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Spontaneous Symmetry Breaking in Photonic Lattices: Theory and Experiment
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We examine an example of spontaneous symmetry breaking in a double-well waveguide with a
symmetric potential. The ground state of the system beyond a critical power becomes asymmetric.
The effect is illustrated numerically, and quantitatively analyzed via a Galerkin truncation that
clearly shows the bifurcation from a symmetric to an asymmetric steady state. This phenomenon
is also demonstrated experimentally when a probe beam is launched appropriately into an optically
induced photonic lattice in a photorefractive material.

Introduction. Spontaneous symmetry breaking (SSB)
is a ubiquitous phenomenon in modern physics. Mani-
festations of the SSB have been found in diverse areas,
ranging from liquid crystals [1] to quantum dots [2], and
from coupled semiconductor lasers [3] to the pattern dy-
namics of Dictyostelium discoideum [4]. Of particular
interest is the recent experimental demonstration of spa-
tial symmetry-breaking instability in the interaction of
laser beams in optical Kerr media [5]. For an overview of
the time-honored history of the SSB in field theory, see
the reviews [6].

There has recently been a huge amount of activity and
many advances in the study of light dynamics in photonic
structures, such as materially fabricated photonic crys-
tals (PCs) and optically induced photonic lattices in non-
linear media; see, for example, [7, 8]. This is motivated
by the enormous potential for applications ranging from
highly tunable telecommunications elements to cavity
QED experiments. Among many phenomena explored
are nonlinear effects associated with propagation, local-
ization, and discretization of light in optically-induced
photonic lattices [9], including the formation of lattice
solitons in one [10, 11] and two dimensions [12, 13, 14],
and discrete vortex solitons [15, 16].

In this Letter, our aim is to study a prototypical ex-
ample of SSB for a setting of the nonlinear Schrödinger
(NLS) type with an effective symmetric double-well po-
tential, i.e., a prototypical “dual-core” photonic lat-
tice. As the optical power is increased, we identify a
symmetry-breaking bifurcation in the system’s ground
state, with a transfer of stability to asymmetric states,
with more power concentrated in one core than in the
other. This, generally, resembles theoretically predicted
SSB bifurcations in diverse dual-core optical systems of
more traditional types, such as dual-core fibers (see Refs.
[17]), linearly coupled χ(2) waveguides and dual-core fiber
gratings [18]. We present an analysis using a Galerkin
truncation based on the eigenfunction basis of the under-
lying linear double-well problem, which accurately pre-
dicts the bifurcation in the present context. Then, we

demonstrate such SSB experimentally in an optically-
induced waveguide lattice in photorefractive media. Our
method of prediction and analysis of SSB is quite general.
For example, NLS equations of the Gross-Pitaevskii and
nonlinear-Hartree types play a fundamental role in the
study of Bose-Einstein condensation [19]. In the latter
context, a rigorous variational proof showing that a SSB
transition must occur is given in [20], and a complete
study of the SSB transition in a special one-dimensional
(1D) model was developed in Ref. [21].

The presentation is structured as follows. In section
II, we introduce the NLS model and its connection to
the optical lattice problem. The stability of stationary
states and the SSB bifurcation are studied numerically.
In section III, the finite-mode (Galerkin) approximation
and the prediction of SSB following from it are elabo-
rated. Section IV details the observation of the SSB in
the experiment. Section V contains a summary of our
findings and conclusions.

Model and Numerical Results. Our model is based on
(1D) equations that describe the propagation of light in a
photorefractive crystal [22]; see also the recent exposition
in [23]. The 1D version makes it possible to demonstrate
the SSB in its simplest/most fundamental form. Specif-
ically, we consider a probe beam that is extraordinarily
polarized, while a strong ordinarily polarized beam cre-
ates an effective lattice potential for the probe. Then,
the equation for the spatial evolution of a slowly varying
amplitude U of the probe beam is

iUz +
1

2k0ne

Uxx −
1

2
k0n

2
er33

E0

1 + I0(x) + |U |2
U = 0. (1)

In Eq. (1), z and x are the propagation distance and
transverse coordinate, respectively, k0 is the wavenumber
of the probe beam in the vacuum, ne is the refractive
index along the extraordinary axis, r33 is the electro-
optic coefficient for the extraordinary polarization, E0 is
the bias electric field, and I0(x) is the intensity of the
ordinarily polarized beam, subject to modulation in the
transverse direction (all intensities are normalized with
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respect to the crystal’s dark irradiance, Id). Measuring
z in units of 2k0ne and E0 in units of 1/(k2

0n
4
er33), Eq.

(1) can be cast in a dimensionless form,

iUz + Uxx −
E0

1 + I0(x) + |U |2
U = 0. (2)

Nonlinear bound states of Eq. (2) are localized solutions
of the form U(x, z) = u(x) exp(iµz), where u obeys

uxx −
E0

1 + I0(x) + |u|2
u = µu. (3)

We consider the case of an effective symmetric two-
hump potential,

I0(x) = V0

[

exp

(

−
(x − a)2

2ǫ2

)

+ exp

(

−
(x + a)2

2ǫ2

)]

,

(4)
corresponding to a superposition of two Gaussian
beams. Solutions to Eq. (3) with I0(x) given
by (4) were found via the Newton’s method on a
finite-difference grid. The linear stability of the
stationary states is determined by the eigenvalues
and eigenvectors, {λ, (a, b)} of the linearized equa-
tion, obtained by the substitution of U(x, z) =
exp(iµz) {u(x) + δ [exp(−λz)a(x) + exp(−λ⋆z)b⋆(x)]}
into (1) and linearization in the small parameter δ.
For very weak nonlinearity, the profile of the ground
state follows the symmetry of the double-well potential
(4). We searched for a symmetry-breaking bifurcation
as the optical power of the nonlinear bound state,

N =
∫ +∞

−∞
|u(x)|2dx was increased.

The results are summarized in Fig. 1 (for E0 = 7.5,
cf. Ref. [23]). The top left panel of the figure shows the
amplitude of the solution as a function of µ. The solid
and dashed lines correspond, respectively, to the symmet-
ric and asymmetric solutions, the latter bifurcating from
the former (SSB) at a critical power Nc. The bottom
left panel displays the real part λr of the most unstable
eigenvalue of the symmetric solution, which shows that
the symmetry-breaking bifurcation destabilizes the sym-
metric solution. This occurs through the appearance of a
pair of real eigenvalues for N > Nc ≡ 0.15167, or, equiv-
alently, for µ > µc ≡ −6.94575, when the solution’s am-
plitude (maximum value of |u(x)|) exceeds 0.06924. The
asymmetric solution emerging at the bifurcation point is
stable. The right panel of Fig. 1 shows details of the rel-
evant solutions and their stability for µ > µc (left) and
µ < µc (right). In fact, two asymmetric solutions arise,
being mirror images of each other, i.e., the bifurcation is
super-critical.

The evolution of the stable and unstable stationary so-
lutions was investigated in direct simulations of Eq. (2).
Figure 2 displays the results for the unstable symmetric
solution with µ = −6.5 and stable symmetric one with
µ = −6.95. As initial conditions, we took highly accu-
rate numerically obtained stationary states perturbed by
a uniformly distributed random perturbation of an am-
plitude 0.0001. In the unstable case, the manifestation
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FIG. 1: The symmetry-breaking bifurcation which gives rise
to asymmetric solutions in Eq. (3) with the potential of Eq.

(4). The parameters are ǫ = 0.1, V0 = (πǫ)−1/2 ≈ 1.784,
a = 3, and E0 = 7.5. The solid and dashed lines in the
top subplot of the left panel show the amplitudes of the sym-
metric and asymmetric (bifurcating) solutions vs. µ. The
bottom subplot displays the unstable real eigenvalue for the
symmetric-solution branch existing past the bifurcation point,
at µ > −6.94575. The right panel shows, in its top subplots,
examples of the symmetric and asymmetric solutions (solid
and thick dashed lines, respectively) for µ = −6.8 (left) and
µ = −6.95 (right), respectively. In the latter case (i.e., before
the bifurcation point), only the symmetric branch (solid line)
exists. The background profile of I0(x) is indicated by a dash-
dotted line. The bottom subplots show the respective results
of the linear stability analysis around the symmetric solution
in the complex plane (λr, λi) of the stability eigenvalues. An
eigenvalue with a positive real part (in the left panel) implies
instability of the solution.
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FIG. 2: The profile of the field modulus |u| for the same prop-
agation distance but different symmetric initial conditions: a
stable one (solid line) for µ = −6.95, resulting in the stable
symmetric state, and an unstable one for µ = −6.5, result-
ing in the asymmetric state shown by the dashed line. The
potential is the same as for Fig. 1.

of the SSB is very clear; as a result of the growth of the
unstable eigenmode triggered by the small perturbation,
the nearly symmetric state with µ = −6.5 evolves into
a stable asymmetric one; see the dashed line in Fig. 2.
On the other hand, the stable symmetric ground state
for µ = −6.95 remains unchanged (solid line in Fig. 2).

Analytical Results. To analytically examine SSB in
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Eq. (2), we develop a Galerkin-type method generally
applicable to related models. It is convenient to define
U(x, z) ≡ u(x, z) exp(iµz), replacing Eq. (2) with

iuz = µu − uxx +
E0

1 + I0(x) + |u|2
u. (5)

Numerics corroborate our expectation that, for suffi-
ciently large separation a between the potential wells,
the bifurcation occurs at low powers, i.e., when Eq. (5)
is close to its linear counterpart. It is therefore natu-
ral to seek a representation of u(x, z) in terms of the
the basis of the eigenfunctions of the double-well po-

tential: ωjv
(j) = −v

(j)
xx + E0

1+I0(x)v
(j). Numerical solu-

tion of this equation reveals two localized eigenstates of
the double-well potential with corresponding eigenvalues
ω0 = 6.95886 and ω1 = 6.98631. The former eigenmode
is even and the latter one is odd.

We expect that the bifurcation shown in Fig. 1 may
occur, in the nonlinear equation (5), at µ close to −ω0,
and the emerging asymmetric solution may be close to a
superposition of the two above-mentioned localized linear
eigenmodes. We explore this possibility by means of a
Galerkin truncation based on these modes:

u(x, z) = c0(z)v(0)(x) + c1(z)v(1)(x), (6)

where c0 and c1 are assumed small. Substitution of (6)
into (5), projecting onto the linear eigenmodes and re-
taining leading-order nonlinear terms yields the following
finite-dimensional reduction:

iċ0 = (µ + ω0)c0 − a00|c0|
2c0 − a01

(

2|c1|
2c0 + c⋆

0c
2
1

)

,(7)

iċ1 = (µ + ω1)c1 − a11|c1|
2c1 − a01

(

2|c0|
2c1 + c⋆

1c
2
0

)

,(8)

where the overdot stands for d/dz,

akl ≡ E0

∫ +∞

−∞

[

v(k)(x)
]2 [

v(l)(x)
]2

[1 + I0(x)]
−2

dx, and
a00 ≈ 0.86302, a01 ≈ 0.89647, a11 ≈ 0.93958.

Substituting further cj ≡ ρj exp(iφj), and taking into
regard the conservation of the total norm, ρ2

0+ρ2
1 = N , we

reduce Eqs. (7) and (8) to a system of two real ordinary
differential equations:

ρ̇0 = a01ρ
2
0ρ1 sin(2∆φ), (9)

∆̇φ = −∆ω + a11ρ
2
1 − a00ρ

2
0

+ a01 (2 + cos(2∆φ))
(

ρ2
0 − ρ2

1

)

, (10)

where ∆φ ≡ φ1 − φ0 and ∆ω ≡ ω1 − ω0. Since we are
interested in real solutions of the underlying equation (5),
we will confine our considerations to steady states with
∆φ = 0 (mod π). Then, from Eq. (10) one can easily
find that no solution bifurcates from ρ0 = 0; however,
solutions with ρ1 6= 0 can bifurcate from the symmetric
ones with ρ2

0 = N and ρ1 = 0. These are the solutions
that we are interested in, as they may account for the
SSB, due to the inclusion of the odd eigenfunction v(1)(x)
in Eq. (6). The critical value of the norm at which the

bifurcation occurs, is found from Eqs. (9) and (10) to be

Nc = (3a01 − a00)
−1

|∆ω|. (11)

This simple prediction is the main finding of the analysis.
One can also find, from Eqs. (7) and (8), the critical
propagation constant µc at which the SSB is expected,

µc = −ω0 + a00 (3a01 − a00)
−1 |∆ω|. (12)

Equations (11) and (12) finally predict the occurrence
of the bifurcation at Nc = 0.01503 and µc = −6.94589,
in remarkable agreement with the numerical simulations
reported above. In particular, the relative error in Nc

is considerably less than 1% in the worst case, and the
error in the prediction of µc is ≈ 0.002%.

Experimental Results. Experiments were performed in
a biased photorefractive crystal (SBN:60, 5x5x20 mm3)
illuminated by a partially coherent beam periodically
modulated with an amplitude mask. This spatially mod-
ulated beam is ordinarily polarized, so it experiences only
a weak nonlinearity and induces a stable square waveg-
uide lattice in the biased crystal [13, 24]. The principal
axes of the lattice are oriented in horizontal and verti-
cal directions. A Gaussian beam, split off from the same
laser source, is used as a coherent probe beam. Contrary
to the experiments with discrete solitons [12, 13, 14], the
probe beam is focused inter-site, i.e., between two lattice
sites in the vertical direction (to avoid any anisotropic
effects such as those from self-bending, since the crys-
talline c-axis is oriented in the horizontal direction).
The probe beam is extraordinarily polarized, propagating
collinearly with the lattice through the crystal. The po-
larization configuration is chosen so that the probe would
experience strong nonlinearity but the induced lattice re-
mains nearly undisturbed during propagation [22]. To
demonstrate the SSB, all experimental conditions were
kept unchanged, except that the intensity of the probe
beam was increased gradually. Typical experimental re-
sults are presented in Fig. 3. They were obtained with
a lattice of 45µm nearest neighbor spacing. When the
intensity of the probe beam is low, its energy tunnels
into two waveguides symmetrically, as seen in the trans-
verse patterns of the probe beam in Fig. 3(a-c). Above a
threshold value of the input intensity, the intensity pat-
tern of the probe beam at output becomes asymmetric,
as shown in Fig. 3(d). The bifurcation from a symmet-
ric to an asymmetric output is also clearly visible in the
vertical profiles of the probe beam displayed in Fig. 3.
These results are related to the even-mode solitons [11],
or the two parallel in-phase solitons [25], observed previ-
ously in optically-induced lattices, which were found to
be unstable. Here we demonstrated a clear bifurcation
from symmetric to asymmetric states due to the SSB,
which is more relevant to the symmetry-breaking insta-
bility of a two-humped, self-guided laser beam, observed
in a different nonlinear-optical system [5]. We empha-
size that the output patterns in Fig. 3 were all taken at
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FIG. 3: Experimental demonstration of SSB in an optically
induced photonic lattice. From (a) to (d), shown are the
transverse intensity patterns of the probe beam (initially a
fundamental Gaussian beam) at an intensity (normalized to
the lattice intensity) of 0.1, 0.2, 0.3 and 0.5. The bias field
was kept at 2 kV/cm, and all other parameters were fixed.
The left side shows the corresponding vertical beam profiles.

steady state, and the only parameter we varied was the
intensity of the probe beam.

Conclusion and Discussion. We have studied numeri-
cally and analytically the bifurcation from a symmetric
to an asymmetric ground state in an equation of the NLS
type. The equation models the propagation of a probe
beam through an optically-induced periodic lattice in a
photorefractive nonlinear crystal. A double-well poten-
tial locally approximates the spatial shape of the lattice

guiding the probe beam. The ground-state profile breaks
its symmetry at a critical power, Nc. The transition is
accompanied by destabilization of the symmetric state.
The threshold, Nc, as well as other essential features of
the SSB bifurcation, are very well approximated by the
finite mode (Galerkin) approximation based on a super-
position of the symmetric and antisymmetric linear states
of the double-well potential. In parallel to the theoretical
analysis, we have reported the experimental observation
of these phenomena in optically-induced photonic lattices
in a photorefractive crystal.

The analysis detailed herein can be adapted to models
of Gross-Pitaevskii or nonlinear-Hartree types, which are
central to modeling symmetry breaking and other phe-
nomena in BECs [20, 21, 26]. See also Ref. [27], for such
an analysis when a BEC is loaded into a combination of
a magnetic trap and an optical lattice.

Finally, although the simple two-mode truncation was
used here in the one-dimensional geometry, general-
izations to arbitrary dimensions and incorporation of
higher-order modes can be developed to describe more
complex bifurcations, in both static and time-dependent
settings, as well as coupling to radiation waves [28].
These are directions currently under investigation.

This work was partially supported by NSF-DMS-
0204585, NSF-CAREER, and the Eppley Foundation
for Research (PGK). AFOSR, ARO and NSFC (ZC),
the Israel Science Foundation through the grant No.
8006/03 (BAM), and NSF-DMS-0412305 (MIW). We are
indebted to Todd Kapitula for valuable discussions.
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