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Bone material properties and mineral matrix contributions
to fracture risk or age in women and men
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Abstract

The strength of bone is related to its mass and geometry, but also to the physical properties of the tissue itself. Bone tissue
is composed primarily of collagen and mineral, each of which changes with age, and each of which can be affected by
pharmaceutical treatments designed to prevent or reverse the loss of bone. With age, there is a decrease in collagen content,
which is associated with an increased mean tissue mineralization, but there is no difference in cross-link levels compared to
younger adult bone. In osteoporosis, however, there is a decrease in the reducible collagen cross-links without an alteration in
collagen concentration; this would tend to increase bone fragility. In older people, the mean tissue age (MTA) increases, causing
the tissue to become more highly mineralized. The increased bone turnover following menopause may reduce global MTA, and
would reduce overall tissue mineralization. Bone strength and toughness are positively correlated to bone mineral content, but
when bone tissue becomes too highly mineralized, it tends to become brittle. This reduces its toughness, and makes it more
prone to fracture from repeated loads and accumulated microcracking. Most approved pharmaceutical treatments for
osteoporosis suppress bone turnover, increasing MTA and mineralization of the tissue. This might have either or both of two
effects. It could increase bone volume from refilling of the remodeling space, reducing the risk for fracture. Alternatively, the
increased MTA could increase the propensity to develop microcracks, and reduce the toughness of bone, making it more likely
to fracture. There may also be changes in the morphology of the mineral crystals that could affect the homogeneity of the tissue
and impact mechanical properties. These changes might have large positive or negative effects on fracture incidence, and
could contribute to the paradox that both large and small increases in density have about the same effect on fracture risk. Bone
mineral density measured by DXA does not discriminate between density differences caused by volume changes, and those
caused by changes in mineralization. As such, it does not entirely reflect material property changes in aging or osteoporotic bone
that contribute to bone’s risk for fracture.
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The strength of bone, and its ability to resist fracture, is
dependent on its mass and geometry, but also on intrinsic
properties of the bone tissue itself. It is generally recognized,
based on clinical observation, that pathologies that affect the
material properties of the tissue, such as osteomalacia or
osteopetrosis, increase the risk of fracture. However, the role
that the material properties play to increase fracture risk varies
depending on compensatory mass and geometric changes.

Bone from older individuals demonstrates decreased
tensile plastic deformation (ie less energy in the post-yield
region before fracture)'?. This can perhaps be attributed to
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the slower bone turnover and increased mean tissue age of
older bone®, or to molecular changes in either the organic*”’
or the inorganic®!! bone matrix'2. The age-related reduction
in the ability of bone to absorb energy prior to failure is clinically
important in making osteoporotic bone more prone to
failure from any impact load, such as one resulting from a fall.
The loss of energy absorption capability, therefore, may be a
primary factor increasing the risk of fracture in older women
with low bone mass.

Bone tissue is composed primarily of collagen and mineral,
each of which changes with age to alter the material properties
of bone tissue. Although less well understood, microdamage
tends to accumulate with age' ", and this too may have an
effect on bone’s tissue properties and ultimate fracture risk.
The effects on bone material properties of each of these
three matrix components will be discussed separately.
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Changes in collagen with age

The fatigue strength'® and toughness"!? of bone decrease
with age. Collagen may be the primary toughening mechanism
in bone, having greater effects on bone toughness®, than on
strength or stiffness'. It has been shown in a mouse model
of osteogenesis imperfecta that collagen defects can reduce
the post-yield deformation of bone by 60%?. In studies
using a baboon model, the percentage of denatured collagen
compared to the total collagen content was significantly
related to failure energy and to the fracture toughness of the
tissue®. This means that collagen in bone is a primary arrestor
of cracks, inhibiting their growth to critical dimension. This
may be one explanation for the observation that aging has a
more profound effect on the plastic deformation of bone
than it has on elastic deformation®. It has been proposed
that the intramolecular cross-links are important to enhance
bone toughness, whereas the intermolecular bonds may be
less important to toughness®.

Studies on rat femora suggest that the decline in bone’s
mechanical properties with age may be dependent on the
stability of the collagen®?*. With age, there is a decrease in
collagen content™, which is associated with an increased
mean tissue mineralization, but there is no difference in
cross-link levels compared to younger adult bone**.
However, the stability of the cross-links may change with
age®? and this can have an effect on the fragility of the
bone tissue. In humans, the declines tend to be more marked
and more uniform in men than in women’.

In osteoporosis, there is a decrease in the reducible
collagen cross-links without an alteration in collagen
concentration’; this would tend to increase bone fragility*.

Changes in mineral with age

Older bone is more highly mineralized than younger bone,
accounting for the tendency of bone from older individuals
with higher material density to be weaker than that with lower
material density, independent of porosity or volume®%,
Reports using infrared spectrometry'®!! suggest that larger
crystals are present in the bone of older, osteoporotic women
and that this increased crystallinity itself could impair the
mechanical properties of the tissue. More highly mineralized
and more highly crystalline bone may permit earlier crack
initiation by decreasing the amount of plastic deformation
that can occur before ultimate failure. In older bone, increased
porosity contributes to the effects of hypermineralization in
that there is a smaller proportion of new, less mineralized
but more ductile bone. This increases the contribution of the
older hypermineralized tissue to bone’s mechanical properties
and reduces significantly the amount of energy the bone can
absorb on impact. The effects of mineralization and porosity
explain the observation that older bone has more damage
than younger bone'*'%* and that older bone is more
susceptible to damage at any given load. These relationships
explain the increased fragility of older bone because bone
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can sustain very little post-yield strain before fracture, ie it
becomes more brittle.

Changes in the morphology of the mineral crystal with age
may contribute to increasing brittleness. Although the size of
the apatite crystal itself may change very little®, the normally
elongated crystals may become more spherical in older,
osteoporotic women and men®. It has been hypothesized
that this can change the local stress distribution in the tissue
and alter its load-bearing mechanical properties®. The
precise effect of such changes in the mineral crystal on the
mechanical properties of bone, however, is not known.

Bone strength and toughness are positively correlated to
bone mineral content, but when bone tissue becomes too
highly mineralized, it tends to become brittle'. This reduces its
toughness, and makes it more prone to fracture from repeated
loads and accumulated microcracking. Most approved
pharmaceutical treatments for osteoporosis suppress bone
turnover, increasing the mean tissue age and mineralization
of the tissue. This might have either or both of two effects. It
could increase bone volume from refilling of the remodeling
space, reducing the risk for fracture. Alternatively, the
increased mean tissue age could increase the propensity to
develop microcracks, and reduce the toughness of bone,
making it more likely to fracture. There may also be changes
in the morphology of the mineral crystals that could affect
the homogeneity of the tissue and impact mechanical
properties®!. These changes might have large positive or
negative effects on fracture incidence, and could contribute
to the paradox that both large and small increases in density
have about the same effect on fracture risk.

Two recent reports, one in baboons® and one in post-
menopausal women® show that treatment with alendronate
will increase the tissue mineralization above that found in
osteopenic subjects, but does not restore it to pre-ovariectomy
or pre-menopausal levels. This suggests that alendronate will
not increase tissue mineralization to levels that are detrimental,
but will enhance the material properties of bone tissue
through modest increases in mineral content, contributing to
its efficacy in fracture reduction. Pharmaceutical treatments
that alter collagen or mineral chemistry, independently from
changes in content, could help to explain how the reduction
in fracture risk stemming from several drug treatments is largely
independent of the magnitude of bone mass increase.

Bone mineral density measured by DXA does not
discriminate between density differences as a function of
increased volume, or as a function of increased mineralization.
As such, it does not entirely reflect material property changes
in aging or osteoporotic bone that contribute to bone’s risk
for fracture.

Changes in microdamage with age

Microcracks accumulate approximately exponentially with
age in cortical bone of the femoral diaphysis™* and in
cancellous bone from the femoral head" and neck''®. Age
accounts for 70-80% of the variation in microcrack density in



these regions. Cracks accumulate more quickly in women than
in men after the age of 40 in the appendicular skeleton*** but
not in the axial skeleton™,

Bone from elderly donors accumulates microcracks at a far
greater rate than bone from younger donors®. In ex vivo
mechanical tests, cracks were initiated in specimens from
older women (mean age 72 * 6y) but not bone from younger
women (mean age 26 * 5y), even with the same decline in
elastic modulus in both groups®, perhaps because it is easier
to initiate new microdamage in older bone'. Cracks initiated
in bone from older women grow at a greater rate than those
in bone from younger donors®. This suggests that
microdamage accumulation in bone from elderly women
results from some inherent fragility in the tissue, rather than
from a failure to detect and repair damage. This fragility may
be one reason for the decreased fracture toughness'**® and
smaller post-yield plastic deformation'** that bone tissue can
tolerate before complete fracture in older men and women.

Damage accumulation has greater effects on bone’s
resistance to fracture (ie toughness) than on its strength'. The
numerical density of microcracks produced in vivo shows high
correlations with three measures of toughness: the critical
stress intensity factor, K, which is a measure of crack
initiation (1 = range: 49-55%); a measure of damage
accumulation preceding a macrocrack, the J-integral, (r* =
range: 67-83%); and a measure of energy required for crack
propagation (r* = 35-38%). Microdamage accumulation has
an effect on bone toughness that can be demonstrated both
from ex vivo mechanical loading studies, and from in vivo
studies using pharmaceutical agents to suppress damage
repair. Following suppression of remodeling, a 2-7 fold
increase in microdamage accumulation is associated with a
20% reduction of tissue toughness in the rib*’ and lumbar
vertebra®. Ex vivo studies show that microdamage
accumulation reduces fracture toughness in tension
significantly and may decrease fracture resistance***. This
could be another explanation for the decreased toughness of
bone that occurs with age'”*'. Between 35 and 90 years of age,
the energy required to initiate a crack in bone falls by 22%),
and the energy required to propagate a crack through bone is
reduced by nearly 50%"". During the same period, the number
of microcracks increases nearly 10-fold, whereas the average
crack length doubles*. This suggests that, under normal
circumstances of aging, cracks are kept below a critical size for
fracture.

Conclusion

In combination, these data seem to indicate that changes
in collagen structure and mean tissue age (mineralization)
underlie an age-associated reduction in bone toughness. The
increased damage that occurs with age may be a
consequence rather than a cause of the reduced toughness”’,
although increased levels of microdamage, in combination
with reduced repair and increased mean tissue age, can
decrease toughness further.
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