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Solitons and vortices in honeycomb defocusing photonic lattices

K. J. H. Law,1 H. Susanto,2 and P. G. Kevrekidis1

1Department of Mathematics and Statistics, University of Massachusetts, Amherst MA 01003-4515, USA
2 School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

Solitons and necklaces in the first band-gap of a two-dimensional optically induced honeycomb
defocusing photonic lattice are theoretically considered. It is shown that dipoles, soliton necklaces,
and vortex necklaces exist and may possess regions of stable propagation through a photorefractive
crystal. Most of the configurations disappear in bifurcations close to the upper edge of the first
band. Solutions associated with such bifurcations are also numerically examined, and it is found
that they are often asymmetric and more exotic. The dynamics of the relevant unstable structures
are also examined through direct numerical simulations revealing either breathing oscillations or, in
some cases, destruction of the original waveform.

PACS numbers:

I. INTRODUCTION

In the past few years, there has been a considerable
growth of interest in the examination of the self-trapping
of light in photonic lattices optically induced in nonlin-
ear photorefractive crystals, such as strontium barium
niobate (SBN). This can be attributed to a considerable
extent to the fact that the theoretical inception [1] of
the relevant phenomena was rapidly followed by the ex-
perimental realization [2, 3, 4], revealing a considerable
wealth of new possibilities. This setting naturally per-
mits the consideration of the competition between ef-
fects of nonlinearity and those of diffraction, therefore
enabling the examination of effects of periodic “poten-
tials” on solitary waves. In this context the role of the
effective potential is played by the ordinary polarization
of light forming a waveguide array in which the nonlinear,
extra-ordinarily polarized probe beam evolves.

Numerous nonlinear waves and coherent structures
have been elucidated and experimentally realized in this
context. In particular, discrete dipole [5], necklace [6]
solitons and even stripe patterns [7], rotary solitons [8],
discrete vortices [9] or the realization of photonic qua-
sicrystals [10] and Anderson localization [11] are among
the recently reported experimental results in the field.
These efforts illustrate the potential that this setting
holds for the examination of localized structures that may
be usable as carriers and conduits for data transmission
and processing in all-optical communication schemes. In
parallel to this more practical aspect, this framework
remains an experimentally tunable playground where
numerous fundamental issues of solitons and nonlinear
waves can be explored.

The above mentioned interplay of nonlinearity with pe-
riodicity is important not only in the physics of optically
induced lattices in photorefractive crystals, but also in a
variety of other contexts in optical and atomic physics.
These involve e.g. on the optical end, the numerous de-
velopments on the experimental and theoretical investi-
gation of optical waveguide arrays; see e.g. [12, 13] for
relevant reviews. In the case of atomic physics, and par-
ticularly of Bose-Einstein condensates, the confinement

of dilute alkali vapors in optical lattice potentials [14]
has offered a similarly far-reaching opportunity to exam-
ine many fundamental phenomena involving (effective)
nonlinearity and spatial periodicity. These include, but
are not limited to modulational instabilities, Bloch oscil-
lations, Landau-Zener tunneling and gap solitons among
others; see [15] for a recent review.

Our present study, motivated by optically induced lat-
tices in photorefractive SBN crystals, focuses on two-
dimensional periodic, nonlinear media with a non-square

lattice. While most of the above studies have been ded-
icated to square lattices, only a few have tackled the
coherent structures possible in non-square settings; see
e.g., as relevant examples [16, 17, 18, 19, 20, 21] and ref-
erences therein. Furthermore, the vast majority of the
above-mentioned studies has centered around focusing
nonlinearities. At least partly, this is due to technical
limitations, as it is easier to work with voltages that are
in the regime of focusing rather than in that of the defo-
cusing nonlinearity (in the latter case, sufficiently large
voltage, which is tantamount to large nonlinearity, may
actually change the sign of the nonlinearity by inverting
the orientation of the permanent polarization of the crys-
tal). As a result, coherent structures in the defocusing
regime, have only rather sparsely been examined. Such
an experimental example is the fundamental and higher
order gap solitons excited in the vicinity of the edge of
the first Brillouin zone [2, 21]. More complex gap struc-
tures (multipoles and vortices) are only now starting to
be explored in square lattices [22]. In parallel to these
experimental developments, a theoretical framework is
starting to emerge to address such multipole and vor-
tex structures in square lattices with cubic nonlinearities
[23, 24], whose qualitative predictions can however be ex-
tended to non-square settings and the main ones among
which will also be compared to the results presented be-
low. Our main focus in the present work is on employing
a continuum model to examine the waveforms present in
a context involving a triangular lattice (honeycomb ) po-
tential and a saturable defocusing nonlinearity associated
with appropriate optically induced lattices in SBN crys-
tals. In particular, we study in detail multipole (dipole
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and hexapole) solitons in such lattices induced with a
self-defocusing nonlinearity.

We numerically analyze both the existence and the sta-
bility of these structures and follow their dynamics, in the
cases where we find them to be unstable. We also quali-
tatively compare our findings with the roadmap provided
by the discrete model [23].

Our presentation is structured as follows. In section
II, we present our theoretical model setup. Dipole solu-
tions with the two excited sites in adjacent wells of the
periodic potential (nearest-neighbor dipoles) are studied
in section III. Subsequently, we do the same for next-
nearest-neighbor dipoles (excited in two diagonal sites,
separated by one lattice site) in section IV and opposite
dipoles on either end of the hexagonal configuration (ie.
the excited sites are separated by two empty wells) in
section V. Section VI addresses the case of more com-
plex structures such as hexapoles (all six sites from one
period of the potential) and vortices. Finally, in section
VII, we summarize our findings, posing some interesting
questions for future study.

II. SETUP

We use the standard partial differential equation for
the amplitude of the electric field U [19, 20, 25, 26], in
the following form:

− iUz = [L + N(x, |U |2)]U, (1)

N(x, |U |2) =
E0

1 + I(x) + |U |2 , (2)

where L = D∇2 and ∇2 is the two-dimensional Lapla-
cian, U is the slowly varying amplitude of the probe
beam, and

I(x) = I0

∣

∣eikb1x + eikb2x + eikb3x
∣

∣

2

(3)

is the optical lattice intensity function formed by three

laser beams with b1 = (1, 0), b2 = (− 1

2
,−

√
3

2
), and

b3 = (− 1

2
,
√

3

2
). Here I0 is the lattice peak inten-

sity, z is the propagation distance and x = (x, y) are
transverse distances (normalized to zs = 1 mm and
xs = ys = 1µm), E0 is proportional to the applied DC
field voltage, D = zsλ/(4πnexsys) is the diffraction co-
efficient, λ is the wavelength of the laser in a vacuum, d
is the period in the x direction with k = 4π/(3d) (period

in the y direction is
√

3d), and ne is the refractive index
along the extraordinary axis. We choose the lattice in-
tensity I0 = 0.6. A plot of the optical lattice is shown
in Fig. 1 for illustrative purposes regarding the location
where our localized pulses will be “inserted”. In addition,
we choose other physical parameters consistently with a
typical experimentally accessible setting [19, 22] as

d = 30µm, λ = 532 nm, ne = 2.35, E0 = 8.

The non-dimensional value D = 18.01, and we note
that this dispersion coefficient is equivalent to rescaling
space by a factor

√
D as e.g. in [27].

The numerical simulations are performed in a rectan-
gular domain corresponding to the periodicity of the lat-
tice using a rectangular spatial mesh with ∆x ≈ 0.75 and
∆y ≈ 0.86 and domain size 4d×3

√
3d, i.e. 160×180 grid

points. See Fig. 1 for a schematic of the spatial configu-
rations.

Regarding the typical dynamics of a soliton when it is
unstable, we simulate the z-dependent evolution using a
Runge-Kutta fourth-order scheme with a step ∆z = 0.01.
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FIG. 1: (Color online) A spatial (x-y) contour plot of the or-
dinary polarization standing wave [lattice beam in Eq. (3)].
In this context, the light intensity maxima correspond to the
minima of the resulting refractive index lattice (i.e., honey-
comb lattice), as opposed to the focusing nonlinearity lattice
field, where they correspond to the maxima (i.e., triangular
lattice). Points A, B, C, D, E, and F are used for naming
the various configurations. A is a “nearest-neighbor” mini-
mum of B and F , a “next-nearest-neighbor” of C and E, and
an “opposite” of D (with respect to the local maximum of
the lattice). Because of the symmetry of the setup, this is
a complete characterization of dipole configurations. We will
refer to the configurations with the names given above.

Assuming a stationary state u(x, y) exists, and letting
the propagation constant µ represent the (nonlinear) real
eigenvalue of the operator of the right-hand-side of Eq.
(1), then the corresponding eigenvector u(x, y) is a fixed
point of

[µ − L − N(x, |u|2)]u = 0. (4)

The localized states u of (4) were obtained using the
Newton-GMRES fixed point solver nsoli from [28] and
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a pseudo arc-length continuation [29] was used to follow
each branch and locate the bifurcations which occur at
the edge of the first band. Since the parameter of interest
is µ, diagnostics are plotted against µ.

We restrict µ to those values within the first spectral
gap of the linear eigenvalue problem,

[µ − L − N(x, 0)]u = 0. (5)

Values of the propagation constant µ within this for-
bidden gap in the spectrum of the linearized problem will
correspond to exponentially localized in space, so-called
gap-soliton, states of the original nonlinear partial dif-
ferential equation. Using a standard eigenvalue solver
package implemented through MATLAB, we identify the
spectral gap for our given parameters and gridsize to be
3.62 . µ . 4.94.

The square root of the optical power (or, mathemat-
ically, the L2 norm) of the localized waves is defined as
follows:

P =

[
∫ ∞

−∞

∫ ∞

−∞

|U |2 dx dy

]1/2

. (6)

Introducing a linearization around an exact stationary
solution u, and expanding the leading order perturba-
tion into a eigenfunctions and eigenvalues, we obtain the
following Bogoliubov system

[

iλ + µ − L − ∂(NU)

∂U
|u

]

ũ − ∂(NU)

∂U∗
|uũ∗ = 0,

[

iλ − µ + L +
∂(NU)∗

∂U∗
|u

]

ũ∗ +
∂(NU)∗

∂U
|uũ = 0.(7)

We solve the above linear eigenvalue problem using MAT-
LAB’s standard eigenvalue solver package. The symplec-
tic nature of the resulting eigenvalue equations guaran-
tees that the relevant eigenvalues should come in quar-
tets, hence an instability is present whenever the solution
of the above linearization problem of Eqs. (7) possesses
an eigenvalue with a non-zero real part.

We now briefly discuss the principal stability conclu-
sions, for the defocusing case of [23], which we should ex-
pect to still be valid in the present configuration. Nearest
neighbor excitations in the defocusing case correspond
to nearest neighbor excitations in the focusing case, but
with an additional π phase in the relative phase of the
sites added by the so-called staggering transformation
[23]. Therefore, the in-phase nearest neighbor config-
uration in the defocusing case corresponds to an out-
of-phase such configuration in the focusing case (and
should thus be stable) [24]. On the other hand, next
nearest neighbor out-of-phase defocusing configurations
would correspond to next nearest neighbor out-of-phase
focusing configurations and should also be stable (at least
in some parameter regimes). By the same token, out-of-
phase nearest neighbor, and in-phase next nearest neigh-
bor structures should be unstable. These considerations

also indicate that in-phase opposite dipoles should be
stable, while out-of-phase such dipoles should always be
unstable. Finally, vortex-like structures and in-phase
hexapoles should be stable as well. Notice, however, that
as discussed in [23] the multipole structures characterized
as potentially stable above will, in fact, typically possess
imaginary eigenvalues of negative Krein signature (see
e.g. [30] and references therein). These may lead to os-
cillatory instabilities through complex quartets of eigen-
values. These arise by means of Hamiltonian-Hopf bifur-
cations [31] emerging from collisions with eigenvalues of
opposite (i.e., positive) Krein signature. These conclu-
sions will be discussed in connections with our detailed
numerical results in what follows.

III. NEAREST NEIGHBOR DIPOLE SOLITONS

In this section, we report dipole solitons where the two
lobes of the wave are located in two nearest neighbor
(N) lattice sites in the 2D triangular potential shown in
Fig. 1. The lobes can have the same phase or π phase
difference so we define them as in-phase (IP) dipoles and
out-of-phase (OP) dipoles, respectively.

A. In-Phase Nearest Neighbor Dipole Solitons

We have found IP dipoles in adjacent wells for values of
the propagation constant µ throughout the entire Bragg
reflection gap for a given E0. We found that the solitons
exist for µ between 3.62 and 4.94, and that the intensity
of the dipoles cannot be arbitrary low, a result similar to
the observed results of the focusing and defocusing cases
for square lattices [5, 26, 27]. The relevant findings are
summarized in Fig. 2.

The top left panel of Fig. 2 shows the stability of the
dipoles against the propagation constant µ, by illustrat-
ing the maximal growth rate (maximum real part of all
eigenvalues λ) of perturbations. When max(Re(λ)) = 0,
this implies stability of the configuration, while the con-
figuration is unstable if max(Re(λ)) 6= 0 in this Hamilto-
nian system. We found that this type of dipoles may be
stable for windows throughout the first Bragg gap, as pre-
dicted above, although it is possible for small oscillatory
Hopf instabilities to arise due to opposite signature eigen-
value collisions. The dipole configuration disappears in a
saddle-node bifurcation at the edge of the first spectral
band, depicted in the top panels of Fig. 2, as µ → 4.94,
and a real pair of eigenvalues emerges. At this point,
the configuration collides with a configuration shown at
the bottom panel of Fig. 2 in which the adjacent well
next to one of the populated ones becomes excited out-
of-phase with the others. Consistent with our theoretical
expectation from its having an out-of-phase set of near-
est neighbors, the latter configuration always has a real
pair of eigenvalues λ.
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FIG. 2: (Color online) The top left panel shows the stabil-
ity of the dipoles against the propagation constant µ. It
is stable when the spectra is purely imaginary (i.e., when
max(Re(λ)) = 0). The top right panel depicts the power
of the dipoles against the propagation constant. In each of
these images the solution branch is denoted by a solid line.
The branch with which the dipole collides and terminates in
a saddle-node bifurcation is shown by a dashed line. The
shaded areas in both of these panels represent the bands of
linear spectrum (5). The middle left and right panels show
the profile u of the dipole at µ = 4 and the corresponding
complex spectral plane (Re(λ), Im(λ)) of λ = Re(λ)+ iIm(λ).
Finally, the bottom panels show the same features for the
unstable saddle solution corresponding to the dashed line.

The middle left and right panels show the profile u
of the in-phase nearest (IPN) neighbor dipole at µ = 4
and the corresponding spectrum of linearization eigen-
values λ = λr + iλi in the complex plane (λr , λi), re-
spectively. The corresponding profile and spectral plane
for the saddle branch (that eventually collides with the
IPN solution) at µ = 4 is shown in the bottom left and
right panel, respectively, of the same figure, illustrating
the exponential instability of the latter.

We have simulated the dynamics of the solitary waves
when they are unstable. The dipoles are perturbed by
a random noise with maximum intensity 2 × 10−3. It
is interesting to note that an unstable IPN dipole turns
out to be quite robust, even though it experiences only
an oscillatory instability. It is remarkable that up to
z = 200 we did not see any signifant change in the con-
figuration. Therefore, we do not depict our evolution
simulation here; we simply note that this is consonant
with the very weak growth rate of the relevant oscilla-

FIG. 3: The typical time-dependent dynamics of an unstable
configuration along the upper (dashed line) branch of the ex-
istence curve presented in the top panels of Fig 2. Depicted
here is the isosurface of height 0.15 of the dynamics of the of
the intensity, |U |2, of the configuration shown in the bottom
panel of Fig. 2.
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FIG. 4: (Color online) The top panels correspond to the same
panels of Fig. 2 but for OPN dipole solitons. The bottom
panels show the profile u and the corresponding spectral plane
of the dipoles at µ = 4.

tory instability.

For the solution branch shown in the bottom panel of
Fig. 2, we present its dynamics in Fig. 3. We found that
the instability is strong as predicted above such that even
after a relatively short propagation distance, the insta-
bility already sets in and leads to recurrent oscillations
(for the remainder of our dynamical evolution horizon)
between a dipole, two-site state and a three-excited-site
state; see Fig. 3.
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FIG. 5: The typical dynamical evolution of an unstable out-
of-phase nearest neighbor configuration from the family pre-
sented in Fig 4. Depicted is the isosurface at half the maxi-
mum of the intial intensity amplitude. Notice that the OPN
appears to oscillate between two sites and one for the prop-
agation constant µ = 4 (center) of the solution presented
in the bottom panels of Fig. 4, as does it for smaller values
(µ = 3.6, left), although for a larger value of µ = 4.6, right,
the solution essentially transforms (due to the instability) into
a single site mode. We hypothesize that the stronger effect
of the nonlinearity on those solutions with smaller values of
µ decreases the size of linear regime, causing these more lin-
early unstable solutions to actually appear more stable in the
full nonlinear dynamical evolution, although it is away from
the linear regime that the instability is manifested merely as
oscillations.

B. Out of Phase Nearest Neighbor Dipole Solitons

We have also found OP dipoles arranged in nearest-
neighboring lattice wells which we refer to as OPN. We
summarize our findings in Fig. 4 where one can see that
the solitons exist in the whole entire region of propaga-
tion constant µ in the first Bragg gap, µ ∈ (3.62, 4.94).
This smooth transition indicates that the OPN dipole
solitons emerge out of the Bloch band waves; see e.g. [32]
and [33] for a relevant discussion of the 1D and of the 2D
problem respectively, in the case of the cubic nonlinearity.
The OPN dipoles are unstable due to a real eigenvalue
pair, as expected from our above theoretical predictions.

As the branch merges with the band edge, we observe
an interesting feature, namely that the configuration be-
gins to resemble a hexapole with a π phase difference
between each well. This can be an indication that these
structures bifurcate out of the Bloch band from the same
bifurcation point. We elaborate this further in our dis-
cussion at the end of section VI.

In Fig. 5 we present the unstable dynamics of OPN
dipole solitons perturbed by similar random noise per-
turbation as in Fig. 3. We display here three solutions
for a range of chemical potentials to illustrate that the
dynamical evolution of linearly unstable states is appar-
ently correlated to the power of the solution. This type

of dipoles is typically more unstable than its IP counter-
part, as is illustrated in the figure. In particular, in all
three examples of unstable evolution given the instability
already starts to manifest itself. around z = 20 However,
for small values of µ (large power) the OPN continues
oscillating between a single site structure and a two site
structure for the (longer) evolution distances investigated
in this illustrative case, while for large enough µ (small
enough power), one of the sites decays and the power is
concentrated on a single site.

IV. NEXT NEAREST NEIGHBOR DIPOLE

SOLITONS

We have also obtained dipole solutions that are not
oriented along the two nearest-neighboring lattice wells,
but rather where the two humps of the structure are lo-
cated at two next-nearest-neighboring lattice sites. These
humps can once again have the same phase or a π phase
difference between them. We will again use the corre-
sponding IP and OP designations for these next nearest
neighbor waveforms.

A. In Phase, Next Nearest Neighbor Dipole

Solitons

The in-phase next-nearest (IPNN) neighbor solitons
exist only up to a marginal distance from the second
band. The stability and power of these dipoles are shown
in Fig. 6. The stability is again consistent with the the-
oretical discussion of Section II. In particular, the IPNN
configuration always possesses a real eigenvalue pair; fur-
thermore, the corresponding unstable “saddle” structure
with which it collides and terminates through a saddle-
node bifurcation has an additional such eigenvalue pair
(two real eigenvalue pairs in total for the solution branch
indicated by dashed line in Fig. 6).

We have simulated also the dynamics of the unstable
IPNN. Yet, we do not present our simulation here as the
typical evolution of this configuration is quite in resem-
blance to the dynamics of an unstable OPN (see Fig. 5) in
the fact that the configuration recurrently oscillates be-
tween a two-soliton state and a one-soliton state. Such
an oscillation persists even up to z = 200.

In Fig. 7, we present the dynamical evolution of the bi-
furcating solution shown in the bottom panel of Fig. 6 un-
der similar random noise perturbation as above. One can
note similarities in the typical evolution of this configu-
ration and the evolution of the bifurcating IPN solution
shown in Fig. 3, one of which is the recurrent oscillation
between a pattern with three pulses and one with just
two peaks.
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FIG. 6: (Color online) The top panels correspond to the same
diagnostics as in Fig. 2 but for IPNN dipole solitons. The mid-
dle panels show the profile U and the corresponding spectral
plane of the IPNN dipole at µ = 4.1, while the bottom row
shows the same images for the solution branch corresponding
to the dashed line in the top panel, shown at the same value
of µ.

FIG. 7: The same figure as Fig. 3, but for the solution pre-
sented in the bottom panel of Fig. 6. Depicted is the isosurface
of height 0.05.

B. Out of Phase Next Nearest Neighbor Dipole

Solitons

We have also obtained out-of-phase, next-nearest
(OPNN) neighbor dipole solitons. A typical profile of
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FIG. 8: (Color online) The top panels depict the largest real
part of the critical eigenvalue, as well as the power of the
OPNN dipole solitons. The middle panels show the profile
u and the corresponding spectra in the complex plane of the
dipole at µ = 3.9, and the bottom is the unstable saddle
configuration at the same value of µ, where one of the sites
has merged with a neighbor out of phase and become an OPN,
accounting for the real eigenvalues.

FIG. 9: The same figure as Fig. 3, but for the solution pre-
sented in the bottom panel of Fig. 8. Depicted is the isosurface
of height 0.05.

this family of solutions for µ = 3.9 is shown in Fig. 8.
The power diagram of these solitons is presented in the
top panel of Fig. 8. Typically these structures are sta-
ble (as indicated again by the comparison with the the-
oretical discussion and by the numerical results shown
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in the middle right panel of Fig. 8 ), suffering only win-
dows of oscillatory instability due to the presence of a
single eigenvalue with negative signature and its colli-
sion with the spectral bands In fact, we have found that
a consistent stability range for E0 = 8 exists between
4.5 . µ . 4.85.

For this solution we also observe that, similarly to the
IPNN dipoles, the solution disappears at non-zero inten-
sity because of the collision of this dipole with another
(three-site) configuration shown in the bottom panels of
Fig. 8 in a saddle-node bifurcation. It is relevant to note
that the point of the bifurcation is very close to the edge
of the Bloch band, i.e., to µ ≈ 4.94.

The dynamics of the OPNN dipole do not manifest
their very weak oscillatory instability for the evolution
distances considered herein. On the other hand, the dy-
namics of the instability of the three-site solution (with
which the OPNN branch collides in the saddle-node bi-
furcation) can be seen in Fig. 9. More specifically, the
instability manifests itself in the form of interactions be-
tween the closest out-of-phase pair of solitons (leading
to recurrent oscillations between a three-peak and a two-
peak state). Notice that the third peak is almost not
affected by these interactions.

V. OPPOSITE DIPOLE SOLITONS

We now address opposite (O) dipole solitons residing
at the two sites along a diameter of a local maximum of
the lattice. This is the final type of dipole configuration
for a symmetric triangular lattice, exhausting the pos-
sibilities up to phase and rotational invariances. Again,
we partition our considerations into in-phase and out-of-
phase cases.

A. In Phase Opposite Dipole Solitons

We have found in-phase opposite (IPO) solitons
throughout the first gap in the linear spectrum. Our
numerical findings are presented in Fig. 10.

Again, the solution branch is largely stable with small
windows of Hopf quartets and again a saddle node bifur-
cation occurs as the branch approaches the first spectral
band. Also, interestingly, the configuration with which
this branch collides when it disappears resembles an OPN
(or two pairs of OPNs– see the third and fourth row of
the figure). The latter branches are naturally unstable
due to one (or more) real pair of eigenvalues.

The dynamics of one of the bifurcating solutions, i.e.
the configuration with a single OPN structure, is pre-
sented in Fig. 11, where one can see that, as usual, only
the pair of out-of-phase nearest neighbor dipole interacts,
while the other soliton is almost uninfluenced.

Using the same reasoning, one can deduce as well that
the dynamics of the other bifurcating solution, presented
in the bottom panel of Fig. 10, will be similar, except
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FIG. 10: (Color online) The top panels depict the largest
real part of the critical eigenvalue, as well as the power and
the peak intensity of the IPO dipole solitons. The panels
in the second row show the profile u and the corresponding
spectra in the complex plane of the dipole at µ = 4.5, the
third row shows the same images at the same value of µ for
the middle branch (dashed line) of the bifurcation diagram
and the bottom row is a solution along the top branch (dash-
dotted line) at the same value.

the fact that now there are two pairs of OPN interacting
among themselves.

B. Out of Phase Opposite Solitons

Lastly, as regards dipoles, we consider the out of phase
opposite (OPO) dipole. The first interesting characteris-
tic of the OPO is its strong instability stemming from a
real pair of eigenvalues, seen in the top left and middle
rows of Fig. 12. Once again the direct instability of
this mode follows from our theoretical considerations of
Section II. On the other hand, the figure also reveals an
interesting bifurcation structure in this case. The branch
actually merges with a hexapole made of three copies of
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FIG. 11: The same figure as Fig. 3, but for the solution pre-
sented in the middle panel of Fig. 10. Depicted is the isosur-
face of height 0.05.
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FIG. 12: (Color online) The top panels depict the largest real
part and the power of the OPO dipole solitons. The middle
panels again show the profile u and spectra at µ = 4, and the
bottom is the more unstable saddle configuration, consisting
this time of a hexapole configuration constructed out of three
such OPOs.

itself close to the band, when solutions start becoming
extended. This hexapole then intersects with the linear
spectrum shortly thereafter and the solution transforms
itself into a fully extended “checkerboard”-like configu-
ration of all adjacent wells excited out-of-phase. As can
be seen in the top left and the bottom right of Fig. 12,
the hexapole configuration is significantly more unstable,

FIG. 13: The top panel is the same as Fig. 3, but for the solu-
tion presented in the middle panel of Fig. 12, with isosurface
of height 0.1. On the other hand, the bottom panel illustrates
again (c.f. Fig. 5) that the linear stability analysis is more
predictive of the nonlinear dynamics for the solution with the
larger value of µ = 4.88 (and accordingly smaller amplitude)
close to the intersection with the extended OP quadrupole
branch (the isosurface is taken at half the maximum of the
initial intensity amplitude). The growth rates for each so-
lution are comparable, while the dynamical evolutions differ
drastically.

possessing five real eigenvalue pairs.

We have numerically monitored the full evolution to
observe the dynamics of the unstable OPO dipoles. It is
interesting to note that even though the state has a pair
of real eigenvalues, our simulation reveals that the insta-
bility is barely detectable for the state depicted in the
middle rows of Fig. 12, presumably because of the spa-
tial separation of the populated sites (top row of Figure
13); the solution oscillations are very mild (and almost
indetectable) between similar structures with mass con-
centrated in one site or another. On the other hand, for
significantly smaller power (larger µ) as seen in the bot-
tom panel of Figure 13, one site decays fairly rapidly
and a robust single site remains.

Regarding the bifurcating solution, which is an out-of-
phase hexapole, we will explore it as well as the other
hexapole configurations in more detail in the following
section.
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FIG. 14: The same dynamical evolution figure as Fig. 3, but
for the out-of-phase hexapole depicted in the bottom panel of
Fig. 12. Depicted is the isosurface of height 0.1.
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FIG. 15: (Color online) The top panels depict the largest real
part and the power of the IP hexapole solitons. The middle
panels again show the profile u and spectra at µ = 4, and
the bottom is the more unstable saddle configuration,which
features our expected OPN sidekick.

VI. HEXAPOLE SOLITONS AND VORTEX

NECKLACES

First, we consider the out-of-phase hexapole. The ex-
istence and the stability of this configuration has been
described in the preceding section. As the state has mul-
tiple pairs of real eigenvalues, it is natural to expect that

FIG. 16: The same figure as Fig. 3, but for the in-phase
hexapole depicted in the bottom panel of Fig. 15. Depicted
is the isosurface of height 0.3.

it should be prone to break up under the instability’s dy-
namical evolution. A typical example of such a numerical
experiment is presented in Fig. 14.

We found IP hexapole configurations as well, which,
in accordance with our considerations in Section II, turn
out to chiefly be stable within the first gap, although
they may possess weak oscillatory instability inducing
eigenvalue quartets.

This configuration also suffers a saddle-node bifurca-
tion with an OPN-type pair emanating off of one of its
lobes, when a neighboring well becomes populated out
of phase near the first band. The latter configuration is
unstable always possessing a real eigenvalue pair in its
linearization spectrum. We note in passing that this is
among any of the six equivalent symmetric versions of
this configuration.

As for the dynamics of the instability, the solution
along the main lower branch is quite robust to strong per-
turbation. Even though the solution suffers from an os-
cillatory instability, a random perturbation with a max-
imum intensity almost 10−1 cannot lead to a breakup of
the configuration until propagation distances of the order
of z = 200. On the other hand, the oscillatory dynam-
ics leading to the break up of the configuration of the
bottom panel of Fig. 15 is shown in Fig. 16.

Finally, we investigate the complex-valued hexapole
configuration for which each lobe has the same modu-
lus and their phase increases counterclockwise in phase
increments of π/6, yielding a vortex-necklace configura-
tion. This configuration turns out to be stable for the
most part within the first gap as well, with minor Hamil-
tonian Hopf-bifurcation induced oscillatory instabilities.
We also found that this solution undergoes a saddle-node
bifurcation near the first band, in which it collides with
a waveform with two pairs of OPNs. The stability of the
latter configuration in the presence of these additional
OPN dipoles is consistent with that of their real coun-
terparts from the previous sections, each appearing to
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FIG. 17: (Color online) The top panels depict the largest real part and the power of the vortex necklace hexapole configuration.
The second row depicts the modulus of the solution and corresponding spectrum when µ = 4.6. The third row illustrates
the real and imaginary components of the field and the phase (from left to right). The fourth and fifth rows show the same
properties as the second and third but for the unstable eight-site configuration of the dashed line in the top panels.
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FIG. 18: The same figure as Fig. 3, but for the vortex neck-
lace with eight lobes depicted in the bottom panel of Fig. 17.
Depicted is the isosurface of height 0.1.

contribute one real pair, rendering the relevant configu-
ration quite unstable.

Similar to the case of in-phase hexapoles, even though
vortex necklaces may be unstable, they are quite robust
to perturbation, given the weak nature of the relevant
oscillatory instabilities. We therefore only depict the dy-
namics of the solutions which have eight lobes as shown
in the fourth and fifth row panels of Fig. 17. The typical
evolution of this state is shown in Fig. 18, showcasing
the oscillatory breakup of this structure into one with a
smaller number of lobes.

VII. CONCLUSIONS

In this communication, we examined in detail theo-
retically and numerically the existence, stability and dy-
namics of multipole lattice solitons excited with a sat-
urable defocusing photorefractive nonlinearity in a tri-
angular geometry. We have obtained a wide array of
relevant structures, including different types of dipoles
and hexapoles, as well as vortices. For the dipole con-
figurations we examined the different possible phase con-
figurations (in phase, and out phase profiles), as well as
cases where the excited sites are separated by 0, 1, or
2 intermediate lattices sites. For hexapoles, we exam-
ined in phase and out of phase, and we also studied the
monotonic increasing phase of a discrete vortex necklace.

We have found good agreement with the general guide-

lines, explained in section II, stemming from the theoret-
ical analysis of the discrete model. This intuition led to
the illustration of a wide variety of potentially stable so-
lutions (although they may incur oscillatory instabilities)
such as the in phase, nearest neighbor dipole, the out of
phase, next nearest neighbor dipole, and the in phase
opposite dipole. We have also identified those solutions
including e.g., the out of phase nearest neighbor, in phase
next-nearest neighbor, and out of phase opposite dipoles
which are typically unstable due to exponential instabili-
ties and real eigenvalues. By the same considerations, the
in-phase hexapole was proposed and was indeed found to
be typically stable, while the out-of-phase one was pre-
dicted and observed to be quite unstable, due to multiple
real eigenvalue pairs. Finally, we have seen that the dis-
crete vortex structure is also potentially stable.

Furthermore, we have also identified an interesting set
of bifurcations that are associated with the paramet-
ric continuation and termination of some of the above
branches. The dynamical instabilities encountered in the
present work have been monitored through direct inte-
gration of the relevant dynamical equation. The result of
evolution in every case involved oscillations between the
original configuration and one with fewer sites which is
more stable, such as a single site solitary wave, and some-
times degeneration to such a configuration. Solutions
with smaller power tend to decay into a single site soli-
tary wave for certain solutions investigated, while those
with larger power tend to oscillate. This connection is
beyond the scope of the present work, but is currently
being investigated further.

Since the framework of defocusing equations has been
studied far less extensively than their focusing counter-
parts, it would be particularly interesting to extend the
present considerations to other structures. Perhaps the
most interesting example would be the study of multiple
charge vortices in this context which would be an inter-
esting endeavor both from a theoretical, as well as from
an experimental point of view. Such studies are currently
in progress and will be reported in future publications.
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