar
X

iv
:h

ep
-p

h/
00

08
33

8v
1 

 3
1 

A
ug

 2
00

0

For Publisher’s use

THE WEAK OPE AND DIMENSION-EIGHT OPERATORS

E. GOLOWICH

Physics Department, University of Massachusetts, Amherst MA 01003, USA

E-mail: golowich@physics.umass.edu

We discuss recent work which identifies a potential flaw in standard treatments of weak decay am-
plitudes, including that of ǫ′/ǫ. The point is that (contrary to conventional wisdom) dimension-eight
operators contribute to weak amplitudes at order GF αs and without 1/M2

W
suppression. The effect

of dimension-eight operators is estimated to be at the 100% level in a sum rule determination of the

operator Q
(6)
7 for µ = 1.5 GeV, suggesting that presently available values of µ are too low to justify

the neglect of these effects.

1 Motivation

1.1 Calculating Kaon Weak Amplitudes

The modern approach to calculating a kaon

weak nonleptonic amplitude M involves use

of the operator product expansion,

M =
∑

d

∑

i

C(d)
i (µ) 〈Q(d)

i 〉µ , (1)

in which the nonleptonic weak hamiltonian

HW is expressed as a linear combination of

local operators Q(d)
i . There is a sum over the

dimensions (starting here at d = 6) of the lo-

cal operators and a sum over all operators of

a common dimension. In practice, the follow-

ing hybrid methodology is employed:

1. The Wilson coefficients C(d)
i (µ) are cal-

culated in MS renormalization.

2. The operator matrix elements 〈Q(d)
i 〉µ

are calculated in cutoff renormalization

at the energy scale µ. The term ‘cut-

off’ means specifically that µ serves

as a ‘separation scale’ which distin-

guishes between short-distance and long-

distance physics. Three different ap-

proaches falling into this category are

quark models, 1/Nc expansion methods,

and lattice-QCD evaluations.a

The reason for this hybrid approach is that

it is not practical to carry out the (low en-

ergy) kaon matrix element evaluations with

aA list of references is given elsewhere.1

MS renormalization. Typical choices for the

scale µ fall in the range 0.5 ≤ µ(GeV) ≤ 3,

the lower part used in quark-model and 1/Nc

evaluations and the upper part in lattice sim-

ulations.

The purpose of this talk is to describe

some recent results:1

1. In a pure cutoff scheme, dimension-eight

operators occur in the weak hamiltonian

at order GF αs/µ2, µ being the separa-

tion scale. This can be explicitly demon-

strated (see Sect. 2) in a calculation in-

volving a LR weak hamiltonian.

2. In dimensional regularization (DR), the

d = 8 operators do not appear explic-

itly in the hamiltonian at order GF αs.

However, the use of a cutoff scheme

for the calculation of the matrix el-

ements of dimension-six operators re-

quires a careful matching onto DR for

which dimension-eight operators do play

an important role.

These findings mean that hybrid evalua-

tions, in the sense described above, of kaon

matrix elements at low µ will contain (un-

wanted) contributions from dimension-eight

operators. At the very least, this will intro-

duce an uncertainty of unknown magnitude

into the evaluation.

2 Cutoff Renormalization

http://arXiv.org/abs/hep-ph/0008338v1
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2.1 ǫ′/ǫ in the Chiral Limit

The determination of ǫ′/ǫ can be shown

to depend upon the matrix elements

〈(ππ)0|Q(6)
6 |K〉 and 〈(ππ)2|Q(6)

8 |K〉.2 In the

chiral limit of vanishing light-quark mass,

the latter matrix element (as well as that

of operator Q(6)
7 ) can be inferred from cer-

tain vacuum expectation values, 〈0|O(6)
1,8|0〉 ≡

〈O(6)
1,8〉, where O(6)

1,8 are dimension-six four-

quark operators.3 The use of soft-meson tech-

niques to relate physical amplitudes to those

in the world of zero light-quark mass is a well-

known procedure of chiral dynamics.

2.2 Sum Rules for 〈O(6)
1,8〉

Numerical values for 〈O(6)
1,8〉 in cutoff renor-

malization can be obtained from the follow-

ing sum rules,3

16π2

3
〈O(6)

1 〉(c.o.)
µ =

∫

∞

0

ds s2 ln
s + µ2

s
∆ρ

2π〈αsO(6)
8 〉(c.o.)

µ =

∫

∞

0

ds s2 µ2

s + µ2
∆ρ ,

(2)

where ∆ρ(s) is the difference of vector and

axialvector spectral functions, and ∆Π(Q2)

is the corresponding difference of isospin po-

larization functions (Im ∆Π = π∆ρ).

2.3 Physics of a LR Operator

One can probe the influence of d = 8 oper-

ators by considering the K-to-π matrix ele-

ment M(p),

M(p) = 〈π−(p)|HLR|K−(p)〉 , (3)

where HLR is a LR hamiltonian obtained by

flipping the chirality of one of the quark pairs

in the usual LL hamiltonian HW. The rea-

son for defining such a LR operator is that,

in leading chiral order, its K-to-π matrix el-

ement is nonzero and yields information on

〈O(6)
1 〉 and 〈O(6)

8 〉.

To demonstrate this, we proceed to the

chiral limit to find

M ≡ M(0) = lim
p=0

M(p)

=
3GF M2

W

32
√

2π2F 2
π

∫

∞

0

dQ2 Q4

Q2 + M2
W

∆Π .

(4)

This result is exact — it is not a consequence

of any model. Information about 〈O(6)
1 〉 and

〈O(6)
8 〉 is obtained by performing an operator

product expansion on ∆Π(Q2). Working to

first order in αs we have

M =
GF

2
√

2F 2
π

[

〈O(6)
1 〉(c.o.)

µ

+
3

8π
ln

M2
W

µ2
〈αsO(6)

8 〉µ +
3

16π2

E(8)
µ

µ2
+ . . .

]

(5)

The three additive terms in Eq. (5) are

proportional respectively to the quantities

〈O(6)
1 〉, 〈O(6)

8 〉 and E(8). The last of these

(E(8)) contains the effect of the d = 8 contri-

butions.b For dimensional reasons, E(8) must

be accompanied by an inverse squared energy.

This turns out to be the factor µ−2.

In Table 1 we display the numerical val-

ues (in units of 10−7 GeV2) of the three terms

of Eq. (5) for various choices of µ. Observe

for the lowest values that the dimension-eight

term dominates the contribution from 〈O(6)
1 〉.

Only when one proceeds to a sufficiently large

value like µ = 4 GeV is the d = 8 influence

suppressed.

3 Dimensional Regularization

Suppose one wishes to express the entire anal-

ysis in terms of MS quantities. To do so

requires converting matrix elements in cut-

off renormalization to those in MS renormal-

ization. Recall, in dimensional regularization

bAlthough the d = 8 LL operators arising from Q
(6)
2

have been determined1, to our knowledge the indi-
vidual d = 8 LR operators comprising E(8) have not.
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Table 1. Eq. (5) in units of 10−7 GeV2.

µ (GeV) Term 1 Term 2 Term 3

1.0 −0.12 −3.84 0.64

1.5 −0.28 −3.49 0.30

2.0 −0.44 −3.24 0.17

4.0 −0.89 −2.63 0.04

one calculates in d dimensions and for dimen-

sional consistency introduces a scale µd.r..

The dimensionally regularized matrix

element for 〈O(6)
1 〉 is found from the d-

dimensional integral,3

〈O(6)
1 〉(d.r.)

µ = 〈O(6)
1 〉(c.o.)

µ

+
d − 1

(4π)d/2

µ4−d
d.r.

Γ (d/2)

∫

∞

µ2

dQ2 Qd ∆Π(Q2) . (6)

The term in Eq. (6) containing the integral

is proof that the dimensionally regularized

matrix element 〈O(6)
1 〉(d.r.)

µ will contain short-

distance contributions. As written, this term

becomes divergent for four dimensions and

also is scheme-dependent. In the MS ap-

proach, the divergent factor 2/ǫ− γ + ln(4π)

is removed. The NDR scheme involves a

certain procedure for treating chirality in d-

dimensions. The final result is a relation

(given here to O(αs)) between the cutoff and

MS-NDR matrix elements,

〈O(6)
1 〉(MS−NDR)

µ = 〈O(6)
1 〉(c.o.)

µ

+
3

8π

[

ln
µ2

d.r.

µ2
− 1

6

]

〈αsO(6)
8 〉µ

+
3

16π2
· E

(8)
µ

µ2
+ . . . (7)

The effect of the d = 8 contribution to the

weak OPE now appears in the d = 6 MS-

NDR operator matrix element. Note also

that the parameter µd.r. is distinct from the

separation scale µ.

4 Evaluation of B
(3/2)
7,8

To suppress the effect of dimension-eight op-

erators on the determinations of Eq. (2),

one should evaluate the two sum rules for

〈O1,8〉(c.o.)
µ at a large value of µ (e.g. µ ≥

4 GeV) and then use renormalization group

equations to run the matrix elements down

to lower values of µ (e.g. µ = 2 GeV).4 Al-

ternative approaches might involve the finite

energy sum rule framework5 or QCD-lattice

simulations at sufficiently large µ.

5 Concluding Remarks

This talk has dealt with an important aspect

of calculating kaon weak matrix elements, the

role of dimension-eight operators. In this re-

gard, Eq. (7) is of special interest. It reveals

that the relation between MS-NDR and cut-

off matrix elements will involve not only mix-

ing between operators of a given dimension

but also mixing between operators of differ-

ing dimensions. The net result of our work

is that existing work on ǫ′/ǫ will be affected,

especially for methods which take µ ≤ 2 GeV.
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