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ABSTRACT

DISCRETE PARITY-TIME SYMMETRIC NONLINEAR
SCHRODINGER LATTICES

FEBRUARY 2014

KAILI
B.S., UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Panayotis Kevrekidis

In this thesis we summarize the classical cases of one-dimensional oligomers and two-
dimensional plaquettes, respecting the parity-time (P7) symmetry. We examine different
types of solutions of such configurations with linear and nonlinear gain or loss profiles. For
each configuration, we develop a dynamical model and examine its P77 symmetry. The
corresponding nonlinear modes are analyzed starting from the Hamiltonian limit, with zero
value of the gain-loss coefficient, 7. Once the relevant waveforms have been identified
(analytically or numerically), their stability as well as those of the ghost states in certain
regimes is examined by means of linearization in the vicinity of stationary points. This
reveals diverse and, occasionally, fairly complex bifurcations. The evolution of unstable

modes is explored by means of direct simulations.
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(Color online) The two branches of solutions for the dimer problem are
shown for parameter values k = E = 1. (a) The amplitude of the
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eigenvalue of the two branches. The solid line branch is always stable
branch, while the dashed line branch acquires a real eigenvalue pair

aboveacertainy = \/kZ2 — E2/4. .. ..

(Color online) Dynamical evolution of initial data belonging to the two
branches of stationary solutions of a dimer in the case of
v=0.9, E =k =1, which is past the critical point for the instability
of the (a) first branch, while the (b) second branch is still dynamically

stable. Notice that (a) is plotted in semilog. . .......................

(Color online) Similar initialization as Fig. 2.3 of the dimer based on the
two branches of stationary solutions (for v = 0.9), but now for the
case of y = 1.1 (£ = k = 1). The asymmetric evolution of the coupler
past the linear P77 -symmetric threshold can be clearly discerned. Both

are plotted insemilog.......... ... .. ..

(Color online) Ghost states (denoted by cyan pluses and black squares)
bifurcate from the two stationary solutions (denoted by blue circles
and red diamonds) of a dimer. Under parameter values £ = 1 and
E =1, the black squares branches emerge from a pitchfork bifurcation

of the blue circles branch at v = 0.87 and terminate at v = 1.41. ... ...

(Color online) The evolutionary plots of the two ghost solutions of dimer
fory = 0.9, £ = k = 1. The dashed lines are the predicted dynamics
of the ghost states on the basis of their growth rates (for black squares)
or decay rates (for green stars). .............. i

iX

Page

ST

.. 13

... 13



2.7 (Color online) The solution profile of Eq. (2.14) with £ = 0.5, k = 0.1
and ¢, = 0. The four panels denote the solution amplitude (top left),
phase differences between adjacent nodes (top right), real and
imaginary parts (second row) of eigenvalues.......................... 16

2.8 (Color online) In a way similar to that of the previous figure (i.e., with top
left denoting amplitudes, top right relative phases, bottom left real and
bottom right imaginary part of the linearization eigenvalues), the 4
panels show the existence and stability of solutions for a trimer with
parameters £/ = k = 1. There are three regular standing wave
branches: the blue, the red and the black; the blue and red are the ones
disappearing hand-in-hand at v = 1.043. Two ghost solutions are
colored in magenta and green and bifurcate at the destabilization of the
blue branch for v = 1.035, while they terminate for v = 1.732. ......... 17

2.9 (Color online) The spectral planes (A, A;) of the eigenvalues A = A, + i\,
of the solutions shown in Fig. 2.8. The first panel shows the case of
~v = 0.5 where only the standing wave branches exist (blue circles —
unstable and red diamonds — stable). The second panel for v = 1.5 has
only one standing wave (black crosses — unstable), and two
asymmetric ghost states which are mirror images of each other (and so
are their spectra), namely magenta squares and green pluses. The third
panel shows the same branches as in top right but for v = 1.7 close to
the termination of the ghost state branches. .......................... 19

2.10 (Color online) The dynamical evolution of the amplitudes of the three sites
for the solutions shown in Fig. 2.8. Notice that all solutions are plotted
in semilog. The first row shows the evolution of the three stationary
branches. In (b) and (c), since these branches are absent for v = 1.1,
their profile for v = 1.043 is initialized. The second row shows
dynamics of the two ghost state solution branches. The dashed lines
are the predicted dynamics of the ghost states on the basis of their
growth (for magenta squares) or decay (for green pluses) rates. ......... 20

2.11 (Color online) Three branches of solutions for the quadrimer problem with
parameters £/ = 1 and ¢, normalized to O: the solid lines denote the
asymmetric branch the blue circles branch, while the dashed and
dash-dotted lines denote the symmetric branches the red diamonds
branch and the black crosses branch, respectively. For each branch,
four curves in (a) stand for A, B, C, D (only two curves for the red
diamonds branch and the black crosses branch since A = D, B = C'in
these cases), and three curves in (b) stand for ¢y, ¢., ¢4. Panel (e) and
(f) are zooms of (c¢) and (d) respectively. .......... ... ... ... ... ..... 24



2.12 (Color online) The profile of the dynamical evolution of the three different
branches: (a) the blue circles branch, (b) the red diamonds branch, and
(c) the black crosses branch of a quadrimer in the case of £/ = 1 and

A= 0L e

2.13 (Color online) Existence and stability properties of nonlinear modes with
ki =1,ky=2,q9q=0.5,v = 0.1, 79 = 0.5. The four panels denote
the solution amplitude (top left), phase differences between adjacent
nodes (top right), real and imaginary parts (second row) of
eigenvalues. For a detailed explanation of the different families, see
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2.14 (Color online) Eigenvalues of the linearization problem of nonlinear
modes with k1 = 1, ks = 2, ¢ = 0.5, 74 = 0.1, 75 = 0.5. The same
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3.1 The solution profiles of the nonlinear P77 -symmetric dimer case with
e =1, p, = —2 and p;;,, = 1. The four panels here present the
continuation of each branch (the amplitudes in the top left, the phases
in the top right, and the real -bottom left- and imaginary -bottom right-
parts of the linear stability eigenvalues) starting from the conservative
system at v = (. The five branches are denoted by curves of blue stars,
red diamonds, black squares, green circles and magenta crosses. Blue
stars: Case [ with “-” in the amplitude; Red diamonds: Case I with “+”
in the amplitude; Green circles: Case 1l with “+” in the amplitude (of
A); Magenta crosses: Case Il with “-” in the amplitude (of A); Black
squares: Case I1I. Notice that the eigenvalues of green circles and
magenta crosses are opposite to each other (see the relevant discussion
in the text). We always set £/ = 1 in the case I branches, namely the
blue stars and the red diamonds, which terminate at the same point
when v = 1.61. The black squares are subject to a destabilizing
supercritical pitchfork bifurcation at v = 0.895, F/ = 1.789 whereby
the green circles and magenta crosses arise. The black squares branch
terminates at y = 2; the green circles and magenta crosses exist for
arbitrary values of the (linear) gain/loss past the linear P77 -symmetry
breaking point. . . .. .. .ot 45

3.2 The eigenvalue plots illustrating the linear stability of the
nonlinear-PT-symmetric dimer with € = 1, p, = —2 and p;,,, = 1. For
the blue stars and red diamonds branches, we use £/ = 1 here, while
for the case II (green circles and magenta crosses) and case 111 (black
squares), F is determined from the remaining parameters based on
Egs. (3.22) and (3.28), respectively. ......... ... ... .. L. 46

3.3 The dynamical evolution plots of the branches for the case of the
nonlinear-PT-symmetric dimer with the same parameter settings as in
Fig. 3.2 when v = 1.5. The symmetric blue stars and red diamonds of
Case I and the asymmetric green circles of Case 11 are stable, while the
black squares of Case III (past the pitchfork point) and magenta
crosses of Case II are unstable and deviate from their initial profile
during the dynamics (see also the discussion in the text)................ 46

3.4 The symmetric solution profiles of Case I in the nonlinear-PT-symmetric
trimer withe = 1, £ =1, p, = —1 and p;,,, = 1. The three branches
are denoted by blue stars, red diamonds and black squares and their
amplitudes (top left), phases (top right), real part (bottom left) and
imaginary part (bottom right) of the corresponding eigenvalues are
shown. See also the relevant discussioninthetext..................... 53
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CHAPTER 1

INTRODUCTION

In quantum mechanics, energy of a quantum system is described by an operator called
Hamiltonian, which acts on the Hilbert space (or a space of wave functions) of the system
and corresponds to the total energy of the system, usually denoted by H, H or H. The
Hamiltonian is the sum of the kinetic energies of all the particles, plus the potential energy
of the particles associated with the system. The spectrum of Hamiltonian is the set of possi-
ble outcomes when one measures the total energy of a system. Because of its close relation
to the time-evolution of a system, it is of fundamental importance in most formulations of
quantum theory. In the Universe in which we live, measurements of physical observables
yield real quantities. In quantum mechanics these observables correspond to the eigenval-
ues of operators, and the reality requirement of observables demands that the eigenvalues
of all operators be real quantities. In the case of the Hamiltonian operator H, the real eigen-
values correspond to a real energy spectrum. In order to provide a real spectrum, one often
imposes the Hermiticity condition %" = A on the Hamiltonian, where #' represents the
mathematical operation of complex conjugation and matrix transposition. And indeed, a
Hermitian Hamiltonian not only ensures that the energy spectrum is real but it also takes
care of the unitary temporal evolution.

In a remarkable recent development Bender and coworkers [1] have shown that it is
possible to formulate quantum mechanics consistently even if the Hamiltonian and other
observables are not Hermitian. In particular they explored the spectra of non-Hermitian
Hamiltonians and found that in fact many non-Hermitian Hamiltonians can produce en-

tirely real spectra provided they possess something known as P7 (parity-time) symmetry.



Their formulation, dubbed P77 quantum mechanics, replaces hermiticity by another set of
requirements, notably that the Hamiltonian should be invariant under the discrete symmetry

‘PT. The actions of the parity, P, and time reversal, 7, operators are defined as follows:

P:p——pox——xT:p—>—p x—>—x 17— —i. (1.1)

where p and z are the momentum and position operators, respectively. A Hamiltonian
is defined as P7T -symmetric if it shares the same eigenfunctions as the P7T operator and
satisfies PTH = HPT. It PTH = HPT is satisfied but the Hamiltonian does not share
its eigenfunctions with the P77 operator then the Hamiltonian is considered to possess
broken P77 symmetry.

The work of Bender [1] demonstrated that in many cases a threshold exists in the Hamil-
tonians, above which the spectrum is no longer completely real and instead becomes com-
plex. This threshold marks the boundary between the P77 -symmetric and broken-symmetry
phases and the transition is thus referred to as spontaneous P7 -symmetry-breaking. A
necessary (but not sufficient) condition for a Hamiltonian to be P7 symmetric is that its
potential V() satisfies the condition V' (x) = V*(—x).

PT-symmetric systems are interesting because they are intermediate between open
systems (systems in contact with an external environment) and closed (isolated) systems.
An open system typically suffers loss to or gain from its environment and thus cannot be
in equilibrium. A P7T -symmetric system is special because, while it is in contact with the
environment, the loss and gain are precisely balanced. The loss and gain may be wide-
ly separated, but, if the parameters of the system are adjusted to support a sufficiently
rapid internal circulation, the system can be in equilibrium and thus mimic a closed sys-
tem. A P7T-symmetric system in equilibrium (that is, one for which the system has an
unbroken P77 symmetry) typically exhibits oscillations between its modes. However, if

the parameters of the system are varied to weaken sufficiently the internal circulation, the



oscillations cease. This is the signal that the system has undergone a transition to a broken
PT -symmetric phase and is no longer in equilibrium.

In the past few years, a significant vein of potential applications of such Hamiltoni-
ans has been initiated, predominantly so in the field of nonlinear optics. There, the work
of Christodoulides and co-workers [2] gave rise to the realization that the synthetic sys-
tems that can be engineered therein enable a potential balance of gain (through suitable
amplifiers) and the abundantly present losses in order to produce experimental realiza-
tions of P7T -symmetric systems. An additional feature present in such settings which
made both their theoretical and experimental investigation even more interesting was the
presence of nonlinearity which, in turn, rendered worthwhile the exploration of the dy-
namics of nonlinear waves (such as bright or gap solitons [2] and more recently of dark
solitons and vortices [3]). The above optical settings were in fact the ones that enabled
the first experimental realizations of P7 -symmetry. This was done in the context of
waveguide couplers (i.e., either two waveguides with and without loss [4] — the so-called
passive PT— or in the more “standard” case of one waveguide with gain and one with
loss [5]). More recently, electrical analogs of such systems have been engineered in the
work of [6]. In parallel to these pioneering steps in the realm of experiments, numerous
theoretical investigations have arisen both in the context of linear P7 -symmetric poten-
tials [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] and even in the case of the
so-called nonlinear P77 -symmetric potentials (whereby a P77 -symmetric type of gain/loss
pattern appears in the nonlinear term) [23, 24, 25].

Our aim in this thesis is to give a broad picture of the P7 -symmetric discrete linear
and nonlinear, one-dimensional and two-dimensional states in so-called oligomers of two
and more sites lattices, as well as in lattices with different types of potentials. A complete
characterization of the existence and stability properties of its stationary solutions and prop-
erties of a new class of, so-called, “ghost” solutions of one-dimensional linear lattices are

also introduced. Our presentation is structured as follows: In chapter 2, we consider one-



dimensional linear oligomers, namely the two-site dimer, three-site trimer and the four-site
quadrimer. Both analytical and numerical solutions are provided and the “ghost solutions”
are investigated in these cases. As a special case, P7T -symmetric coupler with y? nonlin-
earity is discussed at the end of this chapter. Chapter 3 shows the cases where gain/loss
terms exist in the nonlinearity. Existence of both symmetric and asymmetric (in their am-
plitude) stationary solutions, and interesting bifurcation phenomena (such as spontaneous
symmetry breakings) are found to arise in this case. Two-dimensional P77 -symmetric pla-
quettes are shown in Chapter 4. Three four-site squares and one five-site cross modes are
presented here. We address the existence and stability of all families of stationary solution-
s, as well as their bifurcation diagrams. Dynamical evolution is also performed by means
of direct simulation. In Chapter 5, we consider a P77 -symmetric coupler whose arms are
birefringent waveguides. In this case, We obtain the relevant symmetry-breaking bifur-
cations between symmetric (circularly polarized) and asymmetric (elliptically polarized)
states and examine the corresponding nonlinear solutions that persist up to the symmetry

breaking point, as well as the ghost states that bifurcate from them.



CHAPTER 2

ONE DIMENSIONAL LINEAR P7T-SYMMETRIC OLIGOMERS

In this chapter, we consider the existence, stability, and dynamics of P7 -symmetric
oligomers, i.e., configurations with one dimensional two sites (dimer), three sites (trimer)
and four sites (quadrimer). Fig. 2.1 illustrates the gain or loss profiles among these fun-
damental one-dimensional P7 -symmetric oligomers. At the end of this chapter, we also

introduce a special type of one-dimensional linear coupler, which has a x? nonlinearity.

: . . . : C(+iv) :
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(a) dimer (b) trimer (c) quadrimer

Figure 2.1. (Color online) The different fundamental one-dimensional P77 -symmetric
oligomers including the linear balanced gain and loss. The nodes are labeled so as to
connect the gain-loss profiles to the evolution of individual nodes in dynamical simulation-
s. The sets are coded by chains of symbols, with +, — and 0 corresponding, respectively,
to the linear gain, loss, or absence of either effect at particular sites.

I P7-symmetric dimer
We start our considerations from the so-called P 7T -symmetric coupler or dimer. In this

case, the dynamical equations that we examine are of the form:



Z"[Ll = —k‘UQ — |U1|2U1 — wul

ity = —kuy — |ug|?ug + iyus. (2.1)

The model of Eq. (2.1) considers the linear P77 -symmetric dimer experimentally examined
in [5], as augmented by the Kerr nonlinearity relevant e.g. to optical waveguides; see also
[7, 8]. The overdot denotes the derivative with respect to the evolution variable which
in optical applications is the propagation distance. In what follows, we will denote this
variable by ¢ (to indicate its evolutionary nature). We seek stationary solutions of the form

uy = exp(iEt)a and us = exp(iE't)b. Then the stationary equations arise:

Ea = kb+|a|*a+iva

Eb = ka+ |b*b— ib. (2.2)

Using a generic polar representation of the two “sites” a = Ae’®* and b = Be'®, we are
led to the following algebraic conditions for the two existing branches of solutions (notice

the + sign distinguishing between them):

A*=DB?=FE4+ k2 -2 (2.3)

sin(¢p — ¢a) = —% (24

The fundamental difference of such solutions from their standard Hamiltonian (y = 0)
counterpart is that the latter were lacking the “flux condition” of Eq. (2.4). This dictated a
selection of the phases so that no phase current would arise between the sites. On the con-
trary, in P77 -symmetric settings, the phase flux is nontrivial and must, in fact, be consonant
with the gain-loss pattern of the coupler.

Fig. 2.2 shows the profile of the two branches. The branch in dashed line corresponding

to the (—) sign in Eq. (2.3) is stable when v? < k? — E? /4, whereas the branch in solid line
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Figure 2.2. (Color online) The two branches of solutions for the dimer problem are shown
for parameter values £k = F = 1. (a) The amplitude of the sites,(b) their relative phase, and
(c) the (nontrivial) squared eigenvalue of the two branches. The solid line branch is always
stable branch, while the dashed line branch acquires a real eigenvalue pair above a certain

v =+/k?— E?/4.

is always stable. It is relevant to note here that the two branches “die” in a saddle-center
bifurcation at v = k, as shown in the figure. Importantly, this coincides with the linear
limit ypp = k of the PT-symmetry breaking since the eigenvalues of the linear problem
are A\ = +4/k? — 72, Hence, the nonlinear solutions terminate where the linear problem
eigenfunctions yield an imaginary pair, predisposing us for an asymmetric evolution past
this critical point (for all initial data). The dynamical evolution of the dimer is shown first
for a case of v < k (in which the dashed line branch is unstable, while the solid line branch
is stable) in Fig. 2.3. The evolution of the instability of the dashed line branch leads to an
asymmetric distribution of the power in the coupler, despite the fact that parametrically we
are below the linear critical point (for the P7 -symmetry breaking). Notice that in all the
cases, also below, where a stationary solution exists for the parameter values for which it
is initialized, dynamical instabilities arise only through the amplification of roundoff errors

i.e., a numerically exact solution up to 10~% is typically used as an initial condition in



the system. Naturally, beyond v = k, as shown in Fig. 2.4, all initial data yield such an
asymmetric evolution.

2
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Figure 2.3. (Color online) Dynamical evolution of initial data belonging to the two branch-
es of stationary solutions of a dimer in the case of v = 0.9, £ = k = 1, which is past the
critical point for the instability of the (a) first branch, while the (b) second branch is still
dynamically stable. Notice that (a) is plotted in semilog.
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Figure 2.4. (Color online) Similar initialization as Fig. 2.3 of the dimer based on the two
branches of stationary solutions (for v = 0.9), but now for the case of y = 1.1 (' = k = 1).
The asymmetric evolution of the coupler past the linear P7 -symmetric threshold can be
clearly discerned. Both are plotted in semilog.

The linearization around these branches can be performed explicitly yielding the nonze-

ro eigenvalue pairs

:l:2i\/2(k2 —72) — E\/k?—~?

for the first and

j:2i\/2(k2 —42) 4 E\/k2 — 2



for the second (notice that the latter can never become real). For the case v = 0, these
eigenvalues describe the critical value of E, where the two branches become unstable, and
the pitchfork bifurcation leading to the asymmetric states emerges. Specifically, if £ > 0
(focusing nonlinearity), the first branch corresponding to the symmetric solutions becomes
unstable at £ = 2k ; if £ < 0 (defocusing nonlinearity), the destabilization arises when
E = —2k , and this happens for the second branch corresponding to the antisymmetric
branch 6 = 7.

Similar stability conclusions occur for v # 0, where only the “~” branch becomes
unstable, but now also for 4* > k? — E?/4 . This suggests that there are two possibilities.
If the propagation constant £ (and the coupling strength k) are such that £? < 4k?, then
the instability is induced by the increase of the P77 symmetry parameter vy at the critical
point. However, if E? > 4k? | the instability has “already” taken place due to the presence
of nonlinearity, and the “—” branch is unstable even in the y = 0 limit. In the latter case the
presence of the gain-loss aspect only enhances the instability.

What has become of the pitchfork bifurcation picture explored earlier? We can see
that the same instability is present here at least if £2 > 4k2. However, analogs of the
symmetry-broken states past the critical point, i.e., stationary asymmetric states (emerging
after the instability of the symmetric states), cannot be identified. Inevitably, the question
of their fate arises. This type of question was initially raised in Ref. [26] (where a leaky
quantum dimer, with loss only, was considered) and, past a critical point, states with a
complex (instead of real) “eigenvalue” E were identified. In the P77 -symmetric context, a
similar idea was put forth in Ref. [27] for a double well consisting of two delta functions. In
this thesis we unify the approaches of Ref. [26] and [27] by computing the “ghost states”
(as we characterize them) that emerge from the symmetry-breaking bifurcation. Before
presenting the computation of the ghost states, we comment that these states with complex
(nonlinear) eigenvalue £ are no longer true solutions of the original system Eq. 2.1. This

is because of the U(1) invariance of the system, which only allows stationary solutions



with real E [so that | exp(iEt)|*> = 1]. When this symmetry is violated, the solutions may
satisfy the stationary equations Eq. 2.2, but are only ghost states of the original dynamical
system because they do not satisfy Eq. 2.1. Thus, at best one expects that the dynamics
may stay close to the dynamics of these ghost states, especially during the evolution of the
symmetry-breaking instability. We return to this topic later. To identify these stationary

solutions, we introduce polar coordinates £ — F exp(i¢.) and get

AFE cos ¢, = kBcosh+ A3
BEcos¢, = kAcosf+ B?
AEsing, = kBsinf+~vA

BEsing, = —kAsinf —~B, (2.5)

where 0 = ¢, — ¢,. To derive the asymmetric (A # B) solutions, we rewrite these

equations as

cos) = ATB (2.6)
) B 2vAB
S1n 9 = — m (27)
A? + B?
coS Q. = —5 (2.8)
A -BY
sin g, = E(A T BY) (2.9)

Applying the identity sin® x + cos’z = 1 to Eq. 2.6-2.7, we obtain a condition for the
solution amplitudes, and the same identity applied to Eq. 2.8-2.9 yields the parameter £.
These solutions exist only for v> > k? — E?/4 . If E? > 4k?, they exist for all values of y
(i.e., they have bifurcated already due to the nonlinearity). Also, these solutions terminate
as 0 — —7m/2, ¢. — m/2. In turn, this implies that in this limit both B and A vanish,
with the ratio between them having the limit B/A — (v + /42 — k2)/k. Thus, we have

identified the disappearance point v = E? + k? of these symmetry-broken solutions.
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Finally, we discuss the disappearance of the two symmetric states at the critical pointy = k
, which is the phase-transition point of the linear (and nonlinear) problem. We have shown
that at this point the symmetry-broken states still exist, but that now they are only ghost
states of the steady-state problem. From the point of view of nonlinear theory, one may be
content to find a saddle-center bifurcation at this point, which leads to the disappearance of
these solutions as stationary states of the nonlinear problem. Yet, once again, when these
solutions disappear (even in the normal form of such a bifurcation) this means that they
appear somewhere else within the complex plane of solutions. In order to compare this
result with the linear P77 -symmetric case, where the eigenvalues collide, become complex,
and continue to exist in the complex plane, we follow Ref. [27] and consider the analytic
continuation of our solutions. In the P7T -symmetric regime up to the critical point, the
solutions are chosen so that u*(z) = u(—=x). (This is a broader statement for a spatially
distributed system; in our simpler dimer setting, we need only replace = by the subscript 1
and —x by the subscript 2, or vice-versa.) Thus, to perform the analytic continuation, we
use u; = ug—; in Eq. 2.1, which leads to Eq. 2.5, but in the first pair of equations A3 and
B3 are replaced by A%2B and B%A . The result is

B + /2 k2
rTEVIE TR (2.10)

A 2
cos = f 2.11)
sing, = m (2.12)
0 — _g (2.13)

Note that the pitchfork symmetry-breaking branches also tend to this solution, as shown
above in the expression for B/A in the limit of termination of the branch when 7 =
vk2 + E2. We have made an additional subtle assumption here, namely, that 6, + 6, = 0.
We can obtain more general solutions without this assumption, but these do not appear to

introduce new features to the problem. The solutions stemming from the analytic contin-
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uation provide a complete description of the states of the system. We move from sym-
metric/antisymmetric states to asymmetric ones (which may be ghost states) through a
pitchfork bifurcation, destabilizing the symmetric (antisymmetric) branch for a focusing
(defocusing) nonlinearity. We terminate at the point of the linear P77 phase transition,
where the nonlinear eigenvalues of the symmetric branches collide and become complex,
giving rise to an analytic continuation of our solutions in the complex plane. All solutions
terminate at v = \/k2 + E2. See Fig. 2.5 for a relevant bifurcation diagram.

Fig. 2.6 shows the evolutionary plots of the ghost solutions (blue solid line) for v =
0.9, E =k =1. With £ = E, + iF; being complex, the ghost state solutions under the
form u; = exp(iEt)a and uy = exp(iEt)b should evolve exponentially, as indicated by
red dashed lines in both panels. In particular, the black squares branch with negative F; is
expected to lead to growth (for both nodes of the dimer), while the green stars branch with
positive E; is anticipated to decay (again for both nodes). The slopes of these growth/decay
features are given by —2F; = —2F'sin ¢.. However, in line with their anticipated linear
“instability”, neither of these follows exactly the dynamics anticipated above. Both of them
evolve for a short period according to the expected growth or decay, and then the gain sites
start to grow and the loss sites start to decay, regardless of the trend predicted by the form

of the ghost state (as discussed above).

I P7-symmetric trimer

We now turn to the case of the trimer where the dynamical equations are

iul = —]fUQ — |U1|2U1 — wul
iﬂg = —k(u1 + Ug) - \u2\2u2
iy = —kuy — |us|?us + iyus (2.14)

Seeking once again stationary solutions leads to the algebraic equations

12



Figure 2.5. (Color online) Ghost states (denoted by cyan pluses and black squares) bi-
furcate from the two stationary solutions (denoted by blue circles and red diamonds) of a
dimer. Under parameter values k = 1 and £/ = 1, the black squares branches emerge from
a pitchfork bifurcation of the blue circles branch at v = 0.87 and terminate at v = 1.41.
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Figure 2.6. (Color online) The evolutionary plots of the two ghost solutions of dimer for
v =0.9, E =k = 1. The dashed lines are the predicted dynamics of the ghost states on
the basis of their growth rates (for black squares) or decay rates (for green stars).

Ea = kb+|al’a+iva
Eb = k(a+c)+|b*b

Ec = kb+|cf’c—iyc (2.15)
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In this case too, it is helpful to use the polar representation for the three-sites in the
form a = Aee b = Be'® ¢ = Ce'®, which, in turn, leads to the algebraic equations of

the form:

A=C (2.16)

B* - EB* +2EA%* - 2A* =0 (2.17)

sin(y — gu) = —sin(éy — 6 = — 13 @.19)
cos( — ) = cos(dy — 6) = A=A (2.19)

In turn, the algebraic polynomial equation for the squared amplitude of A% = x is given by

o[y 4+ (B — 2)?)* — K*E[y* + (E — 2)%] — 2k*s + 2k*E =0 (2.20)

Notice how the presence of the gain-loss spatial profile along the three sites induces a
spatial phase distribution and enforces the condition of a symmetric amplitude profile with
the first and third site sharing the same amplitude. This phase distribution would be trivial
(relative phases of 0 or 7) in the v = 0 case.

As mentioned above, in addition to the regular stationary solutions for which F is real,
one can seek additional solutions with £ being complex, i.e., £ = E exp(i¢.) The re-
sulting waveforms are quite special in that they are solutions of the stationary equations
of motion (2.15), yet they are not solutions of the original dynamical evolution equation-
s (2.14), because of the imaginary part of £. Such “ghost state” solutions have recently
been identified in the case of the PT -symmetric dimer [27, 28, 22] and have even been
argued to play a significant role in its corresponding dynamics therein. In the case of the
trimer, they are presented here. Such ghost trimer states will satisfy the following algebraic

conditions:
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,  A(B*P+20%)y
Sin g = B (A2 + B2+ (?)k 2.21)

AB-C)B+C)(—A*+ B*+(C*
cos P, = ( B)((—A2 _I_)L; — Ok ) (2.22)

. _ (242 + B?) Cy
sin . = B(AZ+ B2+ %)k (2.23)
(A B O (AT + B -7

cos ¢, = B—AZ+ B =9k (2.24)

sing, = A=A+ (2.25)
(A24+ B2+ CHE

4_ pa 4

coS ¢ = A -B+C =, (2.26)

(A2-B2+CHE

From these equations, the amplitudes A, B, C can be algebraically identified by applying
the identity sin ¢ + cos? ¢ = 1 for each of the above angles. The relevant six algebraic
equations lead to the identification of the six unknowns, namely the three amplitudes, as
well as the phases ¢,, ¢. and ¢, (for simplicity we have set ¢, = 0 hereafter, without loss
of generality). It should be noted here that should such ghost state solutions be present
with ¢, # 0, these will spontaneously break the P7 symmetry, given that they will have
A#C.

Notice that for each branch of solutions that we identify in what follows, we will also
examine its linear stability. This will be done through a linearization ansatz of the form
u; = Py + e(pie™ + cjieh)]. Here the v;’s for 7« = 1,2, 3 will denote the values of
the field at the standing wave equilibria, while )\ are the corresponding eigenvalues and
(pi, q;) for i = 1,2, 3 denote the elements of the corresponding eigenvector which satisfies
the linearization problem at O(¢); the overbar will be used to denote complex conjugation.
When the eigenvalues A of the resulting 6 x 6 linearized equations have a positive real part,
the solutions will be designated as unstable (whereas otherwise they will be expected to be
dynamically stable). We now turn to the detailed numerical analysis of the corresponding
stationary, as well as ghost branches of solutions. Since Eq. (2.20) is a polynomial of degree

5, we expect at most 5 distinct real roots (and at least 1 such). Indeed for suitable choices
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of the free parameters (£, k), we identify five branches of stationary solutions. Figure 2.7
illustrates a situation with five branches under £ = 0.5 and k£ = 0.1. Two of them, denoted
by blue circles and red diamonds, collide and terminate at v = 0.1. The blue circles are
essentially stable while the red diamonds are unstable. Another pair of branches, namely
the magenta squares and green pluses collide and terminate at v = 0.02, with the magenta
squares being stable and the green pluses being unstable (i.e., both of the above collisions
are examples of saddle-center bifurcations). The black crosses branch, which is essentially
unstable, persists beyond v = 0.1. Notice that the amplitudes of the different nodes for this
branch shown in the top left panel of the figure are not constant: the upper line (standing

for B) is slightly increasing and the lower line (standing for A = () is slightly decreasing.

Figure 2.7. (Color online) The solution profile of Eq. (2.14) with £/ = 0.5, £ = 0.1 and
¢p» = 0. The four panels denote the solution amplitude (top left), phase differences between
adjacent nodes (top right), real and imaginary parts (second row) of eigenvalues.

In the following, we focus on a typical example of the branches (both stationary and
ghost ones) for a selection of the free parameters of order unity, more specifically for £ =
kE = 1; cf. Fig. 2.8. We identify three distinct examples of stationary states denoted by
the blue circle, red diamond and black cross branches. The blue circle and red diamond

branches stem from the corresponding “+0—" and “—+—" branches, respectively, namely
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the second and third excited state of the Hamiltonian trimer problem of v = 0; cf. with
Ref. [29]. The blue circles branch is mostly unstable, except for a small interval of v €
[1,1.035], while the red diamonds branch is chiefly stable, except for the narrow interval
of values of v € [1.035,1.043]. In this narrow interval, the eigenvalues of both of these
branches are very close to each other. For the blue circles branch, we also note that two
eigenvalue pairs stemming from a complex quartet collide on the imaginary axis at 7 = 1
and split as imaginary thereafter. One of these pairs exits as real for v > 1.035, and the two

branches (blue circles and red diamonds) collide shortly thereafter, i.e., at v = 1.043.
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Figure 2.8. (Color online) In a way similar to that of the previous figure (i.e., with top left
denoting amplitudes, top right relative phases, bottom left real and bottom right imaginary
part of the linearization eigenvalues), the 4 panels show the existence and stability of so-
lutions for a trimer with parameters £/ = k£ = 1. There are three regular standing wave
branches: the blue, the red and the black; the blue and red are the ones disappearing hand-
in-hand at v = 1.043. Two ghost solutions are colored in magenta and green and bifurcate
at the destabilization of the blue branch for v = 1.035, while they terminate for v = 1.732.

Interestingly, however, these are not the only branches that arise in the trimer case.
In particular, as can be seen in Fig. 2.8, there is a branch of solutions bifurcating from
zero (amplitude) for v > +/2k2 — E2, denoted by the black crosses in Fig. 2.8. In our
case ¥ = k = 1, this branch is only stable for 7 < 1.13, at which point two pairs of

imaginary eigenvalues collide and lead to a complex quartet, which renders the branch
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unstable thereafter. Yet, this branch of solutions has a remarkable trait. In the case of the
trimer, the underlying linear problem possesses the following eigenvalues: 0, £ \/m .
Hence, the critical point for the existence of real eigenvalues of the linear problem in the
case of the PT -symmetric trimer is ypr = /2k (cf. with the ypr = k limit of the dimer).
Nevertheless, and contrary to the case for the dimer, the third branch of solutions considered
above persists beyond this critical point (although it is unstable in that regime).

In Fig. 2.8, in addition to the standard stationary solutions, the ghost state solutions
are also shown. These are designated by the magenta squares and green pluses in the
figure. These ghost solutions are also obtained for E=k=1,and importantly (and
contrary to what is the case for the stationary states), they bear distinct amplitudes in all
three sites. The two (magenta and the green) branches shown in the figure are mirror
images of each other, i.e., A, B, C' in the magenta branch are the same as C, B, A in the
green branch, respectively, and their phase difference and eigenvalues are opposite to each
other. Notice that as indicated above the difference in the magnitudes of A and C' supports
the fact that these branches defy the expectations of the P77 symmetry. Indeed, both of
the branches arise through a symmetry-breaking bifurcation from the blue branch when it
becomes unstable at v = 1.035. Furthermore, it should be noted that the branches terminate
at vanishing amplitude for v = 1.732. It is interesting to point out that when performing
linear stability analysis of these states, we find both of them to be unstable. Case examples
of the linearization results for both the regular states and the ghost ones are shown for three
different values of v in Fig. 2.9. For v = 0.5, the red diamond branch is (marginally)
stable, while the blue circle branch bears the instability that we discussed above for v < 1.
For v = 1.5, only the black branch is present among the stationary ones and the magenta
and green ghost state branches manifest their respective asymmetries with spectra that are
asymmetric around the imaginary axis. This is a characteristic feature of the ghost states;
see also [22, 30]. Although among the two branches, the magenta is more stable and the

green highly unstable, even the magenta branch is predicted to be weakly unstable with
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a small real positive eigenvalue. We will examine the dynamical implications of these
instabilities in what follows. The last panel similarly shows the case of v = 1.7 shortly

before the disappearance of the ghost state branches.
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Figure 2.9. (Color online) The spectral planes (A, A;) of the eigenvalues A = A\, + i)\;
of the solutions shown in Fig. 2.8. The first panel shows the case of v = 0.5 where only
the standing wave branches exist (blue circles — unstable and red diamonds — stable). The
second panel for v = 1.5 has only one standing wave (black crosses — unstable), and two
asymmetric ghost states which are mirror images of each other (and so are their spectra),
namely magenta squares and green pluses. The third panel shows the same branches as in
top right but for v = 1.7 close to the termination of the ghost state branches.

Finally, we examine the dynamics of the different branches in Fig. 2.10. The top row
panels of the figure show the evolution of the three stationary branches. Panels (a) and
(b) show the blue circle branch for v = 0.5 and v = 1.1, while panel (c) depicts the
red diamond standing wave branch for v = 1.1. It can be seen that in accordance with
the predictions of our linear stability analysis, the first two branches are stable or unstable
in their corresponding regimes, while past the point of existence of these branches (7 =
1.043), their evolution gives rise to asymmetric dynamics favoring the growth of the power
in a single site [or, in some cases, even in two sites; see, €.g., Figs. 2.10(b) and 2.10(c)]. On
the other hand, for the branch emerging at v = 1 and persisting past the linear instability
limit, we indeed find it to be stable for v < 1.13 and unstable thereafter, again leading to an
asymmetric distribution of the power. Notice that the cases of (b) and (c), the corresponding
branches cease to exist at v = 1.043. Thus in these runs, we have used the terminal point

profile of the branches (at v = 1.043) as initial data for the evolution with v = 1.1.
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Importantly, we note that in the unstable evolution of cases (b) and (c), two of the sites end
up growing indefinitely while the lossy site ends up decaying. On the contrary, in the case
(a), only the site with gain is led to growth, while the other two are led to eventual decay. In
panel (d), we show the black crosses branch, the third among the standing wave solutions
identified herein for v = 1.5. Notice that panel (d) shows a different dynamical evolution
from panels (b) and (c) and more in line with panel (a), showcasing that there are indeed
two general growth scenaria: one in which the gain site “grabs” along the neutral central
site and leads it to indefinite growth and one in which the central site is ultimately led to

decay together with the lossy site.

v=0.5 v=1.1 v=1.1 v=1.5
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Figure 2.10. (Color online) The dynamical evolution of the amplitudes of the three sites
for the solutions shown in Fig. 2.8. Notice that all solutions are plotted in semilog. The
first row shows the evolution of the three stationary branches. In (b) and (c), since these
branches are absent for v = 1.1, their profile for v = 1.043 is initialized. The second
row shows dynamics of the two ghost state solution branches. The dashed lines are the
predicted dynamics of the ghost states on the basis of their growth (for magenta squares)

or decay (for green pluses) rates.

The four panels in the lower row show the dynamical evolution of the two ghost states
(green pluses and magenta squares) for the cases of v = 1.1 and v = 1.5. Similarly
as in the dimer case, the magenta squares branch with negative £ is expected to lead to

exponential growth (for all three nodes of the trimer), while the green plus branch with
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positive F; is anticipated to decay exponentially (again for all nodes). Once again, neither
of these follows exactly the dynamics anticipated above. Both of them evolve for a short
period according to the expected growth or decay, and then the gain sites start to grow and
the loss sites start to decay, regardless of the trend predicted by the form of the ghost state.
Moreover, it is relevant to note as regards the corresponding dynamics that the cases of the
blue circle and red diamond branches of v = 1.1 exhibit similar (asymptotic) dynamics to
those of the magenta squares and of the green pluses for the same parameter value; i.e.,
the central site is also led to growth along with the gain one. On the other hand, it is also
evident that the black crosses branch for v = 1.5 instead follow an evolution resembling
to the asymptotic evolution of the green pluses branch (which is different from that of the

magenta squares for the latter value), i.e., here only the gain site is ultimately led to growth.

III P7-symmetric quadrimer

In this section, we briefly turn to the case of the quadrimer. Here the equations are

ity = —kuy — |u1)?uy — iyuy

ity = —k(uy 4 us) — |ug|?ug — iyug

ity = —k(ug 4+ ug) — |us|®us + iyus

ity = —kus — |ug|?ug + iyuy (2.27)

Notice here that we only consider the case where the first two sites have the same loss and
the latter two the same gain. This is by no means necessary, and the gain-loss profile can
be generalized to involve two parameters (e.g., £v; and £, distinct between the different
corresponding sites, i.e., the first and fourth ones, as well as the second and third ones)[31].
We do not consider this latter case here, due to its more complicated algebraic structure
that does not permit the direct analytical results given below. More specifically, in our

considered special case, the stationary equations read
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Ea = kb+|al’a+iva
Eb = k(a+c)+|b*b+ivb
Ec = k(b+d)+|c|*c —ive

Ed = kc+|dJ*d —ivd (2.28)

The polar representation of the form a = Ae®*, b = Be' ¢ = Ce'®c, d = De'%e now

allows the following reduced algebraic equations:

A+ B*=C*+D*=FE (2.29)
A’B* +42A% — k*B*=0 (2.30)
D*C* +4*D* - K*C* =0 (2.31)
sin(dy — 60) = — (2.32)

sin(ge — ) = — o = ~1 (2.33)
sin(¢gg — ¢.) = —%. (2.34)

Notice that in this case not only do we have the customary phase profile, but in fact one of
the phase differences becomes locked to 7/2 due to the presence of the gain-loss pattern.

Upon reducing the algebraic equations, we obtain

(E — B)B*+~*(E — B*) - k*B*=0, (2.35)
(E—C*C*++*(E - C*) - K*C* =0, (2.36)
vE = kBC. (2.37)

This leads to the important conclusion that for this gain-loss profile in the case of the
quadrimer, in contrast to the cases of the dimer and trimer, one of the parameters F, k,
or 7y is determined by the other two; i.e., not all three of these parameters can be picked

independently in order to give rise to a solution of the quadrimer.
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We hereby set £ = 1, and increase v from 0 as before: then k£ can be obtained self-
consistently from the above equations. Therefore, once £ and + are fixed, the solutions of
the quadrimer problem are fully determined. We now present three branches of solutions
that arise in this setting as we increase 7. These are shown in the panels of Fig. 2.11. There
are two classes of solutions here. The solid curve the blue circles branch corresponds to
a fully asymmetric, always unstable branch with A, B, C, D distinct, i.e., something that
is unique (among the settings considered herein) to the quadrimer. On the other hand, the
dashed curve of the branch the red diamonds branch and the dash-dotted curve of the branch
the black crosses branch correspond to symmetric branches with amplitudes A = D and
B = C. Among the two symmetric branches the red diamonds branch and the black crosses
branch that collide and disappear together in a saddle-center bifurcation at v = 0.362, we
can observe that the former has a real and two imaginary pairs of eigenvalues being always
unstable, while the latter starts out stable, but the collision of two of its imaginary pairs will
render it unstable past the critical point of v = 0.023. Interestingly the asymmetric branch
the blue circles branch and the symmetric branch the black crosses branch appear to collide
in a subcritical pitchfork bifurcation that imparts the instability of the asymmetric branch
to the symmetric one for v > (0.193.

As an aside, we should also note here that in its linear dynamics the P7 -symmetric
quadrimer has an interesting difference from the dimer and trimer. In particular, the four

linear eigenvalues of the system are

ha =y + £ (31— 167+ 52) 2.3
k
S N S ] (239

The fundamental difference of this case from the dimer and regular trimer considered above
is that these eigenvalues do not become imaginary by crossing through zero. Instead, they

become genuinely complex through their collision that occurs for ypr = v/5k /4, a critical
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point which is lower than that of the trimer. This could be an experimentally observable

signature of the difference of the near linear dynamics of the quadrimer.
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Figure 2.11. (Color online) Three branches of solutions for the quadrimer problem with
parameters &2 = 1 and ¢, normalized to 0: the solid lines denote the asymmetric branch the
blue circles branch, while the dashed and dash-dotted lines denote the symmetric branches
the red diamonds branch and the black crosses branch, respectively. For each branch, four
curves in (a) stand for A, B, C, D (only two curves for the red diamonds branch and the
black crosses branch since A = D, B = (' in these cases), and three curves in (b) stand for
b, Oc, @q- Panel (e) and (f) are zooms of (c) and (d) respectively.

The dynamics of these different branches was also considered in Fig. 2.12. In this case,
it can be clearly observed that all three branches tend toward an asymmetric distribution of
the power. This favors the two sites (third and fourth) with the gain, although some case
examples can be found [see, e.g., Fig. 2.12(a) for the asymmetric branch| where only one

of the two gain sites is favored by the mass evolution.
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Figure 2.12. (Color online) The profile of the dynamical evolution of the three different
branches: (a) the blue circles branch, (b) the red diamonds branch, and (c) the black crosses
branch of a quadrimer in the case of £ = 1 and v = 0.1.

IV PT-symmetric coupler with \? nonlinearity

Recently the studies of solitons in quadratically nonlinear media were extended to P7 -
symmetric systems. More specifically, the existence and stability of solitons for localized
potentials in quadratic media was explored in [32]. In the work of [33], the effect of
periodic P77 -symmetric potentials on () solitons was described.

It is on that direction of exploring the interplay of quadratic nonlinearity and P7 -
symmetric potentials that the present work is focused. It is appreciated that even in the case
of two waveguides, this combination offers a significant level of complexity, as well as a
number of features that are absent in the cubic Kerr nonlinearity case.

The prototypical setup of equations describing the P77 symmetric coupler with quadrat-

ic nonlinearity reads as follows:

1wy = kyug — 2ujvy + iy uy, (2.40a)
W = kovg — u% — quy + iY901, (2.40b)
Wy = kiup — 2ujvy — 1y U9, (2.40c¢)
Wy = kovy — ug — qUy — 1Y2s. (2.404)

Each waveguide contains two harmonics: the fundamental field (first harmonic) u; and the

second harmonic v;, j = 1, 2, which are nonlinearly coupled. The linear coupling between
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the first harmonics is characterized by the parameter k;, while that of the second harmonics
by ks. Both k; and £, will be considered positive. The gain (loss) strength in the two arms
of the dimer is given by the parameters ; > 0 (; < 0), for the first (j = 1) and second
(7 = 2) harmonics, respectively. In what follows, we will explore different parameter
values of (71,72) to get a systematic sense of the model phenomenology. The overdot in
(2.40) denotes the derivative with respect to the evolution variable which, here, we will
denote as t (although in the optical realm it represents the propagation distance z).

In particular, we focus on nonlinear solutions preserving the symmetry pertinent to the
linear part, i.e. to the P77 -invariant modes obeying P7w = w. Using for such modes the

amplitude-phase decomposition we rewrite the stationary solution w in the form

A
Bei?2
w = e (2.41)
Ae 01

where A and B are real stationary amplitudes and ¢, 5 are stationary phases. This ansatz

reduces (2.40) to the system of stationary equations as follows

E = ke %91 — 2B 927201) 4 (2.42a)

2E = kye®? — (A?/B)e'P ) — g — i, (2.42b)

(where it is assumed that B # 0). Further splitting to real and imaginary parts yields four

equations:

E = kicos(2¢1) — 2B cos(¢y — 2¢1), (2.43a)
0 = —kisin(2¢;) — 2Bsin(¢g — 261) + 71, (2.43b)
2E = kycos(2¢2) — (A%/B)cos(d2 — 2¢1) — ¢, (2.43¢)
0 = kysin(2¢y) — (A%/B)sin(¢y — 2¢1) — Ya. (2.434d)
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Figure 2.13. (Color online) Existence and stability properties of nonlinear modes with
ki =1,ks =2,q=0.5,7 = 0.1, 75 = 0.5. The four panels denote the solution amplitude
(top left), phase differences between adjacent nodes (top right), real and imaginary parts
(second row) of eigenvalues. For a detailed explanation of the different families, see the
text.

If we take A, B, ¢, as four unknowns in the system (2.43), then one can expect
that there exists one or several solutions for any given E. Therefore, we can speak about
continuous families of nonlinear modes.

We now turn to a more systematic analysis of the existence and stability properties
of the different families of solutions identified previously, for reasons of completeness.
Fig. 2.13 illustrates the situation where k; = 1, ky = 2, ¢ = 0.5, 9, = 0.1, 75 = 0.5. There
are eight families of solutions in this case, denoted by different symbols. Their eigenvalues
for the respective parameters of existence are shown in the case of three different choices

of I/ in Fig. 2.14.

e The family denoted by blue circles arises from £ = F3 ~ 0.72 and continues mono-
tonically increasing its sum of squared amplitudes upon increase of F to infinity. It
always has two pairs of purely imaginary and one pair of real eigenvalues, which

give rise to its instability.
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Figure 2.14. (Color online) Eigenvalues of the linearization problem of nonlinear modes
with by = 1, ks = 2, ¢ = 0.5, 71 = 0.1, 75 = 0.5. The same notation has been used as in
Fig. 2.13.

e The brown pentagram family exists for all the considered values of £/. The am-
plitudes of both harmonics reach their minimum (within the parabolic shape of the
family reported previously) in the interval £ € [0.2,0.3], but at different points.
This family has three pairs of purely imaginary eigenvalues, two of which collide at
E ~ —2.13 and turn into a complex quartet. At £/ ~ —0.65, the complex quartet
collides on the imaginary axis and splits anew into two pairs of imaginary eigenval-
ues, restabilizing the waveform. The larger of the two imaginary pairs subsequently
meets the largest imaginary eigenvalues and the collision yields a complex quartet
within the short parametric interval of £ € [—0.20, —0.19] (hereafter boundaries of
the intervals are given approximately). The remaining (lowest frequency) pair col-
lides with the spectral plane origin and turns into a real pair at £/ ~ —0.2. This pair
of eigenvalues becomes imaginary again shortly at £/ ~ 0.2 and collides with its for-
mer partner at £/ ~ (.41 to form a complex quartet. This complex quartet once again
splits into two purely imaginary pairs at £/ ~ 1. As a result, the brown pentagrams
family is stable for all £ except on [—2.13, —0.65], [—0.2,0.2],[0.41, 1]. From the
above, the substantial complexity of the family stability properties should be rather

evident.

e The green pluses and the red crosses arise together from a saddle-node bifurcation

at £ ~ 0.3. The green pluses family is essentially stable except when E' is within
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a small interval of [0.47,0.48], where two out of three pairs of purely imaginary
eigenvalues collide yielding a Hamiltonian-Hopf bifurcation and a complex quartet
and the reverse path renders the eigenvalues purely imaginary again. This family

terminates at ' = Fj3 ~ 0.72 with the first harmonic amplitude vanishing.

e The red crosses family bifurcates from the same point as the green pluses, however
it does not terminate. It is unstable only on an interval of £ € [0.39,0.89] due to a

complex quartet.

e The magenta stars family arises from the linear limit at £ = E; ~ 0.99 and exists
always thereafter. It has three pairs of purely imaginary eigenvalues, too. Two of
them turn into a complex quartet within the small interval [1.38,1.43] and make the

family unstable in this interval.

e The cyan squares family comes from —oo having a real pair and two purely imagi-
nary pairs of eigenvalues. This branch is stable only after &/ ~ —1.3 where the real
pair turns purely imaginary; subsequently the branch terminates at £ = E,; ~ —1.22

(with the first harmonic amplitude vanishing).

e The orange diamonds and the black hexagrams emerge from a saddle-node bifurca-
tion at £ ~ —1.63. The orange diamonds constitute the only family that is always
stable, having three pairs of purely imaginary eigenvalues. This family terminates at

the linear limit of £ = Fy ~ —0.99.

e The black hexagrams start at the same point as the orange diamonds but terminate at
E = E, ~ —1.22. It always has two pairs of purely imaginary and one pair of real

eigenvalues. Hence it is generically unstable.

As general comments we can infer that, arguably, the most robust families and ones that
will generically exist are the ones emerging from the eigenvalues ELQ of the linear limit.

The other families may have intervals of stability but also often suffer oscillatory or real
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Figure 2.15. (Color online) Existence and stability properties of nonlinear modes with
similar settings as in Fig. 2.13 but for k; = 1, ks = 2, ¢ = 0.5,y = 0.1, 75 = 0.9.
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Figure 2.16. (Color online) Eigenvalues of the linearization problem of nonlinear modes
with k‘l = 1, k‘g = 2, q = 05, Y1 = 01, Yo = 0.9.

instabilities and are subject to saddle-center bifurcations (although e.g., the family starting
from F; ~ 0.99 also has a small interval of instability, and the generically stable family
starting from Ey ~ —0.99 is subject to a saddle-node bifurcation).

Fig. 2.15 and Fig. 2.16 show us the solution profiles and their eigenvalues under the
parameter k1 = 1, ks = 2, g = 0.5, 73 = 0.1, 75 = 0.9. In this case there are seven
families. The black hexagrams family of Fig. 2.13 does not exist any more. We briefly

summarize the difference in each family in the following compared with the previous ones.

e The red crosses family now arises from a saddle-node bifurcation with the green

pluses at £/ ~ (.36 and terminates into another saddle-node bifurcation with the blue
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circles families at £ ~ 0.85. It now has a pair of purely imaginary and a complex
quartet eigenvalues. The latter one reshapes into two pairs of purely imaginary eigen-
values at £/ =~ (.74, and one of them becomes real at &/ ~ 0.84. Hence, it is unstable

except on the interval [0.74, 0.84].

e The blue circle branch is still unstable but now exists from £ = Eg ~ 0.64 to

E ~ 0.85.

e The green pluses branch now exists from £ ~ 0.36 to E5 ~ 0.64. It is essentially

stable except when F is between [0.4, 0.46].

e The brown pentagrams still exist for all £ and bear similar eigenvalues as in Fig. 2.13.
In this case, the branch is stable except on [—2.06, —0.61], [—0.22, —0.17],
[—0.1,0.07], [0.37,0.97].

e The magenta stars family is similar as in Fig. 2.13, again bifurcating from the linear

limit and now being stable in the exception of the interval £ € [1.27,1.45].

e The unstable cyan squares family still comes from —oo, but now it is always unstable

and terminates at E4 = —1.14.

e The orange diamonds family exists from Ey~ —1.14t0 By ~ —0.99. It is unstable

until £ ~ —1.1 and becomes stable thereafter.

For comparison purposes, we also consider the Hamiltonian case k1 = 1, ks = 2,
q=0.5,7 =0, 7o = 0. Fig. 2.17 and Fig. 2.18 show the six families of nonlinear modes

1n this case.

e The blue circle family is similar to the one in Fig. 2.13, i.e. arises from E = Fy =
0.75 and is always unstable. It possesses a pair of real and two pairs of purely imag-

inary eigenvalues for all £/ where it exists.
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Figure 2.17. (Color online) Existence and stability properties of nonlinear modes with
similar settings as Fig. 2.13 but for ky = 1, ks = 2,¢ = 0.5, =0, 75 = 0.
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Figure 2.18. (Color online) Eigenvalues of the linearization problem of nonlinear modes
Withk‘l = 1,/{?2 :2,(]:0.5,’71 :0, ’72:0
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e The brown pentagrams now exist only up to E5 = 0.75. This branch is stable except

on [—2.17,—0.66], [—0.17, 0.24], where it has a complex quartet of eigenvalues.

e The red crosses now bifurcate from the brown pentagrams at £/ ~ (.25 and persist
beyond the point. It is this bifurcation that apparently splits into two fold points in the
two cases considered previously. The red crosses are unstable only on the interval
[0.41, 1], where a complex quartet of eigenvalues comes from two pairs of purely

imaginary ones colliding at £/ ~ 0.41 and returning to the imaginary axis at & ~ 1.

e The magenta stars family still arises from the linear limit at £, = 1. However, it now
always has three pairs of purely imaginary eigenvalues and hence is stable wherever

1t exists.

e The cyan squares family is similar to the one in Fig. 2.13, too. It is unstable, comes

from —oo, and terminates at £y, = —1.25.

e The orange diamonds branch now also exists from —oo and terminates at Fy = —1.
It is always stable in this case, too, again verifying the robustness of the families that

emerge from the linear limit.

Finally, from the point of view of numerical results, we have also performed direct
numerical simulations of the propagation dynamics of the quadratically nonlinear P7 -
symmetric dimer. These simulations allow us to obtain a feeling about the dynamical im-
plications of the instabilities presented above.

In Fig. 2.19, we show the dynamics of the nonlinear modes with k; = 1, ko = 2,
q = 0.5, 71 = 0.1, 75 = 0.5, which corresponds to Fig. 2.13. We choose different values
of E for the different families, usually in order to simulate their typical unstable behavior
under a small perturbation by numerical errors up to 10~7 [however, as an exception for
the orange diamonds e.g. of panel (g), we only confirm their generic stability]|. In panel

(a),(b) and (d), we pick £ = 1.5 for the blue circles family, £ = 0.5 for the brown
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Figure 2.19. (Color online) Dynamical plots in a semilogarithmic scale for the y-variable
(denoting the amplitudes of the fundamental and the second harmonic) for different non-
linear modes with &y = 1, ks = 2, ¢ = 0.5, 74 = 0.1, 75 = 0.5. The family considered and
the value of the propagation constant are depicted explicitly in each panel.

pentagrams family and the red crosses family, where all of them are unstable. In all three
cases here, the amplitudes of the first waveguide (which features gain) grow exponentially
fast after some oscillation. The amplitudes of the second waveguide (which sustains loss)
keep oscillating but also appear to increase in comparison to their initial values. In panel
(c), all the amplitudes of the green pluses family are relatively constant for a long evolution
interval and oscillating around their initial values, due to its complex quartet of eigenvalues
at £ = 0.47. Panel (e) shows the amplitudes of the two waveguides of the magenta star
family which are oscillating quasi-periodically in a similar way at £ = 1.4. Panel (f)
and (h) illustrate the instability of cyan squares and black hexagrams where the amplitudes
of both harmonics of the first waveguide grow exponentially at about ¢ = 50 while the
amplitudes of the second waveguide do not appear to grow indefinitely (but contrary to the
cubic case, they are also not observed to systematically decay [34]). The stable dynamics

of the orange diamonds family at £ = —1.5 is also plotted in panel (g). Generally, for the
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Figure 2.20. (Color online) Dynamical plots in a semi-logarithmic scale for the y-variable
(denoting the amplitudes of the fundamental and the second harmonic) for different non-
linear modes with k; = 1, ks = 2, ¢ = 0.5,y = 0.1, 75 = 0.9.

unstable families, we infer either a growth in the first waveguide coupled with a bounded
oscillation in the second waveguide, or a bounded evolution in both waveguides.

Fig. 2.20 shows similar dynamic plots corresponding to the families plotted in Fig. 2.15.
Here all of the blue circles, brown pentagrams, green pluses, and red crosses in panel (a)—
(d) are unstable and present similar features as before, with unbounded growth in the one
waveguide (but no decay of amplitude on the second). The amplitudes of the magenta stars
still oscillate quasi-periodically around their initial values. In panels (f) and (g), both ampli-
tudes of the first waveguide grow exponentially. The amplitudes of the second waveguide
in cyan squares decay a little and then feature a weak oscillation around their initial values,
whereas for the orange diamonds family they grow a little and then feature a similar weak
oscillation.

Fig. 2.21 shows the dynamics of the Hamiltonian case under the parameters k; = 1,
ko = 2,q = 0.5, v = 0, 75 = 0 that corresponds to Fig. 2.17. Since y; = 0, v = 0,
neither of the two waveguides has a gain or loss profile. Shown in panels (a)—(c), are all

the amplitudes of the harmonics of the the blue circle, brown pentagram, and red cross
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Figure 2.21. (Color online) Dynamical semi-logarithmic plots of nonlinear modes with
ki=1,k=2,¢=05,7=0, 7 =0.

families which are oscillating around their initial values, with no trend of indefinite growth
or decay, just as expected by the absence of PT -symmetric terms. In panel (e), the cyan
squares family amplitudes now weakly oscillate periodically. Panels (d) and (f) show the
stable dynamics of the magenta stars and the orange diamonds families in this case, i.e.,

confirming the dynamical robustness of the families stemming from the linear limit.
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CHAPTER 3

ONE DIMENSIONAL NONLINEAR PT7T-SYMMETRIC
OLIGOMERS

In what follows below, we study the case of nonlinear-P7 -symmetric dimers [23] and
trimers, in which a gain/loss pattern appears both in the linear and nonlinear terms. One
of the fundamental side-effects of the fact that the nonlinearity does not commute with
the PT operator is the existence of nonlinear solutions that persist past the linear P7T -
phase-transition threshold. Furthermore, one of the principal consequences of the presence
of gain/loss terms in the nonlinearity is the existence of both symmetric and asymmetric
(in their amplitude) stationary solutions, with the latter possessing a non-symmetric lin-
earization spectrum. Interesting bifurcation phenomena (such as spontaneous symmetry

breakings) are, additionally, found to arise in this case.

I Analysis of Stationary Solutions for the Nonlinear-P7 -Symmetric

Dimer Case

The dynamical equations of a nonlinear P77 -symmetric dimer have the form:

iy = —€v + (p — ipgm) Jul*u + iyu (.1
vy = —eu + (py + ipim) V>0 — iv. (3.2)

The model contains the Kerr nonlinearity which is relevant to optical waveguides and is
effectively a generalization of the experimental framework of [5], in that nonlinear (i.e.,

amplitude-dependent) gain and loss processes are taken into account. Similarly as the
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linear cases, considering the prototypical stationary solutions of the system, we let u(t)

and v(t) have the forms:

u(t) = ae’™',  w(t) = be'! (3.3)
where F' is the propagation constant while the complex numbers a and b denote the ampli-
tudes of the dimer sites. Plugging this ansatz into Eq. (3.1), one finds the complex nonlinear

algebraic equations:

Ea = ¢eb— (p, — ipim)|al*a — iva (3.4)

Eb = ea — (p, + ipin)|b|*b + ib. (3.5)

We now use a polar decomposition of a and b of the form:

a=Ae®, b= Be'® (3.6)

for real-valued A, B, ¢, and ¢;. Plugging Eq. (3.6) into Eq. (3.4) and writing these equa-

tions in terms of their real and imaginary parts, we find:

EA = eBcos(¢p — ¢g) — ppA® (3.7)
EB = eAcos(¢y — ¢q) — p, B? (3.8)
—eAsin(dy — ¢q) — pimB® + 7B =0 (3.9)

eBsin(¢p, — ¢,) + PimA® — A = 0.

The last two equations yield

(A% = B?) [pim(A* + B*) — 7] = 0. (3.10)
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We note that Eq. (3.10) yields a simple algebraic condition which connects the amplitude of
the two dimer sites. This allows us to distinguish several subcases of interest. We look for

nontrivial solutions A and B in each of the subcases presented in the following subsection.

I.1 Existence of localized modes for the dimer case
Eq. (3.10) identifies the different scenarios for the values of A and B. We now examine

the three cases that arise from this equation for our dimer dynamical system.

o Casel: A? = B? and A%+ B? # v/ pim:

Recall the equations given in (3.7):

EA = eBcos(¢p — da) — prA%; (3.11)
EB = eAcos(¢p — ¢a) — p, B? (3.12)
and
eBsin(¢y — ¢o) + pimA® — yA = 0; (3.13)
—€eAsin(¢p — ¢o) — pimB> +vB = 0. (3.14)

Since A = B (i.e., these are symmetric solutions) in this case, the two equations in

each set are equivalent. Thus, we have:

Sin(¢b - (ba) = M? (315)
2
cos(y — da) = M%E. (3.16)

We use the relation sin?(¢, — ¢,) + cos?(¢, — ) = 1 to determine the following

quadratic equation for A?:

(07 + i) A + 2(Epr — vpim) A> +7° + E* — € = 0. (3.17)
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The solution of the resulting bi-quadratic equation reads:

A2 — B2 — _(Epr - 'Vpim) + \/(Epr - 'Vpim)2 — (P% + pzzm)(72 + B2 — 62)/3 18)
P2+ Pl o

with the restriction that

(Epr = vpim)* = (2 + pi)(V° + B* = ). (3.19)

o Casell: A%+ B? =~/p;, and A% # B%

Under these conditions, one can get

Ar = (3.20)
2p2m \/ pr+pzm
B? = T (3.21)
2p2m 4pz2m pr + pim
E = -7 (3.22)
Pim
cos(dy — Ga) = — (3.23)
b — Pa - 5 .
VOt P

with the restriction that

2 2
€
f}/ >

4p2, PR+ ph,

(3.24)

A fundamental difference of this case from case I is that here £ is no longer a free
parameter [23]. The solutions with the different amplitudes will be called asymmetric

in what follows.
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e Caselll: A%+ B? =+/p;ym and A? = B%

As a final “mixed” possibility, between the above symmetric and asymmetric cases,

from Eq. (3.7), it is straightforward to obtain

A= B=, /1 (3.25)

2 imE + T

cos(¢p — Pg) = % (3.26)

epim

sin(gy — ¢o) = 21 (3.27)

€
with the restriction that
2 sz T 2 2
2Pimb F P\ (l) ~1. (3.28)
2€Pim 2¢

Once again this implies that once other parameters (such as v, p;m, p- and €) are determined,
E is not a free parameter; rather is obtained from Eq. (3.28). These will be referred to as
special symmetric solutions in the following.

It is particularly important to highlight that both solutions of Case 1l (asymmetric) and
ones of Case III (special symmetric) are present due to competing effects of the linear and
nonlinear gain loss profiles; notice the opposite signs thereof in Eq. (3.1) and the necessity
of vpim > 0 for such solutions to exist. In the case, where the linear and nonlinear gain/loss
cooperate (rather than compete) such solutions would obviously be absent and the system
would be inherently less wealthy in its potential dynamics. This point was also discussed

in [23].
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I.2 Linear stability analysis for the dimer case
We now go back to our original P77 -symmetric dimer with linear and nonlinear gain
and loss in Eq. (3.1) and examine the linear stability of the solutions to this equation. We

begin by setting

u(t) = eF'a + pe + Per'], (3.29)

v(t) = b + geM + Qe (3.30)

where A is a complex-valued eigenvalue parameter revealing the growth (instability) or
oscillation (stability) of all the modes of linearization of the dimer system; * denotes the
complex conjugate and p, P, ¢, () are perturbations to the solutions of interest. Plugging
Eq. (3.29) into Eq. (3.1) and taking only the linear terms in p, P, ¢ and (), we find the

following eigenvalue problem:

AX = XX (3.31)

where X = (p, — P*, ¢, — Q*)T and A is written as:

ary —a*(pr — ipim) —€ 0
a* ) (p, + ipim a 0 €
A— (a*)*(p Pim) 22 (3.32)
—€ 0 ass —b*(pr + ipim)
0 € (b*)z(pr — iPim) Q44

where
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anr = E + 2[al*(pr — ipim) + iy
aze = —2|al*(p, + ipim) — E +ivy
ass = E — iy + 2|b]*(py + ipim)

agy = —FE — iy — 2|b|2(Pr — iPim)- (3.33)

The use of the symmetric, asymmetric or mixed solutions of the previous subsection into
these matrix elements produces a 4 x 4 complex matrix whose eigenvalues will determine
the spectral stability of the corresponding nonlinear solution. The existence of eigenvalues
with positive real part A\, > 0 amounts to a dynamical instability of the relevant solution,

while in the case where all 4 eigenvalues have )\, < 0, the solution is linearly stable.

1.3 Numerical results for the dimer case

Fig. 3.1 shows the profile of the different branches for the dimer case and for parameters
e=1,E=1,p, = —2and p;,, = 1 (unless noted otherwise). The branches denoted by
blue stars and red diamonds correspond to the case I of symmetric solutions; these two
branches collide and disappear at the critical point v = 1.61 (when Eq. (3.19) becomes an
equality). The green circle and magenta cross branches correspond to case 1I; and the black
squares branch corresponds to case III. For the latter two branches, when 7 is varied, E is
also varied too (rather than staying fixed at &/ = 1 as for case I) according to Egs. (3.22)
and (3.28), respectively. Similar notation is used in Fig. 3.2, which shows the linear stability
eigenvalues A = \. + ¢)\; of the linearization. While the branches of case I are stable, it
is interesting to note that the branch of case III (black squares) is stable until a pitchfork
(symmetry breaking) bifurcation arises at v = 0.895 (when Eq. (3.24) becomes an equality)
and acquires a real pair of eigenvalues thereafter signalling its dynamical instability. On
the other hand, it is at that critical point that the two branches belonging to case 11 collide.
While the special symmetric black squares’ branch of case III persists up to the critical

point of v = 2¢ = 2 of Eq. (3.27), it should be pointed out that nonlinearity enables the
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asymmetric branches of Case II to persist for large values of v, in fact well past the point
of the linear PT phase transition. This feature has been highlighted in a number of recent
works [13, 31]; in the case of the dimer the linear critical P7 phase transition point is
identified as y = ¢, while for the trimer setting considered below it is 7 = v/2e.

An additional point worthy to mention here is that in linear P77 -symmetric chains (just
as is the case in typical Hamiltonian systems), if A is an eigenvalue to the linearization
problem around a solution, so are —\, A\, and —\ (where the overbar denotes complex
conjugation here). However, in our nonlinear P7 -symmetric dimer —\ and —\ may not
appear in the linearization around a particular branch, as is observed in Fig. 3.2. Eigenval-
ues of the green circles and magenta cross branches are not symmetric about the imaginary
axis, but are symmetric with respect to each other. One can see from Fig. 3.3 that the green
circles branch is always stable, while the magenta crosses branch is always unstable (due
to an oscillatory instability associated with a complex eigenvalue pair). This is because
the existence of asymmetry in these solutions of case II creates, in turn, asymmetries in
the linearization matrix, due to the nonlinear gain/loss term, which breaks the P77 sym-
metry of the linearization matrix and produces the corresponding observable asymmetry in
eigenvalues.

The dynamical evolution of the different elements of the bifurcation diagram of nonlinear-
PT-symmetric dimer is shown in Fig. 3.3 at a fixed v = 1.5. In all the cases here and below,
where a stationary solution exists for the parameter value for which it is initialized, a nu-
merically exact solution up to 1078 is typically used as an initial condition in the system.
The system is sufficiently sensitive to dynamical instabilities that even the amplification of
roundoff errors is enough to observe them. The stability of the case I branches is evident in
the invariance of the relevant states during the course of the simulation (blue stars and red
diamonds). On the other hand, the black squares branch is attracted towards the asymmet-
ric (yet stable, as is evident in the corresponding simulation) green circles branch. Finally,

the asymmetric magenta crosses branch leads to indefinite growth of the site with the larger
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amplitude (nonlinear gain) and the decay of the site with the smaller amplitude (nonlinear

loss).

Figure 3.1. The solution profiles of the nonlinear P7T -symmetric dimer case with ¢ = 1,
pr = —2 and p;,, = 1. The four panels here present the continuation of each branch (the
amplitudes in the top left, the phases in the top right, and the real -bottom left- and imagi-
nary -bottom right- parts of the linear stability eigenvalues) starting from the conservative
system at v = 0. The five branches are denoted by curves of blue stars, red diamonds, black
squares, green circles and magenta crosses. Blue stars: Case I with “-” in the amplitude;
Red diamonds: Case I with “+” in the amplitude; Green circles: Case II with “+” in the
amplitude (of A); Magenta crosses: Case Il with ““-” in the amplitude (of A); Black squares:
Case III. Notice that the eigenvalues of green circles and magenta crosses are opposite to
each other (see the relevant discussion in the text). We always set /' = 1 in the case 1
branches, namely the blue stars and the red diamonds, which terminate at the same point
when v = 1.61. The black squares are subject to a destabilizing supercritical pitchfork
bifurcation at v = 0.895, I/ = 1.789 whereby the green circles and magenta crosses arise.
The black squares branch terminates at v = 2; the green circles and magenta crosses exist
for arbitrary values of the (linear) gain/loss past the linear P77 -symmetry breaking point.

IT Analysis of Stationary Solutions for the Nonlinear P7-Symmetric

Trimer Case
We now consider the generalization of the above considerations to the case of a nonlin-
ear P77 -symmetric trimer. Here, the dynamical system associated with a potential applica-

tion of a three-waveguide setting is of the form:
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Figure 3.2. The eigenvalue plots illustrating the linear stability of the nonlinear-PT-
symmetric dimer with e = 1, p, = —2 and p;;,, = 1. For the blue stars and red diamonds
branches, we use /' = 1 here, while for the case II (green circles and magenta crosses)
and case III (black squares), £ is determined from the remaining parameters based on
Egs. (3.22) and (3.28), respectively.
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Figure 3.3. The dynamical evolution plots of the branches for the case of the nonlinear-
PT-symmetric dimer with the same parameter settings as in Fig. 3.2 when v = 1.5. The
symmetric blue stars and red diamonds of Case | and the asymmetric green circles of Case
IT are stable, while the black squares of Case III (past the pitchfork point) and magenta
crosses of Case II are unstable and deviate from their initial profile during the dynamics
(see also the discussion in the text).

iy = —ev + (pr — ipim) [ul*u + iyu (3.34)
vy = —e(u +w) — |v|*v (3.35)
iwg = —ev + (pr + ipim ) |w]*w — iyw (3.36)
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Such configurations have been considered earlier in optical applications theoretically [35]
and even experimentally [29] in the absence of gain/loss. We examine this case with
both linear and nonlinear gain/loss profiles. Once again, as in the case of the dimer, we
present the richer phenomenology setting of direct competition between linear and nonlin-
ear gain/loss. The middle site is assumed as devoid of gain and loss. The Kerr nonlinearity
is also assumed to be present in all three sites. Here, we use u(t), v(¢) and w(t) as the

complex-valued components for the trimer. For the stationary solutions, we again assume:

u(t) = ae™®, wv(t) = be'F' and w(t) = ce'?. (3.37)

Plugging Egs. (3.37) into Eq. (3.34), we find:

Ea = eb— (p, —ipim)|al*a — iva, (3.38)
Eb = ela+c)+|b*b (3.39)
Ec = ¢eb— (p, +ipim)|c|*c + ive. (3.40)

Since a, b and c are complex-valued functions, we use the polar decomposition:

a=Ae?, b= Be” and c= (e (3.41)

where A, B, C, ¢,, ¢y, and ¢, are real-valued. Plugging Eq. (3.41) into Eq. (3.38) and sepa-

rating the real and imaginary parts, we derive the following set of real-valued equations for

A, B and C:
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EA = eBcos(gy — ¢po) — prA®,

0 = eBsin(gp — do) + pimA® — YA,

EB = eAcos(¢y — ¢q) + €C cos(¢p — ) + B,

0 = —eAsin(¢p — ¢q) — €C'sin(op — @),

EC = eBcos(¢p — ¢.) — prC?,

0 = eBsin(¢y — d.) — pimC> +~C.

We seek nontrivial solutions to Egs. (3.42), i..e, (A, B,C) # (0,0,0).

Egs. (3.42) to the form:

cos(¢ — ¢a)
cos(dp — dc)
sin(¢p — ¢a)
sin (¢ — c)
Acos(¢p — ¢a)
Asin(¢p — ¢a)

EA+ p, A3
eB '
EC + p,C3
eB '
fyA B pzmA3
eB ’
(70 B pim03>

eB
EB - B3
Ccos(pp — o) = ———,

€
C'sin(¢p — @) = 0.

(3.42)
(3.43)
(3.44)
(3.45)
(3.46)

(3.47)

We can reduce

(3.48)
(3.49)
(3.50)
(3.51)

(3.52)

(3.53)

We apply the first four equations of Egs. (3.48) into the last two equations and obtain the

following relations:

B* — EB* + E(A* + C*) + p,(A* + C*) = 0,

(A% = C?)[y — pim(A* + C?)] = 0.

(3.54)

(3.55)

We now determine A, B and C for several subcases (symmetric, asymmetric and mixed) as

was done for the dimer case in section 11.
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II.1 Existence of localized modes for the trimer case
For the trimer case, the special cases that can be seen to emerge for the solutions of

Egs. (3.54) can be classified as follows:

e Casel: A?=C? and A%+ C? # v/ pim:

In this case the algebraic equations assume the form:

EA + p, A?
cos(dy = 6a) = I = cos(6y — ) (3.56)
A_ imA3 .
sin(dy — ¢a) = % = —sin(¢p — @) (3.57)

We now use Eq. (3.54) and cos?(¢, — ¢,) + sin?(¢p — ¢o) = 1 to determine:

(07 + Pi) A® + 2(Epr — vpim) A* + (B2 +9°) A% = B? =0, (3.58)

BY— EB*+2EA% +2p,A* = 0. (3.59)

One can solve eqns. (3.58) for A? and B? to complete the calculation of the relevant

symmetric branch of solutions of Case I.

o Casell: A%+ C%=~/py, and A% # C?:

From Eq. (3.48), we obtain the four algebraic equations:

A (E + p, A% 4+ A% (y — pimA?)? = B2 (3.60)
C*HE + p,.C*? + C*(y — pinC?)? = B? (3.61)
B'—EB*+ E (A4 C?) +p, (A'+C") =0 (3.62)
A2 402 = p?m. (3.63)

We now have four equations but with only three unknowns (A, B and C). There-

fore, in contrast to the previous symmetric branch of case I, one of the parameters
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E €, pry pim, 7 1s determined by the other four; i.e., not all five of these parameters
can be picked independently in order to give rise to a solution of the trimer. Once
again, we should nevertheless, highlight here that these asymmetric solutions only

exist because of the interplay of linear gain/loss and nonlinear loss/gain profiles.

o Caselll : A%+ C? =~v/p;, and A% = C?:

In this mixed case, we have

Aoz T (3.64)
2pim
B* — EB?* + 2B A% + 2p, A" = 0, (3.65)
with the restriction that
4By 2p,7?
JoL et ) (3.66)
Pim Pim

One can solve the following equations for B and £

2

gl v

B'— EB*+2E +2p5 = 0 (3.67)
2 2 73 72 2 2y 2 52
2 Y L 4 (20, F — 2pimy)—— + (E — = B%(3.68
(02 + 02) 37 + (20 PimY) Ty (E*++?%) o €’ B?(3.68)

These equations imply that one of the parameters (e.g., £) will be determined once

the parameters, v, €, p, and p;,, are chosen.

I1.2 Linear stability analysis for the trimer case
We again consider the nonlinear P77 -symmetric trimer model with linear and nonlinear
gain/loss and examine the linear stability of its solutions given in Eq. (3.34) for the solutions

given in the previous section. We begin by positing the linearization ansatz:
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= e"'a+peM + P,
— 6iEt[b+q6At + Qe’\*t],

= et reM + R,

(3.69)
(3.70)

(3.71)

where p, P, q, (), r, R are perturbations to the solutions of interest. Plugging Eq. (3.69) into

Eq. (3.34) and truncating at the linear order in p, P, ¢, @), r and R, we derive the following

eigenvalue problem:

where Y = (p, — P*, q,

11
(a*)?Ay
—€
A =
0
0
0
where

—a?A_
a22
0
€
0
0

a1 =

Q22 =

as5 =

g =

AY =1\Y

—€ 0 0
0 € 0
E —2|b)? b? —€

()2 —E42? 0
—€ 0 ass

0 € (c*)?A_

E + iy + 2|al*(pr — ipim)
—E + iy — 2|al*(pr + ipim)
E — iy +2|¢)*(pr + ipim),
—F — iy —2|¢|*(py — ipim),
Pr + 1Pim,
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—Q*, r, — R*)T and A is the (6 x 6) matrix:

(3.72)

(3.73)

(3.74)
(3.75)
(3.76)
(3.77)
(3.78)

(3.79)



The solution of this 6 x 6 eigenvalue problem (and whether the corresponding eigenvalues A
possess a positive real part) will determine the spectral stability properties of the solutions

of the nonlinear-PT-symmetric trimer.

1I.3 Numerical results for the trimer case

e Trimer Case I:

The numerical results for the symmetric solutions of the nonlinear-PT-symmetric
trimer (Case I) are shown in Fig. 3.4, Fig. 3.5 and Fig. 3.6, with similar notations
as in the dimer case. Solutions are found by numerically solving Eq. (3.58). A
typical example of the branches that may arise in case I of the trimer is shown for the
parameters € = 1, £ = 1, p, = —1 and p;,,, = 1. In this case, we find three branches
in the considered interval of parameter values. There are two branches which exist up
to the point v = 2.59 where they collide in a saddle-node bifurcation. One of these,
the red diamonds branch, is mostly unstable except for v € [1.26,1.33] U [2,2.11].
For v < 1.26, this branch has one real and one imaginary pair, which become both
imaginary for v > 1.26 until they collide for v = 1.33 and yield a complex quartet,
which subsequently splits into two imaginary pairs for v = 2 and finally into one
real and one imaginary pair for v > 2.11. The other one, the black squares branch,
is always unstable due to one real and one imaginary pair. When these two modes
collide, a collision arises between both their real and their imaginary (respective)

eigenvalue pairs.

Aside from the other two branches, the branch associated with the blue stars emerges
from v = 1 and persists beyond the above critical point (and for all values of ~y that
we have monitored). In our case, this branch is only stable for v < 1.25, at which two
pairs of imaginary eigenvalues collide and lead to a complex quartet, which renders
the branch unstable thereafter. This branch behaves very similarly as the one in the

linear P trimer case reported in [13]. Both of them bifurcate from zero amplitude
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after a certain value of v, persist beyond the linear P7 critical point and have similar

stability properties.
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Figure 3.4. The symmetric solution profiles of Case I in the nonlinear-PT-symmetric trimer
withe =1, £ =1, p, = —1 and p;,, = 1. The three branches are denoted by blue stars,
red diamonds and black squares and their amplitudes (top left), phases (top right), real
part (bottom left) and imaginary part (bottom right) of the corresponding eigenvalues are
shown. See also the relevant discussion in the text.
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Figure 3.5. The spectral plane of the linear stability analysis for the symmetric solutions
of Case Iwithe =1, E =1, p, = —1 and p;,,, = 1, for three different values of v = 0.5,
1.5 and 2.5. Each branch is associated with three eigenvalue pairs one of which is at 0 due
to symmetry.

To monitor the dynamical evolution of the different branches, we used direct numer-
ical simulations illustrated in Fig. 3.6 for the case of v = 1.5. Two of the branches,

the blue stars of the left panel and the red diamonds of the middle one are oscillatorily
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unstable for this value of +, while the black squares branch is always unstable due to
a real eigenvalue pair. The latter has been found to generically cause the unbounded
gain of at least one node within the trimer. The oscillatory instability, on the other
hand, in the case of the blue branch and for v = 1.5 can be observed to lead to a
long-lived periodic exchange of “power” between the three sites. On the other hand,
for the red diamonds branch of the middle panel, while there is an intermediate stage
of power oscillations between the three nodes, the ultimate fate of the configuration
favors the unbounded growth of at least one node (in fact, two nodes in the example

shown) of the trimer.

15 10 60
N 1 N 40
El N FE P S El
0.5[  /uikids o LT ) 20
‘ % s t>16' 243 %9 o1 022 033
(a) blue stars branch (b) red diamonds branch (c) black squares branch
Figure 3.6. The time evolution plots of the trimer case I withe =1, £ =1, p, = —1 and

pim = 1 when v = 1.5. For each branch, the solid line denotes the nonlinear loss/linear
gain site, the dot-dashed line denotes the nonlinear gain/linear loss site, while the dashed
line represents the inert site between the two. Notice the oscillatory evolution of the stars
branch, while the diamonds and squares lead to ultimate unbounded increase of at least one
site within the trimer.

e Trimer Case II:

According to Eq. (3.60), one of the parameters should be determined by the others.
We hereby set € = 1, p, = —1 and p;,,, = 1, then E is obtained self-consistenly for a
given choice of . The solution profiles, which are obtained by solving Eq. (3.60) nu-
merically, are plotted in Fig. 3.7. There are three pairs of branches, i.e., six branches
of solutions in total found in this case. Only one out of each pair is shown in Fig. 3.7-

3.9 (to avoid cluttering of the relevant figures), namely the blue stars, red diamonds

54



0000000000000000009

3 clBINABNMNANANNRRERS

N
w
N

poooo

poono nnnnnnnggg gggggg
< ARG =
HH K kg [

< <k *0O
<O <O %0
OO* %0

*********

—102

Figure 3.7. The solution profile of the trimer case Il withe = 1, p, = —1 and p;,,, = 1. The
three branches are denoted by blue stars, red diamonds and black squares. These branches
start at v = 2 (except for the red diamonds branch that is initiated at v = 2.05) and exist
even when - is large.

and black squares. The other three branches are mirror symmetric to these branches,
respectively. For example, the existence profile of the mirror symmetric branch of
the blue stars would be identical to the blue stars shown in Fig. 3.7, while its stability
plot would be mirror symmetric about the imaginary axis to the blue stars shown in
Fig. 3.8. Among the three branches shown in Fig. 3.7, two of them emerge at 7 = 2
and persist throughout the range of « values considered. It should be noticed that
the amplitudes are different within each branch. The blue stars (dynamically stable)
branch has a large A and small B and C, while the red diamonds and black squares
branches have a fairly small A and large values of B and C. In fact, precisely at the
critical point of the branches’ emergence, the blue stars and the black squares are
exact mirror images of each other (i.e., they have the same amplitude for B and the
one’s A is the other’s C' -and vice versa-). This mirror symmetry is in fact directly
reflected in the eigenvalues of the linearization around the two configurations, one
set of which (for the blue stars) possesses negative real parts, while the other (black

squares) has mirror symmetric positive ones. As can be perhaps intuitively anticipat-
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ed, the more stable configuration is the one having large amplitude at the nonlinear
loss/linear gain site. The third branch (red diamonds) is also highly unstable and

emerges out of a bifurcation at v = 2.05 (to which we will return when discussing

case I1I).
=3
5
* <O o
o
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o
* *O o
o 0 10
A
;
Figure 3.8. The spectral stability plots of the trimer case Il with e = 1, p, = —1 and

pim = 1, illustrating the stability of the blue stars branch and the instability of the other
two.

Fig. 3.8 shows the eigenvalues of the three branches clearly illustrating the fact that
they are not symmetric about the imaginary axis. This can once again be justified
by the asymmetry of the configurations of case Il which, in turn, break the P7T
symmetry of the linearization matrix and hence lead to asymmetric spectra. The
blue stars branch is always stable, as indicated above, and the other two branches are
always unstable as v increases. For instance, for the red diamond branch, there exists
(in addition to a zero eigenvalue) an imaginary pair, a complex conjugate pair (with
a positive real part) and a real eigenvalue. In the case of the black squares branch,
there are (in addition to the zero eigenvalue) three real pairs (two positive and one

negative) and a complex conjugate pair (with positive real part).

Fig. 3.9 shows the dynamical plots of the three distinct branches of solutions. The
blue stars branch clearly preserves its configuration due to its dynamical stability,
while for the two unstable branches, their evolution gives rise to asymmetric dynam-

ics favoring the loss of the power in a single site (the nonlinear gain/linear loss one),
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Figure 3.9. The time evolution plots of the trimer case Il with e = 1, p, = —1 and

pim = 1 when v = 3. The two unstable branches (red diamonds and black squares) tend to
a dynamically stable configuration which is a mirror image of the red diamonds branch.

and quickly absorbed by a stable state. The latter state appears to be the mirror sym-
metric of the red diamonds asymmetric branch in both cases. This is indeed also a
stable dynamical state of the original stationary system of equations. Furthermore,
this state is expected to exist based on the symmetry breaking bifurcation that we
will discuss below as giving rise to the red diamonds branch. As remarked above,
the stability properties of the mirror symmetric branches are mirror symmetric to the
ones shown in Fig. 3.8. This implies that only the mirror symmetric branch of the
red diamonds is stable, which is, in turn, consonant with our observation that it is a

potential attractor for the dynamics for v = 3 shown in Fig. 3.9.

e Trimer Case I11I:

Finally, we turn to a consideration, using the same parametric setting as in case 11,
of the numerical results by solving Eq. (3.67) for case III in Figs. 3.10-3.12. Four
distinct branches of solutions are observed in this case. The branches denoted by
red diamonds and black squares exist only for small values of the linear gain/loss
parameter v, are stable and terminate at v = 0.65. The other two branches, namely
the blue stars and the green circles collide and terminate at v = 2.1. The green circles
branch is unstable in this case, due to a complex quartet of eigenvalues (observed in

Fig. 3.11). On the other hand, the blue stars’ branch is stable up to v = 2.05 a critical
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Figure 3.10. The solution profile (amplitude (a), phase (b)) and the stability (real (c) and
imaginary (d) part of the eigenvalues) for the nonlinear P77 -symmetric trimer of Case 111
(special symmetric solutions) with e = 1, p, = —1 and p;;,, = 1. The norms are not
squared in the top left panel to improve the visibility of the branches (given the disparity of
the relevant amplitudes). The four branches are denoted by blue stars, red diamonds, black
squares and green circles. The blue stars, red diamonds and black squares branches always
have two pairs of purely imaginary eigenvalues, while the green circles branch always has
a complex quartet. The blue stars branch terminates with the green circles at v = 2.1, while
the red diamonds and black squares terminate together at v = 0.65.

point at which branches of case Il (the red diamonds branch referred to in case II
as having a pitchfork bifurcation at the same value and its mirror symmetric image)

emerge. Notice that this detail is not discernible in the eigenvalue plots of Fig. 3.10.

v=0.5 v=1.5
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Figure 3.11. The plots of the spectral plane of the linear stability eigenvalues for the
nonlinear-PT-symmetric trimer Case 111 (special symmetric solutions) withe = 1, p, = —1
and p;,, = 1.
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The dynamics of the different configurations are shown in Fig. 3.12. The blue stars,
red diamonds and black squares special symmetric branches of solutions are stable
and thus preserve their shape. On the other hand, the green circles for v = 0.5 are
subject to the oscillatory instability predicted by the linear stability analysis. This,
in turn, results into long-lived oscillatory dynamics of the system, as indicated in the

bottom right of Fig. 3.12.

0.5 4
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0.3
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1
505
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(c) black squares branch (d) green circles branch

Figure 3.12. The time evolution plots of the nonlinear-PT-symmetric trimer in Case 111 of
special symmetric solutions with e = 1, p, = —1 and p;;,, = 1 when v = 0.5. The only
unstable configuration is the green circle one of the bottom right which leads to long-lived
oscillatory dynamics.
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CHAPTER 4

TWO DIMENSIONAL PT7-SYMMETRIC PLAQUETTES

. . . . , A=)
D(-iy C(0) D(-iy C(+iv) D(-iy C(=i)
B(+i) co) P
A0) B(+1) A(+iy) B(=1v) A(+iy) B(+iv) E(+i)
(a) mode 0+0— (b) mode +—+— (c¢) mode ++—— (d) mode +-0+-

Figure 4.1. (Color online) The different fundamental plaquette configurations (i.e., two-
dimensional oligomers) including the linear balanced gain and loss. Among these, (a),
(¢) and (d) are PT-symmetric, while (b) is not in the strict sense, but it is interesting
too, as an implementation of alternating gain and loss nodes in the plaquette pattern. The
nodes are labeled so as to connect the gain-loss profiles to the evolution of individual nodes
in dynamical simulations. The sets are coded by chains of symbols, with 4+, — and 0
corresponding, respectively, to the linear gain, loss, or absence of either effect at particular
sites.

In Chapter 2 and Chapter 3, we have considered one-dimensional linear and nonlinear
PT -invariant systems. This chapter aims to make a basic step in this direction, by intro-
ducing fundamental two dimensional plaquettes consisting, typically, of four sites (in one
case, it will be a five-site cross). These configurations, illustrated by Fig. 4.1, are inspired
by earlier works on 2D Hamiltonian lattices described by discrete nonlinear Schrodinger e-
quations [36], where diverse classes of modes, including discrete solitary vortices [37, 38],
have been predicted and experimentally observed [39, 40]. The plaquettes proposed herein
should be straightforwardly accessible with current experimental techniques in nonlinear

optics, as a straightforward generalization of the coupler-based setting reported in Ref. [5].
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I Existence, stability and dynamics of nonlinear states

In this section, we seek stationary solutions of the type

w(t)=e ',  E€R,  u=(abcd" eC @.1)

constructed over constant vectors uy. We note that restricting the explicit analysis to sta-
tionary solutions of the type (4.1) we by construction exclude from this analysis P77 —violating
solutions with £ ¢ R which are necessarily non-stationary, i.e., we do not consider ghost

states).

I.1 The plaquette of the 0+0— type

We start from the 2D plaquette of 0+0— type depicted as configuration (a) in Fig. 4.1.
This plaquette has only two (diagonally opposite) nodes carrying the gain and loss, while
the other two nodes bear no such effects. Using same notations as before, the corresponding

dynamical equations for the amplitudes at the four sites of this oligomer are

itg = —k(ug+up) — |ualPua,

itg = —k(ua +uc) — |uglPup + iyup,

it = —k(ug+up) — |uc|*uc,

itp = —k(ua+uc) — |up|*up — iyup, 4.2)

where v € R is the above-mentioned gain-loss coefficient, and £ € R is a real coupling
constant. The nonlinearity coefficients are scaled to be 1.
Substituting ansatz (4.1) for the stationary solutions in Eq. (4.2) we obtain the following

algebraic equations:
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Ea = k(b+d)+ |al’a,
Eb = k(a+c)+ |b*b— i,
Ec = k(b+d)+ |c|c,

Ed = k(a+c)+|d)*d+ivd, 4.3)

These equations can be analyzed via amplitude-phase decomposition

a = Ae'? b= Be" ¢ = Ce'® d = De'. 4.4)

Without loss of generality, we may fix ¢, = 0.

Using this condition in Eq. (4.3) and dividing each equation (4.3) by the phase factor

on its left-hand side, one obtains the imaginary parts of the resulting equations:

0 = KBfsin(6y — ¢) +sin(6y — 6,)] = 2% Bsi (‘f’”‘f’d_%) (<f>b—¢d |

vB = kAl[sin(¢, — ¢p) + sin(¢. — ¢p)] = 2kAsin (¢a e — ¢b) cos (¢a Pe 7

0 = kBfsin(dy — 60+ sin(6s — 6.)] = 2kBsin (250 <z>c) cos <¢b > ¢d) ,
—B = kAlsin(¢s — ¢a) + sin(¢. — = 2kAsin <¢a 5 Pe qbd) cos (% g ¢c) .
(4.5)

For ¢, = 0 the first of these equations implies sin(¢,) = — sin(¢y), hence either ¢, = —@y
(case 1) or ¢ = ¢, — 7 (case 2). In case 1, we conclude from the third equation that either
¢y # £7m/2 and ¢. = 0 (case la), or ¢, = +7/2 and ¢, is arbitrary (case 1b). In case 2
the third equation is satisfied automatically. In all three cases, the second and the fourth

equation are compatible. They give
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case la: sin(¢y) = BT ¢ =0, bqg = —bp,
case 1b: cos(¢.) = ¢£ -1, Ga = —0p = F7/2,
case 2: sin(¢p) + sin(¢p — @) = —Zi, Gg=p—m. (4.6)

Returning to the phase-factor divided equations (4.3) and considering their real parts, we

find

EA = kBlcos(¢y — ¢a) + cos(dg — ¢a)] + A%,
EB = kAlcos(dg — ¢p) + cos(d. — é)] + B,
EA = kBlcos(¢y — ¢c) + cos(pg — ¢c)] + A®,

EB = kAlcos(dg — ¢a) + cos(¢e — ¢a)] + B> 4.7)

The pairwise compatibility of the first and third, as well as of the second and fourth equa-

tions requires

cos(gp — ¢q) + cos(pg — ¢g) = cos(py — @) + cos(dg — @),
cos(Pa — @) + cos(pe — ¢p) = cos(Pa — da) + cos(Pe — Pa)- (4.8)

For case 1a, these conditions are trivially satisfied, whereas for the remaining cases they

lead to further restrictions:

2kA
case 1b: G =0;m . = ¢?;
7 =0
case 2: G =2¢p £, sin(¢y) = _ﬁ (4.9)
' co e VT T W

In this way the phase angles are fixed for all the three cases and we can turn to the

amplitudes. The corresponding equation sets reduce to
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case la: EA = 2kBcos(¢y) + A%
EB = 2kAcos(¢y) + B,

case 1b,2: E = A*=p? (4.10)

In the latter two cases (1b and 2) the amplitudes and phases completely decouple and we
have

A=B=C=D=./|E|. (4.11)

Case la allows for a richer behavior. Equating the terms 2k cos(¢) in the upper two equa-

tions (4.10) leads to the constraint
A*(E — A?) = B*(E — B?), (4.12)

which can be resolved by A = B (case laa) as well as by £ = A? + B? (case lab).

The analysis of these two cases can be completed with the help of the relation cos(¢,) =

+4/1 — % from Eq. (4.6).

As result we obtain the following set of stationary solutions:

B _ _
2]{3147 ¢C_07 ¢d_ by

case laa: A:B:C:D:\/E—i- \Ak? — 2, (4.13)
case lab: A:B:C:D:\/E—\/4k2—72, (4.14)

case la: sin(¢y) =

case 1b: Pg=—¢p = F/2, ¢.=0,m, v=42k ~=0,
2% A
A—C. B—p— M p_ip @15
VA 42
case 2: Sin(ﬁbb):—%, Pa = ¢p — T, G =20y £,

A=B=C=D=VE. (4.16)

The linear stability analysis was performed numerically. Subsequently we present cor-

responding graphical results. The plaquettes (b) - (d) can be analyzed in a similar way.
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For brevity’s sake, in Fig. I.1 we present only the basic numerical results, by means of the

following symbols:

Figure 4.2. (Color online) Profiles of the solutions for plaquette (a) from Fig. 4.1, with
E =2 and k = 1. Four different branches of the solutions are denoted by blue circles, red
crosses, black squares and green stars. The top left and right panel display, respectively,
the squared absolute values of the amplitudes and phase differences between adjacent sites
for the respective states. The bottom left and right panels show real (the instability growth
rates) and imaginary (oscillation frequencies) parts of the eigenvalues produced by the
linearization around the stationary states. The continuations are shown versus the gain-loss
parameter 7.

e case laawithA=B=C=D = \/E + \/4k? + ~? — blue circles;
e case laawithA=B=C=D = \/E — \/4k? —~2 — red crosses;

e case lab — green stars;
e case 2 — black squares;

e Case 1bis not depicted explicitly because it corresponds to point configurations with-

out gain-loss (7 = 0) and to exceptional point configurations v = £2k.

Figure 1.1 presents the mode branches (their amplitudes, phases, and also their stability)

over the gain-loss parameter -, starting from the conservative system at v = 0. The same
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symbols are used in Fig. 4.3, which displays typical examples of the spectral plane (), \;)
for stability eigenvalues A = A\, +14); of the linearization; recall that the modes are unstable

if they give rise to A, # 0. Explicitly we observe the following behavior.

v=0.5 v=1.2
10 10
° (o]
LB 8
< 0 o : o <= 0 o § o
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-10 5 0 5 -10 5 0 5
A A
r r
v=1.6 =19
5 ) 5
: :
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—52 0 2 —52 0 2
A A

-
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Figure 4.3. (Color online) The stability plots for plaquette (a) from Fig. 4.1 with £/ = 2
and £ = 1, for different values of +. The notation for different branches is the same as in
the previous figure. All branches are shown for v = 0.5, v = 1.2, v = 1.6, and v = 1.9
(top left, top right, bottom left, and bottom right panels, respectively).

e case laawithA:B:C:D:\/E+\/m — blue circles
According to Fig. 4.3, the present solution is stable. Notice that, although featuring
a phase profile, it cannot be characterized as a vortex state (the same is true for some
other configurations carrying phase structure). Interestingly, the relevant configura-

tion is generically stable bearing two imaginary pairs of eigenvalues.

e case laawithA=B=C=D = \/E — \/4k? — 2 — red crosses.
Obviously, this kind of solutions as well as the previous one exist up to the excep-

tional point v = £2k of the P77 -symmetry breaking in the linear system, where the
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two branches collide and disappear (leave the stationary regime and become nonsta-
tionary). As seen in Fig. 4.3, the present branch has two eigenvalue pairs which are
purely imaginary for small ~y, but become real (rendering the configuration unsta-
ble) at v = 1.49 and then v = 1.73, respectively. Ultimately, these pairs of unsta-
ble eigenvalues collide at the origin of the spectral plane with those of the previous

branch (blue circles).

case lab — green stars.

This stationary solution has a number of interesting features. Firstly, it is the only
one among the considered branches which has two unequal amplitudes. Secondly, it
exists past the critical point v = £2k of the linear system, due to the effect of the
nonlinearity (the extension of the existence region for nonlinear modes was earlier
found in 1D couplers [23] and oligomers [13, 31]). Furthermore, this branch has
three non-zero pairs of stability eigenvalues, two of which form a quartet for small
values of the gain-loss parameter, while the third is imaginary (i.e., the configuration
is unstable due to the real parts of the eigenvalues within the quartet). Aty = 1.17,
the eigenvalues of the complex quartet collapse into two imaginary pairs, rendering
the configuration stable, in a narrow parametric interval. Aty = 1.24, the former
imaginary pair becomes real, destabilizing the state again, while subsequent bifurca-
tions of imaginary pairs into real ones occur at 7 = 1.28 and v = 1.74 (at the latter
point, all three non-zero pairs are real). Shortly thereafter, two of these pairs collide
at v = 1.76 and rearrange into a complex quartet, which exists along with the real

pair past that point.

case 2 — black squares. In contrast to all other branches, this one is always unstable.
One of the two nonzero eigenvalue pairs is always real (while the other is always
imaginary), as seen in Fig. 4.3. This branch also terminates at the exceptional point

v = 2k, as relation sin (¢,) = —7/ (2k) cannot hold at |y| > |2k|. This branch

67



collides with the two previous ones via a very degenerate bifurcation (that could be
dubbed a “double saddle-center” bifurcation), which involves 3 branches instead of
two as in the case of the generic saddle-center bifurcation, and two distinct eigenvalue

pairs colliding at the origin of the spectral plane.
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(a) blue circle branch (b) red cross branch
10° J
“=10° T
—
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t
(c) black square branch (d) green star branch

Figure 4.4. (Color online) The perturbed evolution of different branches from Figs. 1.1 and
4.3 at v = 1.9. Thin solid, thick solid, thin dashed, and thick dashed curves correspond to
nodes A, B, C, D in Fig. 4.1(a), respectively. In panel (b), the plots pertaining to sites A
and C [see Fig. 4.1(a)] overlap. Similarly, pairs of the plots for (A,B) and (C,D) overlap in
(c), and for (A,C) they overlap in (d).

By means of direct simulations, we have also examined the dynamics of the modes
belonging to different branches in Fig. 4.4. The stable blue-circle branch demonstrates
only oscillations under perturbations. This implies that, despite the presence of the gain-
loss profile, none of the perturbation eigenmodes grows in this case. Nevertheless, the three
other branches ultimately manifest their dynamical instability, which is observed through

the growth of the amplitude at the gain-carrying site [B, in Fig. 4.1(a)] at the expense of the
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lossy site (D). That is, the amplitude of the solution at the site with the gain grows, while
the amplitude of the solution at the dissipation site loses all of its initial power. Depending
on the particular solution, passive sites (the ones without gain or loss, such as A and C)
may be effectively driven by the gain (as in the case of the black-square-branch, where the
site A is eventually amplified due to the growth of the amplitude at site B) or by the loss
(red-cross and green-star branches, where, eventually, the amplitudes at both A and C sites

lose all of their optical power).

1.2 The plaquette of the +—+— type

We now turn to the generalized (not exactly P7 -symmetric) configuration featuring the
alternation of the gain and loss along the plaquette in panel (b) of Fig. 4.1. Apart from the
two PT —symmetry violating solutions, there should exist at least two stationary solutions

which we construct in analogy to [cf. Egs. (4.3)] from

Ea = k(b+d)+|a*a —iva,
Eb = k(a+c)+ |b*b+ivb,
Ec = k(b+d)+ |c|*c —ive,

Ed = k(a+c)+ |d|*d+ ivd. 4.17)

Substituting the Madelung representation (4.4) and setting A = B = C' = D (for

illustration purposes, we focus here only on this simplest case), we obtain

sin(@p — o) + sin(¢g — @) = sin(gp — @) + sin(¢pg — @) = %, (4.18)
A2
cos(@p — @g) + cos(pg — @o) = cos(¢p — P¢) + cos(pg — ¢e) = £ L (4.19)
Further, fixing ¢, = ¢. = 0, Egs. (4.18) and (4.19) yield
sin gy = sindg = -, A% = E 4 \/4k? — 22, (4.20)

2k’
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Obviously, the solution terminates at point v = +2k. Similar to what was done above, the
continuation of this branch and typical examples of its linear stability are shown in Figs. 4.5
and 4.6, respectively. From here it is seen that the blue-circle branch, which has a complex
quartet of eigenvalues, is always unstable. In fact, the gain-loss alternating configuration is
generally found to be more prone to the instability. The red-cross branch is also unstable
via a similar complex quartet of eigenvalues. This quartet, however, breaks into two real
pairs for v > 1.5, and, eventually, the additional imaginary eigenvalue pair becomes real
too at v > 1.74, making the solution highly unstable with three real eigenvalue pairs. The
manifestation of the instability is shown in Fig. 4.7, typically amounting to the growth of

the amplitudes at one or more gain-carrying sites.

Figure 4.5. (Color online) The continuation of mode (4.20) and its stability, supported by
plaquette (b) in Fig. 4.1, for £ =2and k = 1.

1.3 The plaquette of the ++— — type
We now turn to the plaquette in Fig. 4.1(c), which involves parallel rows of gain and

loss. In this case, the stationary equations are
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Figure 4.6. Two typical stability plots for branch (4.20), for £ = 2, k = 1 and v = 1 and
1.8, respectively.
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Figure 4.7. The perturbed evolution of the modes of type (4.20) at v = 1 corresponding to
the left panel of Fig. 4.6. The plots pertaining to sites B and D [see Fig. 4.1(b)] overlap in
both panels.

FEa = k(b+d)+|a*a —iva,
Eb = k(a+c)+ |b*b— iy,
Ec = k(b+d)+ |c*c+ive,

Ed = k(a+c)+|d*d+ivd. (4.21)
In this case too, we focus on symmetric states of the form of A = B = C' = D [see Eq.

(4.4)], which gives rise to two solutions displayed in Fig. 4.8, represented by the following

analytical solutions:

71



A2 = E—k+ k2 -2 (4.22)

ba = ¢p=0, sing, =singy =

o (4.23)

A = E+k+\k—42 (4.24)

b0 = 0, ¢y =", ¢o=Gu—T, sings =1, (4.25)
The analysis demonstrates that the branch with the upper sign in Eq. (4.22) is always
unstable (through two real pairs of eigenvalues), as shown by blue circles in Fig. 4.8. On
the other hand, the branch denoted by the red crosses, which corresponds to the lower sign
in Eq. (4.22) is stable up to v = 0.86, and then it gets unstable through a real eigenvalue
pair. The black-squares branch with the upper sign in Eq. (4.24) is always stable, while
the green-star branch with the lower sign in Eq. (4.24) is always unstable. At the linear-
PT-symmetry breaking point v = k, we observe a strong degeneracy, since all the three
pairs of eigenvalues for two of the branches (in the case of the blue circles, two real and
one imaginary, and in the case of red crosses— one real and two imaginary) collapse at the
origin of the spectral plane. On the other hand, the black-squares branch is always stable
with three imaginary eigenvalue pairs, while the green-star branch has two imaginary and
one real pair of eigenvalues. Between the latter two, there is again a collision of a pair at the
origin at the critical condition, 7 = k. Direct simulations, presented for v = 0.5 in Fig. 4.9,
demonstrate the stability of the lower-sign black-squares branch, while the instability of
the waveform associated with the blue circles and the green stars leads to the growth and
decay of the amplitudes at the sites carrying, respectively, the gain and loss. Notice that
at the parameter values considered here, the red-cross branch is also dynamically stable as

shown in the top right panel of Fig. 4.9.
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Figure 4.8. (Color online) The characteristics of the mode of the ++— — type, supported by
plaquette (c) in Fig. 4.1, and given in analytical form by Egs. (4.22)- (4.25), for &/ = 2
and k£ = 1. The blue circles correspond to the completely unstable branch with the upper
sign in Eq. (4.22), while the red crosses pertain to branch with the lower sign, which is
stable at v < 0.86. The black-square and green-star branches correspond to the upper and
lower sign in Eq. (4.24), respectively. The former one is always stable, while the latter one
is always unstable. All four branches terminate at the critical point |y| = |k| of the linear
PT -symmetric system.

I.4 The plaquette of the +—0+— type

Lastly, motivated by the existence of known “cross”-shaped discrete-vortex modes in
2D conservative lattices, in addition to the fundamental discrete solitons [36, 37], we have
also examined the five-site configuration, in which the central site does not carry any gain
or loss, while the other four feature a P7T -balanced distribution of the gain and loss, as
shown in panel (d) of Fig. 4.1. Seeking for stationary states with propagation constant, G

[instead of £/ in Eq. (4.1), as in this case we reserve label £ for one of the sites of the 5-site
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Figure 4.9. (Color online) The perturbed evolution of the four branches of the analytical
solutions given by Egs. (4.22)-(4.25), which correspond to Fig. 4.8 with v = 0.5.

plaquette in Fig. 4.1(d)], we get:

Ga = kc+la|’a+ ivya,
Gb = kc+ |b*b — i,
Ge = kla+b+d+e)+ |,
Gd = kc+|d)*d +ivd,

Ge = kc+ |e|’e —ive. (4.26)

Similarly as before, we use the Madelung decomposition a = Ae'®e, b = Bei®, ¢ =
Ce'%e d = De'%d e = Ed%, cf. Eq. (4.4), and focus on the simplest symmetric solu-
tions with A = B = D = E. Without the loss of generality, we set ¢. = 0, reducing the

equations to
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C*(G — C?) = 4A*(G — A?),

(kC)* = (yA)* + (GA — A)?,

sin ¢a - %7
o= —Pp = Og = —Pe. (4.27)

We report here numerical results for parameters G = 15, k£ = 1 (smaller G yields
similar results but with fewer solution branches). We have identified five different solutions
in this case, see Figs. 4.10 and 4.11 for the representation of the continuation of the different
branches, and for typical examples of their stability (the latter is shown for v = 0.1, 0.5 and
0.95). There are two branches (green stars and black squares) that only exist at v < 0.13,
colliding and terminating at that point. One of them has three real eigenvalue pairs and
one imaginary pair, while the other branch has two real and two imaginary pairs. Two real
pairs and one imaginary pair of green stars collide with two real pairs and one imaginary
pair of black squares, respectively, while the final pairs of the two branches (one imaginary
for the green stars and one real for the black squares) collide at the origin of the spectral
plane. These collisions take place at v = 0.13, accounting for the saddle-center bifurcation
at the point where those two branches terminate. On the other hand, there exist two more
branches (red crosses and magenta diamonds in Fig. 4.10), which collide at |y| = |k|. One
of these branches (the less unstable one, represented by magenta diamonds) bears only
an instability induced by an eigenvalue quartet, while the highly unstable branch depicted
by the red crosses has four real pairs (two of which collide on the real axis and become
complex at v > 0.92). Last but not least, the blue circles branch does not terminate at
~v = =k, but continues to larger values of the gain-loss parameter, |y| > |k|. It is also
unstable (as the one represented by the magenta diamonds) due to a complex quartet of

eigenvalues.
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The dynamics of the solutions belonging to these branches is shown in Fig. 4.12. For
the branches depicted by black squares and green stars (recall that they disappear through
the collision and the first saddle-center bifurcation at v = 0.13), the perturbed evolution is
fairly simple: the amplitudes grow at the gain-carrying sites and decay at the lossy ones,
while the central passive site (C) stays almost at zero amplitude. For the other branches, the
amplitudes also grow at the two gain-carrying sites and decay at the lossy elements, while

the passive site may be drawn to either the growth or decay.

51

Figure 4.10. (Color online) The characteristics of the different branches of solutions in
the case of the five-site plaquette (d) in Fig. 4.1 are shown for G = 15 and £k = 1. The
branches represented by the chains of black squares and green stars terminate at v = 0.13.
The branches depicted by red crosses and magenta diamonds terminate at v = 1 [i.e., at the
exceptional point |y| = |k|], while the branch formed by blue circles continues past that
point.
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Figure 4.11. (Color online) Case examples of the spectral planes of the linear-stability
eigenvalues for the different solution branches shown in the previous figure, for G = 15,
k=1, and v = 0.1 and 0.95 (from left to right).
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Figure 4.12. (Color online) The perturbed evolution for solutions belonging to different
branches from Figs. 4.10 and Fig. 4.11, at v = 0.1. In panel (a), the amplitudes at the
different sites of plaquette (d) from Fig. 4.1 (A,B,C,D.E) are depicted as follows. A: the
line around 10~!; B: the right one of the two triangle-like (oscillating) curves; C: the line
around 10%; D: overlapped by A; E: the left one of the two triangle like curves. In panel
(b), the amplitudes at sites A and D overlap with each other and correspond to the bottom
curve which tends to 0, while the amplitudes at sites B, C, E eventually grow to a large
value. Panels (c) and (d) represent the dynamical effect of the gain at sites B and E, and
loss at sites A and D, while the curve for the amplitude at site C remains very close to zero.
(e) A and D overlap with each other and correspond to the bottom curve, which tends to 0;
B, C, E eventually grow to values ~ 40. B and D overlap with each other and C starts a
little higher than those two.
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CHAPTER 5

PT-SYMMETRIC COUPLER WITH BIREFRINGENT ARMS

The previously proposed settings were chiefly focused on effectively scalar models.
However the “vector” type of problems is natural for experimental settings where the ex-
ploited fibers obey birefringence, since the two orthogonal polarizations are to be taken
into account [41]. As a direct extension of the previous sections, in this chapter we con-
sider a P7T -symmetric coupler whose arms are birefringent waveguides. Assuming that
the first waveguide is active and the second one is absorbing, we address the problem of a
PT -preserving (in the linear limit) configuration. While being an interesting model from
a physical point of view, this setting also offers a different (in comparison to what was
studied before) mathematical situation where the nonlinear modes bifurcate from doubly
degenerate eigenvalues of the linear problem. This requires the generalization of earlier de-
veloped approaches (e.g. like the one reported in [31]) for the bifurcation of the nonlinear
modes from the linear spectrum. In addition, it presents a rich playground for dynamical
systems analysis, due to the emergence of a variety of saddle-center bifurcations (nonlinear
analogs of the linear P77 -phase transition), as well as symmetry-breaking (pitchfork) ones.
It is these nonlinear states, their emergence, stability, dynamics and the asymptotics of the
system that we will focus on hereafter.

We specity the problem by imposing that the principal optical axes of the two Kerr-type
waveguides are 7 /4-rotated with respect to each other, as it is schematically represented in
Fig. 5.1. In each arm, labeled by j, there are two orthogonal field components of the electric

fields which we write down in the form [41] (7 = 1, 2):

- - 2
E;i(r,2,t) = [u;(2)Aj(r —r;)e P + ujp0(2)Ajpa(r — 1j)e Pit2%e; 4] \/ge“"t + c.c(5.1)
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Here u; are the field envelopes depending on the propagation distance z, i.e. we consider
the stationary — in time — problem, assuming that the carrier wavelength ) is in the region
of the normal group velocity dispersion, thus ruling out a possibility of modulational insta-
bility; r = (z,y) is a transverse radius vector, and r; 5 are the positions of the centers of
the cores of the coupler. The real parameters 3; are the propagation constants of each of
the field components, and e; are the polarization vectors, which are mutually orthogonal
in each arm of the coupler, i.e. e; - e3 = e, - ¢4 = 0. The real functions A;(r — r;) and
Ajio(r — ;) describe the transverse distributions of the fields in each waveguide and the
normalization coefficient \/7 , where x is the Kerr coefficient, is introduced for conve-
nience. For j = 1 and j = 2 the functions A;(r) are centered in different points r;. Also,
for the sake of simplicity, we consider A;(r) = A, »(r) = A(r) (for j = 1,2), such that

the integral
JA(x —rj)A(r — rjq)d?r
(e) - €j+1) [ A%(r)d?r

(the integration is performed over the transverse plane) describes the linear coupling be-
tween the respective modes. Since in the configuration shown in Fig. 5.1 e;-e; = e;-e4, =
e;-e; = —es - ey = 1/y/2 we use the single linear coupling coefficient & (see also [42]).

Then following the analysis described in detail in [41] we end up with the system of equa-

U u:

U4 Us

Figure 5.1. (Color online) (a) Schematic presentation of a P77 -symmetric coupler based
on birefringent fibers. (b) Equivalent graph (plaquette) representation illustrating the P7T -
symmetry. Here — and + stand for active and lossy waveguides, respectively.

tions:
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z% = —k(uz + uq) + iyu; — <|u1|2 + §|U3|2) uy — %u%u’{emlz (5.2a)
Z% = —k(ur —ug) —iyug — (‘%‘2 + %\U4|2) Up — %uiuéem” (5.2b)
z% = —k(ug — ug) + tyus — <§\u1\2 + |U3\2) ug — %u%u}ﬁ)e‘mlz (5.2¢)
i% = —k(uy + uz) — iyuy — <§\U2\2 + |u4\2) Uy — %uzuZe_ZAﬂ (5.2d)

Here v > 0 describes gain in the first waveguide and dissipation in the second waveguide,

Ay =3 (ﬁ’ ’ 4o) With B = 4, e (wo , wp being the carrier wave frequency, is a properly
normalized mismatch between the propagation constants of the orthogonal polarizations
u;j+o and u;. The asterisk stands for complex conjugation.

We will be interested in the stationary solutions, in particular in their linear stability
properties and ensuing nonlinear dynamics which can be found in the two prototypical
limiting cases of (i) zero mismatches |3; — Bj42| = 0 and (ii) large mismatches |3} —

" | > kXo/c when the respective nonlinear terms can be neglected. Using the standing
wave ansatz u;(z) = w;e"*, where w; are z—independent, into (5.2), we obtain the system

of algebraic equations:

_ 2 @ N

bwy = k(wy + wy) — iywy + <|w1|2 + §|w3| ) wy + gwgwl, (5.3a)
_ 2 « N

bwy = k(wy — ws) + iywy + <|wg|2 + 3|w4|2) wy + gwiwz, (5.3b)
. 2 2 2 « 2k

bws = k(wy — wy) — iyws + §|w1| + |ws|® | ws + g“ﬁwsa (5.3¢)
- 2 2 2 Qo

bwy = k(wy + ws) + tyws + §|w2\ + Jwyl® ) wy + 3 WaWs. (5.3d)

Below the spectral parameter b will be also referred to as the propagation constant.
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I Properties of the linear problem
First we address the underlying linear problem [which corresponds to the situation when
all cubic terms in (5.3) are negligible]. It can be rewritten in the matrix form bw = HW

where

Wy —iv k0 &k

Wa k ry —k O
W = and H =

Wy 0 —k —iv k

Wy k0 k iy

(hereafter we use tilde in order to distinguish eigenvalues and eigenvectors of the linear
problem).
The operator H is P7T symmetric, which means that HPT = PTH, where P is a

spatial reversal linear operator

(5.4)

o o O
@)
—
o

and T performs element-wise complex conjugation: 7w = w*. The spectrum of operator

‘H consists of two double eigenvalues

by = ++/2k2 — 12, (5.5)
which are real for v < 7](31% where vg) = /2k will be referred to as a primary critical point:
the spontaneous P77 symmetry breaking occurs at vg% above which the eigenvalues are all
imaginary. In order to visualize the P77 symmetry of the linear system, following [31] one

can represent it with a graph shown in the right panel of Fig. 5.1, reminiscent of four linearly
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coupled waveguides [31] (notice however the sign difference in the coupling constants) or

plaquettes [43].

II Exact solutions

Let us consider nonlinear modes of arbitrary amplitudes o # 0. Relying on results of
the previous subsection we firstly search for nonlinear modes which have equal intensities
in all four waveguides. Making the substitution w, = —iw] and imposing the condition
wy = wi, ws = wj, which is necessary for a nonlinear mode to be an eigenstate of P77 thus
leading to the circularly polarized light in each of the coupler arms, system (5.3) yields the

single (complex) algebraic equation
. * 5 — 2 .
bw; = k(1 —i)w; + T|w1| wy — iyw;. (5.6)

Representing w, = pe'®, we obtain a bi-quadratic equation for p yielding two families of

the modes bifurcating from the eigenvalues b, given by (5.5), of the linear spectrum:

3(b — gi) 2ide be(1—id) —~y(1+1)

2
= : 5.7
Respectively, the nonlinear modes have the following form:
pie'
we | "™ (5.8)
ip+ PLcEs
preiO*

Using Eqgs. (5.7) one can easily obtain continuous families of nonlinear modes that can
be identified as a function of the propagation constant b, for given k and .
Fora = 0and v < 753), there exist families of elliptically polarized modes having

different absolute values of the polarization vectors. However, all such modes turned out
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to be unstable (see Figs. 5.2-5.3 and discussion below). In the case of zero propagation
constant mismatch, i.e. when o = 1, one also can find families which have different
amplitudes of the polarization vectors. The explicit expressions for the families bifurcating

from l~)jE read

w) = wi = pre® wy = wi = (—1 £ V2)pre?,

= ¢ = F— arcsin

2 _ YT vE g

Remarkably, these modes, which also describe propagation of elliptically polarized light,

are stable in a certain range of the parameters.

III Families of nonlinear modes

The results of our analysis of the families of nonlinear modes are summarized in Fig. 5.2.
The upper panels show that for 0 < v < k each eigenvalue of the linearized problem gives
rise to two distinct (circularly and elliptically polarized) families of nonlinear modes. Let

us consider the total energy flow through the coupler, which is defined by
4
U=>|wl* (5.10)
j=1

In the case of @ = 0 the slopes of the dependencies U(b) are close for the families of both
types, and the elliptically polarized families are always unstable while circularly polarized
families have both stable and unstable solutions. For & = 1 one can find stable solutions
both for the families with circular and for those with elliptical polarization.

For k < v < v/2k, the case a = 0 does not allow for elliptically polarized families
[see Fig. 5.2 C], a feature which is in accordance with the perturbation approach developed
above. In this case one can only find circularly polarized modes, which are unstable. On
the other hand, for & = 1, stable and unstable modes of both types can be found [see

Fig. 5.2 D].
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Figure 5.2. (Color online) Prototypical examples of families of nonlinear modes in the
plane (b, U) for k = 1 and gain-loss parameters v: v = 0.5 (the upper panels), v = 1.1 (the
lower panels). Left and right columns correspond to o = 0 and o = 1. Stable and unstable
modes are shown by solid and dashed lines, respectively. The families with the circular
and elliptical polarization (if any) are marked with labels “(c)” and “(e)”, respectively (in
the color online version families with the circular and elliptical polarization are also shown
by blue and red lines, respectively). Notice that the families corresponding to the modes
having exact solutions (5.7) and (5.9) are represented by the straight lines.

Summarizing at this point, we have identified 4 sets of solutions, two circularly polar-
ized with equal amplitude at the nodes, and two elliptically polarized with unequal such
amplitudes. These all degenerate into the two distinct eigenvalues by, given by (5.5), of the
linear problem. The circularly polarized solutions are more robust, while the elliptically
polarized ones are always unstable for & = 0 and stable only for small enough amplitudes
for « = 1. Among the circularly polarized ones, for 0 < 7 < v/2k the more fundamental s-
tate (stemming from the negative eigenvalue at the linear limit) is always the stable ground
state of the system in continuations over the parameter b, while the excited state is only

stable for small enough amplitudes.

84



IV Continuation over

An alternative and perhaps even more telling way to illustrate the above features stems
from fixing some value of b, starting from the Hamiltonian limit of v = 0 and subsequently
identifying branches of the nonlinear modes by means of changing ~y, as shown in Fig. 5.3.
It is important to note that this alternative viewpoint affords us the ability to visualize
bifurcations that cannot be discerned over variations in b.

The relevant results for parametric continuations over vy are given in Figs. 5.3-5.4; typ-
ical examples of the corresponding linearization spectra for different values of  can be
found in Fig. 5.5. Here, it can be seen that a lower amplitude and a higher amplitude sym-
metric (i.e., equal amplitude) branch exist, for fixed b, from the Hamiltonian limit of 7 = 0
and all the way up to the linear P77 -phase transition point 7};1% = \/2k. At that point, the
two symmetric branches collide and disappear in a saddle-center bifurcation which can be
thought of as a nonlinear analog of the linear P7 -phase transition [44]. An additional very
interesting feature arises precisely at the point 7}3%, where it can be seen that both branches
of equal amplitude between the sites become dynamically unstable for « = 0. In fact,
it is seen that for the larger amplitude branch (associated with the blue circles), one pair
of unstable eigenvalues arises, while for the smaller amplitude (red diamond) branch, two
such pairs accompany the symmetry breaking bifurcation occurring at this critical point.
A closer inspection reveals that the symmetric branch (blue circles) is destabilized through
a subcritical pitchfork bifurcation with its “corresponding” asymmetric state (i.e., the one
degenerate with it in the linear limit). In the case of the lower amplitude (excited) state for
the same b, the situation appears to be more complex. In particular, there exists once again a
subcritical pitchfork with the corresponding asymmetric branch, yet this would justify one
pair of unstable eigenvalues and we observe two. This is because at the same point, there al-
so exists a supercritical pitchfork, which gives rise to the so-called ghost states, denoted by
magenta plus symbols. These states are analogous to the ones to analyzed in [27, 28, 22],

but remarkably are not stationary states of the original problem, yet they are pertinent to its
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dynamical (instability) evolution and for this reason they will be examined in further detail
separately in the dynamics section below.

In the case of &« = 1, only one pair of unstable eigenvalues emerges for the lower
amplitude branch at the secondary critical point of vg% (while the larger amplitude branch
remains stable throughout the continuation in 7). Hence, in this case, once again a saddle-
center bifurcation will mark the nonlinear P77 -phase transition, yet the number of unstable
eigendirections of each symmetric branch (fundamental and excited) is decreased by one
(0 and 1 real pairs instead of 1 and 2, respectively, for a = 0). In this case, in fact, both
asymmetric branches persist up to the linear P7T -phase transition (rather than terminate in
a subcritical pitchfork as above), and collide and disappear with each other. Interestingly
all 3 branches (the lower amplitude, excited symmetric one and the two asymmetric ones)
become unstable at the secondary critical point vg) = k, which again points to the existence

of corresponding ghost states. For the lower amplitude symmetric branch, the bifurcating

ghost states are again identified by the magenta plus symbols in Fig. 5.4.

V  Dynamics of the polarization

To examine the potentially symmetry breaking (and more generally instability driven)
nature of the dynamical evolution past the critical points identified above, we have also
performed direct numerical simulations which are illustrated in Fig. 5.6; see also Fig. 5.7.
Here, it can be seen that although the relevant parameters are below the critical point for
the linear P77 -phase transition 75}% = \/2k, nevertheless, symmetry breaking phenomena
are observed due to the dynamical instability of the relevant states (the ones denoted by
dashed lines in Fig. 5.2). This dynamics may, in principle, be associated with the so-called
ghost states of complex propagation constant that have recently been proposed as relevant
for the dynamical evolution in [22]. To substantiate this claim, we note that it is observed

in the left panel of Fig. 5.6 that the relative phase of the two gain sites that lock into an

equal growing amplitude, is 7/2, as is those of the decaying amplitude lossy sites. In light
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Figure 5.3. (Color on-line) The four panels denote the solution amplitude (top left), phase
differences between adjacent nodes (top right), real and imaginary parts (second row) of
eigenvalues for « = 0, b = 2, and £ = 1. The blue circles branch corresponds to the “+”
sign in Eq. (5.7), while the red diamonds branch corresponds to the “-” sign (the symmet-
ric/circularly polarized branches). The green stars and black crosses are those solution-
s with distinct absolute values of the polarization vectors (the asymmetric or elliptically
polarized branches). In the top left panels, they collide and disappear in two subcritical
pitchfork bifurcations with the blue circles and red diamond branches, respectively. The
magenta pluses branch in the panels represents the ghost state solutions, which bifurcate

from the red diamonds at v = yﬁi) = 1 and terminate at v = 2.44.

Figure 5.4. The four panels show the same diagnostics as in the previous figure but now
fora=1,b=2,and k = 1.

of this, we seek ghost states with precisely this phase difference and are able to explicitly

identify them via the ansatz w3 = iw, wy = iwsy, setting w; = ¢;e'% for j = 1,2. For
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Figure 5.5. Stability plots. The top two panels are for & = 0, and the bottom one is when
a = 1. Inthecase a = 0, at v = 7(23) = 1, one pair of blue circles and two pairs of
red diamonds collide at 0 so that one pair of real eigenvalues arises in blue circles branch
whereas two pairs of real eigenvalues arise in the red diamonds branch. The asymmetric
branches only exist (and are unstable) for the smaller value of v = 0.5, for « = 0. For
the same parameters (b = 2, k = 1), in the case of a = 1, the excited symmetric and both

asymmetric branches are unstable for v = 1.2.

these branches, the propagation constant is complex. This highlights the potential growth
or decay of such states. Importantly also, note that these states are “ghosts” because they
may be solving the stationary problem of Egs. (5.3), but the U(1) invariance of the original
model does not permit them to be a solution of the dynamical Egs. (5.2).

The algebraic conditions that this family of solutions satisfies are

. (c3 — ci)y
iy — Gl (5.11)
cos by = (5— 042))(;% +c3) (5.12)
Sin(¢2 - Cbl)
_(3y — B(singy + cos ) + (5 — a)3)e (5.13)
6]{701
_ (3y + B(sin ¢y — cos dp) + (5 — a)c?)ey (5.14)
6]<302
cos(pa — ¢1)
_ (3 — B(sin ¢ — cos ¢p) — (5 — a)c3)ey (5.15)
6k’Cl
_ (33 + B(singy + cos¢y) — (5~ a)cd)er. (5.16)
6]<302
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Notice that the imaginary part of the propagation constant B sin(¢,) is proportional to the
difference ¢? — ¢2. Hence, prior to the symmetry breaking, the relevant solutions bear a
real propagation constant. Past the bifurcation point one (unstable) branch has ¢ > 3,
while the stable branch has ¢? > c2. The relevant ghost state branches and their bifurcation
from the equal amplitude ones are explored in Fig. 5.3-5.4. Given that these are only
ghost solutions of the original dynamical problem, the interpretation of their linearization
spectrum (shown for completeness in Fig. 5.5) is still an open problem.

These ghost states appear, in fact, to be the ones directly observed in the unstable evo-
lution dynamics. To illustrate this, we observed the particular behavior of the unstable
modes and how it depends on the form of the initial perturbation. A typical example in
which the gain sites lead to growth and the lossy sites to decay is shown in the left panel of
Fig. 5.6. On the other hand, in the right panel of Fig. 5.6 a different scenario of evolution
is illustrated. Instead of the gain nodes growing and the lossy ones decaying, a breathing
oscillation settles between the two pairs. These two scenarios, illustrated in Fig. 5.6, are
the prototypical instability evolution ones that we have obtained in this system. Fig. 5.7

shows the evolutionary plot of the ghost states, together with its predicted rate of growth

given by —2bsin ¢, in red dashed lines.
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Figure 5.6. (Color online) Dynamics of an unstable circularly polarized mode atb = 3, v =
0.5 and for o = 0 for two different small initial perturbations. The result of the evolution of
the left panel involves growth at the gain sites (u; 3, red curves in the color online version)
and decay at the lossy sites (us 4, blue curves in the color online version). Notice that
intensities among the two gain sites and among the two lossy sites are approximately equal
(Jui)? =~ |us|? and |us|* = |uy|?) and are not distinguishable in the scale of the plots. In
the right panel only the initial stage of the found persistent periodic dynamics is shown; the
simulations were performed up to z = 2000.

Figure 5.7. The dynamical semi-log plot of the ghost state (magenta pluses branch in
Fig. 53) witha = 0, b = 2, and k£ = 1 for 7 = 1.02. The dashed lines are the predicted
dynamics of the ghost states on the basis of their growth rates.
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CHAPTER 6

CONCLUSIONS AND FUTURE CHALLENGES

In this thesis, we considered the existence, stability, and dynamics of P7 -symmetric
one-dimensional linear and nonlinear oligomers as well as two dimensional plaquettes.

Chapter 2 started our considerations by a complete characterization of the dimer case,
where the two obtained branches of solutions terminate at the critical point of the linear
case. However, we illustrated that the trimer and quadrimer feature a number of fundamen-
tal differences in comparison with this dimer behavior. In particular, the trimer features
branches which exist past the linear critical point (although unstable). On the other hand,
the quadrimer has even richer features: in particular, it possesses completely asymmetric
solutions. The bifurcation structure is also richer in the latter problem, featuring symmetry-
breaking pitchfork bifurcations. Another notable feature is that some solutions do not exist
for arbitrary combinations of coupling, gain-loss parameter, and propagation constant; in-
stead, these parameters appear to be inter connected (at least in the case of a single gain-loss
parameter considered herein). Finally, even the linear problem presents interesting varia-
tions in this case, featuring the breaking of the real nature of the eigenvalues through two
colliding pairs that lead to a quartet occurring for smaller gain-loss parameter values than
in the trimer case.

Chapter 3 generalized one-dimensional oligomers in Chapter 2 and examined differen-
t types of solutions of such configurations with linear and nonlinear gain or loss profiles.
Solutions beyond the linear P77 -symmetry critical point as well as solutions with asymmet-
ric linearization eigenvalues are found in both the nonlinear dimer and trimer. The latter

feature is absent in linear PT-symmetric trimers, while both of them are absent in linear
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PT-symmetric dimers. Furthermore, nonlinear gain/loss terms enable the existence of both
symmetric and asymmetric solution profiles (and of bifurcations between them), while only
symmetric solutions are present in the linear P77 -symmetric dimers and trimers.

Chapter 4 considered two-dimensional plaquettes, which may be subsequently used as
fundamental building blocks for the construction of P7 -symmetric two-dimensional lat-
tices. In this context, we have introduced four basic types of plaquettes, three of which in
the form of four-site squares. The final one was in the form of the five-site cross, motivat-
ed by earlier works on cross-shaped (alias thombic or site-centered) vortex solitons in the
discrete nonlinear Schrodinger equation. Our analysis was restricted to modes which could
be found in the analytical form, while their stability against small perturbations was ana-
lyzed by means of numerical methods. Even within the framework of this restriction, many
effects have been found, starting from the existence of solution branches that terminate at
the critical points of the respective linear P77 -symmetric systems — e.g., in the settings
corresponding to plaquettes (a) and (c) in Fig. 4.1. The bifurcation responsible for the
termination of the pair of branches may take a complex degenerate form [such as the one
in the case of setting (a)]. Other branches were found too, that continue to exist, due to the
nonlinearity, past the critical points of the underlying linear systems. In addition, we have
identified cases [like the gain-loss alternating pattern (b) or the cross plaquette of type (d)]
when the PT symmetry is broken immediately after the introduction of the gain-loss pat-
tern. The spectral stability of the different configurations was examined. Most frequently,
the stationary modes are unstable, although stable branches were found too [e.g., in settings
(a) and (c)]. We have also studied the perturbed dynamics of the modes. The evolution of
unstable ones typically leads to the growth of the amplitudes at the gain-carrying sites and
decay at the lossy ones. It was interesting to observe that the passive sites, without gain or
loss, might be tipped towards growth or decay, depending on the particular solution (and

possibly on specific initial conditions).
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In Chapter 5, we have proposed a novel, physically realistic variant of a P77 symmetric
dimer where the effect of birefringence has been taken into consideration. The existence of
polarization of the electric field within the coupler yields two complex dynamical equations
for each of the fibers, providing a physical realization of a plaquette model with both lin-
ear and nonlinear coupling between the elements. The stationary states of the model were
identified and both linear and nonlinear P77 -phase transitions were obtained. The degener-
ate nature of the linear limit complicated the problem in comparison to other ones studied
earlier in this context. Furthermore, the emergence of symmetry breaking phenomena and
associated (subcritical or supercritical) pitchfork bifurcations, as well as their dynamical
implications in leading to indefinite growth and decay (of the corresponding waveguide
amplitudes) were elucidated. A connection was given to ghost states that appeared to dom-
inate the symmetry-breaking dynamics.

The next relevant step of the analysis may be to search for more sophisticated stationary
modes (that plausibly cannot be found in an analytical form), produced by the symmetry
breaking of the simplest modes considered in this work, cf. Ref. [23]. The difference of
such modes from the P7 -symmetric ones considered in the present work is the fact that
modes with the unbroken symmetry form a continuous family of solutions, with energy
E depending on the solution’s amplitude, see Eq. (4.1). This feature, which is generic to
conservative nonlinear systems, is shared by P7T -symmetric ones, due to the “automatic”
balance between the separated gain and loss. On the other hand, the breaking of the symme-
try gives rise to the typical behavior of systems with competing, but not explicitly balanced,
gain and loss, which generate a single or several attractors, i.e., isolated solutions with a
single or several values of the energy, rather than a continuous family. A paradigmatic
example of the difference between continuous families of solutions in conservative models
and isolated attractors in their (weakly) dissipative counterparts is the transition from the
continuous family of solitons in the usual Nonlinear Schrodinger Equation (NLSE) to a

pair of isolated soliton solutions, one of which is an attractor (and the other is an unsta-
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ble solution playing the role of the separatrix between attraction basins, the stable soliton
and the stable zero solution) in the complex Ginzburg-Landau equation, produced by the
addition of the cubic-quintic combination of small dissipation and gain terms to the NLSE
[45].

Moreover, the present work may pave the way to further considerations of two-dimensional
PT-symmetric lattice systems, and even three-dimensional ones. In this context, the nat-
ural generalization is to construct periodic two-dimensional lattices of the building blocks
presented here, and to identify counterparts of the modes reported here in the infinite lat-
tices, along with new modes which may exist in that case. On the other hand, in the
three-dimensional realm, the first step that needs to be completed would consist of the ex-
amination of a PT -symmetric cube composed of eight sites, and the nonlinear modes that
it can support. This, in turn, may be a preamble towards constructing full three-dimensional
PT -symmetric lattices. These topics are under present consideration and will be reported

elsewhere.
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