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Abstract

The orientation preserving conditions and approximation errors of a dual-

parametric bi-quadratic finite element method for the computation of both

radially symmetric and general nonsymmetric cavity solutions in nonlinear

elasticity are analyzed. The analytical results allow us to establish, based

on an error equi-distribution principle, an optimal meshing strategy for the

method in cavitation computation. Numerical results are in good agreement

with the analytical results.
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1 Introduction

Void formation on nonlinear elastic bodies under hydrostatic tension was observed

and analyzed through a defect model by Gent and Lindley [4]. Ball [2] established

a perfect model and studied a class of bifurcation problems in nonlinear elasticity,
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in which voids form in an intact body so that the total stored energy of the material

is minimized in a class of radially symmetric deformations. The work stimulated

an intensive study on various aspects of radially symmetric cavitations (see e.g.,

Sivaloganathan [15], Stuart [21], and a review paper by Horgan and Polignone [6]

among many others).

Müller and Spector [12] later developed a general existence theory in nonlinear

elasticity that allows for cavitation, which is not necessarily radially symmetric,

by adding a surface energy term. Sivaloganathan and Spector [17] deduced the

existence of hole creating deformations without the need for the surface energy

term under the assumption that the points (a finite number) at which the cavities

can form are prescribed. Optimal locations where cavities can arise are also studied

analytically [18, 19] and numerically [10].

Numerically computing cavities based on the perfect model of Ball is very

challenging, due to the so-called Lavrentiev phenomenon [7]. Though there are

numerical methods developed to overcome the Lavrentiev phenomenon in some

nonlinear elasticity problems [1, 3, 8, 13, 14], they do not seem to be powerful

enough for the cavitation problem. On the other hand, some numerical methods

(see e.g., [9, 10, 22]) have been successfully developed for cavitation computation

on general domains with single or multiple prescribed defects, based on the defect

model or the regularized perfect model [5, 15, 16]. In these models, one considers

to minimize the total elastic energy of the form

E(u) =

∫
Ωϱ

W (∇u(x))dx, (1.1)

in a set of admissible functions

U = {u ∈ W 1,p(Ωϱ;Rn) is one-to-one a.e. : u|Γ0 = u0, det∇u > 0 a.e.}, (1.2)

where Ωϱ = Ω \
∪K

i=1Bϱi(ai) ⊂ Rn (n = 2, 3) denotes the region occupied by an

elastic body in its reference configuration, Bϱi(ai) = {x ∈ Rn : |x−ai| < ϱi} are the
pre-existing defects of radii ϱi centered at ai, and where in (1.1) W : Mn×n

+ → R+

is the stored energy density function of the material, Mn×n
+ denotes the n × n

matrices with positive determinant, Γ0 is the boundary of Ω.
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The Euler-Lagrange equation of the minimization problem (1.1) is (see [9]):

div(DFW (∇u)) = 0, in Ωρ, (1.3)

DFW (x,∇u)ν = 0, on ∪K
i=1 ∂Bρi(ai), (1.4)

u(x) = u0(x), on Γ0. (1.5)

A typical class of the stored energy densities considered in the cavitation prob-

lem is the polyconvex isotropic functions of the form

W (F ) = ω|F |p + g(detF )

= ω(v21 + · · ·+ v2n)
p/2 + g(v1 · · · vn), ∀F ∈ Mn×n

+ , (1.6)

where ω > 0 is a material constant, p ∈ (n − 1, n), v1, . . . , vn are the singular

values of the deformation gradient F , and g : (0,∞) → (0,∞) is a C2, strictly

convex function satisfying

g(δ) → +∞ as δ → 0, and
g(δ)

δ
→ +∞ as δ → +∞. (1.7)

For the energy density of the form (1.6), one has:

DFW (∇u) = pω
∣∣∇u

∣∣p−2∇u+ g′(det∇u) adj∇uT. (1.8)

One of the main difficulties in the computation of the growth of voids is the

constraint of orientation preserving, i.e., det∇u > 0, for extremely large anisotrop-

ic finite element deformations. For the conforming piecewise affine finite element,

this requirement demands an unbearably large amount of degrees of freedom ([22]).

In [9, 10, 22], other finite element methods are proposed to overcome this difficulty,

and these methods have shown significant numerical success in the cavitation com-

putation. In particular, Su and Li [20] analyzed the iso-parametric quadratic finite

element method applied in [10], even though limited to the radially symmetric

cavitation solutions, the result, the first of its kind to our knowledge, nevertheless

quantifies the theoretical as well as practical advantages of the method.

In this paper, we will introduce and analyze a dual-parametric bi-quadratic

rectangular finite element method for the cavitation computation, including both

radially symmetric and general nonsymmetric voids’ growth, and establish a mesh-

ing strategy, which is optimal in the sense that the total degrees of freedom is
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minimized under certain mild constraints. It turns out that, for the cavitation

computation, the dual-parametric bi-quadratic rectangular finite element method

is definitely much more efficient than the iso-parametric quadratic triangular finite

element method, especially when the prescribed defects are very small. In fact,

in the radially symmetric case, the optimal mesh of the new method is essentially

solely determined by the approximation accuracy, while the orientation preserving

condition plays a leading role in the iso-parametric finite element method in the

vicinity of the void.

The structure of the paper is as follows. In § 2, we introduce the dual-parametric

bi-quadratic rectangular finite element. § 3 is devoted to deriving the orientation

preserving conditions on the mesh distributions. In § 4, we present some results on

the interpolation errors of the cavitation solutions. An optimal meshing strategy

is established in § 5. Numerical results are presented in § 6. The paper is ended

with some concluding remarks in § 7.

2 Dual-parametric bi-quadratic finite element

For simplicity, we restrict ourselves to a simplified problem with Ωϱ = B1(0)\Bϱ(0)

in R2. Let (T̂ , P̂ , Σ̂) be a standard bi-quadratic rectangular element as shown in

Figure 1(a) (here n = 2), where P̂ = Q2(T̂ ), Σ̂ = {p̂(âi), 0 ≤ i ≤ 8}. For a given set

of four points ai = (Ri cos θi, Ri sin θi), 0 ≤ i ≤ 3 satisfying R0 = R3 < R1 = R2,

θ0 = θ1 < θ2 = θ3, define FT : T̂ → R2 as
R = R0 +

x̂1 + 1

2
(R1 −R0),

θ = θ0 +
x̂2 + 1

2
(θ3 − θ0),

x1 = R cos θ, x2 = R sin θ.

(2.1)

It is easily seen that FT is a injection, thus T = FT (T̂ ) defines an element. Now

define the dual-parametric bi-quadratic finite element (T, PT ,ΣT ) as follows
T = FT (T̂ ),

PT = {p : T → R2 | p = p̂ ◦ F−1
T , p̂ ∈ P̂},

ΣT = {p(ai), ai = FT (âi), 0 ≤ i ≤ 8}.

(2.2)

4



x̂

ŷ
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Figure 1: The dual-parametric element.

3 On the orientation preserving conditions

Let J be a subdivision on Ωϵ0 = B1(0) \ Bϵ0(0) as Figure 2(a). A typical curved

element in a prescribed circular ring with inner radius ϵ and thickness τ is shown

in Figure 2(b). Let N be the number of the evenly spaced elements on each layer,

let ϵ and τ represent respectively the inner radius and the thickness of the circular

annulus as shown in Figure 2(b). Then, the dual-parametric bi-quadratic finite

element function space is given by

Xh := {uh ∈ C(Ω̄ϵ0) : uh|T ∈ PT , uh(x) = u0(x), ∀x ∈ Γ0},

where Γ0 = ∂B1(0).

We are concerned with orientation preserving of large expansion dominant finite

element deformations around a small prescribed void. Without loss of generality,

we restrict ourselves to the curved rectangular element as shown in Figure 2(b),
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Figure 2: The subdivision of the mesh.

for which FT can be simplified as
R = ϵ+

x̂1 + 1

2
τ,

θ =
π

N
x̂2,

x1 = R cos θ, x2 = R sin θ.

(3.1)

It is easily verified that det∇x = det ∂FT

∂x̂
= Rπτ

2N
> 0.

Let u be the cavitation solution, and let J be a given mesh (see Figure 2(a))

consisting of well defined curved rectangular elements. To have u be well resolved

by functions in the finite element function space defined on J , a necessary condition

is that the finite element interpolation function Πu(x) is an admissible function,

i.e., det∇Πu(x) > 0 on each of the curved rectangular element. We will investigate

in this section the conditions that ensure det∇Πu(x) > 0 for smooth deformations

u(x) = (u1(x), u2(x)) defined on Ωϵ0 . Since det∇Πu(x) · det∇x = det ∂Πu
∂x̂

, it

suffices to ensure det ∂Πu
∂x̂

> 0. For simplicity, we denote Ω(ϵ,τ) = {x : ϵ ≤ |x| ≤
ϵ+ τ}.

Theorem 3.1 Suppose x = (R cos θ, R sin θ), u(x) = (u1, u2) = (r cosϕ, r sinϕ),

where r = r(R, θ), ϕ = ϕ(R, θ) are smooth functions in the domain B1(0) \ {0}
satisfying det ∂u

∂x
≥ c > 0 and the derivatives ∂i+jr

∂Ri∂θj
, ∂i+jϕ

∂Riθj
, i+ j ≤ 4, are bounded,

then, there exists a positive constant τ0 = C1ϵ
1/2 and an integer N0 = C2ϵ

−1/2, such
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that det ∂Πu
∂x

> 0 on the circular annulus Ω(ϵ,τ) if τ ≤ τ0 and N ≥ N0, where C1,

C2 depend on c and ∥∂3ui

∂R3 ∥, ∥∂3ui

∂θ3
∥, ∥ ∂4ui

∂R3∂θ
∥, ∥ ∂4ui

∂R∂θ3
∥. Moreover, the error between

the Jacobi determinants of ∇u(x) and ∇Πu(x) is given by

det
∂Πu

∂x
(x) = det

∂u

∂x
(x) +

1

|x|
O(τ 2 +N−2). (3.2)

Proof. The dual-parametric bi-quadratic finite element interpolation function can

be written as

Πu(x) =
8∑

i=0

u(ai)p̂i(x̂), (3.3)

where x̂ = F−1
T (x). On the representative element given by (3.1), regarding ui(x)

as the function of R and θ, where x = (x1, x2) = (R cos θ, R sin θ), and Taylor

expanding ui(ak) at a8, we obtain

∂Πu

∂x̂
=

 A11 A12

A21 A22

 , (3.4)

where

A11 = j1x̂1x̂
2
2 +

1

2
b1x̂

2
2 + c1x̂1x̂2 + d1x̂1 + e1x̂2 + f1,

A12 = j1x̂
2
1x̂2 +

1

2
c1x̂

2
1 + b1x̂1x̂2 + e1x̂1 + g1x̂2 + h1,

A21 = j2x̂1x̂
2
2 +

1

2
b2x̂

2
2 + c2x̂1x̂2 + d2x̂1 + e2x̂2 + f2,

A22 = j2x̂
2
1x̂2 +

1

2
c2x̂

2
1 + b2x̂1x̂2 + e2x̂1 + g2x̂2 + h2,

with

j1 =
u1(a1) + u1(a2)− 2u1(a5)

2
+

u1(a0) + u1(a3)− 2u1(a7)

2
+ 2u1(a8)

− u1(a4)− u1(a6) =
π2

2N2

∂4u1

∂R2∂θ2
(a8)

τ 2

4
+O(τ 4N−2 + τ 2N−4),

b1 =
u1(a1) + u1(a2)− 2u1(a5)

2
− u1(a0) + u1(a3)− 2u1(a7)

2

=
π2

N2

∂3u1

∂R∂θ2
(a8)

τ

2
+O(τ 3N−2 + τN−4),
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c1 =
u1(a2) + u1(a3)− 2u1(a6)

2
− (u1(a0) + u1(a1)− 2u1(a4))

2

=
π

N

∂3u1

∂θ∂R2
(a8)(

τ

2
)2 +O(τ 4N−1 + τ 2N−3),

d1 = u1(a5) + u1(a7)− 2u1(a8) =
∂2u1

∂R2
(a8)(

τ

2
)2 +O(τ 4),

e1 =
u1(a2)− u1(a1)

4
− u1(a3)− u1(a0)

4

=
π

N

∂2u1

∂R∂θ
(a8)

τ

2
+O(τ 3N−1 + τN−3),

g1 = u1(a4) + u1(a6)− 2u1(a8) =
∂2u1

∂θ2
(a8)(

π

N
)2 +O(N−4),

f1 =
u1(a5)− u1(a7)

2
=

∂u1

∂R
(a8)

τ

2
+

1

3!

∂3u1

∂R3
(a8)(

τ

2
)3 +O(τ 5),

h1 =
u1(a6)− u1(a4)

2
=

∂u1

∂θ
(a8)

π

N
+

1

3!

∂3u1

∂θ3
(a8)(

π

N
)3 +O(N−5),

and j2, b2, · · · , h2 have the similar formulae as above with only u1 replaced by u2.

It follows that

A11 =
∂u1

∂R
(a8)

τ

2
+

∂2u1

∂R2
(a8)(

τ

2
)2x̂1 +

∂2u1

∂R∂θ
(a8)

τ

2

π

N
x̂2 +

∂3u1

∂R2∂θ
(a8)(

τ

2
)2

π

N
x̂1x̂2

+
1

2

∂3u1

∂R∂θ2
(a8)

τ

2
(
π

N
)2x̂2

2 +
1

2

∂4u1

∂R2∂θ2
(a8)(

τ

2
)2(

π

N
)2x̂1x̂

2
2 +O(τ 3 + τN−3)

=
τ

2

∂u1

∂R
(x) +O(τ 3 + τN−3), (3.5)

where x = FT (x̂). Similarly,

A12 =
∂u1

∂θ
(a8)

π

N
+

∂2u1

∂R∂θ
(a8)

τ

2

π

N
x̂1 +

∂2u1

∂θ2
(a8)(

π

N
)2x̂2 +

∂3u1

∂R∂θ2
τ

2
(
π

N
)2(a8)x̂1x̂2

+
1

2

∂3u1

∂R2∂θ
(a8)(

τ

2
)2

π

N
x̂2
1 +

1

2

∂4u1

∂R2∂θ2
(a8)(

τ

2
)2(

π

N
)2x̂2

1x̂2 +O(τ 3 + τN−3)

=
π

N

∂u1

∂θ
(x) +O(N−3 + τ 3N−1), (3.6)

A21 =
τ

2

∂u2

∂R
(x) +O(τ 3 + τN−3), (3.7)

A22 =
π

N

∂u2

∂θ
(x) +O(N−3 + τ 3N−1), (3.8)

where the constant in O(·) depends on ∥∂3ui

∂R3 ∥, ∥∂3ui

∂θ3
∥, ∥ ∂4ui

∂R3∂θ
∥, ∥ ∂4ui

∂R∂θ3
∥. Thus

det
∂Πu

∂x̂
(x̂1, x̂2) =

τ

2

π

N

(∂u1

∂R

∂u2

∂θ
− ∂u2

∂R

∂u1

∂θ

)∣∣∣
x
+O(τ 3N−1 + τN−3). (3.9)
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Noticing that R ≥ ϵ and

∂u1

∂R

∂u2

∂θ
− ∂u1

∂θ

∂u2

∂R
= R

(∂u1

∂x1

∂u2

∂x2

− ∂u1

∂x2

∂u2

∂x1

)
= R det

∂u

∂x
,

which yields the first part of the conclusion. (3.2) is a direct consequence of (3.9)

and the fact that det ∂x
∂x̂

= Rτ
2

π
N
. �

Remark 3.2 As a consequence of Theorem 3.1, we see that, for a general cavity

deformation, the interpolation function is orientation preserving on a mesh Ωϵ0 =
m∪
i=0

Ω(ϵi,τi), where ϵi+1 = ϵi + τi, which satisfies τi ≤ C1
√
ϵi and Ni ≥ C2ϵ

−1/2
i for

some constants C1 and C2. If restricted to a radially symmetric cavity deformation,

we may expect to have a more relaxed orientation preserving condition.

Theorem 3.3 For a radially symmetric deformation u(x) = r(R)
R

x, where r > 0

is an increasing convex function satisfying

4r(ϵ+ τ/2) ≥ 3r(ϵ) + r(ϵ+ τ), (3.10)

then the interpolation function Πu(x) preserves orientation on the circular ring

Ω(ϵ,τ). Moreover, if

0 < m ≤ det
∂u

∂x
(x) =

r(R)r′(R)

R
≤ M, (3.11)

where R = |x|, then

det
∂Πu

∂x
(x) = det

∂u

∂x
(x) +O(N−2) +

1

|x|
O(τ 2). (3.12)

Proof. For u(x) = r(R)
R

x, a direct but tedious calculation yields

Πu(x) = (X1, X2)
T = C(x̂1)

(
1− 2x̂2

2 sin
π

2N
, x̂2 sin

π

N

)T
, (3.13)

where

C(x̂1) =
1

2
x̂1(x̂1 − 1)r(ϵ) +

1

2
x̂1(x̂1 + 1)r(ϵ+ τ) + (1− x̂2

1)r(ϵ+ τ/2). (3.14)

Hence

det
∂Πu

∂x̂
= C(x̂1)C

′(x̂1) sin
π

N

(
1 + 2x̂2

2 sin
2 π

2N

)
.
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Since r(R) is increasing and convex, it is easily seen that C(x̂1) > 0 on [−1, 1].

On the other hand, C ′(x̂1) = (x̂1 − 1
2
)r(ϵ) + (x̂1 +

1
2
)r(ϵ + τ) − 2x̂1r(ϵ + τ/2) is

a linear function of x̂1 with C ′(1) = 1
2
(r(ϵ) + 3r(ϵ + τ) − 4r(ϵ + τ/2)) > 0, and

C ′(−1) = 1
2
(4r(ϵ+ τ/2)− 3r(ϵ)− r(ϵ+ τ)) > 0, thus C ′(x̂1) > 0 on [−1, 1]. Hence,

the first part of the theorem follows.

Taylor expanding r(ϵ), r(ϵ+ τ/2), r(ϵ+ τ) at R = ϵ+ x̂1+1
2

τ , one gets

C(x̂1) = r(R) +O(τ 3), C ′(x̂1) =
r′(R)τ

2
+O(τ 3).

Thus, it follows from det(∂Πu
∂x

∂x
∂x̂
) = det ∂Πu

∂x̂
and det ∂x

∂x̂
= Rτ

2
π
N

that

det
∂Πu

∂x
=

2C(x̂1)C
′(x̂1)

Rτ
(1 +O(N−2))

=
(r(R) +O(τ 3))(r′(R) +O(τ 2))

R
(1 +O(N−2))

=
r(R)r′(R)

R
+

O(τ 2)

R
+O(N−2),

which gives (3.12) and completes the proof of the theorem. �

Remark 3.4 For the energy minimizers among radially symmetric cavity defor-

mations, the condition (3.11) in Theorem 3.3 is generally satisfied, and there exists

a positive constant C such that (3.10) holds whenever ϵ ≥ Cτ 2 (see [20]). As a con-

sequence, we see that, for the dual-parametric bi-quadratic finite element method,

the orientation preserving adds no further restriction on the number of elements

N on an annular ring, which means much less total degrees of freedom is required

as compared with the methods in [20, 22].

4 Interpolation errors of cavity deformations

In this section, the interpolation errors are estimated, including those on the inter-

polation function and the elastic energy in the dual-parametric bi-quadratic finite

element function spaces defined on the meshes described in § 3. Throughout this

section, u(x) is supposed to be a smooth cavitation deformation in the regularized

domain Ωϵ0 . We also assume that the meshes are so given that Theorem 3.1 holds.

10



4.1 The error of the interpolation function

Let x̂ = F−1
T (x) ∈ T̂ , where x ∈ T is a point on the mesh. We will estimate, in

this subsection, the errors between u(x) and its interpolation function Πu(x).

Theorem 4.1 Under the assumption of Theorem 3.1, the error between a cavity

deformation u(x) and its interpolation function Πu(x) satisfies

∥u(x)− Πu(x)∥ = O(τ 3 +N−3). (4.1)

Proof. For a typical element as used in § 3, denote X = Πu(x) = (X1, X2), where

x = FT (x̂). With the same notation as used in Theorem 3.1, and Taylor expanding

ui(ak) at a8, one gets

X1 =
8∑

i=0

u1(ai)p̂i(x̂)

= u1(a8) + f1x̂1 + h1x̂2 +
d1
2
x̂2
1 + e1x̂1x̂2 +

g1
2
x̂2
2 +

b1
2
x̂1x̂

2
2 +

c1
2
x̂2
1x̂2 +

j1
2
x̂2
1x̂

2
2

= u1(a8) +
∂u1

∂R
(a8)

τ

2
x̂1 +

∂u1

∂θ
(a8)

π

N
x̂2 +

1

2

∂2u1

∂R2
(a8)(

τ

2
)2x̂2

1

+
∂2u1

∂R∂θ
(a8)

τ

2

π

N
x̂1x̂2 +

1

2

∂2u1

∂θ2
(a8)(

π

N
)2x̂2

2 +
1

2

∂3u1

∂R∂θ2
(a8)

τ

2
(
π

N
)2x̂1x̂

2
2

+
1

2

∂3u1

∂R2∂θ
(a8)(

τ

2
)2

π

N
x̂2
1x̂2 +

1

2

∂4u1

∂R2∂θ2
(a8)(

τ

2
)2(

π

N
)2x̂2

1x̂
2
2 +O(τ 3 +N−3)

= u1(x) +O(τ 3 +N−3).

Similarly, X2 = u2(x) +O(τ 3 +N−3). Hence, the conclusion follows. �

Theorem 4.2 Denote Ωϵ0 =
m∪
i=0

Ω(ϵi,τi), where Ω(ϵ,τ) = {x : ϵ ≤ |x| ≤ ϵ + τ},

ϵi+1 = ϵi + τi, ϵm+1 = 1.0. Let Ni be the number of elements in the layer Ω(ϵi,τi).

If ϵi, τi, Ni satisfy the assumptions of Theorem 3.1, and τi = O(h), N−1
i = O(h),

as h → 0, then the error between a cavity deformation u(x) and its interpolation

function Πu satisfies

∥u(x)− Πu(x)∥1,p = O(h2). (4.2)

Proof. On a representative element as shown in Figure 2(b), by (3.1), (3.4) and
∂Πu
∂x

∂x
∂x̂

= ∂Πu
∂x̂

, we have

11



∂Πu(x)

∂x
=

2N

πRτ

A11R
π
N
cos θ − A12

τ
2
sin θ A11R

π
N
sin θ + A12

τ
2
cos θ

A21R
π
N
cos θ − A22

τ
2
sin θ A21R

π
N
sin θ + A22

τ
2
cos θ

 , (4.3)

where Aij are given by (3.5)-(3.8). Denote

∂Πu(x)

∂x
− ∂u

∂x
=

B11 B12

B21 B22

 .

Then, it follows from (4.3), (3.5) and (3.6) that

B11 =
2N

πRτ
(A11R

π

N
cos θ − A12

τ

2
sin θ)− ∂u1

∂R
cos θ +

∂u1

∂θ

sin θ

R

= O(τ 2 +N−3) +
1

R
O(τ 3 +N−2).

Since τ = O(h), N−1 = O(h), this yields B11 =
1
R
O(h2), similarly, Bij =

1
R
O(h2).

As a consequence |∂Πu
∂x

− ∂u
∂x
|p = 1

RpO(h2p). Thus ∥∂Πu
∂x

− ∂u
∂x
∥p = (

∫ 1

ϵ0
R1−pdR)

1
pO(h2),

which completes the proof, since 1 < p < 2. �

4.2 The error on the elastic energy

Let J (Ω(ϵ,τ)) be a dual-parametric bi-quadratic finite element division of Ω(ϵ,τ)

consisting of only one layer of evenly distributed elements, denoted by Tj, j =

1, · · · , N . For the energy density function of the form (1.6), denote

E1(u; Ω(ϵ,τ)) =

∫
Ω(ϵ,τ)

ω

∣∣∣∣∂u∂x
∣∣∣∣p dx, (4.4)

E2(u; Ω(ϵ,τ)) =

∫
Ω(ϵ,τ)

g

(
det

∂u

∂x

)
dx, (4.5)

A(ϵ, τ) = (2− p)

∫ ϵ+τ

ϵ

R1−pdR = (ϵ+ τ)2−p − ϵ2−p, (4.6)

and let err(Ei(Πu; Ω(ϵ,τ))) = |Ei(Πu; Ω(ϵ,τ)) − Ei(u; Ω(ϵ,τ))| be the absolute inter-

polation error of Ei(u; Ω(ϵ,τ))), i = 1, 2, respectively. We have the following result.

12



Theorem 4.3 Under the assumption of Theorem 3.1, the elastic energy of a cavity

deformation u(x) and its interpolation function Πu satisfy

E1(u; Ω(ϵ,τ)) = O(A(ϵ, τ)), E(u; Ω(ϵ,τ)) = O(A(ϵ, τ)), (4.7)

err(E1(Πu; Ω(ϵ,τ))) = A(ϵ, τ)O(τ 2 +N−2), (4.8)

err(E2(Πu; Ω(ϵ,τ))) = O(τ 3 + τN−2), (4.9)

err(E(Πu; Ω(ϵ,τ))) = A(ϵ, τ)O(τ 2 +N−2), (4.10)

where A(ϵ, τ) is defined as (4.6). Moreover, if there exist positive constants 0 <

c ≤ C such that c ≤ |∂u
∂θ
| ≤ C, then

E1(u; Ω(ϵ,τ)) ∼ A(ϵ, τ), E(u; Ω(ϵ,τ)) ∼ A(ϵ, τ), (4.11)

err(E1(Πu; Ω(ϵ,τ))) = E1(u; Ω(ϵ,τ))O(τ 2 +N−2), (4.12)

err(E(Πu; Ω(ϵ,τ))) = E(u; Ω(ϵ,τ))O(τ 2 +N−2). (4.13)

Proof. Since ∂ui

∂R
, ∂ui

∂θ
are bounded, it follows that |∂u

∂x
(x)|p = O(R−p). Thus

E1(u; Ω(ϵ,τ)) = O(
∫ ϵ+τ

ϵ
R1−pdR) = O(A(ϵ, τ)). Noticing that g is bounded and

A(ϵ, τ) > (2 − p)τ , then E2(u; Ω(ϵ,τ)) = O(τ) = O(A(ϵ, τ)), so that we deduce

(4.7). In view of (4.3), we find that∣∣∣∣∂Πu∂x

∣∣∣∣2 =
4

τ 2
(A2

11 + A2
21) +

N2

π2R2
(A2

12 + A2
22)

=
(∂u1

∂R
(x)

)2

+
(∂u2

∂R
(x)

)2

+
1

R2

((∂u1

∂θ
(x)

)2

+
(∂u2

∂θ
(x)

)2
)

+
2∑

i=1

∣∣∣∂ui

∂R

∣∣∣O(τ 2 +N−3) +
1

R2

2∑
i=1

∣∣∣∂ui

∂θ

∣∣∣O(τ 3 +N−2)

=
∣∣∣∂u
∂x

∣∣∣2 + 2∑
i=1

∣∣∣∂ui

∂R

∣∣∣O(τ 2 +N−3) +
1

R2

2∑
i=1

∣∣∣∂ui

∂θ

∣∣∣O(τ 3 +N−2).

Since ∂ui

∂R
is bounded and |∂u

∂x
| ≥ 1

R
|∂ui

∂θ
|, this implies∣∣∣∣∂Πu∂x

∣∣∣∣p =

∣∣∣∣∂u∂x
∣∣∣∣p (1 +O(τ 2 +N−3)) +

∣∣∣∣∂u∂x
∣∣∣∣p−2

1

R2

2∑
i=1

|∂ui

∂θ
|O(τ 3 +N−2)

=

∣∣∣∣∂u∂x
∣∣∣∣p (1 +O(τ 2 +N−3)) +

∣∣∣∣∂u∂x
∣∣∣∣p−1

1

R
O(τ 3 +N−2).

13



Obviously, the first term will lead to a relative error of the order O(τ 2 + N−3)

to the first part of the energy E1. What remains to consider is the second term.

Applying the Hölder inequality, we deduce that∫
T

∣∣∣∂u
∂x

∣∣∣p−11

R
dx ≤

(∫
T

∣∣∣∂u
∂x

∣∣∣pdx)1− 1
p
(∫

T

R−pdx
) 1

p
=
(2πA(ϵ, τ)
N(2− p)

) 1
p
(∫

T

∣∣∣∂u
∂x

∣∣∣pdx)1− 1
p
.

Applying the Hölder inequality again yields

N∑
j=1

∫
Tj

∣∣∣∂u
∂x

∣∣∣p−1 1

R
dx ≤ (

2π

2− p
A(ϵ, τ))1/pE1(u; Ω(ϵ,τ))

1−1/pω1/p−1.

Hence, we obtain

E1(Πu; Ω(ϵ,τ)) = E1(u; Ω(ϵ,τ))(1+O(τ 2+N−3))+E1(u; Ω(ϵ,τ))
1− 1

pA(ϵ, τ)
1
pO(τ 3+N−2),

which together with (4.7) yields (4.8).

On the other hand, by (3.2) and the fact that g is strictly convex,

E2(Πu; Ω(ϵ,τ)) =
N∑
j=1

∫
Tj

g(det∇u)dx+
N∑
j=1

∫
Tj

g′(ηx)|x|−1dxO(τ 2 +N−2)

= E2(u; Ω(ϵ,τ)) +
N∑
j=1

∫
Tj

|x|−1dxO(τ 2 +N−2)

= E2(u; Ω(ϵ,τ)) +O(τ 3 + τN−2). (4.14)

(4.10) is a direct consequence of (4.8), (4.9) and A(ϵ, τ) > (2−p)τ , for ϵ ∈ [0, 1−τ ].

Finally, if there exists a positive constant c > 0 such that
2∑

i=1

(∂ui

∂θ
)2 ≥ c and

thus |∂u
∂x
(x)|p ∼ R−p, meaning that there exist positive constants C1 and C2 such

that C1R
−p ≤ |∂u

∂x
(x)|p ≤ C2R

−p, this gives (4.11). This together with (4.8) and

(4.10) yield (4.12) and (4.13). �

Theorem 4.4 For the radially symmetric cavity solution, the error of the energy

satisfies E(Πu; Ω(ϵ,τ)) = E(u; Ω(ϵ,τ))(1 +O(max{ϵ, τ}p−1τ 2 +N−2)).

Proof. For the radially symmetric solution, it follows from (3.13) that

∂Πu

∂x̂
=

C ′(x̂1)(1− 2x̂2
2 sin

2 π
2N

) −4C(x̂1)x̂2 sin
2 π
2N

C ′(x̂1)x̂2 sin
π
N

C(x̂1) sin
π
N
.


14



Thus, by (3.14) and the facts that r(R) ≥ r(0) > 0 and r′(R) ≤ MR, one gets∣∣∣∂Πu
∂x

∣∣∣2 =
4

τ 2
C ′(x̂1)

2(1 +O(N−4)) +
N2

π2R2
C(x̂1)

2 sin2 π

N
(1 +O(N−2))

= (r′(R) +O(τ 2))2(1 +O(N−4)) +
(r(R) +O(τ 3))2

R2
(1 +O(N−2))

=
r(R)2

R2
(1 +O(τ 3 +N−2)) + r′(R)2 + r′(R)O(τ 2)

= (r′(R)2 +
r(R)2

R2
)(1 +O(τ 3 +N−2 + r′(R)R2τ 2))

= (r′(R)2 +
r(R)2

R2
)(1 +O(τ 3 +N−2 + (ϵ+ τ)3τ 2)).

It follows that

E1(Πu; Ω(ϵ,τ)) = E1(u; Ω(ϵ,τ))(1 +O(ϵ3τ 2 + τ 3 +N−2)).

On the other hand, by (3.12) and with similar arguments as in the proof of Theo-

rem 4.3 (see (4.14)), one has that

E2(Πu; Ω(ϵ,τ)) = E2(u; Ω(ϵ,τ)) +O(τ 3 + (ϵ+ τ)τN−2).

Recalling that

E1(u; Ω(ϵ,τ)) = 2π

∫ ϵ+τ

ϵ

(r′(R)2 +
r(R)2

R2
)p/2RdR ∼ A(ϵ, τ) > (2− p)τ,

we obtain

err(E2(Πu; Ω(ϵ,τ)) = E1(u; Ω(ϵ,τ))
O(τ 3 + (ϵ+ τ)τN−2)

A(ϵ, τ)

= O(max{ϵ, τ}p−1τ 2 + (ϵ+ τ)N−2),

which completes the proof. �

5 A meshing strategy

The aim of this section is to establish, for a given reference mesh size h > 0, a

meshing strategy on the domain Ωϵ0 = B1(0) \ Bϵ0(0), i.e. to design a method of

calculating ϵi, τi, Ni, where ϵi+1 = ϵi + τi, and Ni is the number of the elements

in the layer Ω(ϵiτi), so that, on Ωϵ0 =
∪m

i=0Ω(ϵi,τi), a cavity solution u and its finite

element interpolation function Πu satisfy
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(C1) the orientation preserving condition: det∇Πu > 0;

(C2) the approximation condition: ∥u− Πu∥1,p = O(h2);

(C3) error sub-equi-distribution condition (see (4.11)-(4.13)): A(ϵi, τi) = O(h);

(C4) least total degrees of freedom condition: Nd =
m∑
i=0

Ni is minimized under the

restriction that Ni+1 = Ni or Ni+1 = 2Ni.

By Theorem 3.1, for a radially symmetric cavity solution, the condition C1 can

be assured by setting τi ≤ C1ϵ
1/2
i , while in nonsymmetric case, setting in addition

Ni ≥ C2ϵ
−1/2
i meets the requirement. By Theorem 4.2, a sufficient condition for

the condition C2 to hold is N−1
i = O(h), τi = O(h).

The idea of error equi-distribution is often used in mesh adaptivity and mesh

redistribution. By Theorem 4.3, A(ϵi, τi) can serve as a monitor for the energy

error equi-distribution, especially in the neighborhood of the void. Without loss

of generality, assume ϵm > 1
2
, since ϵm + τm = 1 for the layer m, this implies

A(ϵm, τm) = 1 − (1 − τm)
2−p ≤ (2 − p)2p−1τm. Thus, it is easily verified that, for

a given constant C ≥ (2 − p)2p−1, a reference mesh size 0 < h ≤ h0 ≤ 2−p
22−pC

,

A(ϵm, τm) ≤ Ch, provided that τm ≤ C
(2−p)2p−1h. Hence, it is natural to require

C3: A(ϵi, τi) ≤ Ch, for all 0 ≤ i ≤ m, which imposes an implicit condition on

the layer’s thickness τi. In fact, given C ≥ (2 − p)2p−1 and h0 ≥ h > 0, denoting

d(x, h) = (x2−p+Ch)
1

2−p −x, we have A(x, d(x, h)) = Ch. On the other hand, since

p ∈ (1, 2), we have Ch = A(ϵi, d(ϵi, h)) , (2− p)
∫ ϵi+d(ϵi,h)

ϵi
R1−pdR ≥ (2−p)d(ϵi,h)

(1+d(ϵi,h))p−1 ,

which implies that d(ϵi, h) ≤ 1, as long as 0 < h ≤ h1 ≤ 2−p
2p−1C

, and consequently
(2−p)d(ϵi,h)

(1+d(ϵi,h))p−1 ≤ Ch yields d(ϵi, h) ≤ 2p−1C
(2−p)

h. Thus, for the condition C3 and τi =

O(h) to hold, it suffices to require τi ≤ d(ϵi, h).

Finally, assuming an optimized distribution of layers is given, then, the condi-

tion C4 can be achieved easily by taking the least admissible Ni, 0 ≤ i ≤ m. It is

in this sense that the total degrees of freedom are minimized.

For given positive constants C1, C2, C ≥ (2−p)2p−1, h ≤ min{h0, h1}, A1 < A2

satisfying [(A2h)
−1, (A1h)

−1] ∩ Z+ ̸= ∅, the analysis above leads to the following

meshing strategy satisfying C1-C4 for non-radially-symmetric cavitaty solutions.

A meshing strategy of {Ω(ϵi,τi)}mi=0:
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(1) Take Ñm ∈ [(A2h)
−1, (A1h)

−1] ∩ Z+. Let N̄0 = min{N ∈ Z+ : N ≥ C2ϵ
−1/2
0 }.

Set k = min{j : 2jÑm ≥ N̄0}, andN0 = 2kÑm. Set τ0 = min{C1ϵ
1/2
0 , d(ϵ0, h)}.

(2) Set k0 = 0. For i ≥ 1, set ϵi = ϵi−1 + τi−1, and

τi = min{1− ϵi, C1ϵ
1/2
i , d(ϵi, h)}. (5.1)

If τi = 1− ϵi, set m = i. The least admissible Ni ≥ C2ϵ
−1/2
i is so determined:

(i) If ki−1 < k, set N̄i =
Ni−1

2
. If N̄i ≥ C2ϵ

−1/2
i , then set ki = ki−1 + 1,

Ni = N̄i; otherwise, set ki = ki−1, Ni = Ni−1.

(ii) If ki−1 = k, set ki = ki−1, Ni = Ni−1.

Remark 5.1 By setting k = 0, Ni = Ñm, 0 ≤ i ≤ m, the meshing strategy

above can be adapted to create a mesh for the radially symmetric solutions, for

which orientation preserving adds no restrictions on Ni (see Theorem 3.3 and

Remark 3.4). As a consequence, the total degrees of freedom of a dual-parametric

bi-quadratic FE approximation are significantly less than that of an iso-parametric

quadratic FE approximation, where the orientation preserving condition plays a

leading role in determining Ni, especially when ϵi ≪ h [20].

Theorem 5.2 Let u be a cavity solution satisfying the assumptions of Theorem 3.1.

Then, for a given constant C ≥ (2−p)2p−1, there exists 0 < ĥ ≤ min{ 2−p
22−pC

, 2−p
2p−1C

}
such that, for a reference mesh size 0 < h ≤ ĥ, on a mesh {Ω(ϵi,τi)}mi=0 with ϵi, τi,

Ni produced by the above meshing strategy, we have det∇Πu(x) > 0, and

∥u− Πu∥∞ = O(h3), (5.2)

∥u− Πu∥1,p = O(h2), (5.3)

err(E(u; Ωϵ0)) = O(h2). (5.4)

Proof. The claims det∇Πu(x) > 0, (5.2) and (5.3) follow from Theorem 3.1,

Theorem 4.1 and Theorem 4.2 respectively, (5.4) is a direct consequence of (4.10)

and
m∑
i=0

A(ϵi, τi) = (2 − p)
∫ 1

ϵ
R1−pdR ≤ 1. What remains to show is N−1

i = O(h),

which is a consequence of Ñm ∼ 1/h and Ni ≥ Ñm. �

To estimate the total degrees of freedom, we need the following lemma.
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Lemma 5.3 Let f(x) = C1x
1/2 + x − (x2−p + Ch)

1
2−p , x ∈ [0, 1], where C1 > 0,

C > 0 and 1 < p < 2 are given constants. Then, there exist positive constants

a1 < a2 independent of h < h̄0 = min{ (1+C1)2−p−1
C

, (2−p)C1

C
(1 + C

s
)
1−p
2−p}, where s is

the bigger root of the equation (2 − p)C1x
2 − Cx − C2 = 0, such that f(x) < 0 if

x ∈ [0, a1h
2

2−p ], and f(x) ≥ 0 if x ∈ [a2h
2

2−p , 1].

Proof. Since x ≥ 0 and 1 < p < 2, it follows that

f(x) ≤ f̄(x) = C1x
1/2 + x− C

1
2−ph

1
2−p ,

thus, f(x) < 0, if x < x1 , 4
(√

C2
1 + 4(Ch)

1
2−p + C1

)−2

C
2

2−ph
2

2−p , which is the

bigger root of f̄(x) = 0.

For x2−p > sh, it is easily verified that

f(x) = C1x
1/2 + x− x(1 + xp−2Ch)

1
2−p

= C1x
1/2 + x− x(1 + ξxp−2Ch),

where ξ = 1
2−p

(1 + η)
p−1
2−p and 0 < η < xp−2Ch < Cs−1, thus, we have

f(x) > C1x
1/2 − 1

2− p
(1 + Cs−1)

p−1
2−pChxp−1. (5.5)

If p ≥ 3/2, then xp−1 ≤ x1/2, hence f(x) > (C1 − 1
2−p

(1 + Cs−1)
p−1
2−pCh)x1/2 > 0,

since h < h̄0. If p < 3/2, then p−1
2−p

< 1 and xp−1h < x2−pxp−1/s = x/s < x1/2/s,

thus, it follows from (5.5) that

f(x) >
(
C1 −

Cs−1

2− p
(1 + Cs−1)

p−1
2−p

)
x1/2 >

(
C1 −

Cs−1

2− p
(1 + Cs−1)

)
x1/2.

By the definition of s, this leads to f(x) > 0.

On the other hand, for x2−p ≤ sh, denoting M = (C + s)
1

2−p , we have

f(x) = C1x
1/2 + x− (Ch)

1
2−p (1 + x2−pC−1h−1)

1
2−p

≥ C1x
1/2 + x− (Ch)

1
2−p (1 + sC−1)

1
2−p

= f̃(x) = C1x
1/2 + x−Mh

1
2−p ,

Hence f(x) ≥ 0, if x ≥ x2 , 4M2
(
C1 +

√
C2

1 + 4Mh
1

2−p

)−2

h
2

2−p , which is the

bigger root of the equation f̃(x) = 0. The proof is completed by taking a1 =

4
(√

C2
1 + 4C

1
2−p + C1

)−2

C
2

2−p and a2 = M2C−2
1 = (C + s)

2
2−pC−2

1 . �
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Theorem 5.4 Let C1 > 0, C2 > 0, 1 < p < 2 and C ≥ (2 − p)2p−1 be given.

Let a1 < a2, h̄0 and ĥ be the constants given in Lemma 5.3 and Theorem 5.2

respectively. For given ϵ0 < 1, let {ϵi, τi, Ni}mi=0 be defined by the meshing strategy

with h < h̄1 = min{h̄0, ĥ, C
2−p
1 a

1−p/2
1 (a2 − a1)

p−2, Cap−2
2 }. Then, we have

m ≤ M2 =


[
log2 logb(h) ϵ0C

−2
1

]
+ 3 + [(Ch)−1], if a2h

2
2−p ≥ ϵ0;

[(Ch)−1], otherwise,
(5.6)

m ≥ M1 =
1−max{ϵ2−p

0 , a2−p
2 h}

Ch
− 1, (5.7)

where b(h) = a1C
−2
1 h

2
2−p . Consequently, the total degrees of freedom Nd satisfies

ÑmM1 ≤ Nd ≤ N0M2, (5.8)

where N0 and Ñm are given as in the meshing strategy (1).

Proof. By Lemma 5.3, C1x
1/2 < d(x, h) if x ≤ a1h

2
2−p , and C1x

1/2 ≥ d(x, h) if

x ≥ a2h
2

2−p . Hence, by (5.1), ϵi+1 = ϵi+C1ϵ
1/2
i if ϵi ≤ a1h

2
2−p , and ϵi+1 = ϵi+d(ϵi, h)

if ϵi ≥ a2h
2

2−p . Let ϵm1 be the biggest ϵi such that ϵi ≤ a1h
2

2−p , then for all i ≤ m1,

ϵi+1 = ϵi + C1ϵ
1/2
i . Since ϵm1 = ϵm1−1 + C1ϵ

1/2
m1−1 > C1ϵ

1/2
m1−1 > C

1+1/2
1 ϵ

1/22

m1−2 > · · · >
C

1+1/2+···+1/2m1−1

1 ϵ
1/2m1

0 = C2
1(

ϵ0
C2

1
)1/2

m1 . Let j be the smallest integer i such that

C2
1(

ϵ0
C2

1
)1/2

i ≥ a1h
2

2−p , then m1 ≤ j. By the definition of j, one has

m1 ≤ j =

log2 logb(h)
ϵ0
C2

1
, if log2 logb(h)

ϵ0
C2

1
is an integer;[

log2 logb(h)
ϵ0
C2

1

]
+ 1, otherwise.

(5.9)

Let ϵm2 be the smallest ϵi such that ϵi ≥ a2h
2

2−p , then, for all m2 ≤ i < m,

ϵ2−p
i+1 = ϵ2−p

i +Ch = ϵ2−p
m2

+C(i+1−m2)h. It follows from the facts that ϵm+1 = 1.0

and τm = min{1 − ϵm, d(ϵm, h), C1ϵ
1/2
m } that m is the smallest integer j such that

ϵ2−p
j + Ch = ϵ2−p

m2
+ C(j + 1−m2)h ≥ 1. Hence

m =

m2 − 1 +
1−ϵ2−p

m2

Ch
, if

1−ϵ2−p
m2

Ch
is an integer;

m2 +
[1−ϵ2−p

m2

Ch

]
, otherwise.

(5.10)

Next, we estimatem2−m1. By the definition ofm1, ϵm1+1 = ϵm1+C1ϵ
1/2
m1 > a1h

2
2−p .

Thus, τm1+2 ≥ min{C1a
1
2
1 h

1
2−p , d(ϵm1+1, h)}. This implies ϵm1+2 > min{C1a

1/2
1 h

1
2−p
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+a1h
2

2−p , (Ch)
1

2−p}. Hence, by the definition of h̄1, ϵm1+2 > a2h
2

2−p . Consequently,

by the definition of ϵm2 , we conclude m2 ≤ m1 + 2, which together with (5.9) and

(5.10) yields (5.6).

If ϵ0 ≥ a2h
2

2−p , then (5.7) follows directly from (5.10), since in this case m2 = 0.

If ϵ0 < a2h
2

2−p , then m2 ≥ 1 and ϵm2−1 < a2h
2

2−p by the definition of m2. Thus, for

all m2 ≤ i ≤ m, ϵ2−p
i = ϵ2−p

m2
+ C(i−m2)h ≤ ϵ2−p

m2−1 + C(i+ 1−m2)h. Set

j0 =

m2 − 2 +
1−ϵ2−p

m2−1

Ch
, if

1−ϵ2−p
m2−1

Ch
is an integer;

m2 − 1 +
[1−ϵ2−p

m2−1

Ch

]
, otherwise.

(5.11)

Then, it is easily verified that ϵi < 1, for all i ≤ j0. Hence, by the definition of m,

we conclude m ≥ j0, which implies (5.7), since m2 ≥ 1 and ϵm2−1 < a2h
2

2−p . �

It is worth noticing that there are two solution dependent constants C1 and C2,

which are not known a priori, used in the meshing strategy. In applications, we

can always start with C1 := d(ϵ0, h)ϵ
−1/2
0 and C2 := Ñmϵ

1/2
0 , which are the least C1

and greatest C2 such that the orientation preserving conditions will practically not

affect the mesh produced. It is of vital importance to know what would happen if

the constants are not properly given, and how to adjust the mesh in an a posteriori

fashion so that the conditions C1-C4 are satisfied in the end. To specify this,

we present below two examples in both radially symmetric and nonsymmetric

cases, where the energy density is given by (1.6) with p = 3/2, ω = 2/3, and

g(x) = 2−1/4(1
2
(x− 1)2 + 1

x
), and we take A = A1 = A2 = 0.8, h = 0.05.

C1 ϵ1 ϵ2 ϵ3 ϵ4 ϵ5 ϵ6 ϵ7 ϵ8 ϵ9

1 0.0101 0.0402 0.0903 0.1604 0.2505 0.3606 0.4907 0.6408 0.8109

0.9 0.0091 0.0382 0.0873 0.1563 0.2454 0.3545 0.4836 0.6327 0.8017

Table 1: Radially symmetric case: ϵ0 = 0.0001, Ni = 16, ϵ10 = 1.0.

Example 5.5 In the radially symmetrical case, let ϵ0 = 0.0001, u0(x) = 2x, and

Ni = Nh = A/h. For C = 2, C1 = 1.0 and 0.9, the mesh strategy produces two

meshes shown in Table 1. While the numerical solutions obtained on both meshes

successfully capture the cavitation, the solution with C1 a marginally too big fails
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to be orientation preserving. In fact, det∇uh(x) < 0 is detected on the element

vertices on the inner boundary {x : |x| = ϵ0}, where the orientation preserving

is found most easily broken. Our numerical experiments show that, whenever this

happens, instead of reducing C1, a proper mesh can be obtained simply by dividing

the inner most layer into two, repeat if necessary, according to the condition (C3).

Example 5.6 Let ϵ0 = 0.0005 and u0(x) = (2.5x1, 2x2)
T , then, the correspond-

ing cavity solution is non-radially-symmetric. Now, we are facing the problem of

choosing C1 and C2 appearing in the conditions τ ≤ C1ϵ
1/2 and N ≥ C2ϵ

−1/2. For

C = 3, C1 = 1.0 and, C2 = 1.1, the meshing strategy produces a mesh shown in

”Test 1” in Table 2, where Ni = N0/2, ∀i ≥ 1, which holds also for other three

tests. It turns out that the numerical solution obtained on this mesh is indeed ori-

entation preserving. While for C1 = 1.25 (see Test 2) or C2 = 0.9 (see Test 3),

the numerical solutions obtained on the corresponding meshes will fail to be orien-

tation preserving. Again, it is found that the failure is most likely to happen on

the element vertices on the inner boundary of the domain Ωϵ0. And again, instead

of reducing C1 or increasing C2, a proper mesh can usually be obtained simply by

dividing the inner most layer into two (see Test 4 where ϵ8 = 1.0), according to the

condition (C3), or doubling N0, or both, and repeat the process if necessary.

Test ϵ1 ϵ2 ϵ3 ϵ4 ϵ5 ϵ6 ϵ7 N0 Result

1 0.0229 0.0907 0.2036 0.3614 0.5643 0.7946 1.0 50 Succeed

2 0.0285 0.1016 0.2198 0.3829 0.5911 0.8442 1.0 50 Fail

3 0.0229 0.0907 0.2036 0.3614 0.5643 0.7946 1.0 40 Fail

4 0.0091 0.0285 0.1016 0.2198 0.3829 0.5911 0.8442 50 Succeed

Table 2: Non-radially-symmetric case: ϵ0 = 0.0005, u0(x) = (2.5x1, 2x2)
T .

Remark 5.7 In our code, the condition det∇uh > 0 is firstly only checked on

quadrature nodes in a gradient flow iteration; after the iteration converges, the

condition det∇uh > 0 is checked on elements vertices, particulary those on the

inner boundary of the domain Ωϵ0, where the condition is most easily be broken;
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the mesh layer, where det∇uh < 0 is detected, is then refined accordingly. Such a

modified meshing strategy practically makes the whole process more efficient, though

a mesh so obtained is not necessarily ”optimal”.

6 Numerical experiments and results

In our numerical experiments, the energy density is given by (1.6) with p = 3/2,

ω = 2/3, and g(x) = 2−1/4(1
2
(x− 1)2 + 1

x
), the domain Ωϵ0 = B1(0) \Bϵ0(0) with a

displacement boundary Γ0 = ∂B1(0) and a traction free boundary Γ1 = ∂Bϵ0(0),

and the meshes used are shown in Table 3 and Table 4, which are produced by the

meshing strategy with C = 2, C1 = 0.9, A = 0.8 for ϵ0 = 0.01, ϵ0 = 0.0001 and

various h, and it happens that, in all these meshes, Ni = Nh = A/h on each of the

m+1 mesh layers. Figure 3 shows that the total degrees of freedom Nd is basically

a quadratic function of h−1.

h min τi max τi m Nh

0.04 0.0224 0.1504 11 20

0.03 0.0156 0.1164 14 30

0.02 0.0096 0.0768 22 40

0.01 0.0044 0.0396 44 80

0.005 0.0021 0.0199 89 160

Table 3: ϵ0 = 0.01.

h min τi max τi m Nh

0.04 0.008 0.1488 12 20

0.03 0.0048 0.1128 16 30

0.02 0.0024 0.076 24 40

0.01 0.0008 0.0392 49 80

0.005 0.0003 0.0197 98 160

Table 4: ϵ0 = 0.0001.

6.1 Radially symmetric case with u(x)|Γ0
= λx

The convergence behavior of the radially symmetric numerical cavity solutions

corresponding to λ = 2.0 obtained by the dual-parametric bi-quadratic FEM are

shown in Figure 4-Figure 6, where the high precision numerical solutions to the

equivalent 1-D ODE problem are taken as the exact solutions [2, 10].

Figure 4 shows that the energy error |E(u)−E(uh)| = O(N−2
d ) = O(h4), which

is even better than our energy error estimate on the interpolation function (see
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(5.4)). In Figure 5 and Figure 6, it is shown that ∥u− uh∥0,2 = O(N
−3/2
d ) = O(h3)

and ∥u−uh∥1,p = O(N−1
d ) = O(h2) respectively, which are in good agreement with

our interpolation error estimates (see (5.2) and (5.3)).
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Figure 3: Nd ∼ Kh−2.

2.8 3.5 4.2 4.9
−8

−7

−6

−5

−4

−3

−2

−1

log
10

Nd
lo

g 10
∆ 

E
 

 

ǫ0 = 0.01
ǫ0 = 0.0001
slope=2.0

Figure 4: The energy error.

A comparison between W 1,p errors of the iso-parametric triangular FEM ([20])

and the dual-parametric bi-quadratic FEM is also shown in Figure 6, which demon-

strates that the latter should be a more efficient method in cavitation computation.
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Figure 5: The L2 errors of uh.
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Figure 6: The W 1,p errors of uh.

6.2 Non-radially-symmetric case with u(x)|Γ0
= (λ1x1, λ2x2)

T

The numerical results for λ1 = 2.5, λ2 = 2.0, ϵ0 = 0.01 obtained on the mesh given

in Table 3 are shown in Figure 7-Figure 10.
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0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
22.2349

22.235

22.2351

22.2352

22.2353

22.2354

22.2355

h

E
n

e
rg

y y=−9.7x3.11+22.235408

Figure 8: Convergence of the energy.

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

3.3

x 10
−4

h

S
e

m
i−

m
a

jo
r 

a
x
is

=
1

.7
9

6
+

y=3.12x3.08+1.796165

(a) Convergence of semi-major axis.

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
1

2

3

4

5

6

7
x 10

−5

h

S
e

m
i−

m
in

o
r 

a
x
is

=
1

.5
2

5
6

+

y=0.95x3.08+1.525618

(b) Convergence of semi-minor axis.

Figure 9: The convergence behavior of the cavity of uh.

Figure 7 shows the numerical solution with h = 0.02, where the cavity is seen

to be approximately an ellipse. The convergence behaviors of the energy, semi-

major axis, and semi-minor axis of the cavity, with respect to the mesh size h, are

displayed respectively in Figure 8, Figure 9(a) and Figure 9(b). The convergence

behavior of ∥uh−uh/2∥0,2 and |uh−uh/2|1,p, in terms of Nd ∼ h−2, are demonstrated

respectively in Figure 10(a) and Figure 10(b). The numerical results are clearly in

good agreement with our analytical results (see (5.2)-(5.4)).
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Figure 10: The convergence behavior of ∥uh − uh/2∥.

7 Concluding remarks

We derived the orientation preserving conditions and interpolation errors of the

dual-parametric bi-quadratic rectangular FEM for both radially symmetric and

general non-symmetric cavity solutions, which is the first theoretical result of its

kind in this field, and established an optimal meshing strategy for the method in

computing void’s growth based on an error equi-distribution principle. Numerical

results obtained on the meshes produced by our meshing strategy verified the

efficiency of the method. In fact, our numerical experiments showed that the

convergence rates of the finite element cavitation solutions are in good agreement

with our interpolation error estimates, and the total degrees of freedom needed for

the method to achieve a given level of approximation accuracy is of an optimal

order, and is much less than that of the iso-parametric quadratic triangular FEM

in practical cavitation computation.
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