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ABSTRACT

3D city modelling is a rapidly growing research area in the field of feature extraction. As the demand for 3D data increases, so does the
necessity for higher detail building models. The use of aerial imagery and photogrammetric processing has been dominant in the field of
feature extraction for several decades. Recently this dominance has been challenged by laser scanning techniques which offer direct 3D
data capture at high resolutions. This paper investigates the use of laser scanning data for roof detail extraction. This has already been
considered by Maas and Vosselman (1999) who used data with a sample spacing of more than five points per m2. The data set in this
paper was created using an Optech Airborne Laser Terrain Mapper 1020 LIDAR sensor with 2.5m point spacing which was interpolated
onto a 2m regular grid. The aim of this paper is to explore the extent to which useful roof detail can be extracted using this relatively low
resolution LIDAR data. A 2D building outline database was used to define the roof boundaries.
The ability of the LIDAR data to extract roof detail was tested using algorithms based on LIDAR elevation and derived slope and aspect
parameters. An industrial area and a residential area were selected as test sites. Results show that the LIDAR aspect parameter was the
most successful at reconstructing building roofs. Using LIDAR aspect data, the results show a percentage correspondence of derived
roof ridges to actual ridges of around 33% for the residential area (86% for the industrial area). The amount of roof detail extracted is
greater for the industrial study area due to the simpler, larger roof structures. The report concludes that relatively low resolution laser
scanning data can be used to extract roof detail, but that results are only significant for large, simple roof buildings.

1  INTRODUCTION

In recent years there has been an increasing interest in the
availability of 3D descriptions of real world scenes, especially
within urban areas. These 3D city models are being sought
after for use in a wide range of applications including urban
planning and virtual reality applications (Newton, 1996). As
the technology behind 3D modelling matures, there is an
increasing requirement for greater building detail. This paper
looks at a possible data source for one aspect of building
description, that of roof detail.

The field of feature extraction has been dominated for several
decades by the use of aerial photography and photogrammetric
processing. Building recognition is one research area within
this field which focuses mainly on the extraction of building
outlines using edge detection techniques (Frère et al., 1997).
Attempts have been made using aerial imagery to extract 3D
roof detail supplementary to the ground plan information.
Grüen and Dan (1997) attempted to match extracted roof and
building line segments derived from aerial imagery to an a
priori building classification. A semi-automated approach was
tested by Lang and Förstner (1996) by creating building
models based on building examples from the actual study area.
It is likely that this procedure would be more time consuming
than the method adopted by Grüen and Dan (1997), but may

end up being more accurate due to the site specific nature of
the building models.

Photogrammetry for 3D modelling has limitations. Braun et al.
(1995) state that aerial imagery contains too much information
in addition to the building information that would enable easy
extraction of building outlines and roof information. 3D
information is imposed onto a 2D image format making 3D
reconstruction harder. Lengthy stereo-matching procedures are
required to extract height information using user defined
sampling methodologies. Low contrast edges and poor image
perspectives make building extraction more complex still.

Laser scanning is a relatively new technology that is
challenging the dominance of photogrammetry in the field of
feature extraction, especially for 3D city modelling. Laser
scanning offers direct 3D data capture at high resolutions and
the possibility to extract roof detail. Hug (1997), Maas and
Vosselmann (1999) and Weidner (1997) have looked at the
extraction of buildings using laser scanner data. Maas and
Vosselmann (1999) have looked in particular at the extraction
of roof detail. They use raw laser scanner point data which for
their study has a density of over five points per square metre.
Triangulation of the point data and other processing stages
were required to produce high detail roof structures. Authors
such as Jaafar et al. (1999) and Haala and Brenner (1999),
however, have used the more common form of laser scanner



data which is a regular grid interpolated from the point data.
Problems such as mixed pixel effects caused by the grid
interpolation can reduce the amount of information that can be
extracted from the data (Axelsson, 1999).

This paper uses a 2m resolution gridded laser scanner data set
which represents the terrain, vegetation and buildings as a
Digital Surface Model. The grid was produced by interpolation
of the raw point data which was created by an Optech Airborne
Laser Terrain Mapper (ALTM) 1020 LIght Detection And
Ranging (LIDAR) sensor. The sensor scans the surface with a
2.5m point spacing. The point spacing and resolution is much
lower than that used by Maas and Vosselmann (1999), and is
more representative of the majority of LIDAR data sets which
can have point densities of up to one point per 10m2. If roof
detail can be extracted from the 2m resolution data, it suggests
that the majority of laser scanner systems with relatively low
resolution data sets may be able to satisfy the demand for roof
detail for 3D city models. This would benefit laser scanner
users who cannot afford or find high resolution laser scanner
data for their applications.

The aim of this paper is to investigate whether or not any
meaningful roof detail can be extracted from the test LIDAR
data set.

The roof detail will be extracted from the LIDAR data by
processing elevation and derived slope and aspect parameters
using ARC/INFO GIS software. Algorithms will be developed
within ARC/INFO that will manipulate the parameters to
extract the maximum amount of roof detail. Each parameter
will be assessed for its performance alongside the other
parameters. Ordnance Survey 2D vector building outlines will
be used to isolate the LIDAR building data so that the

methodology can concentrate on roof detail extraction rather
than building recognition. The extraction results will be
compared with the actual roof structures observed in the field.

2  STUDY AREA

Two study areas were chosen that represented alternative
building scenarios. An industrial area was chosen because of its
high number of large, simple roofed buildings. If the LIDAR
data is to derive accurate roof detail for buildings then it will
most likely be from these. Figure 1 shows the industrial area as
the LIDAR sensor captured it with building outlines added for
extra clarity. An example photograph of the industrial area is
given in Figure 2. It shows the dominant roof structure for this
area which is a two segment roof split by a central ridge
running parallel to the building’s long axis.

A residential area was chosen to represent a more challenging
task for the LIDAR data. The buildings in this area (Figure 3)
are smaller with more complex roof structures than the
industrial area buildings. There is also non-building noise from
objects such as trees, cars and hedges (Figure 4).

3  METHODOLOGY

To assess the performance of the LIDAR data parameters for
extracting roof detail, a field survey was undertaken to create a
control data set of all roof structures. These were then
compared qualitatively to the LIDAR algorithm results using
various comparative statistics.

3.1  Error Assessment

Before the algorithms were tested, an error assessment of the
LIDAR and vector buildings was carried out. This was to
ensure that any results were put into context with  any  inherent
inaccuracies in the data sets.

Figure 1  LIDAR representation of industrial area with
vector building boundaries (boundaries reproduced

from Ordnance Survey mapping with the permission of
The Controller of Her Majesty's Stationery Office,

Crown Copyright. ED 273554).
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Figure 2  Example of industrial area buildings.



A quantitative assessment of LIDAR vertical accuracy was
made by comparing LIDAR heights against Ordnance Survey
spot heights from a 1:1250 map. Root Mean Square Error
(RMSE)  was derived  from  the  comparison  as  a  measure  of
vertical error (Jaafar and Priestnall, 1998). The planimetric
accuracy of the LIDAR data was determined qualitatively using
the author’s own observations as well as available literature.

The planimetric accuracy of the vector building data was
extracted from the dataset's metadata.

3.2  Survey Methodology

The survey data set is a plan description of the roof structure
for every building in the LIDAR data set. A visual assessment
of each building was made in the field, and all roof edges
including dormers and other small extensions were drawn onto
a 1:1250 building map.

3.3  Algorithm Development

LIDAR elevation and derived slope and aspect parameters were
used in the algorithm development. Each parameter was taken
in turn and manipulated by the algorithms to extract the
maximum amount of information from it. Figure 5 is the
standard algorithm used for all three parameters. To save
processing time the vector building data was used to isolate
LIDAR building pixels only. Each LIDAR building was then

Figure 3  LIDAR representation of residential area with
vector building boundaries (boundaries reproduced from
Ordnance Survey mapping with the permission of The
Controller of Her Majesty's Stationery Office, Crown

Copyright. ED 273554).
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Figure 4  Example of residential area buildings.
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queried in an attempt to derive roof ridge features from the
pixels. These features were then vectorised and edited. Small
error lines were removed and where possible ridge lines were
extended and attached to the original building outlines.

The algorithms were tested on buildings whose roof structure
was dominated by a main central ridge running parallel to
either of the key planimetric axes of the building (e.g. building
on left side of Figure 2). The assumption was that if the LIDAR
data could not extract the main ridge then it would not be able
to extract the finer elements of the roof structure. Some of the
industrial buildings were composed of multiple main ridges
and attempts were made to extract all these features.

3.3.1 Elevation. For each building the assumption made was
that the main ridge was the highest region of the building. The
higher the pixel value, the more likely that pixel holds ridge
information. The algorithm looked at the top 5-15% of roof
pixel values in an attempt to extract a continuous linear pixel
grouping of elevation values that represent the main ridge.

3.3.2 Slope. Around the main ridge, slope values change
abruptly, being close to zero at the ridge itself. The lowest 15-
30% of slope values were tested for their ridge extraction
performance.

3.3.3 Aspect. All buildings were assumed to be comprised of
two sloping roof segments joined by the main ridge. Aspect
values were split into two groups each representing one of the
two roof segments. The median aspect value was taken as the
threshold pixel value that separated the two groups. Values
below the threshold were classified as one and values above as
two. This created a border between the one and two pixels that
was extracted through vectorisation as the roof ridge.

4  RESULTS AND DISCUSSION

Statistics were produced from the assessment of the LIDAR
data set for roof ridge extraction. One statistic compared the
algorithm derived roof ridges with those collected in the field.
If a derived ridge was near parallel and close to the actual
building ridge then this was marked as a successful ridge
derivation. The decision as to whether a derived ridge matched
an actual ridge was made qualitatively from a visual
assessment. A percentage score was calculated for the number
of derived ridges that matched the actual ridges (Table 1).

A statistic was also produced that split the successfully derived
ridges into two groups. Those that exactly matched the actual
ridge in orientation and location were separated from those
classed as near matches. Table 2 shows the absolute number
and percentage of exactly matching derived ridges.

4.1  Algorithm Comparison

The aspect parameter derived from the gridded LIDAR data is
the most successful at roof ridge extraction (Table 1). It
performs better at both the residential and industrial sites.

Slope is the next most effective parameter at ridge extraction
followed by elevation. The lowest 25% of slope values and top
10% of elevation values were found to be the most effective in
representing roof ridges. Figures 6a-e illustrate how each
parameter responds to an example building from the LIDAR
data set. Figure 6a is a 3D visualisation of a large, simple
roofed industrial building. It has two main roof sections, one
high and one low. Both sections are made up of two roof
segments that converge to a central ridge.

The performance of aspect is shown in Figure 6b. The two roof
segments can be clearly seen with a definite grey scale break
that defines the main ridge (Figure 6b.i). Both segments do
have some noisy pixels, but these are removed during the
execution of the aspect algorithm which groups all pixels
together for a particular roof segment. The extracted lines
based on the aspect values are shown in Figure 6b.ii. The main
ridge is successfully extracted on both levels of the building.
So too is the inverse ridge that marks the boundary between the
two roof sections. Several error lines can also be seen. These
are mainly due to the LIDAR sensor picking up the vertical
building sides and representing them as sloping roof segments
producing error ridges. This effect can be partly attributed to
the low scan angle of the LIDAR sensor distorting the building
shape.

For the slope and elevation algorithms, a certain range of
percentage values were extracted for each building to represent
the main ridge. This differs from the aspect algorithm which
focuses on homogenising the roof segments before the ridge
was extracted. The slope parameter manages to avoid the noisy
building edges because the slope values are high in those areas
and only the low slope values were queried in the algorithm.
This produces a cleaner representation of both main ridges.

The elevation parameter also avoids the noisy building edge
(Figure 6d). However, it is even less useful than the slope

Derived/
Actual Ridges

Percentage Derived/
Actual Ridges

Parameter Residential Industrial Residential Industrial

Aspect 68/204 36/42 33.33 85.71

Slope 50/204 22/42 24.51 52.38

Elevation 27/204 18/42 13.24 42.86

Table 1  Comparison of algorithm derived ridges for each
parameter to actual ridges.

Exact Match Derived
Ridges/Total Number of

Derived Ridges

Percentage of Derived
Ridges that Exactly Match

Actual Ridges

Parameter Residential Industrial Residential Industrial

Aspect 35/68 28/36 51.47 77.78

Slope 47/51 22/22 92.16 100

Elevation 27/27 18/19 100.00 94.74

Table 2  Comparison of exactly matched derived ridges to total
number of derived ridges.



algorithm as it only manages to identify one of the two main
ridges present on the roof. This is because the ridge to the right
hand side is lower than the left hand one. The elevation
algorithm extracts higher elevation values to represent the roof
ridge, and therefore any lower ridges are omitted. This is not
necessarily a problem in the residential areas where it is
common for only one main ridge to be present, but in industrial
areas multiple ridge buildings are much more widespread.

Figure 6e is the aspect parameter results after the final
processing stage, with the extracted ridges having been
removed manually if erroneous, and the correctly defined
ridges extended where possible to the original building
structure. Error ridges could be removed automatically by
using the slope parameter to eliminate the steep wall pixels that
seem to cause the error ridge problem.

Although the aspect parameter recognises the highest number
of roof ridges compared to slope and elevation, the number of
exact matches is lower than the other two parameters which
have near perfect records (Table 2). This is probably due to the
greater exploratory nature of the aspect algorithm. A trade off
is made between the tidier slope and elevation parameters that

are more likely to define a ridge in its exact position compared
to the aspect parameter that produces more error ridges, but
provides a more comprehensive absolute coverage of main
building ridges. The aspect parameter should still be preferred
regardless of the accuracy with which roof ridges are
represented because of its higher performance at ridge
recognition.

4.2  Site Comparison

The algorithm comparison provided an insight into which
derived parameters from the LIDAR data could be used to
extract roof detail. A comparison of the industrial and
residential area results in Table 1 and Table 2 highlight
properties of the LIDAR data that may affect the effectiveness
of the elevation, slope and aspect parameters at roof ridge
extraction.

The percentage values for derived ridges to actual ridges are
much higher in the industrial area compared to the residential
area (Table 1). The large buildings and simple roof structures
are largely responsible for this high rate of extraction success.
The LIDAR data set used in this paper has a grid resolution of
2m. For residential buildings this can cause problems, because
the pixel size is too large to adequately represent the
complicated variations in roof structure that residential
buildings generally display. Dormers, chimneys, television
aerials and other roof objects can all contribute to the
scrambling of roof ridge information held by the pixels.
Chimneys and other extrusions were also present on some of
the industrial building roofs but are small in comparison to the
roof size. They did not therefore affect the roof ridge extraction
to the same extent as in the residential area.

Another key difference between the two areas was the amount
of noise from objects surrounding the buildings. In the
residential area, neighbouring houses, trees, cars, hedges and
fences are often positioned close to a building. Information
from these features can mix with the building data as a result of
the interpolation of the LIDAR point data to a grid. This makes
the extraction of roof detail much harder. Mixed pixel effects
are not as prolific in the industrial area especially since
neighbouring buildings are positioned some distance from each
other, and most other objects are small in comparison to the
building itself.

Ground information can contribute to mixed pixel effects and is
a common problem for both areas. This results in building edge
information being smoothed. For small buildings ground
information can penetrate all the way into the central building
pixels and affect the extraction of roof ridges.

4.3  Other Influences on Results

Mention has already been made of the effect of the LIDAR
data’s grid resolution and mixed pixel effects on the results.
Other factors have also influenced the results in Table 1 and
Table 2. For this paper, the vertical accuracy of the LIDAR
data was found to have an RMSE value of about +/-0.3m. This

a. 3D Building Visualisation

b.i. Aspect  values b.ii. Aspect results

c.i. Slope values c.ii. Slope results

d.i. Elevation values d.ii. Elevation results

e. Edited Aspect results

Figure 6  Roof ridge extraction results for an industrial
building.



is fairly similar to the decimetre accuracy values quoted by
authors such as Lohr (1998).
One of the main error sources for planimetric accuracy was the
planimetric shift observed between the LIDAR data and the 2D
vector building outlines. In some cases the occurrence of roof
edge pixels did not coincide with the building boundary and
was often up to one pixel width outside that of the boundary.
As Huising and Gomes Pereira (1998) admit this shift may be
due to local factors such as planimetric building errors. The
vector data used is claimed to have a planimetric accuracy of
anything up to +/-1m. Systematic error may also cause a shift
in building information. Shadowing resulting from low LIDAR
scan angles (+/-19 degrees for this study) can be seen
predominantly in the industrial area due to the high building
sides hiding other building sections from the LIDAR sensor. A
comprehensive guide of other error sources from laser scanner
systems can be found in Huising and Gomes Pereira (1998).

4.4  LIDAR and Roof Detail Extraction - Next Steps

The use of relatively low resolution LIDAR data for roof detail
extraction is restricted by the generalisation of roof structure
information into grid cells. Mixed pixel effects created by the
interpolation of the raw point data into a regular grid have
contributed to increasing the difficulty with which roof detail
can be extracted. One solution may be to use the raw data itself
as demonstrated successfully by Maas and Vosselmann (1999).
The processing of point data, however, tends to be a harder
task compared to the simpler algorithms that are needed to
manipulate grid data. Another solution could be to use a data
set with a higher grid resolution derived from a higher point
spacing. Increases in the level of roof detail may be possible
with this higher resolution data, but the increases may not be
sufficient enough to justify the higher cost of the data.

Having discussed alternatives to the LIDAR data used in this
study is not to say that it did not produce interesting results.
The results derived from using the aspect parameter from the
LIDAR data showed promising signs of being used as a useful
indicator of the dominant ridges and segments of a building
roof. There is the possibility that aspect could be used to define
sub-ridges by splitting the roof aspect values into more than
two groups. Some initial testing using four groups showed
however that this produced poor results with the aspect groups
imposing their own structure on the roof.

Instead of trying to increase the amount of detail that can be
extracted using this resolution data, a task which is unlikely to
be successful, attention should be concentrated on using the
available results for applications that require general roof
detail. Applications such as virtual reality and the visualisation
aspects of planning applications (Newton, 1996) which may
require more than the basic rectangular block structure of a
single height building, could use this level of roof detail.
Higher detail 3D city models may be necessary to satisfy the
public’s inquisitiveness into the finer details of particular
building construction schemes for example.

After roof segmentation it is possible to extract height
information for each new segment which could be used to
update current 2D spatial databases with quantitative 3D
information. A degree of semi-automation may be necessary for
this process with the derived roof ridges acting as guidelines
for the user’s own interpretation of the roof structure.

5  SUMMARY AND CONCLUSIONS

This paper has assessed the use of relatively low resolution
LIDAR data for the extraction of roof detail from buildings,
primarily for 3D city modelling. A 2D spatial database of
vector building outlines was used to locate the roof extents.
Two study areas were used to test the LIDAR data, an
industrial area with large simple roofed buildings, and a
residential area with smaller buildings and more complex roof
structures. Through the use of LIDAR elevation, aspect and
slope parameters, attempts were made to extract the main roof
ridge of a building. Results suggest that it is possible to extract
general roof detail using this data, especially for large buildings
with simple roof structures. The aspect parameter performed
best, extracting the largest majority of ridges from the
buildings. Of these extracted ridges using aspect, just over half
can be considered to be exact matches. In the residential areas,
the smaller buildings and more complex roof structures made it
much harder for the LIDAR data to produce meaningful roof
detail.

Other LIDAR data sets with similar or lower resolutions will
most likely suffer the same problems experienced in this
assessment. The vertical and planimetric accuracy levels of the
LIDAR data are not conducive to the extraction of accurately
positioned and located roof detail. The problems with the
LIDAR data were substantial even though the buildings used in
the study were chosen for their relatively simplistic structures.

Despite these limitations, the level of roof detail extracted in
this study is suited to several applications such as visualisation
and spatial database updating. A semi-automated approach to
roof detail extraction may need to be employed for these
applications. The extracted ridges can be used as a guide for
the user to better define the extent and nature of the ridges. To
increase the amount of roof detail that can be extracted from
this LIDAR data, the resolution, or rather the original point
spacing of the LIDAR sensor, should be made more dense.
This will, however, increase the cost of the data and make it
less affordable to most laser scanner users. LIDAR data
accuracy levels need to be improved further, as well as the
relative accuracy levels between LIDAR data and any assisting
data sets such as the 2D vector data set used in this paper. Until
the use of higher density laser scanner instruments becomes
more widespread and the cost of the technology decreases,
relatively low resolution laser scanner data can be used to
extract general roof detail from buildings.



ACKNOWLEDGEMENTS

We would like to thank Dave Holland, Sallie Payne and all at
the Ordnance Survey for help and advice. The Ordnance
Survey of Britain kindly provided the Land-Line data set.
Thanks to the Environment Agency for the supply of the
LIDAR data. Research and computing facilities were made
available by the School of Geography, University of
Nottingham.

REFERENCES

Axelsson, P., 1999. Processing of laser scanner data -
algorithms and applications. ISPRS Journal of Photogrammetry
and Remote Sensing, 54 (2), pp.138-147.

Braun, C., Kolbe, T.H., Lang, F., Schickler, W., Steinhage, V.,
Cremers, A.B., Förstner, W. and Plümer L., 1995. Models for
photogrammetric building reconstruction. Computer &
Graphics, 19 (1), pp.109-118.

Frère, D., Hendrickx, J., Vandekerckhove, J., Moons, T., Van
Gool, L., 1997. On the reconstruction of urban house roofs
from aerial images. In Automatic extraction of man-made
objects from aerial and space images II. (eds) Grüen, A.,
Baltisavias, E. and Henricsson, O., Birkhauser, Berlin, pp.87-
95.

Grüen, A. and Dan, H., 1997. TOBAGO: A topology builder
for automated building model generation. In Automatic
extraction of man-made objects from aerial and space images
II. (eds) Grüen, A., Baltisavias, E. and Henricsson, O.,
Birkhauser, Berlin, pp.149-160.

Haala, N. and Brenner, C., 1999. Extraction of buildings and
trees in urban environments. ISPRS Journal of
Photogrammetry and Remote Sensing, 54 (2), pp.130-137.

Hug, C., 1997. Extracting artificial surface objects from
airborne laser scanner data. In Automatic extraction of man-
made objects from aerial and space images II. (eds) Grüen, A.,
Baltasavias, E. and Henricsson, O., Birkhauser, Berlin, pp.203-
213.

Huising, E.J. and Gomes Pereira, L.M., 1998. Errors and
accuracy estimates of laser data acquired by various laser
scanning systems for topographic applications. ISPRS Journal
of Photogrammetry and Remote Sensing, 53 (5), pp.245-261.

Lang, F. and Förstner, W., 1996. 3D-city modelling with a
digital one-eye stereo system. International Archives of
Photogrammetry and Remote Sensing, Band 31, B4, pp.261-
266.

Lohr, U., 1998. Laser scanning and DEM generation. In GIS
techniques and their applications. (eds) Brebbia, C.A. and
Pascolo, P., Computational Mechanics Publications,
Southampton, pp.243-249.

Jaafar, J. and Priestnall, G., 1998. Automated DEM/DSM
accuracy estimates towards land change detection. In GIS
techniques and their applications. (eds) Brebbia, C.A. and
Pascolo, P., Computational Mechanics Publications,
Southampton, pp.73-82.

Jaafar, J., Priestnall, G., and Mather, P.M., 1999. Assessing the
effects of grid resolution in laser scanning data sets towards the
creation of DSMs, DEMs and 3D models. Presented at 21st

Canadian Symposium on Remote Sensing, Ottawa, Ontario,
Canada, 21-24 June 1999, pp.606-613.

Maas, H.G. and Vosselman, G., 1999. Two algorithms for
extracting building models from raw laser altimetry data.
ISPRS Journal of Photogrammetry and Remote Sensing, 54
(2), pp.153-163.

Newton, G.D., 1996. Inclusion of height in digital database -
Feasibility Study Version 1.0b, unpublished.

Weidner, U., 1997, Digital Surface Models for Building
Extraction. In Automatic extraction of man-made objects from
aerial and space images II. (eds) Grüen, A., Baltisavias, E. and
Henricsson, O., Birkhauser, Berlin, pp.193-202.


