Normality of very even nilpotent varieties in D-2l

E Sommers
University of Massachusetts - Amherst, esommers@math.umass.edu

Follow this and additional works at: http://scholarworks.umass.edu/math_faculty_pubs

[^0]
NORMALITY OF VERY EVEN NILPOTENT VARIETIES IN $D_{2 l}$

ERIC SOMMERS

Abstract

For the classical groups, Kraft and Procesi [4], [5] have resolved the question of which nilpotent orbits have closures which are normal and which are not, with the exception of the very even orbits in $D_{2 l}$ which have partition of the form $\left(a^{2 k}, b^{2}\right)$ for a, b distinct even natural numbers with $a k+b=2 l$.

In this article, we show that these orbits do have normal closure. We use the technique of [8].

1. SOME LEMMAS IN A_{l}

We retain the notation of [8]. Throughout, G is a connected simple algebraic group over \mathbf{C}, B a Borel subgroup, T a maximal torus in B. The simple roots are denoted by Π, and they correspond to the Borel subgroup opposite to B. Let $\left\{\omega_{i}\right\}$ be the fundamental weights of G corresponding to Π. If $\alpha \in \Pi$, then P_{α} denotes the parabolic subgroup of semisimple rank one containing B and corresponding to α. If P is a parabolic subgroup of G, we denote by \mathfrak{u}_{P} the Lie algebra of its unipotent radical.

We recall
Proposition 1.1. [3] Let V be a rational representation of B and assume that V extends to a representation of the parabolic subgroup P_{α} where α is a simple root. Let $\lambda \in X^{*}(T)$ be such that $m=\left\langle\lambda, \alpha^{\vee}\right\rangle \geq-1$. Then there is a G-module isomorphism

$$
H^{i}(G / B, V \otimes \lambda)=H^{i+1}(G / B, V \otimes \lambda-(m+1) \alpha) \text { for all } i \in \mathbb{Z} .
$$

In particular, if $m=-1$, then all cohomology groups vanish.
For the rest of this section and the next, let $G=S L_{l+1}(\mathbf{C})$. We index the simple roots $\Pi=\left\{\alpha_{j}\right\}$ so that α_{1} is an extremal root and α_{j} is next to α_{j+1} in the Dynkin diagram of type A_{l}.

The following lemma follows easily from several applications of the previous proposition.
Lemma 1.2. [7] Let V be a rational representation of B which extends to a representation of $P_{\alpha_{j}}$ for $a \leq j \leq b$. Let $\lambda \in X^{*}(T)$ be such that $\left\langle\lambda, \alpha_{j}^{\vee}\right\rangle=0$ for $a<j \leq b$. Set $r=\left\langle\lambda, \alpha_{a}^{\vee}\right\rangle$ and assume that $a-b-1 \leq r \leq-1$. Then $H^{*}(V \otimes \lambda)=0$.

A similar statement holds by applying the non-trivial automorphism to the Dynkin diagram of type A_{l}. We use this lemma to prove

[^1]The author was supported in part by NSF grants DMS-0201826 and DMS-9729992.
The author thanks Viktor Ostrik for directing him to this problem.

Lemma 1.3. Let V be a representation of B which is stable under the parabolic subgroups $P_{\alpha_{j}}$ for $1 \leq j \leq b$. Let $\lambda \in X^{*}(T)$ be such that $\left\langle\lambda, \alpha_{a}^{\vee}\right\rangle=1$ for some a satisfying $1 \leq a<b$. Assume that $\left\langle\lambda, \alpha_{j}^{\vee}\right\rangle=0$ for $1 \leq j \neq a<b$. Set $k=\left\langle\lambda, \alpha_{b}^{\vee}\right\rangle$. If $-b-1 \leq k \leq-1$ and $k+b-a \neq-1$, then $H^{*}(V \otimes \lambda)=0$.
Proof. If $k+b-a \geq 0$, the result follows directly from Lemma 1.2 On the other hand, if $k+b-a \leq-2$, then as in the proof of Lemma [1.2] in [7],

$$
H^{i}(V \otimes \lambda)=H^{i+b-a}(V \otimes \mu)
$$

where

$$
\mu=\lambda+(-k-1) \alpha_{b}+(-k-2) \alpha_{b-1}+\cdots+(-k-b+a) \alpha_{a+1} .
$$

Now $\left\langle\mu, \alpha_{j}^{\vee}\right\rangle=0$ for $1 \leq j<a$ and $\left\langle\mu, \alpha_{a}^{\vee}\right\rangle=k+b-a+1$. By the hypothesis on λ and the present assumption about $k+b-a$, we have

$$
-a \leq k+b-a+1 \leq-1 .
$$

Then Lemma 1.2 yields the desired vanishing.

2. A THEOREM FOR A_{l} (REVIEW)

Let P_{m} denote the maximal proper parabolic subgroup of $G=S L_{l+1}(\mathbf{C})$ containing B corresponding to all the simple roots except α_{m}. Denote the Lie algebra of the unipotent radical of P_{m} by \mathfrak{u}_{m}. The action of P_{m} on \mathfrak{u}_{m} gives a representation of P_{m} (and also B). Denote the dual representation by \mathfrak{u}_{m}^{*}. Set $m^{\prime}=\min \{m, l+1-m\}$. In [7], Lemma 1.2] and Proposition 1.1 were used to prove

Theorem 2.1. [7] Let r be an integer in the range $2 m^{\prime}-2-l \leq r \leq 0$. Then there is a G-module isomorphism

$$
H^{i}\left(G / B, S^{n} \mathfrak{u}_{m}^{*} \otimes r \omega_{m}\right)=H^{i}\left(G / B, S^{n+r m^{\prime}} \mathfrak{u}_{l+1-m}^{*} \otimes-r \omega_{l+1-m}\right) \text { for all } i, n \geq 0
$$

3. A THEOREM FOR $D_{2 l+1}$

Theorem[2.1] has an analog in type $D_{2 l+1}$. We label the simple roots of G of type $D_{2 l+1}$ as in [6], so $\alpha_{2 l-1}$ lies at the branched vertex of the Dynkin diagram. Let P be the maximal proper parabolic subgroup containing B corresponding to all the simple roots except $\alpha_{2 l}$. And let P^{\prime} be the maximal proper parabolic subgroup containing B corresponding to all the simple roots except $\alpha_{2 l+1}$ (so P and P^{\prime} are interchanged by an outer automorphism of G).
Theorem 3.1. Let r be an integer in the range $-3 \leq r \leq 0$. Then there is a G-module isomorphism

$$
H^{i}\left(G / B, S^{n} \mathfrak{u}_{P}^{*} \otimes r \omega_{2 l}\right)=H^{i}\left(G / B, S^{n+r l} \mathfrak{u}_{P^{\prime}}^{*} \otimes-r \omega_{2 l+1}\right) \text { for all } i, n \geq 0
$$

Proof. Step 1.

In this step, r may be an arbitrary integer. Consider the intersection $V=\mathfrak{u}_{P} \cap \mathfrak{u}_{P^{\prime}}$. We will show in Step 1 that for all i, n

$$
\begin{equation*}
H^{i}\left(S^{n} \mathfrak{u}_{P}^{*} \otimes r \omega_{2 l}\right)=H^{i}\left(S^{n} V^{*} \otimes r \omega_{2 l}\right) \tag{1}
\end{equation*}
$$

We begin by taking the Koszul resolution of the short exact sequence

$$
0 \rightarrow U \rightarrow \mathfrak{u}_{P}^{*} \rightarrow V^{*} \rightarrow 0
$$

(this defines U) and tensoring it with $r \omega_{2 l}$. This gives

$$
0 \rightarrow \cdots \rightarrow S^{n-j} \mathfrak{u}_{P}^{*} \otimes \wedge^{j} U \otimes r \omega_{2 l} \rightarrow \cdots \rightarrow S^{n} \mathfrak{u}_{P}^{*} \otimes r \omega_{2 l} \rightarrow S^{n} V^{*} \otimes r \omega_{2 l} \rightarrow 0 .
$$

We claim that $H^{*}\left(S^{n-j} \mathfrak{u}_{P}^{*} \otimes \wedge^{j} U \otimes r \omega_{2 l}\right)=0$ for $1 \leq j \leq \operatorname{dim} U$ from which Equation 1 will follow. The T-weights of U are those of the form $\alpha_{k}+\alpha_{k+1}+\cdots+\alpha_{2 l}$, where $1 \leq k \leq 2 l$. Therefore, if λ is a T-weight of $\wedge^{j} U$, then λ is of the form

$$
(0, \ldots, 0,1, \ldots, 1,2, \ldots, 2, \ldots, j-1, \ldots, j-1, j, \ldots, j, 0)
$$

in the basis of simple roots. If this expression contains a subsequence of the form $m, m, m+1$, then λ will have inner product -1 with the simple coroot corresponding to the middle m. Hence $H^{*}(Q \otimes \lambda)=0$ where Q is any P-representation by Proposition 1.1. The same result holds if there are any 0 's in the initial part of the expression. Therefore, we are reduced to considering those λ of the form

$$
(1,2,3, \ldots, j-1, j, j, \ldots, j, 0) .
$$

Such a λ satisfies $\left\langle\lambda, \alpha_{2 l+1}^{\vee}\right\rangle=-j$ with the exception of the case $j=2 l$, where instead $\left\langle\lambda, \alpha_{2 l+1}^{\vee}\right\rangle=-j+1=-2 l+1$. In the latter case $H^{*}(Q \otimes \lambda)=0$ by Lemma 1.2 applied to to the parabolic subgroup with Levi factor of type $A_{2 l}$ consisting of all simple roots except $\alpha_{2 l}$. For the cases where $j<2 l$, we can apply Lemma 1.3 also for the $A_{2 l}$ consisting of all simple roots except $\alpha_{2 l}$. In that case, $a=j, b=2 l, k=-j$ and so $k+b-a=2 l-2 j$, which, being an even number, is never -1 . Also, clearly $-b-1 \leq k \leq-1$. Thus we conclude that for all weights λ appearing in $\wedge^{j} U$, we have $H^{*}(Q \otimes \lambda)=0$ for any P-representation Q. Hence for $Q:=S^{n-j} \mathfrak{u}_{P}^{*} \otimes r \omega_{2 l}$, it follows that $H^{*}\left(Q \otimes \wedge^{j} U\right)=0$ by the usual filtration argument.

Step 2.

Let V_{1} be the B-stable subspace of \mathfrak{u} consisting of the direct sum of all root spaces \mathfrak{g}_{α} where $-\alpha$ is bigger than or equal to the root

$$
(0, \ldots, 0,1,2,1,1)
$$

in the usual partial ordering on roots. Let V_{2} be the B-stable subspace of \mathfrak{u} consisting of the direct sum of all root spaces \mathfrak{g}_{α} where $-\alpha$ is bigger than or equal to the root

$$
(0,0, \ldots, 0,1,2,2,1,1) .
$$

Let μ be a weight of the form $r \omega_{2 l}+s \omega_{2 l+1}$ where r, s are integers. Assume that $-3 \leq r \leq-1$ and that $s=0$ if $r=-3$. In this step we show for all $n \geq 0$ that

$$
\begin{equation*}
H^{*}\left(S^{n} V_{1}^{*} \otimes \mu\right)=0 \tag{2}
\end{equation*}
$$

Take the Koszul resolution of

$$
0 \rightarrow U_{2} \rightarrow V_{1}^{*} \rightarrow V_{2}^{*} \rightarrow 0
$$

(this defines U_{2}) and tensor it with μ. We will show that

$$
H^{*}\left(S^{n} V_{2}^{*} \otimes \mu\right)=0
$$

and

$$
H^{*}\left(S^{n-j} V_{1}^{*} \otimes \wedge^{j} U_{2} \otimes \mu\right)=0
$$

for $1 \leq j \leq 2 l-2$ and then Equation (2) will follow (the dimension of U_{2} is $2 l-2$ as shown below).

The subspace V_{2}^{*} is stable under the minimal parabolic subgroups $P_{\alpha_{m}}$ for $m=2 l-1,2 l$, and $2 l+1$. It follows from the assumption on μ that $H^{*}\left(S^{n} V_{2}^{*} \otimes \mu\right)=0$ by Lemma 1.2applied to the A_{3} determined by the simple roots α_{m} for $m=2 l-1,2 l$, and $2 l+1$.

Now the T-weights of U_{2} are

$$
\alpha_{k}+\alpha_{k+1}+\cdots+\alpha_{2 l-2}+2 \alpha_{2 l-1}+\alpha_{2 l}+\alpha_{2 l+1}
$$

where $1 \leq k \leq 2 l-2$. If λ is a weight of $\wedge^{j} U_{2}$, then λ is of the form

$$
(0, \ldots, 0,1, \ldots, 1,2, \ldots, j-1, j, \ldots, j, 2 j, j, j)
$$

in the basis of simple roots. As in the previous step, if there are any 0 's present or if any of the integers between 1 and $j-1$ inclusive are repeated, then

$$
H^{*}(Q \otimes \lambda)=0
$$

where $Q:=S^{n-j} V_{1}^{*} \otimes \mu$ since Q is stable under the action of the parabolic subgroups $P_{\alpha_{k}}$ for $1 \leq k \leq 2 l-2$. Hence we are reduced to considering those λ of the form

$$
(1,2,3, \ldots, j-2, j-1, j, \ldots, j, 2 j, j, j)
$$

for $1 \leq j \leq 2 l-2$. Such a λ satisfies $\left\langle\lambda, \alpha_{2 l-2}^{\vee}\right\rangle=-j$ with the exception of $j=2 l-2$ where $\left\langle\lambda, \alpha_{2 l-2}^{\vee}\right\rangle=-2 l+3$. In the latter case $H^{*}(Q \otimes \lambda)=0$ by Lemma 1.2 applied to the $A_{2 l-2}$ consisting of the first $2 l-2$ simple roots. For the cases where $j<2 l-2$, we can apply Lemma 1.3. also for the $A_{2 l-2}$ consisting of the first $2 l-2$ simple roots. In that case, $a=j, b=2 l-2$, $k=-j$ and so $k+b-a=2 l-2 j-2$, which is never -1 . Also, clearly $-b-1 \leq k \leq-1$. We therefore also have $H^{*}(Q \otimes \lambda)=0$.

Consequently, if we filter $\wedge^{j} U_{2}$ by B-submodules such that the quotients are one-dimensional, we deduce that

$$
H^{*}\left(S^{n-j} V_{1}^{*} \otimes \wedge^{j} U_{2} \otimes \mu\right)=0
$$

for $1 \leq j \leq 2 l-2$. Hence Equation (2) follows.

Step 3.

In this step, we show that for all i, n

$$
\begin{equation*}
H^{i}\left(S^{n} V^{*} \otimes \mu\right)=H^{i}\left(S^{n-l} V^{*} \otimes \mu+\omega_{2 l}+\omega_{2 l+1}\right) \tag{3}
\end{equation*}
$$

for μ as in Step 2.
We take the Koszul resolution of the short exact sequence

$$
0 \rightarrow U_{1} \rightarrow V^{*} \rightarrow V_{1}^{*} \rightarrow 0
$$

(this defines U_{1}) and tensor it with μ arriving at
$0 \rightarrow S^{n-2 l+1} V^{*} \otimes \wedge^{2 l-1} U_{1} \otimes \mu \rightarrow \cdots \rightarrow S^{n-j} V^{*} \otimes \wedge^{j} U_{1} \otimes \mu \rightarrow \cdots \rightarrow S^{n} V^{*} \otimes \mu \rightarrow S^{n} V_{1}^{*} \otimes \mu \rightarrow 0$
We first show that $H^{*}\left(S^{n-j} V^{*} \otimes \mu \otimes \lambda\right)=0$ for any λ appearing in $\wedge^{j} U_{1}$ for $j \neq 0, l$. The weights of U_{1} are

$$
\alpha_{k}+\alpha_{k+1}+\cdots+\alpha_{2 l-1}+\alpha_{2 l}+\alpha_{2 l+1}
$$

where $1 \leq k \leq 2 l-1$. If λ is a weight of $\wedge^{j} U_{1}$, then as in the previous steps we are quickly reduced to those λ of the form

$$
(1,2,3, \ldots, j-2, j-1, j, \ldots, j, j, j, j)
$$

for $1 \leq j \leq 2 l-1$. Such a λ satisfies $\left\langle\lambda, \alpha_{2 l-1}^{\vee}\right\rangle=-j$ with the exception of $j=2 l-1$ where $\left\langle\lambda, \alpha_{2 l-2}^{\vee}\right\rangle=-2 l+2$. The latter vanishing follows from Lemma 1.2 applied to to the $A_{2 l-1}$ consisting of the first $2 l-1$ simple roots. For the cases where $j<2 l-1$, we can apply Lemma 1.3, also for the $A_{2 l-1}$ consisting of the first $2 l-1$ simple roots. In that case, $a=j, b=2 l-1$, $k=-j$ and so $k+b-a=2 l-2 j-1$, which is -1 only when $j=l$. Therefore, we deduce that

$$
H^{*}\left(S^{n-j} V^{*} \otimes \wedge^{j} U_{1} \otimes \mu\right)=0
$$

when $j \neq 0, l$. And furthermore,

$$
H^{i}\left(S^{n-l} V^{*} \otimes \wedge^{l} U_{1} \otimes \mu\right)=H^{i}\left(S^{n-l} V^{*} \otimes \lambda \otimes \mu\right)
$$

where $\lambda=(1,2,3, \ldots, l-1, l, \ldots, l, l, l)$. Now $S^{n-l} V^{*} \otimes \mu$ is stable under $P_{\alpha_{m}}$ for $1 \leq m \leq 2 l-1$. Hence $l-1$ applications of Proposition 1.1 yields

$$
H^{i}\left(S^{n-l} V^{*} \otimes \lambda \otimes \mu\right)=H^{i+l-1}\left(S^{n-l} V^{*} \otimes \mu+\omega_{2 l}+\omega_{2 l+1}\right) .
$$

By breaking Equation (4) into short exact sequences and taking cohomology on G / B, we conclude that

$$
H^{i}\left(S^{n} V^{*} \otimes \mu\right)=H^{i}\left(S^{n-l} V^{*} \otimes \mu+\omega_{2 l}+\omega_{2 l+1}\right),
$$

where we are using

$$
H^{*}\left(S^{n} V_{1}^{*} \otimes \mu\right)=0
$$

from Step 2.
Step 4. We obtain the theorem by using Step 3 repeatedly, starting with $\mu=r \omega_{m}$ with r in the prescribed range of the statement of the theorem. After $-r$ steps we arrive at

$$
H^{i}\left(S^{n} V^{*} \otimes r \omega_{2 l}\right)=H^{i}\left(S^{n+r l} V^{*} \otimes-r \omega_{2 l+1}\right),
$$

for all i, n. The proof is completed by using Step 1 and the symmetric version of Equation 1 (obtained by applying an outer automorphism of G) which gives

$$
H^{i}\left(S^{n+r l} V^{*} \otimes-r \omega_{2 l+1}\right)=H^{i}\left(S^{n+r l} \mathfrak{u}_{P^{\prime}}^{*} \otimes-r \omega_{2 l+1}\right)
$$

for all i, n.

In what follows, we will use Theorem [2.1] in the more general situation of Section 4 in [8]. Similarly we can apply Theorem 3.1 in an analogous general situation. Namely, suppose G is of general type and P is a parabolic subgroup of G containing B with Levi factor L containing a simple factor of type $A_{2 l}$. Furthermore, suppose this simple factor belongs to a Levi subgroup L^{\prime} of G of type $D_{2 l+1}$ and $\left[L, L^{\prime}\right] \subset L^{\prime}$. Then the analog in G of Theorem 3.1 holds just as the analog of Theorem [2.1] does in Proposition 6 in [8].

4. Main theorem

For the rest of the paper G is connected of type $D_{2 l}$. We want to show that both nilpotent orbits in \mathfrak{g} with partition $\left(a^{2 k}, b^{2}\right)$ for a, b distinct even natural numbers with $a k+b=2 l$ (see [2]) have normal closure. Let \mathcal{O} denote one of these two orbits.

Following the idea of [8], we find a nilpotent orbit \mathcal{O}^{\prime} which we already know has normal closure and which contains \mathcal{O} in its closure. If we can show that the regular functions on \mathcal{O} are naturally a quotient of the regular functions on \mathcal{O}^{\prime}, then it follows that \mathcal{O} also has normal closure. To that end we consider the nilpotent orbit \mathcal{O}^{\prime} in \mathfrak{g} with partition $\lambda=\left(a^{2 k}, b+1, b-1\right)$.
Lemma 4.1. The closure of \mathcal{O}^{\prime} is normal.
Proof. The only minimal degenerations of \mathcal{O}^{\prime} in \mathfrak{g} are the two orbits with partition $\mu=\left(a^{2 k}, b^{2}\right)$ (which together are one orbit for the full orthogonal group of rank 2l). Hence by [5] the singularity of the closure of \mathcal{O}^{\prime} along the union of these two orbits is smoothly equivalent to the singularity of the closure of the orbit with partition (2) along the orbit with partition $(1,1)$ in type A_{1} (we remove the first $2 k$ rows from λ and μ, and then remove the first $b-1$ columns from the resulting partitions). Hence this is a singularity of type A_{1} and so by [5], \mathcal{O}^{\prime} has normal closure.
Lemma 4.2. The orbit \mathcal{O}^{\prime} is a Richardson orbit for any parabolic with Levi factor of type

$$
\overbrace{A_{2 k-1} \times \cdots \times A_{2 k-1}}^{\frac{a-b}{2}-1} \times A_{2 k} \times A_{2 k} \times \overbrace{A_{2 k+1} \times \cdots \times A_{2 k+1}}^{\frac{b}{2}-1}
$$

Any parabolic with Levi factor of type

$$
\overbrace{A_{2 k-1} \times \cdots \times A_{2 k-1}}^{\frac{a-b}{2}} \times \overbrace{A_{2 k+1} \times \cdots \times A_{2 k+1}}^{\frac{b}{2}}
$$

has Richardson orbit one or the other of the two nilpotent orbits with partition $\left(a^{2 k}, b^{2}\right)$.
Proof. Both statements follow from Section 7 in [2].
It will be convenient to represent parabolic subgroups containing B by the simple roots of G which are not simple roots of their Levi factors. Thus we can speak of such a parabolic subgroup as a subset of the numbers 1 to $2 l+1$, with each number i corresponding to the simple root α_{i}.

Set $d=a-b$ and let P^{\prime} be the parabolic represented by
$\{2 k+1,4 k+2,6 k+2, \ldots, k d+2, k(d+2)+2, k(d+4)+4, k(d+6)+6, \ldots, 2 l-2 k-2,2 l\}$ and let $P^{\prime \prime}$ be represented by
$\{2 k+1,4 k+2,6 k+2, \ldots, k d+2, k(d+2)+2, k(d+4)+4, k(d+6)+6, \ldots, 2 l-2 k-2,2 l-1\}$, so P^{\prime} are $P^{\prime \prime}$ are interchanged by an outer automorphism of $D_{2 l+1}$. By the previous lemma \mathcal{O}^{\prime} is Richardson for both P^{\prime} and $P^{\prime \prime}$. Let P be the parabolic represented by

$$
\{2 k, 4 k+2,6 k+2, \ldots, k d+2, k(d+2)+2, k(d+4)+4, k(d+6)+6, \ldots, 2 l-2 k-2,2 l\}
$$

Then without loss of generality we can take \mathcal{O} to be the Richardson orbit for P (again by the previous lemma).

Theorem 4.3. There is a short exact sequence

$$
\begin{equation*}
0 \rightarrow H^{0}\left(S^{n-2 l-k(a-4)-1} \mathfrak{u}_{P^{\prime \prime}}^{*} \otimes \nu\right) \rightarrow H^{0}\left(S^{n} \mathfrak{u}_{P^{\prime}}^{*}\right) \rightarrow H^{0}\left(S^{n} \mathfrak{u}_{P}^{*}\right) \rightarrow 0 \tag{5}
\end{equation*}
$$

where $\nu=\omega_{4 k+2}$ if $a>4$ and $\nu=2 \omega_{2 l-1}$ if $a=4$ (and hence $b=2$).
Proof. We use two elements from the proof of Theorem [2.1] in [7]. Let P_{1} be the parabolic represented by
$\{2 k+2,4 k+2,6 k+2, \ldots, k d+2, k(d+2)+2, k(d+4)+4, k(d+6)+6, \ldots, 2 l-2 k-2,2 l\}$
and set $V=\mathfrak{u}_{P} \cap \mathfrak{u}_{P_{1}}$. Then Step 1 of the proof of Theorem 2.1(for a group of type $A_{4 k+1}$ applied to the first $4 k+1$ simple roots of G) yields the isomorphism $H^{i}\left(S^{n} \mathfrak{u}_{P}^{*}\right)=H^{i}\left(S^{n} V^{*}\right)$ for all i, n. And Step 3 of the proof Theorem 2.1 yields the long exact sequence

$$
\cdots \rightarrow H^{i}\left(S^{n-2 k-1} \mathfrak{u}_{P^{\prime}}^{*} \otimes \mu\right) \rightarrow H^{i}\left(S^{n} \mathfrak{u}_{P^{\prime}}^{*}\right) \rightarrow H^{i}\left(S^{n} V^{*}\right) \rightarrow H^{i+1}\left(S^{n-2 k-1} \mathfrak{u}_{P^{\prime}}^{*} \otimes \mu\right) \rightarrow \ldots
$$

where μ equals

$$
(1,2,3, \ldots, 2 k, 2 k+1,2 k, \ldots, 2,1, \overbrace{0,0, \ldots, 0}^{2 l-4 k-1}) .
$$

This is obtained by taking the Koszul resolution of

$$
0 \rightarrow U \rightarrow \mathfrak{u}_{P^{\prime}}^{*} \rightarrow V^{*} \rightarrow 0
$$

(this defines U) and simplifying the terms.
The remainder of the proof involves showing that

$$
H^{i}\left(S^{n-2 k-1} \mathfrak{u}_{P^{\prime}}^{*} \otimes \mu\right)=H^{i}\left(S^{n-2 l-k(a-4)-1} \mathfrak{u}_{P^{\prime \prime}}^{*} \otimes \nu\right)
$$

for all i, n.
This is carried out by using Theorem 2.1] numerous times (for $r=-1$ and the l in that theorem equal to either $4 k$ or $4 k+1$ and $m^{\prime}=2 k$ or $2 k+1$, respectively) and Theorem 3.1 once (for $r=-2$ and the l in that theorem equal to k).

After $\frac{a-b-2}{2}$ applications of Theorem 2.1] with $r=-1, l$ there equal to $4 k$, and $m^{\prime}=2 k$, we have

$$
H^{i}\left(S^{n-2 k-1} \mathfrak{u}_{P^{\prime}}^{*} \otimes \mu\right)=H^{i}\left(S^{n-k(a-b)-1} Q_{1}^{*} \otimes \mu_{1}\right)
$$

where μ_{1} equals

$$
(1,2,3, \ldots, 2 k, \overbrace{2 k+1, \ldots, 2 k+1}^{k(a-b-2)+1}, 2 k, \ldots, 2,1, \overbrace{0,0, \ldots, 0}^{k(b-2)+b-1})
$$

and Q_{1} is the Lie algebra of the unipotent radical of $\{2 k+1,4 k+1,6 k+1, \ldots, k(d-2)+1, k d+1, k(d+2)+2, k(d+4)+4, k(d+6)+6, \ldots, 2 l-2 k-2,2 l\}$.

Next, we apply Theorem [2.1 $\frac{b-2}{2}$ more times with $r=-1, l$ there equal to $4 k+1$, and $m^{\prime}=2 k+1$, to obtain

$$
H^{i}\left(S^{n-k(a-b)-1} Q_{1}^{*} \otimes \mu_{1}\right)=H^{i}\left(S^{n-k a+2 k-b / 2} Q_{2}^{*} \otimes \mu_{2}\right)
$$

where μ_{2} equals

$$
(1,2,3, \ldots, 2 k, \overbrace{2 k+1, \ldots, 2 k+1}^{2 l-4 k-1}, 2 k, \ldots, 2,1,0),
$$

and Q_{2} is the Lie algebra of the unipotent radical of

$$
\{2 k+1,4 k+1,6 k+1, \ldots, k(d-2)+1, k d+1, k(d+2)+3, k(d+4)+5, k(d+6)+7, \ldots, 2 l-2 k-1,2 l\} .
$$

Next, we use Theorem 3.1] with $r=-2$ for the case $D_{2 k+1}$ applied to the simple roots α_{i} of G with $2 l-2 k \leq i \leq 2 l$. This yields

$$
H^{i}\left(S^{n-k a+2 k-b / 2} Q_{2}^{*} \otimes \mu_{2}\right)=H^{i}\left(S^{n-k a-b / 2} Q_{3}^{*} \otimes \mu_{3}\right)
$$

where μ_{3} equals

$$
(1,2,3, \ldots, 2 k, \overbrace{2 k+1, \ldots, 2 k+1}^{2 l-4 k-1}, 2 k+2,2 k+3,2 k+4, \ldots, 4 k, 2 k+1,2 k)
$$

and Q_{3} is the Lie algebra of the unipotent radical of

$$
\{2 k+1,4 k+1,6 k+1, \ldots, k(d-2)+1, k d+1, k(d+2)+3, k(d+4)+5, k(d+6)+7, \ldots, 2 l-2 k-1,2 l-1\} .
$$

If $2 l-4 k-1=1$, which is the case if and only if $a=4$ and $b=2$, we have $\mu_{3}=2 \omega_{2 l-1}$ and the latter parabolic subgroup is $P^{\prime \prime}$.

On the other hand, if $a>4$, we continue by using Theorem 2.1] another $\frac{b-2}{2}$ times followed by another $\frac{a-b-2}{2}$ times (in reverse of how we have just used it). The result is that

$$
H^{i}\left(S^{n-k a-b / 2-2} Q_{3}^{*} \otimes \mu_{3}\right)=H^{i}\left(S^{n-2 k a+4 k-b-1} Q_{4}^{*} \otimes \mu_{4}\right)
$$

where μ_{4} equals

$$
(1,2,3, \ldots, 4 k+1, \overbrace{4 k+2, \ldots, 4 k+2}^{2 l-4 k-3}, 2 k+1,2 k+1),
$$

and Q_{4} is the Lie algebra of the unipotent radical of

$$
\{2 k+1,4 k+2,6 k+2, \ldots, k(d-2)+2, k d+2, k(d+2)+2, k(d+4)+4, k(d+6)+6, \ldots, 2 l-2 k-2,2 l-1\} .
$$

The latter parabolic is exactly $P^{\prime \prime}$ and $\mu_{4}=\omega_{4 k+2}$. Furthermore, $n-2 k a+4 k-b-1=n-2 l-$ $k a+4 k-1$ since $a k+b=2 l$.

Hence when $a=4$ or $a>4$, we have shown that

$$
H^{i}\left(S^{n-2 k-1} \mathfrak{u}_{P^{\prime}}^{*} \otimes \mu\right)=H^{i}\left(S^{n-2 l-k(a-4)-1} \mathfrak{u}_{P^{\prime \prime}}^{*} \otimes \nu\right)
$$

for all i, n. We finish the proof by observing that ν extends to a character of $P^{\prime \prime}$ and it is dominant. Hence $H^{i}\left(S^{n-2 l-k(a-4)-1} \mathfrak{u}_{P^{\prime \prime}}^{*} \otimes \nu\right)=0$ for $i>0$ as in [1]. Similarly, $H^{i}\left(S^{n} \mathfrak{u}_{P^{\prime}}^{*}\right)=0$ and $H^{i}\left(S^{n} \mathfrak{u}_{P}^{*}\right)=0$ for $i>0$ and the proof is complete.

Corollary 4.4. The closure of \mathcal{O} is normal.
Proof. We only need to note that the functions of degree n on \mathcal{O}^{\prime} (and also its closure since the closure is normal) as a G-module are isomorphic to $H^{0}\left(S^{n} \mathfrak{u}_{P^{\prime}}^{*}\right)$. This follows since \mathcal{O}^{\prime} has trivial G-equivariant fundamental group when G is adjoint (see [2]). Hence the moment map determined by P^{\prime} must be birational. Thus the short exact sequence of the theorem together with the discussion in Section 3 of [8] yields the result.

References

[1] A. Broer, Normality of Some Nilpotent Varieties and Cohomology of Line Bundles on the Cotangent Bundle of the Flag Variety, Lie Theory and Geometry (Boston), Progr. Math., 123, Birkhäuser, Boston, 1994, pp. 1-19.
[2] D. H. Collingwood and W. M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993.
[3] M. Demazure, A very simple proof of Bott's Theorem, Invent. Math. 33 (1976), 271-272.
[4] H. Kraft and C. Procesi, Closures of conjugacy classes of matrices are normal, Invent. Math. 53 (1979), no. 3, 227247.
[5] _, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. 57 (1982), no. 4, 539-602.
[6] A. L. Onishchik and E. B. Vinberg, Lie Groups and Algebraic Groups, Springer-Verlag, Berlin, 1990.
[7] E. Sommers, Functions on nilpotent orbits and their covers, in preparation.
[8] ___ Normality of nilpotent varieties in E_{6}, J. Algebra (2003). Department of Mathematics, University of Massachusetts-Amherst, Amherst, MA 01003

Institute for Advanced Study, Princeton, NJ 08540
E-mail address: esommers@math.umass.edu

[^0]: Sommers, E, "Normality of very even nilpotent varieties in D-2l" (2005). Mathematics and Statistics Department Faculty Publication Series. Paper 787.
 http://scholarworks.umass.edu/math faculty_pubs/787

[^1]: Date: 7/23/03; 9/17/03.

