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A detailed study of the Fröhlich polaron model is performed on the basis of diagrammatic quan-
tum Monte Carlo method [1]. The method is further developed both quantitatively (performance)
and qualitatively (new estimators), and is enhanced by spectral analysis of the polaron Green func-
tion, within a novel approach. We present the best up to date results for the binding energy, and for
the first time make available precise data for the effective mass, including the region of intermediate
and strong couplings. We look at the structure of the polaron cloud and answer such questions as the
average number of phonons in the cloud and their number/momentum distribution. The spectral
analysis reveals non-trivial structure of the spectral density at intermediate and large coupling: the
spectral continuum features pronounced peaks that we attribute to unstable excited states of the
polaron.

PACS numbers: 71.38.+i, 02.70.Lq, 05.20.-y

I. INTRODUCTION

The polaron problem (for an introduction see Ref. [2]) has originally emerged in the solid state physics as a problem
of electron moving in a (dielectric) medium. It became clear, however, that this problem is of essential general-physical
interest, as a model of a quantum object strongly coupled to an environment. Starting from the work of Landau [3],
the polaron problem has been attracting a permanent attention, serving as a testing ground of new non-perturbative
methods.

The most popular model in the polaron problem is the so-called Fröhlich Hamiltonian describing an electron coupled
to non-dispersive (optical) phonons of a dielectric medium via its polarization (Plank’s constant and electron mass
are set equal to unity) [4]:

H = He + Hph + He-ph , (1.1)

He =
∑

k

k2

2
a†
kak , (1.2)

Hph =
∑

q

ωq b†qbq , (1.3)

He-ph =
∑

k,q

V (q)
(

b†q − b−q

)

a†
k−qak , (1.4)

V (q) = i
(

2
√

2απ
)1/2 1

q
. (1.5)

In Eqs. (1.1-1.5), ak and bq are the annihilation operators for the electron with momentum k and for the phonon with
momentum q, respectively, ωq ≡ ω0 is the q-independent phonon frequency, which can be set equal to unity without
loss of generality, α is a dimensionless coupling constant.

Despite a lot of work addressed to the Fröhlich Hamiltonian, the model is still far from being completely understood.
In the most interesting region - at intermediate and large values of α, almost all available treatments are of variational
character. Hence, these treatments, even if consistent with each other, can not guarantee quantitative and qualitative
reliability of the results. Moreover, some treatments are known to be in qualitative disagreement with the others.
As a characteristic example, note that certain approaches suggest that the polaron states at small and large α’s are
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of qualitatively different nature, and there should occur a sort of phase transition in the parameter α [5–11] (see,
however, discussion in Ref. [12]). The study of such important issues as electron Z-factor and the structure of the
polaronic cloud was also restricted to the perturbation theory and variational treatments at small momenta [13–16]. It
remained unclear what are the limits of applicability of these results, and whether they correctly describe the physics
of polarons in the most important range of intermediate α.

Recently, a method of diagrammatic quantum Monte Carlo (MC) was developed, which is very efficient for the
polaron-like problems [1]. The method allows direct simulation of entities specified in terms of (positive definite)
diagrammatic expansions. In Ref. [1] the polaron Green function was simulated, and the results were used to extract
the polaron spectrum.

In the present paper, we employ the diagrammatic Monte Carlo scheme of Ref. [1] for a detailed study of the Fröhlich
model. We significantly enhanced the original scheme by (i) introducing N -phonon Green functions (with 2N external
phonon lines), which are simulated in one and the same MC process with the ordinary (0-phonon) Green function, (ii)
developing a powerful procedure of spectral analysis of the Green function. The N -phonon Green functions allow us to
consider the structure of the phonon cloud and facilitate obtaining polaron parameters at large α, where the polaron
is essentially a many-phonon object. In particular, direct estimators for the energy, effective mass, group velocity,
and Z-factors can be constructed. The spectral analysis of the Green function gives the most complete information
about the polaron, including the possibility to reveal stable and metastable excited states, if any.

The paper is organized as follows. In Section II we introduce the set of Green functions, describe the corresponding
diagrammatic series, and discuss how they are related to the polaron parameters. In Section III we describe qual-
itatively the Monte Carlo procedure [the quantitative discussion of the updates is given in the Appendix A]. The
calculated properties of the polaron (energy, effective mass, structure of the polaronic cloud, ets.) are presented in
Section IV. In Section V we analyze excited states of the polaron by restoring the spectral density of the Green
function by a novel method of the spectral analysis [detailed description of the method is presented in Appendix B].

II. GREEN FUNCTIONS AND DIAGRAMS

In this section we introduce basic entities and establish their relations, which will be utilized in the rest of the
paper.

We start with the standard Green function of the polaron in the momentum (k) – imaginary-time (τ) representation:

G(k, τ) = 〈vac| ak(τ)a†
k(0) |vac〉 , τ ≥ 0 , (2.1)

ak(τ) = eHτake−Hτ . (2.2)

Here |vac〉 is the vacuum state.
The physical information that G(k, τ) contains is clear from the expansion

G(k, τ) =
∑

ν

|〈ν|a†
k|vac〉|2 e−(Eν(k)−E0)τ , (2.3)

where {|ν〉} is a complete set of eigenstates of the Hamiltonian H in the sector of given k, i.e. H |ν(k)〉 = Eν(k) |ν(k)〉,
H |vac〉 = E0 |vac〉. Since in our model E0 = 0, we omit it below. Rewriting Eq. (2.3) as

G(k, τ) =

∫ ∞

0

dω gk(ω) e−ωτ , (2.4)

gk(ω) =
∑

ν

δ(ω − Eν(k)) |〈ν|a†
k|vac〉|2 , (2.5)

one defines the spectral function gk(ω) which has poles (sharp peaks) at frequencies corresponding to stable
(metastable) particle-like states. Hence, if at a given k there exists a stable polaron with the energy E(k), the
spectral function reads

gk(ω) = Z(k) δ(ω − E(k)) + . . . , (2.6)

where

2



FIG. 1. A 0-phonon diagram.

A

B A

B

FIG. 2. A 2-phonon diagram. Note, that disconnected phonon lines always appear in pairs (labels A and B), both lines in a
pair having the same momentum.

Z(k) = | 〈 polaron (k) | free electron (k) 〉 |2 . (2.7)

Moreover, if the polaron state is the ground state, its energy and Z-factor are “projected out” by the Green function
behavior at long times:

G(k, τ ≫ ω−1
0 ) → Z(k) e−E(k)τ . (2.8)

Along with the standard polaron Green function (2.1), it is reasonable to introduce the N -phonon Green function

GN (k, τ ; q1, . . . ,qN ) = 〈vac| bqN
(τ) · · · bq1

(τ) ap(τ)a†
p(0) b†q1

(0) · · · b†qN
(0)|vac〉 , p = k −

N
∑

j=1

qj . (2.9)

Relations (2.3-2.8) are readily generalized to the case of N -phonon Green function. In particular, the N -phonon
Z-factor for the stable (groundstate) polaron with momentum k,

Z
(k)
N (q1, . . . ,qN ) = | 〈 polaron (k) | free electron (p) + free phonons (q1, . . . ,qN ) 〉 |2 (2.10)

[the momentum p is defined as in Eq. (2.9)], is given by

GN (k, τ ≫ ω−1
0 ; q1, . . . ,qN ) → Z

(k)
N (q1, . . . ,qN ) e−E(k)τ . (2.11)

Our MC procedure of simulating Green functions will utilize a standard diagrammatic expansion - Matsubara
technique at T = 0. The diagrams (see Figs. 1, 2) are built of the following elements: (i) free-electron propagator
(solid line)
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G(0)(p, τ2 − τ1) = exp[−p2

2
(τ2 − τ1)] , (2.12)

(ii) phonon propagator (dashed line)

D(q, τ2 − τ1) = exp[−ωq(τ2 − τ1)] , (2.13)

(iii) vertex factor V (q) ascribed to the vertex formed by a phonon propagator (with the momentum q) and two
adjacent electron propagators. External lines of diagrams arise from the operators standing in Eqs. (2.1), (2.9) and
their times and momenta are defined accordingly. Momenta of the internal lines are free up to the momentum
conservation constraint at each vertex. To obey this constraint, we choose phonon momenta to be free, fixing thus
the momenta of the electron lines. Times ascribed to the line ends are subject to the chronologization constraint:
The time of the left end is 0, the time of the right diagram end is τ , times of the vertexes must increase along the
global electron line, directed from 0 to τ . Integration over all free parameters of the diagrams is assumed, within the
domains consistent with the constraints.

Upon the formulation of the diagrammatic rules, it is reasonable to introduce the irreducible N -phonon Green
function, G̃N , which consists only of irreducible diagrams. [By irreducible diagrams we understand those ones that
do not contain phonon lines decoupled from the electron.] ¿From this definition it is clear that the reducible part of
the N -phonon Green function, GN − G̃N , is a sum of products of irreducible functions G̃N ′ , N ′ < N , and free phonon
propagators. Therefore, the reducible part does not contribute to the large-τ asymptotics of GN [because of extra
factors e−ω0τ coming from the disconnected phonon propagators], and, in particular, Eq. (2.11) holds true for G̃N as
well.

It is usefull then to consider the following function:

P (k, τ) = G(k, τ) +
∞
∑

N=1

∫

dq1 · · · dqN G̃N (k, τ ; q1, . . . ,qN ) (2.14)

[Note, that if G̃N → GN , this expression would be singular at τ → 0 because of the divergence of the integrals for
disconnected phonon propagators]. The function P is readily calculated by our MC procedure (see next sections) and,
according to (2.8), (2.11), satisfies the relation

P (k, τ ≫ ω−1
0 ) → e−E(k)τ . (2.15)

Here we took into account the completeness relation

Z
(k)
0 +

∞
∑

N=1

∫

dq1 · · · dqN Z
(k)
N (q1, . . . ,qN ) = 1 . (2.16)

Eqs. (2.15), (2.16) imply that the lowest level E(k) is non-degenerate. Otherwise one should introduce degeneracy
factors to the right-hand sides of the equations.

III. DIAGRAMMATIC QUANTUM MONTE CARLO

In the previous work [1,17] it has been shown how to sum convergent (and arbitrary otherwise) diagrammatic series
numerically without systematic errors. In this section we outline the basic numerical procedure of evaluating series
for various Green functions described in the previous section [the details being discussed in the Appendix A], and
introduce a number of estimators, that render the evaluation process significantly more efficient.

Suppose that we are interested in the function Q({y}), which depends on a set of variables {y}, and which is given
in terms of a series of integrals with an ever increasing number of integration variables:

Q({y}) =

∞
∑

m=0

∑

ξm

∫

dx1 · · · dxm Dm(ξm, {y}, x1, . . . , xm) . (3.1)

Here ξm indexes different terms/diagrams of the same order m. The term m = 0 is understood as a certain function
of {y}. Both external {y} and internal {xi} variables are allowed to be either continuous or discrete; in the latter case
integrals are understood as sums. Diagrammatic MC process is a numeric procedure based on the Metropolis principle
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[18] that samples various diagrams in the parameter space ({y}, m, ξm, {x}m) and collects statistics for Q({y}) in such
a way that the final result converges to the exact answer. The process has very much in common with the Monte
Carlo simulation of a distribution given by a multi-dimensional integral. Nevertheless, there is an essential difference
associated with the fact that integration multiplicity in the expansion Eq. (3.1) is varying.

Summing the series for Q({y}) is the process of sequential stochastic generation of diagrams described by functions
Dm, Eq. (3.1). The MC process consists of a number of elementary updates falling into two qualitatively different
classes: (I) those which do not change the type of the diagram (change the values of arguments in Dm, but not
the function itself), and (II) those which do change the diagram order. The set of elementary updates and their
implementation is problem-specific; the only necessary requirements are ergodicity, i.e., given two arbitrary diagrams
it takes finite number of updates to transform one to another, and detailed balance, i.e., diagrams contribute to the
statistics according to ratio of their D-functions. In the Appendix A we describe a set of updates which we find to
work very efficiently. However, considering enormous freedom in constructing various updates, we have little doubts
that they may not be further improved.

Though Green function contains complete information associated with the polaron spectrum, and the accumulation
of the histogram for G is straightforward, it is reasonable to introduce certain direct estimators, including one for
the Green function itself. These estimators substantially enhance the accuracy of calculations and/or allow collecting
more information during one MC run (by “spreading” the data to the different values of the external parameters).

A. Estimators for effective mass, group velocity, and energy

We start with the family of estimators that are constructed in accordance with the following standard MC rule.
Suppose we have some quantity A specified by the diagrammatic expansion

A =
∑

ν

D(A)
ν , (3.2)

where D(A)
ν ’s are the diagrams for A which are parametrized by internal variables denoted by the unified index ν,

and the summation over ν is understood as the summation over discrete variables and integration over the continuous

ones. Suppose next that all D(A)
ν ’s are positive definite and we have a MC process of generation of random ν with

probability density given by D(A)
ν . Then, if some quantity B is specified by a (similar) diagrammatic expansion

B =
∑

ν

D(B)
ν , (3.3)

the estimator for the ratio B/A is given by

B

A
=





∑

MCA{ν}

Qν



 /
∑

MCA{ν}

1 , (3.4)

Qν =
D(B)

ν

D(A)
ν

. (3.5)

Here MCA{ν} means the set of ν’s generated during the MC run. Commonly, the quantities A and B in Eq. (3.4)
are, respectively, the partition function and an observable. We, however, will use this relation in a somewhat different
context. For one thing, in our case A and B can correspond to one and the same Green function, but at different
values of external parameters (say, momentum or coupling constant). This way we are able to obtain results for a
number of different values of the external parameters from a MC process for just one fixed set of parameters. We can
also directly calculate derivatives with respect to the external parameters. To this end we should analytically take
the corresponding limit from both sides of Eq. (3.4).

Let us obtain estimators for the effective mass, m∗, and group velocity, v(k) = ∂E(k)/∂k. First we note that
(τ → ∞, λ → 0)

P (k + λê, τ)

P (k, τ)
→
{

exp(−λ2τ/2m∗) , k = 0 ,
exp(−λêv(k)τ) , k 6= 0 ,

(3.6)

5



where ê is a unit vector. Considering the denominator and the numerator of the left-hand side of Eq. (3.6) as A and
B (respectively), we can take advantage of Eqs. (3.4) and (3.5). The function Q is given by

Q =
∏

j

exp{−1

2
[(pj + λê)2 − p2

j ](∆τ)j} . (3.7)

Here j numerates free-electron propagators of a given diagram for P (k, τ); pj is the momentum corresponding to
the propagator j, and (∆τ)j is the length of this propagator. Eq. (3.7) immediately follows from the fact that the
series for P (k + λê, τ) can be obtained from the series for P (k, τ) by adding the momentum λê to all free-electron
propagators. As we are interested only in the limit λ → 0, we can expand Eq. (3.7) in powers of λ:

Q = 1 − λτ(êp) − λ2

2
τ +

λ2

2
τ2(êp)2 + O(λ3) , (3.8)

where p is the mean electronic momentum of the given diagram

p =
1

τ

∑

j

pj (∆τ)j . (3.9)

Comparing Eq. (3.8) with the corresponding expansions of the right-hand side of Eq. (3.6), we arrive to the following
estimators

〈p 〉MC → v(k) (τ → ∞) , (3.10)

1 − τ

3

〈

(p)2
〉

MC
→ 1

m∗
(τ → ∞) , (3.11)

where 〈 . . . 〉MC means MC averaging in accordance with Eq. (3.4).
A special care should be taken for treating the time of the Green function as an external parameter of the diagrams

(in the sense adopted in this section). The problem is that relations (3.4-3.5) imply that the internal parameters

of diagrams D(A)
ν and D(B)

ν have one and the same domain of definition, otherwise the ratio (3.5) is not correctly
defined. Meanwhile, the domain of internal times of diagrams directly depends on the external time. To circumvent
this problem, one can introduce scaled internal times by simple relation τi = τ τ̃i, where τ is the external time (length
of diagram in time), τi is an internal time variable (position in time of an electron-phonon vertex), and τ̃i ∈ [0, 1] is
the corresponding scaled time variable with the domain of definition independent of τ .

Now it is easy to obtain a direct estimator for the polaron energy. To this end we start from the relation

P (k, (1 + λ)τ)

P (k, τ)
→ e−λE(k)τ (τ → ∞) (3.12)

and proceed analogously to Eqs. (3.6-3.11). In this case for the function Q we have

Q = (1 + λ)N





∏

j

exp[−λ
p2

j

2
(∆τ)j ]





(

∏

s

exp[−λω0(∆τ)s]

)

, (3.13)

where indexes j and s stand for the electron and phonon propagators, respectively, and N is the number of integrations
over times (or, equivalently, number of interaction vertexes) in a given diagram. Then, in the limit λ → 0, we expand
the right-hand sides of Eqs. (3.12-3.13) up to terms proportional to λ, and in accordance with Eqs. (3.4-3.5) arrive to
the estimator

1

τ

〈

∑

j

p2
j

2
(∆τ)j +

∑

s

ω0(∆τ)s − N

〉

MC

→ E(k) (τ → ∞) . (3.14)
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B. Reweighting

We will also employ the reweighting technique [19], which allows one to utilize the statistics being generated for
some given set of external variables, ξ, for calculations at a different set, ξ′. In terms of the diagrammatic Monte
Carlo, this technique is based on the relation

∑

MC{ν}|ξ′

Qν(ξ′) =
∑

MC{ν}|ξ

Dν(ξ′)

Dν(ξ)
Qν(ξ′) , (3.15)

where Qν is any quantity summed over MC statistics. [We omitted superscript A at Dν since it is not relevant here.]
The relation (3.15) follows from the fact that the MC statistics for the set ξ′ involves the same (in the sense of
structure and the values of internal parameters) diagrams as the statistics for the set ξ. The difference is only due to
a different probability to generate a diagram with the set ξ rather than ξ′. This difference can be taken into account
analytically by the corresponding ratio, which immediately leads to (3.15).

In our case, typical external parameters are the interaction constant and the polaron momentum: ξ = (α,k). The
corresponding ratio of the diagrams is

Dν(α′,k′)

Dν(α,k)
=

(

α′

α

)N/2
∏

j

exp{−[(k′ − k)2 + 2pj(k
′ − k)](∆τ)j/2} =

(

α′

α

)N/2

e−[(k′−k)2/2+p(k′−k)]τ . (3.16)

This relation allows to get many points at different α′ and k′, at no extra cost in CPU time, while performing MC at
a given set of α and k (cf. Ref. [19]).

C. Exact estimator for Green’s function

Calculation of the Green function by means of histogram, though is simple and natural, involves an apparent
shortcoming, associated with the finite width of the histogram cell. There is always a competition between the
decreasing systematic error by making the size of the cell smaller, and the increasing statistical accuracy, which
requires increasing the size of the histogram cell. This problem can be solved by introducing an exact (free of
systematic errors) estimator for the Green function, as follows from a generic consideration presented below.

Given some function A(ξ0) of an external variable/set of variables ξ0, specified with the (positive definite) diagram-
matic expansion

A(ξ0) =
∑

ν

Dν(ξ0) ≡
∫

dξ
∑

ν

Dν(ξ)δ(ξ − ξ0) , (3.17)

[considering a general case, we do not assume that the domain of definition of ν is independent of ξ] and having
arranged a MC process of generating configurations {ν, ξ} with the probability density proportional to Dν(ξ), we
would like to construct an estimator aξ0

the average of which over the MC process gives (up to a global normalization
factor) the function A(ξ0). Let us look for aξ0

in the following form

aξ0
(ν, ξ) =

{

q(ν)Dν(ξ0)/Dν(ξ), if ξ ∈ Γ0 and Dν(ξ) 6= 0 ,
0 , otherwise .

(3.18)

Here Γ0 is some finite domain in the space of variable ξ including the point ξ0, q(ν) is some function to be defined
later. [We adopt a convenient and consistent with the MC procedure convention that Dν(ξ) ≡ 0, if ξ is out of the
range of definition of the corresponding diagram.] ¿From Eq. (3.18) we have

〈 aξ0
〉MC ≡ C

∑

ν

∫

dξ aξ0
(ν, ξ)Dν(ξ) = C

∑

ν

q(ν)Dν(ξ0)

∫

ξ∈Γ0, Dν(ξ) 6=0

dξ (3.19)

where

C−1 =
∑

ν

∫

dξ Dν(ξ) (3.20)

7



is the normalization factor for the distribution of the random pairs (ν, ξ) induced by the series (3.17). ¿From Eq. (3.19)
it is seen that if we choose

q−1(ν) =

∫

ξ∈Γ0, Dν(ξ) 6=0

dξ (3.21)

[note that, according to (3.18), the definition of q(ν) is relevant only when Dν(ξ0) 6= 0, and that q−1(ν) 6= 0, since at
least small neighborhood of the point ξ0 contributes to the integral], then

〈 aξ0
〉MC = CA(ξ0) . (3.22)

The particular form of the estimator for the Green function is readily obtained by identifying ξ with τ , and noting
that the ratio of diagrams standing in Eq. (3.18) is given in this case by Eq. (3.13). As the domain of definition of
any diagram with respect to τ is independent of the diagram structure: τ ∈ [0,∞], the factor q in Eq. (3.18) is simply
proportional to the inverse size of the interval Γ0. The choice of Γ0 for each particular τ0 is arbitrary, being a matter
of taste and convenience.

D. Improved estimators for phonon statistics

Collecting statistics for the phonon cloud can be significantly improved by a trick described below.
We start with noting that in the case of τ → ∞, which is relevant to the ground-state properties, the set of all

N -phonon diagrams possesses a certain symmetry. To reveal this symmetry, we transform diagrams to the circular
representation by the rules illustrated in Fig. 3. The transformation involves “gluing” the outer ends of the electron
line, as well as the outer ends of pairs of (corresponding to each other) external phonon lines. It is easy to check that
the procedure is consistent with the definitions of propagators, Eqs. (2.12, 2.13). In the limit of large τ , which we are
interested in, the probability to find a phonon propagator with length > τ/2 is vanishingly small. That is why we
may omit orientation, understanding the time length of phonon propagator as the length of the smallest arc between
its ends. With the same accuracy, in the limit τ → ∞, we may ignore the pairs of phonon lines like the one shown in
Fig. 3(c), which do not have unambiguous circular counterparts.

It is worth noting that circular diagrams naturally occur in a finite-temperature technique (cf., e.g., Ref. [20]),
where the circumference τ has a meaning of inverse temperature.

Within the circular representation the symmetry necessary for constructing improved estimators is clearly seen.
Indeed, a circular diagram represents a whole class of plain diagrams, due to its independence of the position of the
point corresponding to the ends of the plain diagram.

Thus, having generated a certain plain diagram and associating it with the corresponding circular diagram, one
effectively produces a whole class of diagrams to be included into the statistics.

In practice, the procedure is as follows. Let index i = 1, . . . , Ne label electron propagators in the circular diagram;
we thus split the diagram into Ne pieces each having duration ∆τi in time,

∑Ne

i=1 ∆i = τ . When the circular diagram

is cut anywhere on the interval ∆τi we obtain a contribution to G̃Ni
(k, τ ;q

(i)
1 , . . . ,q

(i)
Ni

), where Ni is the number of
phonon propagators which are cut along with the electron propagator on this interval, and {qi} are their momenta.
An estimator for the integrated N-phonon Z-factor is found then to be

Z
(k)
N ≡

∫

. . .

∫ N
∏

j=1

dqjZ
(k)
N (q1, . . . ,qN ) =

〈

Ne
∑

i=1

∆τi

τ
δNi,N

〉

MC

, (3.23)

i.e., due to time invariance of the circular representation each interval contributes to the statistics according to its
duration in time. The one-phonon distribution function within the N-phonon states manifold is given by

F
(k)
N (q) ≡

∫

. . .

∫ N
∏

j=2

dqjZ
(k)
N (q,q2, . . . ,qN ) ≡ 1

N

N
∑

l=1

∫

. . .

∫ N
∏

j 6=l

dqjZ
(k)
N (q1, . . . ,ql = q, . . . ,qN )

=

〈

Ne
∑

i=1

∆τi

τ
δNi,N

1

Ni

Ni
∑

j=1

δ(qj − q)

〉

MC

, (3.24)

Obviously, Z
(k)
N =

∫

dqF
(k)
N (q). Summing over all N we obtain the one-phonon distribution function
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FIG. 3. Correspondence between the standard and circular representations of diagrams.
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FIG. 4. Bottom of the polaron band E0 as a function of α. The error bars are much smaller than the point size.

F (k)(q) =

∞
∑

N=1

F
(k)
N (q) . (3.25)

IV. NUMERIC RESULTS

A. Groundstate energy and effective mass

In Fig. 4 we present our results for the bottom of the band E0 as a function of α in a wide region of coupling
strengths. The data are compared with Feynman’s variational treatment [13] to demonstrate the remarkable accuracy
of the Feynman’s approach to the polaron energy. We thus conclude that just a simple extrapolation between
the second-order perturbative result E0 = −α − 1.26(α/10)2 and Feynman’s strong-coupling variational estimate
E0 = −α2/3π − 2.83 [such an extrapolation is very close to Feynman’s variational treatment in the whole range of
α’s] yields quite satisfactory approximation for E0(α).

In Fig. 5 accurate data for the effective mass are presented up to m∗ ∼ 1000 [For larger m∗’s the Fröhlich model is
not realistic anyway since the phonon dispersion becomes relevant]. At α ≤ 9 the statistics were collected at integer
values of α with reweighting (in accordance with the procedure described in the previous section) to corresponding
finite intervals (see the plot). At α > 9 the reweighting procedure proved to be ineffective.

Let us compare the data for m∗ with the small- and strong-coupling analytic results. At small α’s, the formula
m∗ = (1 − α/6)−1, known to coincide with the perturbation expansion up to the second order [4,16,14], works well
up to α ≈ 2. In contrast to the case of E0, the strong-coupling limit [21] m∗ = α4/48 drastically overestimates the
effective mass in the whole range of physically interesting α’s. Feynman’s variational technique works better, but still
with a considerable deviation (up to 50% ) in the region 5 < α < 10.

Almost the same degree of accuracy gives variational treatment by Feranchuk, Fisher, and Komarov [11]. An
important point about this treatment, however, is that it suggests a phase transition from “light” to “heavy” polaron
at α close to 7.5, which should lead to an especially rapid increase of m∗ just after α = 7.5. In this connection, we note
that our curve m∗(α) is essentially smooth and does not suggest any sort of phase transition or sharp cross-over. [The
results of more deep numeric study of the possibility of the phase transition are presented in the next (sub)sections.]
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FIG. 6. The bare-electron Z
(0)
0 -factor for the ground state as a function of the coupling strength; filled circles are the MC

data (with error bars smaller than point size), and the solid line is the perturbation theory result (4.1).

B. Structure of polaronic cloud

In this subsection we present our results for the electron Z-factor, or Z
(k)
0 , for k = 0 as a function of the coupling

strength in the region of small and intermediate α (for α > 10, the bare electron weight in the polaron ground state
becomes vanishingly small), and for α = 1 as a function of momentum up to the end-point. We study also, how the

distribution of phonons in the ground state, Z
(0)
N , and the average number of phonons, N̄ =

∑∞
N=1 NZ

(0)
N , evolve with

α. Finally, we show how the physics of the end-point is seen in the transformation of the one-particle distribution
function Fk(q), Eq. (3.25), and how it allows to identify the relevant self-energy diagram.

For small α and k = 0 the leading behavior is readily obtained from the perturbation theory

F
(0)
1 (q) =

√
2α

4π2

sin θ

[q2/2 + 1]2
dq dθ dϕ

Z
(0)
0 = α/2

Z
(0)
0 = 1 − α/2 , (4.1)

We have verified that for α < 1 the perturbative results (4.1) are describing the data rather accurately [see also
Figs. 6, 8, and dashed curves (connecting filled circles) in Fig. 11].

The data in Fig. 6 make it clear that perturbation theory may not be trusted for α > 1 when the bare-electron

state in the polaron wave function is no longer the dominant contribution, e.g., Z
(0)
0 (α = 3) < 0.2. The bare electron

Z-factor vanishes rather rapidly for α > 3 (the dependence Z0
0 (α) is faster than exponential) and becomes < 10−5

for α ≥ 10. We do not attempt to fit the data to the particular functional dependence since we believe that in the
interval 3 < α < 10 the polaron state undergoes a smooth transformation between weak and strong coupling limits.

In Fig. 7 we show the distribution of multi-phonon states in the polaron cloud at k = 0. We see how it gradually
evolves from the perturbation theory case into the strong-coupling regime. For α > 10 the data may be fit to the
Gaussian distribution, but at smaller values of α the distribution is essentially asymmetric - it decays faster for N > N̄
than for N < N̄ . We note, that even for alpha = 17 the phonon number distribution is rather large which means
that the polaronic cloud is essentially a superposition of states with different N . The effects resulting from this fact
are outside the scope of the variational Ψ4-theory and may, for example, account for the considerable deviation of the
effective mass discussed above.

12



0 1 2 3 4 5
0

0.25

0.5

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0 4 8 12 16
0

0.05

0.1

0.15

30 40 50 60 70 80
0

0.01

0.02

0.03

0.04

α=1

N

0

N

Z

α=3

Z

N

N

0

N

Z
N

0

α=6

Z
N

0

N

α=17
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FIG. 8. The average number of phonons in the polaron ground state as a function of α. Filled circles are the MC data (error
bars are smaller than the point size), the dashed line is the perturbation theory result (4.1), and the solid line is the parabolic
fit for the strong coupling limit.

It is well known that polaron models often support the self-trapping phenomenon, when the ground state changes
in a relatively narrow interval of parameters from light- to heavy-mass state with a sharp increase in the number
of phonons contributing to the polaronic cloud. The same phenomenon was advocated for the Fröhlich model by
a number of authors [5–11], including the statement that more than one stable polaron state exists in the region
of intermediate α. Clearly, if there were a sharp transformation of the polaronic ground state, it would have been
immediately seen in the phonon statistics. Such a transformation might be not visible on the energy plot if the
hybridization matrix element between the two competing states is not small, and their energy derivatives, dE/dα,
are close to each other at the point of crossing. However, if we are to speak about different polaronic states, then
(almost by definition) their structure has to undergo an abrupt change with α. Our data on the bare electron Z-factor
Z0

0 and phonon distribution functions Z0
N are evolving smoothly with α and thus prove continuous formation of the

self-trapped state.
To further support this conclusion, we plot in Fig. 8 the dependence N̄ vs α. The crossover between the perturbative

result N̄ ∼ α/2 of Ref. [16] and the strong-coupling limit, where N̄ ∼ 0.22α2, demonstrates no sign of the level crossing
picture. As a side remark we note that the result of Ref. [16] which predicted that perturbation theory for N̄ works
well in the intermediate range 1 < α ≤ 6 is not true. In fact, this law breaks down along with the perturbation theory.

Consider now the evolution of the polaronic cloud with momentum as we approach the end point. [The dispersion
curve E(k) featuring the end point at momentum kc of the form E(k → kc) = E0 +ω0− (k−kc)

2/2mc was calculated
in Ref. [1].] Although the polaronic state is stable for E(k)− E(0) < ω0 the bare electron weight vanishes as k → kc,
see Fig. 9. From this plot we estimate kc(α = 1) ≈ 1.83. This figure also makes it clear to what degree the earlier

result that Z
(k)
0 is momentum-independent [22] works.

With the numerical tools at hand it is possible to “visualize” the physics of the end point. In accordance with
the generic Pitaevskii theory of the end point [23], in the vicinity of the end point the polaron can be considered
as a (weakly) bound state of phonon, carrying almost all the momentum of the state, and a polaron with almost
zero momentum. This physics is transparent from the comparison between the statistics of N -phonon states in the
ground state and at k → kc shown in Fig. 10. Evidently, the two curves can be matched by shifting the ground-

state distribution by one, i.e. Z
(kc)
N ≈ Z0

N+1 (the maximum of the Z
(k=1.79)
N curve is a little depleted because of the

remaining finite weight Z0
0 since k < kc). It means that the polaronic state near the end point is a superposition of

bound states of the phonon with momentum around kc and a polaron at the band bottom.
Since Fig. 10 does not tell us explicitly what are the parameters of the extra phonon present in the polaronic cloud

at k → kc, we plot in Figs. 11 12 normalized distribution functions of phonon momenta (in |q| and in the angle
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FIG. 9. The bare-electron Z-factor as a function of the polaron momentum up to the end point.

between q̂k). It is obvious from these figures that the extra phonon momentum is concentrated around k.

V. SPECTRAL ANALYSIS

The spectral function gk(ω) (2.5) provides important information about the system since it has poles (sharp peaks)
at frequencies corresponding to stable (metastable) particle-like states. Besides, since the probability of absorption of
a free electron with the momentum k into a polaron state is proportional to the spectral function, the latter can be
measured experimentally by angle-resolved inverse photoemission spectroscopy.

In spite of many elaborated treatments of the properties of the polaron, the knowledge about high-energy part of
the polaron spectrum is mostly limited by attempts to calculate the spectral density either by perturbation theory
approaches or at strong coupling limit [24]. As both the Green function asymptotic behavior and the machinery of
estimators provides information about ground state properties only, the spectral density is indispensable for the study
of excited states of the system.

The spectral analysis, i.e. solving the equation (2.4), was performed by a novel method [detailed description of the
method and testing examples are presented in Appendix II]. The most important features of the method are that it
avoids distortion of equation by nonlinear terms and does not suffer from systematic errors caused by preassigned
discretisation of the ω-space.

To perform a joint check of the diagrammatic Monte Carlo approach and the method of spectral analysis, we
compared the spectral densities obtained by our numeric calculations and by perturbation theory for zero temperature.
The analytic expression for the high-energy part (ω > 0) of the spectral density could be obtained for the arbitrary
interaction potential V (| q |) which depends on the modulus | q | of the phonon momentum. For zero polaron
momentum, k = 0, the the imaginary part of the linear in α self-energy part Σ(0, ω > 0) is

ImΣ(0, ω) = − 1√
2π

√
ω − 1 | V (

√

2(ω − 1)) |2 θ(ω − 1). (5.1)

(Here θ is the theta-function.) Then, using the relation g0(ω) = −ImGk=0(ω)/π and keeping only linear with respect
to α terms one gets

g0(ω > 0) =
1√
2π2

√
ω − 1

ω2
| V (

√

2(ω − 1)) |2 θ(ω − 1). (5.2)

The expression for the low-energy part (ω < 0) of the spectral density depends on the specific form of the interaction
potential and we consider the perturbation theory result for the short-range interaction
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FIG. 11. Phonon distribution functions in q-modulus for the ground state (filled circles) and close to the end-point for
k = 1.79 (open circles). The momentum kc is indicated by a bar at the q-axis. (The lines are just linear interpolations between
accurate numeric points.)
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FIG. 13. The comparison of the numeric results (solid lines) and the perturbation theory curves (dashed lines) for the spectral
density of Frohlich model with α = 0.05 (upper panel) and the short-range interaction model with α = 0.05 and κ = 1 (lower
panel).

V (| q |) = i
(

2
√

2απ
)1/2 1

√

q2 + κ2
, (5.3)

which reduces to the Frohlich one when κ → 0. The low-energy part is the delta-functional peak

g0(ω < 0) =
α

(κ +
√

2)2
δ

(

ω + α

√
2

κ +
√

2

)

. (5.4)

The comparison of our numeric results for the low-energy part of the Frohlich polaron (κ = 0)spectral density
for α = 0.05 and Eq. (5.4) demonstrates a perfect agreement (with the accuracy 10−4 for the polaron energy and
Z-factor), whereas our results for the high-energy part (upper panel in Fig. 13) significantly deviate from the analytic
curve. This is not surprising since for Frohlich polaron the perturbation theory expression is diverging as ω → ω0 and,
therefore the perturbation theory breaks down. To test the case when perturbation theory is obviously valid we set
κ = 1 and obtained a perfect agreement for both the low- and high-energy parts of g(ω) (lower panel in Fig. 13). We
note that the high-energy part of g(ω) is successfully restored by our method despite the fact that the total weight of
the feature is less than 10−2 for α = 0.05.

One can note that the main deviation of the actual spectrum of Frohlich polaron from the perturbation theory
result is the extra broad peak in the actual spectral density at ω ∼ 3.5. To study this feature we calculated g(ω) for
α = 0.5, α = 1, and α = 2 (see Fig. 14). Note, that the peak is seen for higher values of the interaction constant and
its weight grows with α. Near the threshold, ω = 1, the spectral density demonstrates the square-root dependence
∼

√
ω − 1 (see the insert).

To trace the evolution of the peak at higher values of α we calculated the spectral density for α = 4, α = 6, and
α = 8 (see Fig. 15). At α = 4 the peak at ω ∼ 3.5 already dominates in the spectral density. Moreover, a distinct
high-energy shoulder appears at α = 4, which transforms into a broad peak at ω ∼ 9 in the spectral density for
α = 6. The spectral density for α = 8 demonstrates further redistribution of the spectral weight between different
maxima without significant shift of the peak positions. One can also see that there is a high-energy shoulder which
is, probably, the precursor of another peak which would appear for higher values of the interaction constant.
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< 10−3.) The energy is counted from the position of the polaron.
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The excited states of the polaron were studied within the frameworks of different approaches [25–29] by calculating
optic absorption spectra. The light absorption is associated with the transitions from the polaron ground state φ0

with k = 0 and E = E0 to the excited states f with Ef which are characterized by the presence of a finite number
of real phonons along with the polaron. The optic absorption spectrum at the frequency ω is proportional to the
transition probability

P (ω) = 2π
∑

〈φ0 | Ô | f〉〈f | Ô | φ0〉δ(E0 − Ef + ω). (5.5)

(Here Ô = Er is the electric dipole interaction, E is the electric field.)
It was shown in the weak-coupling limit [25,26] that the optic absorption spectrum has a broad peak with the onset

separated from the polaron state by the optic phonon energy. Our calculations confirm (see Fig. 14) that there are
no metastable excited states of the polaron in the weak-coupling regime.

On the other hand, in the strong-coupling limit the existence of the metastable relaxed excited state (RES), i.e.
the state where the lattice readapts to the new electronic configuration and the polaron-lattice system is in the local
minimum of the total energy, was predicted [27–29]. This state manifests itself as a sharp peak in the absorption
spectrum which is located at the frequency equal to the energy difference ERES − E0. To check the existence of
RES one can study the spectral density (2.5) since although the matrix elements of transition probability (5.5) and
spectral density (2.5) are different, both functions have to demonstrate sharp peaks at the energies of the metastable
excited states. From Fig. 15 we conclude that there is no metastable excited state because the width of the peaks
is comparable with the excitation energy, i.e. with the distance from the polaron ground state. Moreover, according
to the strong-coupling approaches [27], the excitation energy of the RES state is proportional to α2, whereas peak
positions in g(ω) with respect to E0 do not change with α.

The variational treatment developed in Ref. [11] suggests that in a certain region of α there may exist two different
stable states of the polaron [the corresponding equations for variational parameters have two solutions]. Our numeric
study can shed light on this situation.

To start with, let us discuss what one could observe would the two states really exist. If at some point α = α∗

there occurs a level crossing so that the ground state switches from one state to another, and the two states differ
essentially in the number of phonons and/or in the effective mass, one would expect at the point α∗ a sharp change
of these quantities. The change should be almost jump-like in the case of small hybridization between the two states,
and look like a smooth cross-over otherwise. Even in the case of sufficiently strong hybridization, one may distinguish
between two qualitatively different cases: (i) the case when the level separation is less than ω0 [and thus both states
are stable against decay], and (ii) the case when the upper level is in the continuum, and therefore is unstable.

Strictly speaking, in the case (ii) one can invoke the second level only in some quantitative sense, since there is no
qualitative difference between the case (ii) and a situation with only one polaron state. These quantitative features
could be associated with the non-monotonic behavior of the derivatives (with respect to α) of the effective mass
and/or the mean number of phonons, and, of course, another peak in the spectral density.

Our study of the spectral densities shows that the case (i) is not realized because we found that g(0 < ω < 1) = 0.
Therefore, there is no excited stable state in the energy gap between the ground state energy and incoherent continuum.
Instead, there are several many-phonon unstable states at energies Ef −E0 ∼ 1, ∼ 3.5, and ∼ 8.5. One can speculate
that these states reveal themselves in variational approaches and can be mistreated as quasi-stable states of the
polaron. It should be emphasized, however, that the situation does not resemble that of the level-crossing at all, since
we do not observe non-monotonic behavior of the derivatives (with respect to α) of the effective mass and/or the
mean number of phonons.
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APPENDIX A: UPDATING PROCEDURES
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1. Updates of class I

Updating procedures of this class are the simplest. They mimic standard rules of simulating a given distribution
function Dm. In the present case we are dealing with quite a number of variables having different physical meaning:
external variables {y} include τ , N , α, and k, and internal variables describe the topology of the diagram (index ξm),
times of electron-phonon vertices and momenta of phonon propagators. From this list of variables follows a set of
updates simulating multi-dimensional distribution Dm.

a. Vertex shift in time

We choose at random any interaction vertex inside the graph (we exclude the diagram closing points which are
updated separately), and change its time position from τv to τ ′

v on the interval (τ1, τ2) between the nearest left- and
right-neighbor vertices, i.e., τ1 < τv, τ ′

v < τ2. Let the incoming and outgoing electron momenta for the selected vertex
are p and p + q. The normalized probability density to find the vertex at time τ ′

v is a simple exponential function

W (τ ′
v) =

∆E e−(τ ′

v−τ1)∆E

1 − e−(τ2−τ1)∆E
, (A1)

where ∆E = E(p)−E(p+q)∓ωp depending on whether the updated vertex is the left or right end of the corresponding
phonon propagator, which allows a trivial solution of the equation

∫ τ ′

v

τ1

W (s)ds = r , (A2)

in the form

τ ′
v = τ1 −

ln
(

1 − r[1 − e−(τ2−τ1)∆E]
)

∆E
. (A3)

Here and below r is the random number homogeneously distributed on the unit interval. Since the new variable is
selected according to the exact probability density the acceptance ratio for this update is unity.

b. Change of transferred momentum angle

We choose at random any phonon propagator except those attached to the diagram ends (propagators attached to
the diagram ends appear in pairs with equal momenta, thus single propagator updates do not apply to them) and
change its momentum q → q′ so that |q| = |q′|. Let the propagator connects vertices at times τ1 and τ2. Evaluating
the average electron momentum between these vertices

< p >τ1,τ2
=

∫ τ2

τ1

p(τ)dτ

τ2 − τ1
, (A4)

and introducing vector p0 =< p >τ1,τ2
+q, we may write the probability density to find azimuthal and polar angles

ϕ, θ between vectors q and p0 as

W (ϕ, θ) ∼ sin(θ) exp

{

−τ2 − τ1

m
p0q cos θ

}

, (A5)

This result is a trivial consequence of the quadratic dispersion law for the bare electron spectrum. Clearly, the new
azimuthal angle is selected at random (ϕ = 2πr), and cos θ is selected according to the simple exponential function
in complete analogy with Eqs. (A1) and (A3) up to trivial change of notations. The acceptance ratio is thus unity.
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c. Change of transferred momentum modulus

In this procedure propagators are selected as explained in the previous subsection, but now we change the modulus
of the transferred momentum while keeping the polar and azimuthal angles between the vectors p0 and q fixed. The
probability density now reads

W (q) ∼ V (q)q2 exp

{

−τ2 − τ1

2m
[q − p0 cos θ]2

}

∼ exp

{

−τ2 − τ1

2m
[q − p0 cos θ]2

}

, (A6)

where we have used explicitly the property of the Fröhlich model that V (q)q2 is q-independent. By tabulating the
inverse error-function we ensure fast numerical solution of the equation errf(z) = r, or z = errf−1(r), and thus
generation of the new value q = z

√

2m/(τ2 − τ1) + p0 cos θ with acceptance ratio unity.

d. Change of diagram structure

We select at random any nearest-neighbor pair of vertices inside the graph (again, the diagram closing vertices are
excluded) and exchange the assignment of the phonon propagators between these vertices. Namely, if the original
momentum transfer was q1 in vertex 1 and q2 in vertex 2, we suggest to change these momenta to q2 and q1

correspondingly. The acceptance ratio for this procedure depends on whether we are dealing with the left (c = 1) or
right (c = −1) ends of the phonon propagators

R = e−τ [E(p+c1q1−c2q2)−E(p)−ω0(c1−c2)] , (A7)

where τ is the time difference, and p is the electron momentum between the selected vertices. Clearly, this procedure
effectively changes the topology of bosonic lines while keeping fixed their momenta.

e. Change of diagram length in time

This procedure is done in two variants (almost identical to the procedure of shifting the vertex position in time).
Consider the case when no artificial potential except the chemical potential is used. In the first variant we select the
new time difference τ between the positions of the right diagram end at its left nearest neighbor vertex according to
the probability density

W (τ ′) = ∆E e−τ ′∆E , (A8)

where ∆E = E(p) + Nzω0 − µ, and p is the momentum of the last electron propagator, µ is the chemical potential,
and Nz is the number of phonon propagators attached to the diagram right end (obviously, Nz is the same for the
diagram left end). In the second variant we select new time differences between the positions of all nearest-neighbor
pairs of vertices. For each such a pair the probability density is still given by Eq. (A8), where in the most general
case Nz must be understood as the number of phonon propagators which are cut when the diagram is cut anywhere
between the selected pair of vertices. Notice, that the second variant requires much longer computation time; thus
if the typical diagram order is very large it must be applied less frequently. In both variants the acceptance ratio is
unity.

There is a bottle-neck in the time decay of the electron P -function, which does not allow efficient sampling of both
long-time and short-time behavior and causes normalization problems at large α, namely, P (τ) drops to almost zero
vaalue at short times, and then climbs back to P ∼ 1 before it settles to the asymptotic decay (2.15).

There is however a general prescription of how to eliminate such difficulties by using the so-called “guiding function”
[30] or fictitious potential renormalization. This method was successfully applied recently [31] to the problem of
tunneling transition amplitudes, where one is bound to collect reliable statistics which varies by orders and orders of
magnitude between different points in time. The idea is to modify the statistics of suggested diagrams by introducing
the acceptance ratio

R = Afic(τnew)/Afic(τold) , (A9)

and accordingly multiplying all MC estimators in the time domain by 1/Afic(τ), where the fictitious potential Afic(τ)
is arbitrary. Note, that in Eq. (A9) we are dealing with the external variable τ - the diagram length in time. In
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the present case the best choice would be Afic ∼ 1/P (τ). We achieve this goal by self-consistently adjusting Afic to
1/PMC(τ) after a certain large number of updates during the thermalization stage (here PMC(τ) is the statistical
result for P (τ)). After thermalization stage we start collecting new statistics for P (τ) and keep Afic fixed.

f. Change of coupling constant

Since the diagram weight depends on the coupling constant as αNp where Np is the number of phonon propagators
in the diagram, all we need to do is to select new value of α with this power-law probability density. Normalized
probability density is obtained by restricting allowed values of α to a certain parameter range. Acceptance ratio is
unity.

g. Change of external momentum

Given the average electron momentum of the diagram p̄ =< p >0,τ , see Eq. (A4), with external momentum k, we
define vector p0 = k− < p >0,τ and write the probability density to select new external momentum k′ as

W (k′) ∼ exp
{

− τ

2m
(k′ − p0)

2
}

. (A10)

As before the new variable is seeded according to this probability density utilizing the tabulated error-function [see
subsection A1 c and Eq. (A6)] and thus is always accepted.

One note is in order here. Although one is allowed to change the coupling constant and the external momentum
in a single MC process, it seems more efficient to keep these variables fixed instead of spreading the statistics over
some range in the (k, α) parameter space. However, the knowledge of the relative weights according to which a
given diagram contributes to the statistics of various α and k may be utilized in collecting statistics for the finite
neighborhood of the point (k0, α0) used in a given MC simulation. Obviously, reliable results for points other than
(k0, α0) are obtained only provided that for typical diagrams the relative weights are of order unity. As explained in
the text, this knowledge is also used in deriving estimators for the effective mass and group velocity of the polaron.

2. Updates of class II

These updates are in the heart of the method since they change the diagram order. The generic rules
for constructing them are as follows [17]. Let the update A transform a diagram Dm(ξm, y, x1, . . . , xm) into
Dm+n(ξm+n, y, x1, . . . , xm, xm+1, . . . , xm+n), and, correspondingly, its counterpart B perform the inverse transfor-
mation. For n new variables we introduce vector notation: ~x = {xm+1, xm+2, . . . , xm+n}. The update A involves
two steps. First, it proposes a change, selecting a new diagram, Dm+n, and a particular value of ~x, which is seeded
with a certain normalized distribution function W (~x). There are no requirements strictly fixing the form of W (~x),
but to render the algorithm most efficient, it is desirable that W (~x) be chosen as close as possible to Dm+n(x), i.e.,
to the actual statistical probability density of ~x in the new diagram. Upon proposing the modification, the update
is accepted, with probability, Pacc(~x), or rejected. The update B, removing variable x, is accepted with probability
Prem(~x)). For the pair of complementary updates to be balanced, the following Metropolis-like prescription should be
fulfilled [17]:

Pacc(~x) =

{

R(~x)/W (~x), if R(~x) < W (~x) ,
1 , otherwise ,

(A11)

Prem(~x) =

{

W (~x)/R(~x), if R(~x) > W (~x) ,
1 , otherwise ,

(A12)

where

R(~x) =
pB
pA

Dm+n(ξm+n, y, x1, . . . , xm, ~x)

Dm(ξm, y, x1, . . . , xm)
(A13)

and pA and pB are the probabilities of selecting updates A and B, which, in principle, may differ. To solve the polaron
problem and account for any possible diagram it is sufficient to have two pairs of complementary processes of type II
which are described in detail below.
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a. Adding/removing phonon propagators to the diagram

Consider the algorithm for the process increasing the number of internal phonon propagators (i.e., excluding those
attached to the diagram closing points) by one. This update is done in two variants which differ in the probability
densities according to which the new propagator parameters are suggested. First we select the time position τ1 for the
left-hand end of the extra phonon propagator. This is done by choosing at random (with equal probabilities) one of
the free-electron propagators, and by taking for τ1 any time (with equal probability density) within this propagator.
Then we select the transferred momentum and propagator length in time using the distribution function

W (q, τ) =
ω0

4πq0
e−τω0(1+q/q0)2 (A14)

where q2
0/2 = ω0, i.e., we first seed |q| according to W1(q) == 1/[q0(1+q/q0)

2] (and isotropic around the point q = 0),

and then τ according to W2(q|τ) = ω0(1 + q/q0)
2e−τω0(1+q/q0)2 . Since the typical length of the phonon propagator in

time depends on how close is the polaron momentum to the dispersion law end-point, we also use another variant of
seeding new variables q and τ , namely, we factorize the distribution function into W (q, τ) = W1(q

′ = |q − k|)W3(τ)
(i.e., isotropic around the point k), where W3(τ) = Ωe−τΩ and Ω ≪ ω0 down to Ω ∼ 0.01ω0 close to the end-point.

We underline, that the above choices are motivated by the physics of the problem, in particular, if the combination
V 2(q)q2 was some power law function of q (e.g., when the interaction vertex is non-singular at small momentum or
even goes to zero as q → 0) one would better have to choose W1(q → 0) ∝ V 2(q)q2 to ensure that nowhere in the
accessible parameter region the acceptance ratio (see below) is singular.

Now the proposing stage is completed, and we are ready to perform accept/reject step, following the above pre-
scription, Eq. (A11). The corresponding function W (~x) (~x ≡ {τ1, τ2,q}) reads (for the first version)

W (~x) =
ω0 e−τω0(1+q/q0)2

4πτ0q0
, (A15)

where τ0 is the length of the free-electron propagator, where the point τ1 is selected. As mentioned already, this form
of W is by no means the unique one. Apart from the factor pB/pA which will be discussed later, the ratio (A13) is
now completely defined since

Dm+n(ξm+n, y, x1, . . . , xm, ~x)

Dm(ξm, y, x1, . . . , xm)
=

2
√

2πα

(2π)3
e−(τ2−τ1)[ω0+E(<p>τ1,τ2

−q)−E(<p>τ1,τ2
)] . (A16)

The algorithm for the process B is to select at random (with equal probabilities) some phonon propagator, and, if
it is not attached to the diagram end, with the probabilities given in Eqs. (A12) and (A15) remove it.

To complete the description of the sub-processes A and B, we should define the ratio pB/pA. It is quite reasonable
to select creation and annihilation procedures with equal probabilities. At the first glance it might seem that this
immediately leads to pB/pA = 1, but this is not true. The point is that when we select an electron propagator for
placing the point τ1, we have Ne equal chances, where Ne is the number of free-electron propagators in the diagram
being modified [denominator of Eq. (A13) ], and when we select a phonon propagator for removing, we have Nph equal
chances, where Nph is the number of phonon propagators in the diagram from which we try to remove the propagator
[numerator of Eq. (A13) ]. These Ne and Nph are straightforwardly related to each other:

Nph = (Ne + 1)/2 . (A17)

We thus get

pB
pA

=
2Ne

Ne + 1
=

2Nph − 1

Nph
. (A18)

(Note a misprint in Ref. [1], where the r.h.s. of Eq. (10) gives pA/pB instead of pB/pA).

b. Adding/removing a pair of phonon propagators attached to diagram ends

This update is done in close analogy with the previous one, except minor changes to which we proceed now.
First, we select time positions τ1 and τ2 for the left- and right-end propagators according to the probability densities
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Wl(τ1) = Ωe−Ωτ1 and Wr(τ2) = Ωe−Ω(τ−τ2). In the first variant of the update Ω = ω0 and in the second Ω ≪ ω0.
Also, the phonon momentum is suggested using the same distribution W1(q

′ = q) or W1(q
′ = |q− k|). We thus have

W (~x) =
Ω2e−Ω(τ+τ1−τ2)

4πq0(1 + q′/q0)2
, (A19)

and

Dm+n(ξm+n, y, x1, . . . , xm, ~x)

Dm(ξm, y, x1, . . . , xm)
=

2
√

2πα

(2π)3
e−ω0(τ+τ1−τ2) ×

{

e−[E(<p>0,τ1
−q)−E(<p>0,τ1

)]τ1−[E(<p>τ2,τ−q)−E(<p>τ2,τ )](τ−τ2) τ1 < τ2

e−[E(<p>0,τ2
−q)−E(<p>0,τ2

)]τ2−[E(<p>τ2,τ1
−2q)−E(<p>τ2,τ1

)](τ1−τ2)−[E(<p>τ1,τ−q)−E(<p>τ1,τ )](τ−τ1) τ1 > τ2
. (A20)

The algorithm for the inverse procedure is to select at random (with equal probabilities) a pair of propagators from
the list of pairs attached to the diagram end, and with the probabilities given in Eqs. (A12) and (A19) remove it.
Since we select procedures inserting and removing pairs of propagators with equal probabilities, we have

pB
pA

=
1

Nz + 1
. (A21)

APPENDIX B: METHOD OF SPECTRAL ANALYSIS

1. General background and outline of the method

The problem of restoring positive definite spectral density function ρ(ω) from known imaginary-time Green function
G(τ) is the problem of solving linear first-type Fredholm equation

∫ ∞

0

e−τωρ(ω)dω = G(τ) , (B1)

where the domain of definition of the functions G(τ) and ρ(ω) is [0,∞]. The normalization of the Green function
G(0) = 1 implies the additional constraint

∫ ∞

0

ρ(ω)dω = 1 . (B2)

In a realistic situation the Green function is known at a discrete set of times {τi}, i = 1, ..., N with some statistic
errors at each time point. As is well known, in this case the problem of solving Eq. (B1) belongs to the class of
ill-posed problems. The characteristic feature of the ill-posed problem is that the solution of equation (B1) is not
unique even when statistic errors are absent, as there is an infinite number of unknown functions ρ̃(ω) satisfying (B1).
In the case of finite statistic errors one may face a situation when the solution of Eq. (B1) under the constraint (B2)
does not exist at all. Therefore, it is natural to formulate the problem as to find an approximate solution ρmin(ω)
which reproduces G at a finite set of times with smallest deviation Dmin. The definition of the measure of deviation
depends on the method used, and the value of minimal deviation Dmin is determined by the magnitude of statistic
errors.

There are two fundamental difficulties that are inherent to the spectral analysis. The first one is the well-known saw-
tooth instability of the linear Fredholm equation of the first type – an approximate solution ρ̃(ω) does not reproduce
the true solution ρ(ω) even if ρ̃(ω) generates the Green function

G̃(τ) =

∫ ∞

0

e−ωτ ρ̃(ω)dω (B3)

which reproduces G(τ) with any preassigned accuracy. This difficulty is treated usually by the regularization method
that smoothes the saw-tooth noise of approximate solution ρ̃(ω). The idea of the regularization method is to introduce
some nonlinearity into Eq. (B1) that imposes constraints on the derivatives of ρ̃(ω). There are two main drawbacks of
this method. First, regularization method is unable to restore the spectral density which has sharp features. Second,
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due to a distortion of the initial equation by additional regularization terms the approximate solution reproduces the
function G(τ) with relatively high deviation D ≫ Dmin. Hence, the information from the most representative region
of the deviations D ∼ Dmin is lost.

The second difficulty inherent to the problem of solving equation (B1) is that any representation of ρ̃(ω) by a
preassigned discrete set {ρ(ωf)}, f = 1, ..., M is the source of uncontrollable systematic errors. For one thing, if the
function ρ(ω) contains a sharp feature with a significant weight at some ω′, which does not match the discrete set
{ωf}, this feature cannot be reproduced properly and, therefore, the rest of the spectral density can be distorted
beyond recognition. Note, that all iteration methods as well as the methods based on solving the nonlinear system of
equations use preassigned discretisation of the ω-space.

We present a method of solving equation (B1) that avoids distortion of equation by nonlinear terms and, thus, probes
the most representative interval of deviations. Besides, the method does not suffer from systematic errors as it does
not involve preassigned discretisation of the ω-space. The idea of the method is to generate by a stochastic procedure
a (large enough) set of M positive definite statistically independent approximate solutions {ρ̃j(ω)}, j = 1, ..., M with
deviation measures Dj ∼ Dmin. And then, taking advantage of the linearity of Eq. (B1), choose the final solution as
the average

ρ(ω) = M−1
M
∑

j=1

ρ̃j(ω) . (B4)

The reason is that while the particular solution ρ̃j(ω) possesses the saw-tooth instability, the stochastic character
of the procedure of particular solution generation should lead to averaging out the saw-tooth noise. Note, that the
condition ρ̃j(ω) > 0 and constraint (B2) substantially enhance the convergence of the averaging (B4).

The method of generation of a particular solution is based on the optimization of the deviation

D[ρ̃] =

∫ τmax

0

∣

∣

∣G(τ) − G̃(τ)
∣

∣

∣G−1(τ)dτ . (B5)

Here τmax is the maximal τ up to which G(τ) is known. The weight function G−1(τ) is to efficiently utilize information
from the whole range [0, τmax], even in the case when the function G(τ) decreases by orders of magnitude with τ .
Note, that we use weight function G−1(τ) rather than G̃−1(τ) to avoid feedback instabilities in generation ρ̃(ω).

Our optimization procedure does not involve preassigned fragmentation of the ω-space. The number of parameters
used for parametrization of the spectral density function ρ̃(ω) is being varied during optimization process, so that
any spectral function can, in principle, be reproduced within any preassigned accuracy. The process of generating a
particular solution involves a random choice of the initial-configuration parameters and subsequent optimization of
the deviation by changing the parameter values, as well as the number of the parameters. The maximal number of
continuous parameters and the number of particular solutions M are limited only by the computer performance.

2. Configuration and method of getting independent solution

We parametrize ρ̃ as a sum

ρ̃(ω) =

K
∑

t=1

χ{Pt}(ω) (B6)

of rectangulars {Pt} = {ht, wt, ct}

χ{Pt}(ω) =

{

ht , ω ∈ [ct − wt/2, ct + wt/2] ,
0 , otherwise .

(B7)

determined by height ht > 0, width wt > 0, and center ct > 0.
A configuration

C = {{Pt}, t = 1, ..., K} (B8)

with the constraint
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K
∑

t=1

htwt = 1 (B9)

defines, according to Eqs. (B6, B3), the function G̃(τ) at any time point

G̃C(τ) =







1 , τ = 0 ,

2τ−1
K
∑

t=1
hte

−ctτ sinh(wtτ/2) , τ 6= 0 .
(B10)

To express the deviation (B5) as an analytic function of the values of G and G̃ at the set of times {τi}, i = 1, ..., N
[where the function G(τ) is known], we use linear interpolation between closest points.

Note, that the specific type of the functions (B7) is not crucial for the general features of the method although
simple form of analytic expressions (B9, B10) is of value for fast performance.

The procedure of obtaining a particular solution ρ̃j(ω) consists of randomly generating some initial configuration
Cinit

j followed by nondeterministic sequence of configuration changes until deviation satisfies the condition

D[Cfin
j ] < Du ∼ Dmin (B11)

(Du is the upper limiting deviation.) for final configuration Cfin
j . The nondeterministic character of configuration

changes is achieved by random selection of various elementary updates.

3. General features of elementary updates

By elementary update we mean a random change of the configuration, which is either accepted or rejected in
accordance with certain rules. There are two classes of elementary updates. The updates of the class I do not
alter the number of rectangulars, K, changing only the values of the parameters from a randomly chosen set {Pt}.
The updates of the class II either add a new rectangular with randomly chosen parameters {hK+1, wK+1, cK+1}, or
remove stochastically chosen rectangular t from the configuration. If a proposed change violates constraint (B10)
(e.g., a change of wt or ht, or any update of the class II), then the necessary change of some other parameter set {Pt′}
is simultaneously proposed, to satisfy the requirement of the constraint.

The updats should keep parameters of a new configuration within domain of definition of configuration C. Formally,
the domains of definition of configuration (B8) are Ξht

= [0,∞], Ξct
= [0,∞], Ξwt

= [0, 2ct], and ΞK ∈ [1,∞].
However, for the sake of faster convergence, we reduce domains of definition.

As there is no general a priori prescription for choosing reduced domains of definition, the rule of thumb is to
start with maximal domains and then, after some rough solution is found, reduce the domains to reasonable values
suggested by this solution. In particular, since the probability to propose a change of any parameter of configuration
is proportional to K−1, it is natural to restrict maximal number of rectangulars ΞK ∈ [1, Kmax] by some large number
Kmax. To forbid rectangulars with extremely small weight, which contribution to G̃(τ) is less than statistic errors of
G(τ), one can impose the constraint htwt ∈ [Smin, 1], with Smin ≪ K−1

max. When there is some preliminary knowledge
that overwhelming majority of integral weight of the spectral function ρ(ω) is in a range [ωmin, ωmax], one can restrict
the domain of definition of the parameter ct by Ξct

= [ωmin, ωmax]. Then, to reduce the phase space one can choose
Ξht

= [hmin,∞] and Ξwt
= [wmin, min {2(ct − ωmin), 2(ωmax − ct)}].

While the initial configuration, the update type, and the parameter to be altered are chosen stochastically, the
variation of the values of the parameters relevant to the update is optimized to maximize the decrease of D. Each
elementary update of our optimization procedure (even that of the class II) is organized as a proposal to change some
continuous parameter ξ by randomly generated δξ in a way that the new value belongs to Ξξ. Although proposals
with smaller values of δξ are accepted with higher probability it is important, for the sake of better convergence, to
propose sometimes changes δξ that probe the whole domain of definition Ξξ. To probe all scales of δξ ∈ [δξmin, δξmax]
we generate δξ with the probability density function P ∼ (max(|δξmin|, |δξmax|)/|δξ|)γ , where γ ≫ 1.

Calculating the deviation measures D(ξ), D(ξ + δξ), D(ξ + δξ/2), and searching for the minimum of the parabolic
interpolation, we find an optimal value of the parameter change

δξopt = −B/2A, (B12)

where
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A = 2(D(ξ + δξ) − 2D(ξ + δξ/2) + D(ξ))(δξ)−2, (B13)

and

B = (4D(ξ + δξ/2) − D(ξ + δξ) − 3D(ξ))δξ. (B14)

In the case A > 0 and ξopt ∈ Ξξ we adopt as the update proposal δ̃ξ one of the values δξ, δξ/2, or δξopt for which the

deviation measure D(ξ + δ̃ξ) is the smallest. Otherwise, if the parabola minimum is outside Ξξ, one has to compare
only deviations for δξ and δξ/2.

4. Global updates

The updating strategy has to provide efficient minimization of the deviation measure until criterion (B11) is satisfied.
It is highly inefficient to accept only those proposals that lead to the decrease of deviation, since, in a general case,
there is an enormous number of deviation local minima Dloc[C] > Du. As we observed it in practice, these multiple
minima drastically slow down (or even freeze) the process.

To optimize escape from a local minimum, one has to provide a possibility of reaching a new local minimum with
lower deviation through a sequence of less optimal configurations. It might seem that the most natural way of doing
this would be to accept sometimes (with low enough probability) the updates leading to the increase of the deviation.
However, this simple strategy turns out to be impractical. The reason is that the density of configurations per interval
of deviation sharply increases with D. So that the acceptance probability for a deviation-increasing update should be
fine-tuned to the value of D. Otherwise, the optimization process will be either non-convergent, or ineffective [if the
acceptance probability is, correspondingly, either too large, or too small in some region of D].

A way out of the situation is to perform some sequence of T temporary elementary updates of a configuration C(0)

C(0) → C(1) → ... → C(r) → C(r + 1) → ... → C(T ) , (B15)

where the proposal to update the configuration C(r) → C(r + 1) is (temporary) accepted with the probability

Pr→r+1 =

{

1 , D[C(r + 1)] < D[C(r)] ,
f (D[C(r)]/D[C(r + 1)]) , D[C(r + 1)] > D[C(r)] .

(B16)

(Function f satisfies boundary conditions f(0) = 0 and f(1) = 1.) Then we choose out of the configurations {C(r)}
(B15) the one with minimal deviation and, if it is different from C(0), declare it to be the result of the global update,
or, if this configuration turns out to be just C(0), reject the update.

We choose the function f in the form

f(x) = x1+d (d > 0) , (B17)

which leads to comparatively high probabilities to accept small increases of deviation measures and hampers significant
enlargements of deviation. Empirically, we found out that the global update procedure is most effective if one keeps
parameter d = d1 ∼ 0 at the first T1 steps of sequence (B15) (to leave local minimum) and then changes this parameter
to a value d = d2 ≫ 1 for the last T − T1 elementary updates (to decrease the deviation measure). In our algorithm
the values T ∈ [1, Tmax], T1 ∈ [1, T ], d1 ∈ [0, 1], and d2 ∈ [1, dmax] were stochastically chosen for each global update
run.

5. Final solution and refinement

After a set of M configurations

{

Cfin
j , j = 1, ..., M

}

(B18)

that satisfy the criterion (B11) is produced, the solution (B4) is obtained by summing up the rectangulars (B7,B18).
We, however, employ a more elaborated procedure, which we call refinement. Namely, we use the set (B18) as a

source of Mref new independent starting configurations for further optimization. These starting configurations are
generated as a linear combinations of randomly chosen members of the set (B18) with stochastic weight coefficients.
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Then, the refined final solution is represented as the average (B4) of Mref particular solutions resulting from the
optimization procedure.

The main advantage of such a trick is that initial configurations for optimization procedure now satisfy the criterion
(B11) from the very beginning and, thus, upper limiting deviation Du can be considerably reduced. Moreover, as
any linear combination of sufficiently large number R of randomly chosen parent configurations

{

Cfin
η , η = 1, ..., R

}

smoothes the saw-tooth noise, the deviation of a summary configuration Cfin
ref is normally lower than that of each

additive one.

6. Elementary updates of class I

(A) Shift of rectangular. Change the center ct of a randomly chosen rectangular t. The continuous parameter for
optimization (B12-B14) is ξ = ct which is restricted by domain of definition Ξct

= [ωmin + wt/2, ωmax − wt/2].
(B) Change of width without change of weight. Alter the width wt of a randomly chosen rectangular t without

change of the rectangular weight htwt = const and center ct. The continuous parameter for optimization is ξ = wt

which is restricted by Ξwt
= [wmin, min {2(ct − ωmin), 2(ωmax − ct)}].

(C) Change of weight of two rectangulars. Change the heights of two rectangulars t and t′ (where t is a randomly
chosen and t′ is either randomly chosen or closest to t rectangular) without change of widths of both rectangulars.
Continuous parameter for optimization is the variation of the rectangular t height ξ = ht. To restrict the weights of
chosen rectangulars to [Smin, 1] and preserve the total normalization (B2) this update suggests to change ht → ht + δξ
and ht′ → ht′ − δξwt′/wt with δξ confined to the interval

Smin/wt − ht < δξ < (ht′ − Smin/wt′)wt/wt′ (B19)

7. Elementary updates of class II

(D) Adding a new rectangular. To add a new rectangular one has to generate some new set {Pnew} =
{hnew, wnew, cnew} and reduce the weight of some other rectangular t (either randomly chosen or closest) in order
to keep the normalization condition (B2). The reduction of the rectangular weight t is obtained by decreasing its
height ht.

The center of the new rectangular is selected at random according to

cnew = (ωmin + wmin/2) + (ωmax − ωmin − wmin)r (B20)

As soon as the value cnew is generated, the maximal possible width of a new rectangular is given by

wmax
new = 2 min(ωmax − cnew, cnew − ωmin). (B21)

Continuous parameter for optimization δξ = hnewwnew is generated to keep weights of both new rectangular and
rectangular t larger than Smin

δξ = Smin + r(htwt − Smin) (B22)

Then, the value of the new rectangular height hnew for given δξ is generated to keep the width of new rectangular
within the limits [wmin, wmax

new ]

hnew = δξ/wmax
new + r(δξ/wmin − δξ/wmax

new ). (B23)

(E) Removing a rectangular. To remove some randomly chosen rectangular t, we enlarge the height ht′ of some
another (either randomly chosen or closest) rectangular t′ according to condition (B2). Since such procedure does
not involve continuous parameter for optimization, we unite removing of rectangular t with the shift procedure (A)
of the rectangular t′. Then, the proposal is the configuration with the smallest deviation measure.

(F) Splitting a rectangular. This update cuts some rectangular t into two rectangulars with the same heights ht

and widths wnew1
= wmin + r(wt − wmin) and wnew2

= wt − wnew1
. Since removing a rectangular t and adding of

two new glued rectangulars does not change the spectral function we introduce the continuous parameter δξ which
describes the shift of the center of a new rectangular with the smallest weight. Second rectangular is shifted into
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FIG. 16. Model spectral density (dashed line) and the result of spectral analysis (solid line). The position of the delta-function
is shown only in the lower panel.

opposite direction to keep the center of gravity of two rectangulars unaltered. The domain of definition Ξξ obviously
follows from the parameters of the new rectangulars.

(G) Gluing rectangulars. This update glue two (either randomly chosen or closest) rectangulars t and t′ into single
new rectangular with the weight hnewwnew = htwt + wt′ht′ and width wnew = (wt + wt′)/2. The initial center of
the new rectangular cnew corresponds to the center of gravity of rectangulars t and t′. We introduce a continuous
parameter by simultaneously shifting the new rectangular.

8. Tests

To check the accuracy of our approach, we tested it for the spectral density distribution that spreads over large range
of frequencies and simultaneously possesses fine structure in low-frequency region. The test spectrum was modeled
as the sum of the delta-function with the energy εδ = 0.03 and the weight Zδ = 0.07, and continuous high-frequency
spectral density which starts at the threshold εth = 0.04. The continuous part of the spectrum ρcon was modeled by
the function [In fact, this functional form is predicted by the Pitaevskii theory for ρ(ω) near the end point.]

ρcon(ω) =
Zδ

√
ω − εth

2π
√

εgap[(ω − εth) + εgap]
(B24)

(here εgap = εth − εδ is a microgap) in the range ω ∈ [εth, 0.566] and by a triangule at higher frequencies (see the
dashed line in the upper panel of Fig. 16). The Green function G(τ) was calculated from the model spectral density
in the nmax = 300 points τi = τmaxi

2/nmax in the time range from zero to τmax = 1000. The restored spectral
density reproduces both gross features of high-frequency part (upper panel in Fig. 16) and the fine structure at small
frequencies (lower panel of Fig. 16). The energy and the weight of the delta-function was restored with the accuracy
10−4. The final solution was obtained by the averaging (B4) of M = 1100 particular solutions.
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FIG. 17. The model spectrum (dashed lines) and results of spectral analysis (solid lines) for η = 10−2 (upper panel) and
η = 10−3 (lower panel).
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To evaluate the precision which characterizes how typical particular solution ρ̃j(ω) (see (B3)) reproduces the Green
function G(τ), we introduce the maximal relative deviation

η = max

[

| G(τi) − G̃(τi) |
G(τi)

]

, i ∈ [1, nmax] , (B25)

which typical value is η = 10−4 for a particular solution of the spectrum in Fig. 16.
Since the Green function which is obtained from Monte Carlo calculations contains some statistic errors at each

time point, the minimal value of parameter η is limited by the quality of the calculated Green function G(τ). To study
the influence of the (uncorrelated) statistic errors we studied the stability of the method against stochastic noise

G(τi) → G(τi)(1 + ηri) , i = 1, nmax , (B26)

introduced by random numbers ri ∈ [0, 1]. It is seen that the method restores the gross features of the spectrum
(position and width) even for rather roughly calculated Green function, with η = 10−2 (upper panel in Fig. 17),
whereas the precision η = 10−3 is sufficient to resolve the lineshape (lower panel in Fig. 17)).
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