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The weight for random quark masses

John F. Donoghue

Department of Physics and Astronomy,

University of Massachusetts, Amherst, MA 01003

Abstract

In theories in which the parameters of the low energy theory are
not unique, perhaps having different values in different domains of the
universe as is possible in some inflationary models, the fermion masses
would be distributed with respect to some weight. In such a situation
the specifics of the fermion masses do not have a unique explanation,
yet the weight provides the visible remnant of the structure of the
underlying theory. This paper introduces this concept of a weight for
the distribution of masses and provides a quantitative estimate of it
from the observed quarks and leptons. The weight favors light quark
masses and appears roughly scale invariant ( ρ ∼ 1/m). Some relevant
issues, such as the running of the weight with scale and the possible
effects of anthropic constraints, are also discussed.

http://arXiv.org/abs/hep-ph/9712333v1


1 Basic ideas

Many of the parameters of the Standard Model, such as the quark masses
and the weak mixing angles, appear without any obvious pattern. Perhaps
the explanation for the specific values of these parameters is hidden in the
physics at a deeper level. The goal of much of the work in particle physics
has been to find the underlying theory, the golden Lagrangian, which by its
structure explains the parameters of the Standard Model. If this is successful,
it will indeed be satisfying.

However, another possibility also exists - that these parameters are in
some sense random. This could potentially occur in various ways. For ex-
ample, in some theories of inflation, different regions of the universe involve
different parameters and perhaps even different low energy theories[1]. The
dynamical fields which determine the properties of the low energy theory
become fixed at different values in each domain, and subsequent inflation
ensures that we live within only one of these domains. It is also conceivable
in theories such as superstrings with different classically equivalent vacua,
that different vacuum states could be selected in different regions of the uni-
verse. The moduli fields, whose vacuum expectation values determine the
mass parameters of the low energy theory, are not fixed upon compactifica-
tion[2]. Perhaps these fields are sampled in a random fashion rather than
being determined uniquely by some mechanism. However, the general idea
can at this time be considered distinct from the particular underlying theory.
If some quasi-random mechanism is in fact at work, we should not expect to
find a unique explanation for the values of the parameters in the Standard
Model.

Given our present incomplete knowledge, it is not any more scientific to
assume that there is a unique explanation for a single set of parameters which
holds throughout the universe than it is to consider the possibility that the
parameters may vary in different domains. Indeed, the history of science has
taught us that we do not occupy a privileged position. In this spirit, it is fair
to explore the possibility that our domain of the Universe and our particular
parameters are not unique.

The quark masses do not appear strictly random either, as there are
more light quarks than very massive ones. Indeed, we would not necessarily
expect the masses to be equally distributed in such a multiple domain theory.
The structure and dynamics of the fields which determine the low energy
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parameters may bias the distribution of possible parameters in various ways.
The parameters would then be distributed randomly with respect to some
weight. The potentially visible remnant of the underlying theory would not
be the details of the individual mass values, but rather the weight by which
they are distributed. If we can obtain an indication of the weight, perhaps
we can use this to help determine the appropriate underlying theory.

The purpose of this paper is to provide an initial exploration of this
idea of a weight for fermion masses, and provide an estimate of the weight
from the observed masses. If we had available information from an ensemble
of different domains or even from very many masses within a domain, the
determination of the weight would be simple. Because we are aware of only
one domain which contains six quark and three known lepton masses, we have
quite limited data for this exercise. However, the fermion mass distributions
are quite striking, and we can at least provide some quantification of this
fact.

The weight is not an invariant concept, identical at all scales. Because the
quark and lepton masses run under a change of scale, the weight extracted
at different scales will also run. I give a discussion and quantification of this
feature (Sec. 3), and present final masses at the weak interaction scale (Sec
4). The smoothing procedure to obtain information from a discrete spectrum
is discussed in Sec 5. Attempts to increase the number of input parameters
and to assess the uncertainty in this procedure are addressed in Sec. 6-8.
Further information is contained in the Yukawa couplings that generate the
weak mixing angles, although the diagonalization of quark mass matrices
lead to a loss of some of this information(Sec 6). Lepton masses may also be
relevant. Since, quarks and leptons run at different rates, there are also some
complications in attempting to combine these into a single weight. This is
explored using the effects of QCD interactions (Sec 7). The uncertainties are
summarized in Sec 8, and then I try to provide a functional measure of the
weight in Sec 9.

In a multiple domain theory, it is an obvious requirement that out of
all the possible domains we must find ourselves in a domain with parame-
ters amenable to the development of life[3,4,5]. This restricts the space of
allowed parameters somewhat, most especially the parameters whose values
might otherwise have to be fine-tuned. Weinberg[3] has estimated the tiny
range of anthropically-allowed values of the cosmological constant from the
requirement that the universe expand at a rate which allows galaxies to form.
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My collaborators and I [4] have estimated the allowed range of value of the
Higgs vacuum expectation value from the anthropic need for complex atoms
to exist and be formed in the universe, and have suggested this as a possible
explanation for the unnatural closeness of the weak scale and the QCD scale.
If the fermion masses are also variable, there are anthropic constraints on
these also[4], favoring having a light first generation. The subsequent gener-
ations appear to not have much impact on anthropic constraints. However,
this issue does potentially complicate attempts to determine the weight, as
I discuss later in the paper (Sec. 10). At this stage, I also discuss further
considerations which may modify the procedure used to extract the weight
appropriate for a given underlying theory. Some of these issues will be ad-
dressed more clearly if we are able to explore a specific underlying theory in
an attempt to predict the observed weight.

2 Definition of the weight

The weight provides a normalized distribution function for the masses or
Yukawa couplings. In an ensemble of domains similar to our own, the fraction
of masses found at a value m within a range dm is defined to be

f(m) = ρ(m) dm (1)

where ρ(m) is the symbol for the weight. When we need to focus on the
scale dependence of the weight we will include the scale µ as a subscript, i.e.
ρµ(m), indicating that it is the form of ρ appropriate for that value of µ.
By assumption, for a small number of masses the values of the masses will
appear randomly distributed with respect to the weight ρ(m).

The normalization of the weight is

1 =
∫

ρ(m) dm . (2)

The finiteness of the normalization imposes constraints on the low mass and
high mass limits of ρ(m). At small values of m, the weight cannot grow any
faster than 1

m
while for large values it must fall faster than 1

m
. From this it

is clear that there is no pure power-law behavior that can hold for all values
of m.
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3 The running of the weight, quasi-fixed points,

etc.

In the ultimate fundamental theory, the weight will be determined by some
physics at a large energy scale, for example the GUT or Planck scales. In
order for this to be compared with low-energy physics, it will need to be
transformed to a low-energy scale. Since the quark masses run with the
scale, the weight will similarly transform. This section discusses the nature
of the scale dependence of the weight.

The renormalization group equations provide a continuous one-to-one flow
for the masses. In changing from a scale µ1 to a scale µ2 a mass m1 will flow
to a value m2. This defines a functional relationship between the masses at
the two scales, m1 = m1(m2) or m2 = m2(m1). Similarly a small range of
masses ∆m1 around the value m1 will flow into a range ∆m2 around m2.
The magnitude of ∆m2 is generally not the same as that of ∆m1 as a range
of masses can either grow closer or expand under the renormalization group
transformation. The transformation of the weight follows from a conservation
of probability. Since the transformation is continuous, the same fraction of
masses that fall in the range ∆m1 will, after the rescaling, appear in the
range ∆m2. From the definition of this fraction as f = ρ ∆m, we have the
condition

ρµ2(m2)∆m2 = ρµ1(m1)∆m1 (3)

If we take the infinitesimal limit and define a “Jacobian”

J(m2) =
∂m1

∂m2
(4)

as a function of m2, we have the transformation equation

ρµ2(m2) = ρµ1(m1(m2))J(m2) . (5)

The normalization is obviously preserved under this rescaling.
As an example consider those masses where only the QCD gauge couplings

are important in the scaling of the masses. This implies a linear scaling with
a simple anomalous dimension

m(µ) = m(µ0)

(

αs(µ)

αs(µ0)

)dm

(6)
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with

dm =
4

11 − 2NF

3

(7)

In this situation we have the linear behavior

m2 = m1

(

αs(µ2)

αs(µ1)

)dm

(8)

J(m2) =

(

αs(µ2)

αs(µ1)

)−dm

(9)

ρµ2(m2) = ρµ1

(

m2(
αs(µ2)

αs(µ1)
)−dm

)(

αs(µ2)

αs(µ1)

)−dm

(10)

However, this simple form is only valid for small values of the masses, as we
now discuss.

When the mass, or equivalently the Yukawa coupling, is large the running
of the mass is influenced by the Yukawa coupling itself. When evolving from
high energy to low, the influence of the Yukawa coupling tends to drive the
mass to smaller values, while the gauge coupling will tend to evolve the
mass to larger values. If the Yukawa coupling at the high energy scale is
small enough, a finite evolution to lower energy will always be dominated by
the gauge couplings, with the pattern discussed in the previous paragraph.
However, for larger initial Yukawa couplings, the flow will approach a value
where the effects of gauge and Yukawa couplings cancel. In particular all very
large Yukawa couplings will quickly approach this quasi-fixed point[6,7]. The
effect of this on the weight is that for reasonable distributions at high energy,
the low-energy weight will have an upper cutoff at the quasi-fixed point.

Consider the evolution of a large Yukawa coupling h under the influence of
itself plus QCD interactions. (We here neglect the weak and electromagnetic
effects.) Recall that within the Standard Model, the masses are related to
the Yukawa couplings hi via

mi =
hi√
2
v (11)

with v = 246 GeV being the Higgs vacuum expectation value. If µ1 is
the initial scale and t = ln(µ2

1/µ
2), the renormalization group equations for
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Nf = 6 are[6,7]

dg2
3

dt
=

7

16π2
g4
3 (12)

dh2

dt
= h2

(

1

2π2
g2
3 −

9

32π2
h2
)

(13)

These equations have an exact solution[7]

h2(t) =

(

αs(t)

αs(0)

)2dm h2(0)

1 + 9
8π

h2(0)
αs(0)

(

( αs(t)
αs(0)

)
1
7 − 1

) (14)

=
2

9

g2
3(t)

1 + (αs(0)
αs(t)

)
1
7

(

2
9

g2
3(0)

h2(0)
− 1

) (15)

The first form of this relation better illustrates the linear behavior in the
small h limit, while the latter shows the quasi-fixed-point at h2/g2

3 = 2/9.
When scaling from the GUT or Planck scales within the Standard Model,
the quasi-fixed-point occurs at m∗ = 220 GeV. This value would change if
supersymmetry or other interactions occurred in the region between the GUT
and weak scales.

The transformation of the weight follows directly from this form. Let us
define

h(t) = b
h(0)

[1 + ah2(0)]
1
2

(16)

b(t) =

(

αs(t)

αs(0)

)4/7

(17)

a(t) =
9

2g2
3(0)





(

αs(t)

αs(0)

) 1
7

− 1



 (18)

We can invert this relation, obtaining

h(0) =
h(t)

[b2 − ah2(t)]
1
2

(19)
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Recalling that h(t) differs from the mass m(t) only by a constant (see Eq.
(11)), we find the Jacobian

J(m) =
b2

[

b2 − 2am2

v2

]
3
2

. (20)

For small masses, this is equivalent to Eq. 9.
Let us explore the effects of rescaling and the quasi-fixed-point via an

example. At a high scale, such as the Planck mass, we consider

ρµ=MP
(h) =

λ1−δ

Γ(1 − δ)

1

hδ
e−λh . (21)

Finiteness constrains δ < 1. When scaled down to the weak scale one obtains

ρµ=MW
(m) =

λ1−δ

Γ(1 − δ)

(

v√
2m

)δ
b2

[

b2 − 2am2

v2

]
3−δ

2

e

−
√

2λm

v[b2−2a
m2

v2 ]
1
2

. (22)

This is plotted in Fig. 1 and 2 for δ = 1/2 and δ = 0.9 with λ = 1. When
scaled from the Planck mass to the weak scale, the parameters a and b have
values a = 7.9 and b = 3.2. Note that while the high-energy distribution
extends to large masses, once rescaled to low energy, there is a cut-off at
the quasi-fixed-point. The integrated weight for large masses all appears at
values close to the fixed point, leading to a peaking of the weight in this area.
This indicates that even if the high-energy weight is small for large m, it is
nevertheless likely that one or more of the masses will occur very close to the
fixed point. It is tempting to feel that this has occurred in the case of the
top quark.

4 Brief review of masses

The precise definition of quark masses involve many subtle issues, which
are not presently fully resolved. Because of confinement in QCD, the quark
masses can not be defined in the same way that we do for leptons. The at-
tempts to provide clear values of the masses involves very interesting features.
However, I will not dwell on many of these features since this paper uses the
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Figure 1: The effect of renormalization group rescaling on a possible weight
function with δ = 1/2. The dashed curve corresponds to a weight defined at
the Planck scale and the solid curve is the same weight at the scale µ = MW .
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Figure 2: The same as Fig. 1, but with δ = 0.9.
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masses only in a relatively crude way. I will simply accept the uncertainties
described in the review of Ref[8].

The ratios of light quark masses are better determined than the absolute
magnitude. The ratios follow from the masses of pseudoscalar mesons when
analyzed using chiral methods[9]. To specify the magnitude, one must specify
a specific renormalization condition. This is presently only possible in model-
dependent methods, leading to at least a factor of two uncertainty in the scale
of the masses. We use

mu = 4 +4
−2 MeV (23)

md = 8 +7
−4 MeV (24)

ms = 150 +150
−50 MeV (25)

These values are intended to be estimates in a mass-independent renormal-
ization scheme such as M̄S at a scale of order 1 GeV.

Heavy quark masses can be defined to some level of precision in the
context of Heavy Quark Effective Theory (HQET)[10]. Here one can define
either a pole mass or a running mass evaluated at the scale of the mass itself.
For the running masses we use

mc(mc) = 1.4 ± 0.2 GeV (26)

mb(mb) = 4.3 ± 0.2 GeV (27)

mt(mt) = 166 ± 5 GeV. (28)

In describing the weight, we need to transform the masses to a common
scale. I will primarily use MW as this scale. Running the masses to this
value yields

mu(MW ) = 2.2 +2.2
−1.1 MeV (29)

md(MW ) = 4.4 +4
−2 MeV (30)

ms(MW ) = 80 +80
−30 MeV (31)

mc(MW ) = 0.81 ± 0.12 GeV (32)

mb(MW ) = 3.1 ± 0.2 GeV (33)

mt(MW ) = 170 ± 5 GeV (34)

In this calculation I used αs(MW ) = 0.115 and included the changes in NF

at charm and beauty thresholds. The set of masses are equivalent to a set of
dimensionless Yukawa couplings. Recall that the top quark mass is equivalent
to ht = 1.
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5 Smoothing the quark distribution

With only six quarks our insight into the weight is necessarily limited. In
particular, there is nothing that we can do that can give much information
at large values of the mass. The single very heavy quark, the top quark,
tells us that the weight cannot vanish at large mass, nor be exponentially
suppressed. However it is not possible to use the top quark to say anything
detailed about the shape of the weight. The situation is marginally better
at low mass. Viewed globally there is a striking clustering of the masses at
low values. This requires the weight to be peaked at low mass. If we assume
a smooth functional form for the weight, we will be able to compare it with
some of the features of the observed masses. So we should be aware that our
limited information on the weight exists almost entirely in the region where
most masses are, i.e. around and below a GeV.

In a very crude form, we can consider binning the masses to give a rough
estimate of the weight. This is illustrated in Fig. 3.

In order to compare with the physical masses in a more quantitative fash-
ion we need some smoothing scheme which is able to encode the information
contained in the discrete values of the masses, yet which can be compared
to possible smooth trial functions describing the weight. I will use two such
schemes. One involves an integral with some similarity to the Hilbert trans-
form

H(z) =
∫ ∞

0
dm

zρ(m)

m + z
(35)

The second involves the Laplace transform

L(z) =
∫ ∞

0
dm ρ(m) e−m/z (36)

These transforms are constrained by the normalization condition to both be
equal to unity at z = ∞ and are mainly sensitive to masses smaller in mag-
nitude than the parameter z. I will refer to these functions as “transformed
weights”. The transformed weights H(z) and L(z) turn out contain quite
similar information, and I will display L(z) only occasionally in what follows.

For the experimental side we use

ρexp(m) =
1

6
Σ6

i=1δ(m − mi) (37)
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Figure 3: A rough characterization of the weight, obtained by binning the
quark masses in 1 GeV bins.

12



1 2 3 4 5
z

0.2

0.4

0.6

0.8

1

H

Figure 4: The “experimental” transformed weight H formed from the quark
masses defined at the scale µ = MW .
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Figure 5: The “experimental” transformed weight L.
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z

0.2

0.4

0.6

0.8

H

no top

no up

Figure 6: The transformed weights obtained by discarding either the up
quark or the top quark, compared to the full result (solid curve).

The resultant transforms are displayed in Fig 4,5.
Here and in subsequent sections, I wish to provide some estimates of

the uncertainty in the transformed weights. A minimal such estimate is
obtained by considering what would occur if we had knowledge of only five
quarks instead of six. Removing the information on the mass of a strange or
charmed quark does relatively little to change the transformed weight. The
extremes occur if we discard either the up or the top quark masses. These
shifts in the form of H(z) are illustrated in Fig. 6. The effects of the error
bars from the experimental determination of the masses is much smaller than
the effect of removing one mass from the distribution.
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6 The CKM weak mixing matrix

The known quark masses emerge from the diagonalization of the matrix of
Yukawa couplings. This diagonalization also produces the elements of the
weak mixing matrix. Therefore the CKM elements also contain information
on the distribution of the Yukawa couplings. In this section, I consider this
information, primarily as an indication of the uncertainty in the weight.

There is a serious loss of information in the diagonalization process which
hinders our use of the CKM elements. The original mass matrices of the
charge 2/3 and −1/3 quarks are diagonalized via

V
(u)†
L M

(u)
0 V

(u)
R = m(u) (38)

V
(d)†
L M

(d)
0 V

(d)
R = m(d) (39)

with the resultant CKM matrix formed from the product of the two left-
handed rotations

VCKM = V
(u)†
L V

(d)
L . (40)

We lose any information contained in the right-handed rotations and any
common features of the up and down type left-handed rotations. Thus we
cannot reconstruct the original Yukawa matrices except in an arbitrary choice
of basis. (Indeed, the choice of basis can only be specified with reference to
some physics beyond the Standard Model.)

In order to provide two simple estimates of the uncertainties in the distri-
bution of Yukawa couplings, I will rotate the CKM elements either into the
matrix of up-type quarks or into the matrix of down-type quarks. Specifically
I consider the elements of

Mu,test = V †
CKMm(u) =







0.002 0.18 1.19
0.0005 0.78 6.8
7 · 10−6 0.032 170





 (41)

or of

Md,test = VCKMm(d) =







0.004 0.018 0.01
0.001 0.077 0.12

3 · 10−5 0.003 3.1





 (42)

In the numbers quoted, I do not include CP violation and use the PDG central
values[8]. For the purpose of this exercise, I will consider all elements to be
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H

Figure 7: The transformed weight (solid curve) compared to the corre-
sponding result formed by transferring the information in the CKM elements
into the up-quark mass matrix(dot-dashed curve) and down-quark mass ma-
trix(dashed curve).

independent. In each case, I also include the diagonal masses of the other
type quark to be included in the weight, resulting in 12 input parameters per
case. This leads to the transformed weights shown in Fig 7.

We see that including this increased amount of data does not significantly
change the weight.

7 Leptons

It is tempting to also combine information of the lepton masses with that of
quark masses. Certainly the overall impression is the same, with a prepon-
derance of light fermions. However, we should be cautious in this procedure
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Figure 8: The transformed weight formed from the quark masses and the
lepton masses (dashed curve), compared to that from quarks alone (solid
curve).

as there are certainly some different considerations for leptons compared to
quarks. In the spirit of exploring the uncertainties in the weight, in this sec-
tion we combine quark and lepton information. We will see that within the
significant uncertainties the quark and lepton distributions are consistent.

Initially let us blindly add the lepton to the quark information (i.e. yield-
ing 9 elements of data) This is shown in Fig. 8. (I neglect the electroweak
running of masses as this uncertainty is far below the real uncertainty in this
whole procedure.) Leptons produce only a minor change in the transformed
weight.

However, if the masses arise at some higher energy scale, this is unlikely to
be the correct procedure. The quark and lepton masses should be compared
at the high scale rather than the electroweak scale. This of course cannot
be done without knowledge of the underlying theory. To estimate this effect,

18
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0.4

0.6

0.8

H

Figure 9: The transformed weight formed from quark masses and lepton
masses which have been rescaled as described in the text (dashed curve)
compared to that from quarks alone (solid curve).

I have done the following. First, imagine that all masses are scaled to a
typical grand unification scale, M ∼ 1016GeV. Then all masses are scaled
back to the W scale as if they were quarks. This gives a plausible common
distribution, which can be compared to the result of the previous section.
The net effect is to increase the lepton input values by a factor of two. This
change does not drastically modify the resulting distribution. See Fig. 9.
The lepton information is consistent with that of the quarks.

Neutrinos may or may not have a mass in the Standard Model. However,
if they have a non-zero mass, present indications are that the values are so
small that they are unlikely to be standard Dirac masses. The “see-saw”
mechanism naturally explains such small masses and would be the favored
explanation should present indications be confirmed. This mechanism would
indicate that we should not combine neutrino mass information together with
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Figure 10: A summary of all inputs (quarks, leptons and CKM elements),
with the CKM elements in the up-quark mass matrix (dot-dashed curve) and
the down-quark mass matrix ( dashed curve).

the other masses in discussing the weight.
Finally, we combine the CKM, (rescaled) lepton and quark information

in order to obtain the estimate in Fig. 10.

8 Summary of estimated uncertainties

The considerations above have described various inputs into the “experi-
mental” determination of the transformed weight. The number of inputs
has ranged from 5 to 15. The greatest downward variation comes from the
removal of the up quark from the distribution. The upper boundary comes
from the rotation of the CKM elements into the down-quark mass matrix.
All other inputs are consistent with the underlying distribution within this
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Figure 11: The transformed weight (solid curve) and limits of the range of
uncertainty (dashed curves) as described in the text.

uncertainty.
The resulting uncertainty is shown in Fig. 11. Despite the generous

nature of the uncertainty in the transformed weight, it will turn out that the
weight itself is reasonably constrained.

9 Phenomenology of the weight

The function describing the weight needs to be peaked at low energy, yet
extend out to high mass in order to accommodate the existence of the top
quark. The latter requirement eliminates purely exponential forms which
would have a scale of order 1 GeV, and hence no significant probability
at multi-GeV masses. Power law forms will be seen to provide acceptable
distributions, and we will explore some variants of these.
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Figure 12: Sample power-law weights, with powers ranging from δ = 0 to
δ = 0.9

Consider a trial weight of a pure power behavior combined with a cutoff
at the quasi-fixed point

ρ1(m) =
N

mδ
Θ(m∗ − m) (43)

with a normalization constraint N = (1 − δ)/m∗(1−δ). I will use the cutoff
at m∗ = 220 GeV. Here we are constrained by δ < 1 for the distribution to
be integrable at low mass. This weight is shown in Fig. 12 for the values
δ = 0, 0.1, 0.2, ....., 0.9.

The simplest consideration is the use of the median value of the distribu-
tion, m̂, defined by

1

2
=
∫ m̂

0
ρ(m) dm (44)

On the average, half of the quark masses should appear below m̂. For this
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simple example

m̂ =
m∗

2
1

(1−δ)

(45)

Even a crude estimate

0.05 MeV ≤ m̂ ≤ 5 GeV (46)

leads to a rather stringent constraint on the power δ,

0.82 ≤ δ ≤ 0.955 (47)

with higher values of δ corresponding to lower values of m̂.
Similar constraints follow from even a rough look at the transformed

weight. In Fig 13 are shown the transformed weights for these distributions
for the same range of δ. Again, only higher values of δ are allowed. The
physics behind this is clear - if δ is small we would expect to populate larger
values of the masses, and hence would see the variation in H(z) occur at
larger values of z. A search for the optimal value of δ leads to the trial with
δ = 0.91 shown in Fig 14. A similar comparison of the same trial weight
with the transform L(z) yields an equally reasonable form, shown in Fig. 15.
Of course, given the uncertainties described above the specific value of this
exponent should not be taken too seriously. Within the scope of this class of
trial functions, I estimate that δ = 0.82 to δ = 0.95 spans the uncertainties
described in the previous sections.

A second class of trial functions consists of the form given in Eq. 22
from the renormalization group scaling down from high energies. This differs
primarily in the region of the high mass cut-off. Here a similar power provides
a similarly good fit, as shown in Fig 16 for δ = 0.92. This confirms the
expectation that the high energy form of ρ(m) is not significantly constrained
by the data.

The closeness of these exponents to unity suggests that we try to accom-
modate a behavior ρ(m) ∼ 1/m. Surely a weight function of this inverse
power is a more pleasing result than one with a non-integral power. How-
ever, a pure power-law with δ = 1 is not integrable at the low energy end.
We can form a normalizable weight if we include a low-energy cutoff.

ρ3(m) =
N

m
θ(m − mMIN)θ(m∗ − m) (48)
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Figure 13: The transformed weights corresponding to power-law weights,
with powers ranging from δ = 0 (bottom) to δ = 0.9 (top). Also shown is
the range of uncertainty in the transformed weight from Fig. 11.
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Figure 14: A comparison of the experimental transformed weight H with a
power-law fit (dashed curve) with δ = 0.91.
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Figure 15: The same as Fig. 14 but for the transformed weight L.
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Figure 16: A comparison of the transformed weight with a form obtained by
scaling from high energy (dashed curve), as described in the text. Here the
power is δ = 0.92.
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Figure 17: The transformed weight compared with scale-invariant forms
with cut-offs me and me/100.

with N = 1/ln(m∗/mMIN). At this stage the origin of the low-energy cutoff
is unexplained; however, fortunately mMIN enters only logarithmically. Fig
17 displays these forms for values mMIN = me and me/100. We see that
these forms in fact do very well at describing the transformed weight within
the intrinsic uncertainty.

For this form of the weight, the median value of the distribution is deter-
mined by the endpoints in the simple form

m̂ =
√

m∗ mMIN (49)

For mMIN = me, this equals m̂ = 0.34 GeV, a reasonable value.
The weights with ρ(m) ∼ 1/m can be described as “scale invariant” in the

following senses. In the first place, there is no scale (other than the endpoints)
in the shape of ρ(m), and the normalization constant is dimensionless and
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independent of the overall scale. In addition, under any linear rescaling of
the masses such as

m2(µ2) =

(

αs(µ2)

αs(mu1)

)dm

m1(µ1) (50)

the transformation rule of Eq. 5 tells us that this weight will remain un-
changed (again, aside from the endpoints), since

ρµ(m) = ρµ1



m

(

αs(µ)

αs(mu1)

)−dm





(

αs(µ)

αs(mu1)

)−dm

(51)

=
1

m
(

αs(µ)

αs(mu1)

)−dm

(

αs(µ)

αs(mu1)

)−dm

(52)

=
1

m
. (53)

It is tempting to speculate that this scale invariant form could approximate
an IR fixed point for some class of weights initially defined at high energy.

The best fit functional form for the weight is shown in Fig 18 and 19.
It is the scale-invariant form with mMIN = me/4, and tracks the central
“experimental” curve quite closely. However, the specifics of this form need
not be taken too seriously given the uncertainties inherent in this problem.
Many of the trial functions shown above are compatible within the uncer-
tainty. However, all of these forms are strikingly close to δ = 1, suggesting
that this is the key to the structure of the mass spectrum.

10 Further comments and summary

The previous sections have contained a first consideration of the “experi-
ment” and phenomenology of the weight function for quark masses. The
hope is that this weight is the visible remnant of the fundamental theory in
situations where the specific values of the masses are themselves not unique.

There are some considerations which could be important in trying to
predict the weight function. In certain cases, it may prove that a slightly
modified “experimental” description is most relevant for a given theory. The
procedure used here is specific to the weight in a domain with 3 generations of
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Figure 18: The best description of the transformed weight, obtained with
the scale-invariant form using mMIN = 0.4me.
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Figure 19: The scale invariant weight describing the best match to the quark
mass spectrum, corresponding to Fig. 18.
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fermions in an SU(3)×SU(2)×U(1) theory with the observeredcalues of the
gauge couplings. These other features may potentially also be variable, and
the weight function could be different for other situations. In the case that the
Higgs vacuum expectation value is also variable, it is simple to convert ρ(m)
into a distribution of the Yukawa couplings. While there are a few subtle
features of transforming the Yukawa distribution to other scales, these are
small in comparison with the intrinsic uncertainty in the distribution.

The procedure used above implicitly assumes that it is the quark masses
themselves that are independently distributed with respect to some weight.
In specific models, this may not be the case. For example in models with
an intrinsic hierarchy between different Yukawa couplings generated through
radiative corrections, it may turn out that the smallness of some masses is
the result of high powers of a gauge coupling rather than a consequence of
the weight itself. In this case, a different procedure to extract the weight for
the appropriate random variables would need to be employed.

Of more serious concern could be a bias introduced by anthropic consid-
erations. In multiple domain theories, it is a natural requirement that out of
all the possible domains we could only find ourselves in a domain that has
the ingredients relevant for life. Without too much anthro-centric reasoning,
it seems plausible that this requirement implies the need for complex chem-
icals (i.e. more elements than simply hydrogen). In [4], this was argued to
require that at least some of the quark masses must be small compared to
the QCD scale. This forms a bias for low masses, and would shift the shape
of the weight function. The “experimental” weight function must then be
understood to be subject to this constraint.

The issues described above are best treated in the context of a theory in
which we try to predict the weight. Depending on the dynamics of this hy-
pothetical theory, we would best know which variables are quasi-random and
over what range. Within the parameter space of the theory, we can impose
constraints on other parameters and explore the distribution of masses sub-
ject to those constraint. It is even possible that we could estimate the effects
of the anthropic bias, producing a weight function subject to the constraint
that complex chemicals are able to be formed. It would be interesting to
explore these issues even in the context of a toy model.

In theories where the parameters are variable in different domains of the
universe, many of the standard questions that we address in particle physics
appear in a different light. In some cases, such as the attempt to understand
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the scale of electroweak symmetry breaking, the form of analysis has a quite
different character[4]. For quasi-random quark masses, we might fear that
there is in this case no longer anything that we can do phenomenologically
with the masses. This paper has been an attempt to extract the remnant
of the underlying theory which survives even in the case where the specific
values of the masses are not unique. The result is intriguingly close to a
scale-invariant weight (see Figs. 18 and 19), and this encodes the observed
bias for small quark masses. This form of theory is relatively new, and it is
not clear how much it will be developed in the future. To the extent that
these theories are studied further, the weight for fermion masses will be a
fundamental input that has the potential to test the theories.
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