The weak ope and dimension-eight operators

E Golowich
golowich@physics.umass.edu

Follow this and additional works at: http://scholarworks.umass.edu/physics_faculty_pubs
Part of the Physical Sciences and Mathematics Commons

Golowich, E, "The weak ope and dimension-eight operators" (2001). Physics Department Faculty Publication Series. Paper 465.
http://scholarworks.umass.edu/physics_faculty_pubs/465

THE WEAK OPE AND DIMENSION-EIGHT OPERATORS

E. GOLOWICH
Physics Department, University of Massachusetts, Amherst MA 01003, USA
E-mail: golowich@physics.umass.edu

Abstract

We discuss recent work which identifies a potential flaw in standard treatments of weak decay amplitudes, including that of $\epsilon^{\prime} / \epsilon$. The point is that (contrary to conventional wisdom) dimension-eight operators contribute to weak amplitudes at order $G_{F} \alpha_{s}$ and without $1 / M_{W}^{2}$ suppression. The effect of dimension-eight operators is estimated to be at the 100% level in a sum rule determination of the operator $\mathcal{Q}_{7}^{(6)}$ for $\mu=1.5 \mathrm{GeV}$, suggesting that presently available values of μ are too low to justify the neglect of these effects.

1 Motivation

1.1 Calculating Kaon Weak Amplitudes

The modern approach to calculating a kaon weak nonleptonic amplitude \mathcal{M} involves use of the operator product expansion,

$$
\begin{equation*}
\mathcal{M}=\sum_{d} \sum_{i} \mathcal{C}_{i}^{(d)}(\mu)\left\langle\mathcal{Q}_{i}^{(d)}\right\rangle_{\mu} \tag{1}
\end{equation*}
$$

in which the nonleptonic weak hamiltonian \mathcal{H}_{W} is expressed as a linear combination of local operators $\mathcal{Q}_{i}^{(d)}$. There is a sum over the dimensions (starting here at $d=6$) of the local operators and a sum over all operators of a common dimension. In practice, the following hybrid methodology is employed:

1. The Wilson coefficients $\mathcal{C}_{i}^{(d)}(\mu)$ are calculated in $\overline{M S}$ renormalization.
2. The operator matrix elements $\left\langle\mathcal{Q}_{i}^{(d)}\right\rangle_{\mu}$ are calculated in cutoff renormalization at the energy scale μ. The term 'cutoff' means specifically that μ serves as a 'separation scale' which distinguishes between short-distance and longdistance physics. Three different approaches falling into this category are quark models, $1 / N_{c}$ expansion methods, and lattice-QCD evaluations. ${ }^{\text {a }}$

The reason for this hybrid approach is that it is not practical to carry out the (low energy) kaon matrix element evaluations with

$\overline{M S}$ renormalization. Typical choices for the scale μ fall in the range $0.5 \leq \mu(\mathrm{GeV}) \leq 3$, the lower part used in quark-model and $1 / N_{c}$ evaluations and the upper part in lattice simulations.

The purpose of this talk is to describe some recent results:1

1. In a pure cutoff scheme, dimension-eight operators occur in the weak hamiltonian at order $G_{F} \alpha_{s} / \mu^{2}, \mu$ being the separation scale. This can be explicitly demonstrated (see Sect. 2) in a calculation involving a LR weak hamiltonian.
2. In dimensional regularization (DR), the $d=8$ operators do not appear explicitly in the hamiltonian at order $G_{F} \alpha_{s}$. However, the use of a cutoff scheme for the calculation of the matrix elements of dimension-six operators requires a careful matching onto DR for which dimension-eight operators do play an important role.

These findings mean that hybrid evaluations, in the sense described above, of kaon matrix elements at low μ will contain (unwanted) contributions from dimension-eight operators. At the very least, this will introduce an uncertainty of unknown magnitude into the evaluation.

2 Cutoff Renormalization

$2.1 \epsilon^{\prime} / \epsilon$ in the Chiral Limit

The determination of $\epsilon^{\prime} / \epsilon$ can be shown to depend upon the matrix elements $\left\langle(\pi \pi)_{0}\right| \mathcal{Q}_{6}^{(6)}|K\rangle$ and $\left\langle(\pi \pi)_{2}\right| \mathcal{Q}_{8}^{(6)}|K\rangle$. In the chiral limit of vanishing light-quark mass, the latter matrix element (as well as that of operator $\mathcal{Q}_{7}^{(6)}$) can be inferred from certain vacuum expectation values, $\langle 0| \mathcal{O}_{1,8}^{(6)}|0\rangle \equiv$ $\left\langle\mathcal{O}_{1,8}^{(6)}\right\rangle$, where $\mathcal{O}_{\boldsymbol{R}^{1,8}}^{(6)}$ are dimension-six fourquark operators 3 The use of soft-meson techniques to relate physical amplitudes to those in the world of zero light-quark mass is a wellknown procedure of chiral dynamics.

2.2 Sum Rules for $\left\langle\mathcal{O}_{1,8}^{(6)}\right\rangle$

Numerical values for $\left\langle\mathcal{O}_{1,8}^{(6)}\right\rangle$ in cutoff renormalization can be obtained from the following sum rules $\sqrt[3]{3}$

$$
\begin{align*}
\frac{16 \pi^{2}}{3}\left\langle\mathcal{O}_{1}^{(6)}\right\rangle_{\mu}^{(\text {c.o. })} & =\int_{0}^{\infty} d s s^{2} \ln \frac{s+\mu^{2}}{s} \Delta \rho \\
2 \pi\left\langle\alpha_{s} \mathcal{O}_{8}^{(6)}\right\rangle_{\mu}^{(\text {c.o. })} & =\int_{0}^{\infty} d s s^{2} \frac{\mu^{2}}{s+\mu^{2}} \Delta \rho \tag{2}
\end{align*}
$$

where $\Delta \rho(s)$ is the difference of vector and axialvector spectral functions, and $\Delta \Pi\left(Q^{2}\right)$ is the corresponding difference of isospin polarization functions $(\mathcal{I} m \Delta \Pi=\pi \Delta \rho)$.

2.3 Physics of a LR Operator

One can probe the influence of $d=8$ operators by considering the K-to- π matrix element $\mathcal{M}(p)$,

$$
\begin{equation*}
\mathcal{M}(p)=\left\langle\pi^{-}(p)\right| \mathcal{H}_{\mathrm{LR}}\left|K^{-}(p)\right\rangle \tag{3}
\end{equation*}
$$

where $\mathcal{H}_{\text {LR }}$ is a LR hamiltonian obtained by flipping the chirality of one of the quark pairs in the usual LL hamiltonian \mathcal{H}_{W}. The reason for defining such a LR operator is that, in leading chiral order, its K-to- π matrix element is nonzero and yields information on $\left\langle\mathcal{O}_{1}^{(6)}\right\rangle$ and $\left\langle\mathcal{O}_{8}^{(6)}\right\rangle$.

To demonstrate this, we proceed to the chiral limit to find

$$
\begin{align*}
& \mathcal{M} \equiv \mathcal{M}(0)=\lim _{\mathrm{p}=0} \mathcal{M}(p) \\
& =\frac{3 G_{F} M_{W}^{2}}{32 \sqrt{2} \pi^{2} F_{\pi}^{2}} \int_{0}^{\infty} d Q^{2} \frac{Q^{4}}{Q^{2}+M_{W}^{2}} \Delta \Pi \tag{4}
\end{align*}
$$

This result is exact - it is not a consequence of any model. Information about $\left\langle\mathcal{O}_{1}^{(6)}\right\rangle$ and $\left\langle\mathcal{O}_{8}^{(6)}\right\rangle$ is obtained by performing an operator product expansion on $\Delta \Pi\left(Q^{2}\right)$. Working to first order in α_{s} we have

$$
\begin{align*}
& \mathcal{M}=\frac{G_{F}}{2 \sqrt{2} F_{\pi}^{2}}\left[\left\langle\mathcal{O}_{1}^{(6)}\right\rangle_{\mu}^{(\text {c.o. })}\right. \\
& \left.+\frac{3}{8 \pi} \ln \frac{M_{W}^{2}}{\mu^{2}}\left\langle\alpha_{s} \mathcal{O}_{8}^{(6)}\right\rangle_{\mu}+\frac{3}{16 \pi^{2}} \frac{\mathcal{E}_{\mu}^{(8)}}{\mu^{2}}+\ldots\right] \tag{5}
\end{align*}
$$

The three additive terms in Eq. (5) are proportional respectively to the quantities $\left\langle\mathcal{O}_{1}^{(6)}\right\rangle,\left\langle\mathcal{O}_{8}^{(6)}\right\rangle$ and $\mathcal{E}^{(8)}$. The last of these $\left(\mathcal{E}^{(8)}\right)$ contains the effect of the $d=8$ contributions. ${ }^{6}$ For dimensional reasons, $\mathcal{E}^{(8)}$ must be accompanied by an inverse squared energy. This turns out to be the factor μ^{-2}.

In Table 1 we display the numerical values (in units of $10^{-7} \mathrm{GeV}^{2}$) of the three terms of Eq. (5) for various choices of μ. Observe for the lowest values that the dimension-eight term dominates the contribution from $\left\langle\mathcal{O}_{1}^{(6)}\right\rangle$. Only when one proceeds to a sufficiently large value like $\mu=4 \mathrm{GeV}$ is the $d=8$ influence suppressed.

3 Dimensional Regularization

Suppose one wishes to express the entire analysis in terms of $\overline{M S}$ quantities. To do so requires converting matrix elements in cutoff renormalization to those in $\overline{M S}$ renormalization. Recall, in dimensional regularization

[^0]Table 1. Eq. (5) in units of $10^{-7} \mathrm{GeV}^{2}$.

$\mu(\mathrm{GeV})$	Term 1	Term 2	Term 3
1.0	-0.12	-3.84	0.64
1.5	-0.28	-3.49	0.30
2.0	-0.44	-3.24	0.17
4.0	-0.89	-2.63	0.04

one calculates in d dimensions and for dimensional consistency introduces a scale $\mu_{\text {d.r. }}$.

The dimensionally regularized matrix element for $\left\langle\mathcal{O}_{1}^{(6)}\right\rangle$ is found from the d dimensional integral, 3

$$
\begin{align*}
\left\langle\mathcal{O}_{1}^{(6)}\right\rangle_{\mu}^{(\text {d.r. })} & =\left\langle\mathcal{O}_{1}^{(6)}\right\rangle_{\mu}^{(\text {c.o. })} \\
+\frac{d-1}{(4 \pi)^{d / 2}} \frac{\mu_{\text {d.r. }}^{4-d}}{\Gamma(d / 2)} & \int_{\mu^{2}}^{\infty} d Q^{2} Q^{d} \Delta \Pi\left(Q^{2}\right) \tag{6}
\end{align*}
$$

The term in Eq. (6) containing the integral is proof that the dimensionally regularized matrix element $\left\langle\mathcal{O}_{1}^{(6)}\right\rangle_{\mu}^{(\text {d.r. })}$ will contain shortdistance contributions. As written, this term becomes divergent for four dimensions and also is scheme-dependent. In the $\overline{\mathrm{MS}}$ approach, the divergent factor $2 / \epsilon-\gamma+\ln (4 \pi)$ is removed. The NDR scheme involves a certain procedure for treating chirality in d dimensions. The final result is a relation (given here to $\mathcal{O}\left(\alpha_{s}\right)$) between the cutoff and MS-NDR matrix elements,

$$
\begin{align*}
& \left\langle\mathcal{O}_{1}^{(6)}\right\rangle_{\mu}^{\overline{\mathrm{MS}}-\mathrm{NDR})}=\left\langle\mathcal{O}_{1}^{(6)}\right\rangle_{\mu}^{(\mathrm{c.o.})} \\
& +\frac{3}{8 \pi}\left[\ln \frac{\mu_{\text {d.r. }}^{2}}{\mu^{2}}-\frac{1}{6}\right]\left\langle\alpha_{s} \mathcal{O}_{8}^{(6)}\right\rangle_{\mu} \\
& +\frac{3}{16 \pi^{2}} \cdot \frac{\mathcal{E}_{\mu}^{(8)}}{\mu^{2}}+\ldots \tag{7}
\end{align*}
$$

The effect of the $d=8$ contribution to the weak OPE now appears in the $d=6 \overline{\mathrm{MS}}$ NDR operator matrix element. Note also that the parameter $\mu_{\text {d.r. }}$ is distinct from the separation scale μ.

4 Evaluation of $B_{7,8}^{(3 / 2)}$

To suppress the effect of dimension-eight operators on the determinations of Eq. (2), one should evaluate the two sum rules for $\left\langle\mathcal{O}_{1,8}\right\rangle_{\mu}^{\text {(c.o.) }}$ at a large value of μ (e.g. $\mu \geq$ 4 GeV) and then use renormalization group equations to run the matrix elements down to lower values of $\mu(e . g . \mu=2 \mathrm{GeV}) \mathrm{Al}$ ternative approaches might involve the finite energy sum rule framework 5 or QCD-lattice simulations at sufficiently large μ.

5 Concluding Remarks

This talk has dealt with an important aspect of calculating kaon weak matrix elements, the role of dimension-eight operators. In this regard, Eq. (7) is of special interest. It reveals that the relation between $\overline{\mathrm{MS}}-\mathrm{NDR}$ and cutoff matrix elements will involve not only mixing between operators of a given dimension but also mixing between operators of differing dimensions. The net result of our work is that existing work on $\epsilon^{\prime} / \epsilon$ will be affected, especially for methods which take $\mu \leq 2 \mathrm{GeV}$.

Acknowledgments

This work was supported in part by the National Science Foundation.

References

1. V. Cirigliano, J.F. Donoghue and E. Golowich, Dimension-eight operators in the weak OPE, hep-ph/0007196.
2. For a review see A. J. Buras, Weak hamiltonian, $C P$ violation and rare decays, hep-ph/9806471.
3. J.F. Donoghue and E. Golowich, Phys. Lett. B 478, 172 (2000).
4. V. Cirigliano, J.F. Donoghue and E. Golowich, work in progress.
5. E. Golowich and K. Maltman, work in progress.

[^0]: ${ }^{b}$ Although the $d=8$ If operators arising from $\mathcal{Q}_{2}^{(6)}$ have been determined, to our knowledge the individual $d=8 \mathrm{LR}$ operators comprising $\mathcal{E}^{(8)}$ have not.

