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Abstract. Temporal variations of radon in the geological
environment (upper crust) are frequent and recognized as
unique in terms of the signals encountered and for the lack of
substantial and generally applicable explanations. The phe-
nomena observed at the Roded site, located in arid southern
Israel, illustrate this situation. The monitoring of radon in
the last 10 years or more has been carried out in massive
meta-diorite of the Precambrian basement block of Roded.
The measurement is conducted using an alpha detector at
a resolution of 15-min, placed in a borehole at a depth of
9 m, within a PVC casing to that depth. Systematic tempo-
ral variation patterns, manifested as large relative signals are
composed of sub-diurnal (SDR) radon, multi-day (MD) and
annual (AR) signals. The overall variation is dominated by
the intense SDR signals which occur in some days, and may
vary from background levels (5 counts or less) to peak val-
ues (attaining> 1000 counts) and back to background at an
interval of 6 to 12 h. Intervals of up to several tens of days
without significant SDR signals interchange with times of
intense daily occurrences of such signals. Their occurrence
indicates very fast variations of radiation from radon at the
point of measurement. The peak times, within the diurnal
24-h cycle of SDR signals occur preferentially at an interval
of 14–16 h (UT+2). Spectral analysis indicates: (a) A diur-
nal periodicity composed of a primary 24-h and a secondary
12-h periodicity, which are attributed to the solar tide con-
stituents S1 and S2. Tidal constituents indicative for grav-
ity tide (O1, M2) are lacking; (b) An annual periodicity. A
compound relation among the diurnal and annual periodicity
is indicated by: (a) Continuous Wavelet Transform (CWT)
analysis shows an overall annual structure with a modula-
tion of the S1 and S2 periodicities; (b) Moving-time-window
Fourier spectral analysis showing that the amplitudes of S1
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and S2 vary in an annual pattern, with relatively high values
in summer. The phase of S1, S2 and S3 shows a system-
atic multi-year variation. It is suggested that the significant
signatures of the periodic phenomena and their modulations
reflect a direct link with the solar radiation tide.

1 Introduction

Radon (222Rn), being a radioactive inert gas formed by dis-
integration from226Ra, is a unique trace gas component in
the natural environment. It occurs at varying concentrations
in geological environments, mostly unsupported by radium,
and very often shows large, complex and systematic tempo-
ral variations. These features of variation are supposed to re-
flect natural processes in subsurface systems. The suggested
drivers and influences include primarily: (a) geo-mechanical
processes acting on the rate of release of radon from the solid
substrate into the fluid phase; and/or influences on the level
of radon in the fluid phase – either via (b) mechanical stress
and strain on the surrounding rock system, or (c) above sur-
face atmospheric influences on the transfer of radon in geo-
gas1, in the subsurface environment; (d) interaction and mass
transfer with above surface atmospheric environment; (e) ad-
sorption and desorption processes. One of the important and
frequent motivations for the investigation, of its temporal
variation in the geological environment, is its potential use as
a proxy of active subtle geodynamic processes, mainly seis-
mogenic and volcanic.

It is often assumed that the temporal patterns of radon in
the geogas phase are due to processes affecting its exhalation
from the country rock and/or gas transfer processes in the
complex consisting of rock porosity and subsurface air space.

1Geogas = gaseous phase in the unsaturated zone above the
groundwater level, sometimes incorrectly referred to as “soil air”
or “soil gas”.
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Environmental influences, particularly atmospheric pressure
and temperature, have been proposed for the origin of the
periodic signals observed in radon time series (Shapiro et al.,
1985; Ball et al., 1991; Pinault and Baubron, 1997; Finkel-
stein et al., 2006). However, other studies (Aumento, 2002;
Groves-Kirby et al., 2006; Crocket et al., 2006; Weinlich et
al., 2006) indicate that a consistent meteorological influence
cannot be identified as giving rise to variability in radon time
series, and suggest gravitational tides as an influencing fac-
tor on radon variability, since both earth tides and ocean tidal
loading may drive periodic radon exhalation via crustal ex-
pansion/compression and geophysically driven groundwater
level variations.

The application of stress to rocks is thought to enhance the
exhalation of radon from the solid mineral phase, rendering
radon a potential sensitive tracer of geodynamic processes in
the upper crust. Transport of radon in soil and water has been
investigated as a tool for monitoring volcanic activity (e.g.
Cigolini et al., 2001, 2009; Burton et al., 2004; Alparone et
al., 2005; Imm̀e et al., 2006). The proposition that radon
may serve as a useful proxy for seismic activity has been re-
peatedly raised (e.g. Monin and Seidel, 1992; Segovia et al.,
1995; Toutain and Baubron, 1999; Hartmann and Levi, 2005,
and references therein). Trique et al. (1999), using measure-
ments in a tunnel within massive gneiss, associated multi-
day Rn bursts with transient deformation due to loading and
unloading of a local water reservoir. Despite the presumed
advantages of radon as a geophysical proxy, the utilization
of radon in geodynamics has been hampered by the complex
patterns of the measured signals (for a recent review see Ci-
cerone, 2009).

So far establishing the geodynamic nature of such signa-
tures and signals in radon time series relies on the negation of
atmospheric influence, analysing radon signatures in the ge-
ological, spatial, time and frequency domains, and primarily
by establishing a correlation with geophysical phenomena,
and specifically the correlation to earthquakes. In general,
the understanding of the nature and the processes driving the
formation of radon signals in subsurface geogas is uncertain
and disputed. The diversity of the observations, the complex-
ity of the phenomena and the span of the suggested mecha-
nisms render the overall picture as unresolved, hampering
utilization of radon as a significant proxy of geodynamic pro-
cesses.

The monitoring of Rn has been performed since 1995 in
the frame of the Israel Geophysical Radon Project (IGRnP)
in upper crustal rock systems from the Dead Sea to the Gulf
of Aqaba. Several signal types are recognized, recurring in
time and at different stations, ranging from multi-year to sub-
diurnal scales which are periodic and non-periodic (Steinitz
et al., 1992, 1996, 1999, 2007). Following the prevailing ap-
proaches and models it was attempted to determine the po-
tential of non-periodic signals as a proxy of active seismi-
cally related geodynamics (Steinitz et al., 2003; Begin and
Steinitz, 2005). Further effort to advance along this track

did not result in progress, and on the other hand it became
clear that an overall understanding of the unique behaviour
of radon was required, and specifically the driver(s) of the as-
sociated periodic signals. Barbosa et al. (2007) demonstrated
that radon time series exhibit non-stationary features in both
mean and variance and clear nonlinear characteristics. De-
tailed and advanced geophysical analysis of the radon phe-
nomena at two key sites (Steinitz et al., 2007; Steinitz and Pi-
atibratova, 2010) demonstrated that: (a) the large scale of rel-
ative variation of the superimposed signals and the temporal
structure of the data is characteristic (unique) for radon time
series in the subsurface; (b) the periodic and non-periodic
patterns in radon time series display compound patterns of
variation spanning multi-years to several hours; (c) local at-
mospheric influences cannot explain the observed patterns,
and (d) the signals cannot be explained in term of known lo-
cal active geodynamics. The outcome of the results from the
field sites in Israel indicate that unrecognized dynamic pro-
cesses are driving the radon signal in the geogas in the sub-
surface to a depth of about 100 m. The source of the radon is
due to its release from the country rock. It is suggested that
the significant S1 and S2 tidal signatures of the daily radon
(DR) signal, and their variations and modulations, are related
to the rotation of the Earth around its axis and around the sun.
This indicates a direct link between a component in the solar
irradiance (= solar radiation tide) as a driver of the periodic
radon signals.

This contribution describes and examines the temporal
patterns, at a scale of hours to years, of the radon signal at
the Roded site, Southern Arava. The analysis of the temporal
patterns combines: (i) qualitative description of the occur-
rences; (ii) application of time series analysis and signal pro-
cessing approaches to long (multi-year) and high-resolution
(< 1 h) radon time series for the extraction and description
of the signal patterns; and (iii) comparative analysis of envi-
ronmental and eventual geophysical influences on the radon
time series.

2 Geographic and geological setting

The Roded site (Israel Grid 142350/898000; elevation
285 m) is located in the Roded massif, southern Arava, on
a block of Precambrian basement (Garfunkel et al., 2000),
tectonically uplifted along the western margin of the south-
ern segment of the Dead Sea Transform (DST; Fig. 1).
The Roded Massif is influenced by an arid climate (<

50 mm/year) and the whole area is a rock desert devoid of
soil cover.

The local lithology is gneiss and schist intruded by rhy-
olitic and medium to basic dikes, all belonging to the Pre-
cambrian basement. Local metallic mineralization (includ-
ing low U mineralization) was prospected in the late 1980s
(Bogoch et al., 1990), and a prospecting drill hole was placed
at the site (Shirav and Bogosh, 1995). The borehole, dipping
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Figure 1: Location map of arrays of radon monitoring sites along the southern sector of the Dead Sea 
Transform (DST), separating the Sinai subplate and the Arabian plate.  

A –  Radon monitoring at the NW shore of the Dead Sea 
B –  Radon monitoring at Gavnunim (GAV), Makhtesh Ramon,  
C –  Southern Arava monitoring array: Eilat Granite (ELTGR) sites, Bloch Geophysical 

Observatory (BGO) in tunnel at Amram, and the RODED site  
D –  The RODED site – detailed cross section and monitoring borehole. An alpha 

detector is inserted into the bottom (9 meter) of the PVC casing. The PVC pipe is 
blocked at the top to minimize exchange with the atmosphere. 

Fig. 1. Location map of arrays of radon monitoring sites along
the southern sector of the Dead Sea Transform (DST), separating
the Sinai subplate and the Arabian plate.(A) Radon monitoring
at the NW shore of the Dead Sea(B) Radon monitoring at Gav-
nunim (GAV), Makhtesh Ramon,(C) Southern Arava monitoring
array: Eilat Granite (ELTGR) sites, Bloch Geophysical Observatory
(BGO) in tunnel at Amram, and the RODED site(D) The RODED
site - detailed cross-section and monitoring borehole. An alpha de-
tector is inserted into the bottom (9 m) of the PVC casing. The
PVC pipe is blocked at the top to minimize exchange with the at-
mosphere.

70◦ and 51–56 m deep, cuts mainly gneiss and some basic
dikes. Presently the hole is blocked (rock fall) at a depth of
9 m. A PVC pipe (3′′) is introduced as a casing to this depth
and the radon sensor is lowered to its end. The PVC pipe is
blocked at its upper end to inhibit exchange of air in the pipe
with the atmosphere.

Initial monitoring of radon in the Southern Arava at the
ELTGR and RODED sites (Fig. 1c) indicated temporal vari-
ations of radon in the Precambrian basement rocks (Shirav
et al., 1999). Monitoring using high-time resolution mea-
surements in this scenario is also performed at three loca-
tions covering a sector of around 20 km along the western
margin of the Arava valley – the Roded, Amram and Elat
Granite (ELTGR) sites (Fig 1). The phenomena at ELTGR
are described in detail by Steinitz at al. (2007) and Bar-
bosa et al. (2007) and initial results from Amram are de-
scribed by Barobsa et al. (2009). The time series from Roded
site, located between these sites, exhibits a temporal pattern
which differs from both latter sites. Preliminary monitoring
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Figure 3: Time series of radon during 11-years at the Roded site showing the overall variation pattern. 
Intervals of very low level alternate with times of highly varying signals composed of very strong 
(SDR) signals. A weak annual modulation is superimposed on this pattern. 
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Fig. 2. Overview of the span of the recorded data and the imple-
mentation of the different sensors.

Table 1. Sensors used for radon monitoring at Roded site.

Sensor S/N
Installed

Date Serial day

Alpha Nuclear AM-611 #50 4 Feb 1999 2592
Alpha Nuclear AM-611 #49 7 Jan 2003 4024
Barasol BT45 #018 11 Nov 2004 4698

of radon utilizing the SSNTD technology (integral measure-
ments lasting from a week up to one month; Shirav et al.,
1999) already indicated the temporal variation of radon level
at the shallow depth of 50 cm at the Roded site.

3 Methods

Detection of radon (=222Rn) at the Roded site is performed
with an alpha detector which was replaced during the moni-
toring (Table 1; Fig. 2). Monitoring was initiated with an al-
pha detector (Alphameter 611; AlphaNuclear Inc., Canada)
based on a 400 mm2 silicon junction diode, immersed in a
sensing volume open to the geogas, and equipped with an in-
tegral datalogger. Later measurements (since 11 November
2004) were performed with an alpha Barasol BT45 detec-
tor (400 mm2 Si diode; Algade Inc., France), connected to
a datalogger (CR10; Campbell Inc.). In both types of in-
struments the detector is protected from the environment by
a thin, aluminized Mylar anti-thoron (=220Rn) membrane.
Radon enters the sensing volume, of about 50 cc, by diffu-
sion. Alpha radiation impulses are recorded (as counts) ev-
ery 15-min. The sensitivity of the instruments is in the order
of 50 Bq/m3 per impulse/hour. Results of temporal variation
in ensuing figures are shown on a decimal-day scale (Days
since 1 January 1992).

www.solid-earth.net/1/99/2010/ Solid Earth, 1, 99–109, 2010
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Figure 3: Time series of radon during 11-years at the Roded site showing the overall variation pattern. 
Intervals of very low level alternate with times of highly varying signals composed of very strong 
(SDR) signals. A weak annual modulation is superimposed on this pattern. 
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Fig. 3. Time series of radon during 11-years at the Roded site show-
ing the overall variation pattern. Intervals of very low level alternate
with times of highly varying signals composed of very strong (SDR)
signals. A weak annual modulation is superimposed on this pattern.

4 Results

A visual inspection of the radon signal measured at the depth
of 9 m (Fig. 3) exhibits a recurring temporal variation pattern
dominated by intense and very fast relative variations and
signals. The span of radon variations is from low background
levels (0–5 counts per 15 min) up to hundreds and more than
a thousand counts per 15 min. This variation pattern has been
consistent over more than ten years, and is independent of the
specific sensor utilized. Part of the overall irregular appear-
ance is due in part to time intervals, lasting from single and
several days, and up to tens of days, where a very low signal
level is encountered, which is at or below the threshold of the
sensor sensitivity (see Fig. 5). These low level intervals inter-
change with periods where the overall radon level is varying
intensely and is extremely high.

Detailed inspection shows that this overall irregular ap-
pearing pattern contains systematic temporal variation types
spanning from parts of a day to multi-years. These con-
sist of: (a) Long term annual (and semi annual) variations;
(b) Medium term multi day variations; and (c) Diurnal and
sub-diurnal radon variations. These different types are ob-
served mainly in the time domain and also in the frequency-
time domain.

A weak annual variation is evident in some years (Fig. 3).
The annual radon (AR) signal is clearly shown in a five year
detail using daily averages (Fig. 4), manifested mainly as a
superposition on the upper edge of the envelope of the in-
tense variation. Compared with the lowermost baseline lev-
els this variation is actually very large. Moreover, a semi-
annual constituent is also indicated in some years (2006,
2008; Fig. 4). These annual and semiannual variations are
rather obscured due to the intense daily variations discussed
below. The long time series (above 10 years) collected in
Roded also allows examining the multi-year periodic pattern
of the radon time series. Figure 5 shows the FFT spectra of
the whole dataset covering the years 1999–2009. An annual
periodicity is indicated in the spectrum.
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Figure 6: Times of very low background alternate with days with intense SDR signals. 
SDR signals occur in some days (Left). Multi days (MD) signals are formed by groups of 
SDR signals occurring on consecutive days (Right). 

Fig. 5. FFT spectra for an 11-year interval at Roded site. The peak
of 0.0028093 cycles per day is a frequency corresponding to the
annual periodicity (1/365 = 0.0027397260, indicated as a vertical
line).

Non-periodic multi-day (MD) signals are described and
investigated from radon time series from the ELTR (Fig. 1c;
Steinitz et al., 2007) and (Fig. 1b; Steinitz and Piatibratova,
2010). At Roded MD signals occur as groups of sub-daily
signals occurring in a train of consecutive days (Fig. 6).

The daily radon (DR) signal at ELTGR and Gavnunim
sites (op. cit.) is a significant component of the variations
and has basically a semi-sinusoidal form. In Roded the DR
signal is the dominant component of the variation. At this
site the daily signal is developed only in a part of the day, and

Solid Earth, 1, 99–109, 2010 www.solid-earth.net/1/99/2010/



G. Steinitz and O. Piatibratova: Radon signals at the Roded site, Southern Israel 103

 17

 590 
 591 
 592 
 593 
 594 
 595 
 596 
 597 
 598 
 599 
 600 
 601 
 602 
 603 
 604 
 605 
 606 
 607 
 608 
 609 
 610 
 611 
 612 
 613 
 614 
 615 
 616 
 617 
 618 
 619 
 620 
 621 
 622 
 623 
 624 
 625 
 626 
 627 
 628 
 629 
 630 
 631 
 632 
 633 
 634 

0.0028093

Frequency (cycles per day)

0.000 .005 .010 .015 .020

Am
pl

itu
de

0

2

4

6

8

10

12

14

16

Figure 5: FFT spectra for an 11-year interval at Roded site. The peak of 0.0028093 cycles 
per day is a frequency corresponding to the annual periodicity (1/365=0.0027397260, 
indicated as a vertical line).  

Day since 1.1.1992
4575 4580 4585 4590 4595 4600

C
ou

nt
s

0

200

400

600

800

1000

Day since 1.1.1992
6080 6085 6090 6095 6100

C
ou

nt
s

0

200

400

600

800

1000

1200

Figure 6: Times of very low background alternate with days with intense SDR signals. 
SDR signals occur in some days (Left). Multi days (MD) signals are formed by groups of 
SDR signals occurring on consecutive days (Right). 

Fig. 6. Times of very low background alternate with days of intense SDR signals. SDR signals occur on some days (left). Multi days (MD)
signals are formed by groups of SDR signals occurring on consecutive days (right).

 18

 635 
 636 
 637 
 638 
 639 
 640 
 641 
 642 
 643 
 644 
 645 
 646 
 647 
 648 
 649 
 650 
 651 
 652 
 653 
 654 
 655 
 656 
 657 
 658 
 659 
 660 
 661 
 662 
 663 
 664 
 665 
 666 
 667 
 668 
 669 
 670 
 671 
 672 
 673 
 674 
 675 
 676 
 677 
 678 
 679 
 680 

[Type a quote from the 
document or the summary of an 

interesting point. You can 
position the text box anywhere 
in the document. Use the Text 

Box Tools tab to change the 
formatting of the pull quote text 

box.] 

Days since 1.1.92
6310 6330

co
un

ts
 / 

15
 m

in

0

200

400

600

800

1000

Days since 1.1.92
3510 3520 3530

co
un

ts
 / 

15
 m

in

0

200

400

600

800

1000

1200

1400

1600

1800

Figure 7: Time intervals showing isolated and grouped SDR signals with 
intervening days without any signal (Left). In some cases two peaks occur within a 
day (Right). 

810 events

Hour

0 2 4 6 8 10 12 14 16 18 20 22 24

co
un

t

0

30

60

90

120

150

495 events
Amplitude<500

Hour
0 2 4 6 8 10 12 14 16 18 20 22 24

co
un

t

0

20

40

60

80

100

315 events
Amplitude >=500

Hour
0 2 4 6 8 10 12 14 16 18 20 22 24

C
ou

nt

0

10

20

30

40

50

60

70

Figure 8: Distribution of peak time of SDR signals within the 24-hour diurnal 
cycle (Top). SDR peaks tend to occur between 15 and 16 hours (UT+2). The 
pattern is the same for SDR signals with low and high amplitudes (Bottom). 

Fig. 7. Time intervals showing isolated and grouped SDR signals with intervening days without any signal (left). In some cases two peaks
occur within a day (right).

its form is actually highly non-sinusoidal. Such signals have
been termed as Sub Diurnal radon (SDR) signals (Steinitz
and Piatibratova, 2010). They occur some days as groups of
SDR signals (Fig. 6) or as single and isolated days (Fig. 7).
The features of the SDR signal at Roded are:

– Very fast increase of several hours from background
level to a sharp peak that typically lasts less than one
hour (generally only 15 min), followed by a similar fast
decrease. The whole time interval from initiation to ter-
mination of the SDR signal is generally from 6 to 12 h.
The amplitudes of daily peak of the SDR signals vary
from several tens of counts to more than one thousand
counts per 15-min. Visual inspection of the time se-
ries indicates that SDR signal tends to occur at specific
hours within a day, indicating a 24-h period.

– Generally one SDR peak occurs in a day. Infrequently
a double SDR signal occurs within a single day (Fig. 7,
Right). This is an indication for a 12-h periodic cycle,
in addition to the primary 24-h cycle (see below).

For further examination of SDR signals the time of 810 peaks
above 100 counts were extracted from the measured time se-
ries. This allows analysis of timing of the peak-time within
the 24-h daily cycle, as shown in Fig. 8 top. The SDR ex-
treme events, which do not occur every day, exhibit a clear
preference to occur between 15h00–16h00 (UT+2), and pos-
sibly also around 03h00–04h00. This pronounced timing
within the daily cycle is the same for SDR signals of low
and high amplitude (Fig. 8 bottom). In both cases a similar
distribution of peak time occurs, indicating that there is no
relation between peak-time and their intensity.

The peak shape of SDR signals above 100 counts/15-min
was investigated. More than 64% of the peaks are charac-
terised by a decreasing flank which is steeper than the rising
flank (Fig. 9a). This asymmetry is accentuated when taking
into account only SDR signals of higher amplitude (Fig. 9b).
The intense variation in the SDR signal, reflected in the very
fast increase followed immediately by a similar fast decrease
is further analysed in Fig. 10, showing three typical strong
SDR signals with a relatively faster decreasing limb. The

www.solid-earth.net/1/99/2010/ Solid Earth, 1, 99–109, 2010
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Fig. 8. Distribution of peak time of SDR signals within the 24-h diurnal cycle (top). SDR peaks tend to occur between 15h00 and 16h:00
(UT+2). The pattern is the same for SDR signals with low and high amplitudes (bottom).
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Fig. 9. Peak symmetry distribution (left) indicating the overall faster change of the decreasing limb. The peak symmetry is calculated as
the difference of width at half peak height between a decreasing flank symmetric to the rising flank and the actually decreasing flank (see
Fig. 10). This incidence of asymmetry is emphasized when considering the relatively intense peaks (right).

decreasing limb was modified by adding a correction based
on the radioactive decay of radon from peak-time (indicated).
As shown, correcting for the decay of radon does not allevi-
ate this asymmetry.

The diurnal periodicity is further examined using spectral
analysis (FFT). Using a long time series at 15-min resolution
clearly resolves three periodicities (Fig. 11) at 1-, 2- and 3-
cycles per day (CPD). These primary periodic constituents
reflect the S1 (24 h), S2 (12 h) and S3 (8 h) tidal frequencies
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Fig. 10. Examples of intense asymmetric sub-diurnal radon (SDR) signals, having a steeper declining limb. Accounting for the radioactive
decay of radon from peak time does not correct the asymmetry (see text).
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Fig. 11. FFT spectrum of a long (11-year) interval at Roded site
showing frequencies of 1-, 2- and 3 cycles per day corresponding to
the diurnal S1, S2 and S3 periodicities. Sampling rate is 15 min and
data gaps are filled by linear interpolation.

(Wilhelm et al., 1997). The diurnal tidal constituents typical
for gravity O1 and M2 are absent in the spectra of Roded site.

Relations among the different signals, as compounded
phenomena, are highlighted by applying Continuous Wavelet
Transform to the long time series. The result in Fig. 12 shows
a clear annual structure, strongly related to the 1-CPD fre-

quency and also to the 2-CPD. Furthermore, a semi-annual
pattern occurs, the relative intensity of which varies among
the years. At the diurnal scale, the amplitudes of the daily
signal, and possibly a semi-daily constituent are accentuated
as a discontinuous horizontal band.

The time series of radon at Roded is clearly non-stationary,
indicated by the fact that the mean value changes consider-
ably with time, a situation also encountered in other radon
time series (Barbosa et al., 2007). This sets known limita-
tions on the application of Fourier spectral analysis in the
combined frequency and time domain to such time series.
Thus, further insight on compounded phenomena is gained
by addressing a series of shorter time windows and evaluat-
ing the spectrum relative to the specific time interval. There-
fore, a moving-time-window Fourier spectral analysis is ap-
plied to estimate the “local in time” spectrum, as applied by
Steinitz et al. (2007) and Steinitz and Piatibratova (2010).
The amplitudes of the cyclic pattern are extracted from FFT
calculated per 512-h long consecutive intervals (2048 time
points = 211) and plotted relative to the centre of each in-
terval. The resulting time series of the long-term temporal
variation of the amplitudes of the daily cyclic constituents
is shown in Fig. 13, and for the phase in Fig. 14. The re-
sulting time series exhibits a concordant temporal variation
of the amplitude of the diurnal (S1) and semidiurnal (S2)
and S3 constituents. All three constituents vary in an an-
nual pattern with maxima in summer, which is in accordance
with the result of the CWT analysis (Fig. 12). A gradual
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Fig. 12. Continuous Wavelet spectrum of 15-min data during 11 years (1999–2009, annual divisions are shown). Data gaps are filled by
linear interpolation. The wavelet model used is Morlet with adjustable parameter = 20.
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Fig. 13. The temporal variation in the radon signal of the ampli-
tudes of the daily periodic components S1, S2 and S3, is showing:
(a) concordance among the sensors of the varying amplitudes and
(b) an annual modulation.

long-term (multi-year) variation is exhibited in the corre-
sponding time series of the phase of the three periodic con-
stituents. These parallel trends are clearer from 2003 on-
wards (probably related to improved continuity of the sam-
pling – compare Fig. 2) and are most clearly depicted in the
pattern of S2.
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of the daily periodic components S1, S2 and S3, showing a similar
linear multi-year trend, clearly evident in the last seven years.

5 Discussion

The temporal variation of radon in the geological subsur-
face of southern Israel was recently evaluated in detail at
the Elat Granite (ELTGR; Steinitz et al., 2007) and at Gav-
nunim (GAV; Steinitz and Piatibratova, 2010). The Roded
site, some 17 km north of the ELTGR (Fig. 1), is located
between these sites. A mutual evaluation of the results is
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justified as they: (a) Originate from the same geographic and
climatic zone, (b) Measurements were performed depths of
up to 100 m in massive magmatic rocks, and (d) Are from
the unsaturated zone and at a considerable level above a lo-
cal water table.

Instrumental effects to explain the phenomena are ruled
out based on (a) change of sensors and (b) the systematic
nature of the variation patterns, especially in the frequency
domain.

The eventual influence of atmospheric parameters – pri-
marily barometric pressure and ambient temperature on the
temporal variation – was dealt with separately and in detail
for the case of the ELTGR and GAV sites, and similar argu-
ments and conclusions are applicable for the Roded site. A
priori, within the specific geographic and geologic regime,
there is no reason to assume that the local geogas, com-
posed basically of air, is influenced at depth by advection
and transport phenomena. In the massive rock environment
atmospheric variations probably leads only to minor local
fluctuations at the very shallow level due to above-surface
atmospheric variations (mainly pressure). Furthermore, no
indications exist as to active geogas flow in this region. Sev-
eral additional criteria can be raised in the case of the Roded
site:

1. Annual variation which is a prominent component in at-
mospheric variation is highly obscured in the measured
signal at Roded.

2. It is impossible to account for the SDR signals, the pri-
mary component of the variation, as driven by atmo-
spheric variations.

3. A systematic multi-year variation of the phase of the
diurnal periodicities cannot be due to an atmospheric
variation.

Thus, it is concluded that atmospheric parameters cannot be
considered as the drivers of the signals at these subsurface
geological environments.

A similar argument is raised to negate the influence of ac-
tive geodynamic processes. The site is indeed located in the
marginal zone of the DST but, as far as we know, it is not
affected by active geodynamic processes. If one could at all
raise the possibility that the short-term SDR signals are re-
lated to seismicity. This is discarded on the grounds that there
is no local seismic activity of such a pattern and that seismic
events are non-periodic at the diurnal scale. Furthermore, the
lack in the daily cycle of frequencies indicative for gravity
tide (O1, M2) excludes such a mechanically generated influ-
ence, either via the solid earth or even via the geogas system.
All this negates mechanical processes as drivers of a varying
emanation of radon from the solid.

The high variability encountered at Roded is due to the
predominance of the SDR signal. Major questions are raised
when trying to evaluate the nature of the driver of SDR sig-
nals at Roded. The SDR signals are recorded by an alpha

detector the sensing volume of which is in the order of 50 cc.
Radon entres the sensing volume by diffusion from the im-
mediate vicinity – from the geogas around the bottom end
of the PVC pipe in the case of this site. In such a scenario
the concentration of radon in the sensing volume reflects the
concentration in the adjacent volume of geogas. The local
background due to emanation from rocks in the vicinity of
the sensor is probably represented by the low level readings
(in the order of 50 Bq/m3) during longer intervals of up to
several tens of days. Initiating the extremely fast rise of the
signal is incompatible with diffusion rates and must mean a
flow of radon rich geogas from another zone, to the immedi-
ate vicinity of the sensor, which is followed by a similar flow
of geogas with no radon – where the (interpreted) concentra-
tion differences attain several orders of magnitude. Two end
member patterns of flow can be thought off: a continuous
flow of a carrier geogas with highly varying concentrations
of radon or, alternatively, a discontinuous flow alternating
between radon rich and radon deficient concentration. Flow
patterns with such variability are highly improbable on the
following grounds:

1. The flow patterns which always generate an extremely
short peak time lasting an hour or less are highly im-
probable.

2. If such flow patterns exist they are not limited to the site
(borehole) alone and must be of an extensive scale. No
geological or geo-environmental evidence is known to
support this.

3. The highly significant daily periodicity of the supposed
flow events, the timing of which is determined by an
external above surface driver.

Negating a flow regime involving very regular temporal fea-
tures raises the possibility that the SDR signal does not reflect
actual variation in the concentration of radon in the adjacent
geogas but rather changes in the radiation from radon within
the sensing volume. This is further discussed below.

SDR signals have also been documented from the GAV
site, where they are recoded (by a similar detector) at a depth
of 85 m. In both Roded and GAV sites the signals occur in
some days and reflect sub-daily intense variations. A cen-
tral property common for both occurrences is their unam-
biguous occurrence within the 24-h cycle. A major differ-
ence is that at GAV a bi-modal daily distribution is observed
while at Roded a uni-modal pattern at observed. Subsurface
geophysical periodic drivers are not known. At both sites
such daily patterns must be reflecting an above surface peri-
odic geophysical driver possessing typical tidal frequencies.
This conclusion is supported by the spectral analysis which
demonstrates that the involved periodicities are the tidal con-
stituents S1, S2 and S3. If such a common feature is at hand
then the differences in occurrence and timing pattern among
the two sites may be attributed to local, i.e., geological, in-
teractions.
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In terms of fundamental properties the signal types and
phenomena at Roded are in accordance with variation pat-
terns found at the other locations in Israel. The source of the
radon in the geogas is from the local country rock. In general
the drivers so far suggested for explaining such radon signals
are: (a) A process acting on the rock and affecting the release
(emanation and exhalation) of radon from the solid and its
transfer into the gas phase; (b) Processes affecting the level
of radon in the gas phase, such as mass transfer and trans-
port, mixing, dilution and adsorption. The above mentioned
considerations suggest that such processes are incompatible
for the generation of the described radon signals. On the
other hand, the patterns of temporal variation of radon place
them within the realm of features observed in geophysical
time series. Having excluded both subsurface geodynamic
processes and above surface atmospheric influences a differ-
ent option is considered to explain features in the temporal
variation of radon at Roded. In the case of the ELTGR and
GAV sites (op. cit.), it was suggested that the generation of
the periodic phenomena in radon time series is linked to an
interaction with a component in solar radiation tide. This
suggestion is further substantiated for the signal patterns at
Roded, using similar criteria based on the characteristics of
the radon time series in the frequency and frequency-time
domains:

– The peak times of SDR signal clearly indicate a diurnal
periodicity

– Predominance of the S1, S2 and S3 periodicities, and

– The lack of diurnal periodicities indicative for gravity
tidal interaction (O1, M2).

– Generation of diurnal periodicities in the radon system
is related to the rotation of Earth around its axis

– The amplitude of the diurnal frequencies S1, S2 and S3
are co-modulated in an annual pattern, with high am-
plitudes in summer. Generation of this periodicity, as
a compounded feature in the frequency-time domain, is
related to the rotation of Earth around the sun.

These features at Roded are common to similar features at
ELTGR and GAV. In line with the interpretation suggested
for the latter cases it is, therefore, concluded that this is also
in the case of the Roded site.
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