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ABSTRACT

RBC LIFESPAN UNCERTAINTY: MODELS AND ANEMIA
MANAGEMENT ROBUSTNESS
MAY 2013
RUI DAI
B.S. EAST CHINA JIAOTONG UNIVERSITY, CHINA
M.S.E.C.E UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Christopher V. Hollot

This thesis discusses the modeling of uncertainty of red blood cell (RBC) lifespan
distribution in patients suffering from Chronic Kidney Disease(CKD) patients, whose
anemia is managed through periodic dosing of erythropoietin (EPO).

In healthy individuals, RBCs containing hemoglobin (Hgb) are produced in the
bone marrow. When oxygen carried by hemoglobin is transported to human tissues
throughout the body, the kidneys sense reduced level of Hgb and secretes EPO that
simulates proliferation of red cell precursors and eventually producing red blood cells.
However, in CKD patients, their kidneys fail to secrete enough EPO, so that too few
of RBCs are produced to maintain a sufficient Hgb level. As a result, artificial EPO
dosing is required when the kidney loses this function to avoid anemia.

To develop effective artificial EPO dosing schemes, it is important to have models
of how EPO does dynamically affect hemoglobin levels. Since there is significant
uncertainty in this process, it is equally valuable to have mathematical models of such
uncertainties, and in this thesis we focus on uncertainty in the lifespan of red blood
cells.

In this thesis, we consider two different types of models for RBC lifespan
uncertainty: the time-invariant and time-varying cases. In the former, we treat the
probabilistic distribution of cell lifespans as fixed for a given patient, but variable
(uncertain) over the population. In the latter case, the cell lifespan distribution can

change from moment to moment for a given patient.



Amongst several possible choices of RBC lifespan distributions, this thesis will
focus on the gamma distribution. For the time-invariant model, a first-order gamma
distribution is selected as the nominal distribution, and a multiplicative error model is
proposed to analyze the impact of lifespan uncertainty on anemia management.

In the time-varying case, the lifespan distribution is not fixed in time, but allowed
to switch over a finite collection of gamma distributions. In other words, each
newly-born RBC has a lifespan coming from a distribution chosen from a collection.
Both of these models are analyzed so as to evaluate the impact of lifespan uncertainty
on the performance of anemia management schemes; including stability and response

time.
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CHAPTER 1

INTRODUCTION
In this chapter, we first introduce some background of erythropoiesis and anemia,

and then introduce a model of an Anemia Management control system (AMCS). We
also introduce the dynamics of the red blood cell (RBC) pool which is the focus of the
thesis. Finally, we conclude this introductory chapter with the motivation and

contributions of this thesis.

1.1 Backgrounds
To understand an AMCS, two biological phenomena are introduced: the production
of RBCs, which is called erythropoiesis, and the role of the kidneys in hemoglobin

(Hgb) regulation.

1.1.1 Erythropoiesis

One of the major functions of red blood cells is the exchange of oxygen and carbon
dioxide; i.e., the transport of oxygen to tissues and of carbon dioxide (CO,) back to
the lungs [1]. Red blood cells are capable of carrying oxygen because they contain the
protein hemoglobin which attracts oxygen in circulation. Hemoglobin contains four
molecules, each of which has an iron atom in the middle. It is these iron atoms which
attract oxygen and which make Hgb the oxygen carrier. Hgb concentration is a key
measure of the oxygen level in the blood. It is said that Hgb occupies one third of the
mass of RBCs [1], which gives a relationship that links the mass of Hgb and to the
amount of RBCs.

The process of red blood cell formation is called erythropoiesis. In a healthy human,
stem cells in the red bone marrow divide into two daughter cells, one of which
matures into a red blood cell upon receiving the hormone erythropoietin (EPO), the
other will become a new stem cell. Generally speaking, this daughter stem cell
evolves through four stages; EPO and iron are needed in the process. As it grows into

a RBC precursor cell in the bone marrow, it produces more and more Hgb. When



there is enough hemoglobin, the cell is released into the blood stream as a mature red
blood cell. When an RBC passes through the lungs, oxygen binds to Hgb and is then
carried by the cell throughout the body. Figure 1.1 shows the process from stem cell

to red blood cells in circulation [2].
Erythropoiesis
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Figure 1.1: Erythropoiesis (copied from [2])

1.1.2 Role of kidney

The kidney has two functions in this oxygen balance: one is to sense the blood
oxygen level; while the second is to secrete EPO to generate RBCs. When oxygen
carried by RBCs (specifically hemoglobin molecules) is consumed by tissues, the
kidney senses the decreased oxygen and then secretes EPO (a small fraction of EPO is
also secreted by the liver) to simulate proliferation of red cell precursors to produce
more RBCs - to increase Hgb mass - and to increase the blood oxygen level.

However, for chronic kidney disease (CKD) patients, the kidneys fail to secrete
enough EPO. In turn, fewer stem cells in the bone marrow mature to RBC precursors.
This is the reason why CKD patients have low RBC counts; anemia is a very common
condition in these patients.

The World Health Organization defines anemia as “a hemoglobin concentration
lower than 13.0 g/dL in men and postmenopausal women and lower than 12.0 g/dL in
other women” [3]. As a common complication in advanced chronic kidney disease,

anemia has many causes, but is related largely to decreased production of EPO by



diseased kidneys [4]. In order to maintain acceptable levels of Hgb concentration, this
lost kidney function needs to be compensated. The discovery of recombinant human
EPO (rHUEPO) in 1989, which has the same biological effects as endogenous
erythropoietin (EPO secreted by the kidney), has led to its use as a treatment of
anemia in chronic renal failure patients [5]. However, the appropriate size and
frequency of doses remains a challenge [29]. This is why a study of an AMCS is

necessary.

1.2 Model of an AMCS

In the previous section, we briefly reviewed the biology and the feedback
interaction of the kidney and erythropoiesis. Now we focus on an anemia
management protocol (AMP), as the control element in an AMCS.

In a healthy individual, the kidney and erythropoiesis form a feedback control
system to regulate Hgb levels. In CKD patients, an AMP replaces the kidney, acting
as the controller in an AMCS feedback loop where erythropoiesis is the process to be
controlled and where Hgb is the primary performance and measured variable. This
feedback loop is closed during periodic dialysis treatments (typically three times
weekly) when a patient’s hemoglobin is measured and, accordingly, the AMP
prescribes EPO doses as compensatory action. The thesis is motivated by
model-based AMP design and with the feedback control system developed in [6, 7, 8]

as shown in Figure 1.2.

management endogenous | .
protocol EPO tron
EPO ki, RBC Hgb [Hgb]
controller PK PD RBC K, volume
T

Hgb sensor

Figure 1.2: The feedback control loop of an AMCS
In this figure, PK (pharmacokinetics) models the dynamics of intravenous EPO

dosing, including residual EPO secretion from the compromised kidneys (endogenous



EPO), while PD (pharmacodynamics) models EPO’s effect on red blood cell
production. Following [6 - 8], PK and PD are modeled by

sy V.. E(t) % .

E()= —Km+E(t)+i§>EPOi o(t—iT)

(0= SEOEO)
C+E()+E,((1)

where E denotes exogenous EPO plasma levels, E, endogenous EPO, EPO, the

ith EPO dose, T, the sampling period as well as the dosing period, and k,, the

production rate of mature red blood cells. The differential and production equations

employ saturating functions with parametersV,

e Ko SandC . Finally, the blood
volume comes into play since the sensor reports on Hgb concentration, which is

represented by [Hgb] in Figure 1.2.

1.3 RBC dynamics

The anemia management system in Figure 1.2 has been purposely simplified to
focus on the RBC pool dynamics and, as the main theme of this thesis proposal, on
model uncertainty and its impact on feedback loop performance. In this section we

introduce a basic model of this pool dynamic.

1.3.1 Compartmental model
In order to study the RBC pool dynamic, the input of the RBC pool is “averaged”

to derive a continuous-time form of this input [7]. Consider the RBC pool dynamic in
Figure 1.3, with input k._(t) and output Hghb(t) which respectively denote the rate of

newly-born red blood cells and the total number of RBCs in the blood pool.

2 Hgb [ Heb]
— RBC K, G ——

v

Figure 1.3: RBC pool dynamic



The RBC pool dynamic can be treated as a compartmental model, defined by the

law of mass conservation, where the rate of newly-formed RBCs k. (t) forms the

pool’s input stream and the rate of eliminated RBCs k_,(t) forms the pool’s output

out

stream; and where their difference determines the rate of change in the number of

RBCs presently in the pool, see Figure 1.3. Also, let K., denote the linear relationship

between RBCs and Hgb. After taking into consideration the blood volume, the output
of the RBC pool is Hgb concentration, denoted by [Hgb]. Let r(t)denote the
number of RBCs, then we get

F(8) = Kiy ()~ Koue (1)
and

[Hgb](t) =G, Ky r(t).

The elimination rate k_.(t)can be expressed in terms of RBC lifespan 7, the time

out

from a cell’s birth to death, and the time-varying distribution of such lifespans I(t,7);

i.e., at time t, newly-born RBCs have lifespans z each chosen from the lifespan

distribution (pdf) I(t,z). From [6, 13], the elimination rate satisfies
t [r—
Ko () = [, (=D (7.t =7)d 7
0

and when the RBC lifespan distribution is time-independent, i.e., I(t,z)=1(z), then

the above becomes the convolution
t

Kot (1) = [ Ky (=21 (2)d 7 2 (i, *1)(1):
0

As shown in Figure 1.2, we will focus on this simplified system and the uncertainty

which comes into play in the RBC pool.

The RBC pool dynamics directly relate k. (t)tor(t)can be expressed as either

r‘(t)=Kn(t)—jl?m(t—r)l(r,t—r)dr



when the lifespan distribution is time-varying, or as
r(t) = Izin (t) - (lzm *I)(t) ’
when it’s time-invariant. We will refer to the former as the time-varying case, and the

latter as the time-invariant model. The study of these two models, as it relates to an

AMCS is the focus of this thesis.

1.3.2 Transfer function of RBC pool
From Section 1.3.1, the general RBC pool equation in the time-invariant case is:
r(t) =k, (t)—(k, *D(t); r@0)=r,t>0
where r(t) denotes the number of RBCs in the pool. Recall that
[Hgb](t) =G K, r(t) . We now assume the blood volume is constant, and K, z%
For simplicity, we take K,, =G, =1 and as a result, have that the output of the RBC
pool to be [Hgb]. Furthermore, from now on, we will use Hgb(t)to represent the

concentration [Hgb]. Thus,

Hb(t) =k, () - [/ K, (t=)I(z)dz; Hgb(0) = Hgb,, t0
To compute the transfer function of the above system, we assume that the system
us at rest, implying that Hgb, =0. To compute this transfer function we first take the
Laplace transform of both sides of the above to obtain

s-Hgb(s) = K;,(s) - K;, (s) - L(s)
where K, (s), Hgb(s)and L(s)denote the Laplace transform of k. (t), Hgb(t)and
I () respectively with

H(s)2 _'19*’(23))

it is clear that

Ky (S)[L-L(s)] _1-L(s)

H(s)= s-K,,(s) S




1.4 Properties of the RBC pool

Having derived the transfer function for the RBC pool dynamic, we are now in a
position to analyze the frequency response of the RBC pool. This frequency response

is useful in frequency-domain based design of AMCS.

1.4.1 DC gain of H(s)
The DC gain of transfer function H(s) is given by
DC gain2 H(s)|_,,

a transfer function’s DC gain describes a system’s steady-state response to a constant
input.

From the definition of Laplace transform,

L(s)|_, = I:I(r)e’s’dr

=j°°|(r)dr=1.
s=0 0
Applying I’Hbpital’s rule we get

1-L(s)| :O—U@ﬂ

s=0 1 s=0

H(0) = - —L'(0).

Applying the definition of the Laplace transform again, the derivative of L(S) is

given by

s=0

~L'(0)= —% jo“’l(r)e-“dr

=—J.:%[e's’l(r)]dr

where here the interchange of differentiation and integration is valid.

s=0

Thus,

HE) =g

s=0

[eI(r) |dz

("9
0 05

s=0

= Jje’”rl (r)dr

s=0

= j: 7l(z)dr.



Recognizing that ?éf:rl(r)dr which is the mean of the lifespan distribution

function, then the DC gain is given by:
DCgain=H(0)=7.

This computation holds for any lifespan distribution having a Laplace transform.

1.4.2 Stability of H(s)

As discussed in Section 1.3, the transfer function of the RBC pool is given by

HEH =T,

where L(s) is the Laplace transform of I(z). We now focus on the family of

gamma distributions [6] so that

. —_ kk 1 k-1 ’Lj . p—
I(z;k,7)=———<7"¢ 7", 720,k7>0,
7" T'(k)
with Laplace transform

L(s):é; 72>20,k=12,---,.
(1+%s)k

The parameter k denotes the order, which is a positive integer. It is clear that L(s)

has k repeated poles ats=—£<0, so L(s)has all its poles in the left-half of the
T

complex plane.

For a continuous linear time-invariant system, bounded-input bounded-output
(BIBO) stability is equivalent to the impulse response being absolutely integrable,
which in turn, is equivalent to the transfer function having all its poles in the open

left-half plane.

Since H(s)= and from Section 1.4.1 H(0)=7, we conclude that the

1-L(s)
S
poles of H(s)are precisely those of L(s). Hence H(s)is BIBO stable. However,

since 1=LE) has a pole-zero cancellation at s=0, then the RBC pool dynamic is
S

not asymptotically stable. However, it is stable in the sense of Lyapunov [32].



1.4.3 Frequency response of H(s)
We now give an upper bound to the magnitude frequency response |H (ja))| :
The first bound is
. 2
|H (ja))| <—.
w
To see this we compute

o -L(jw)| [-L(e) [-L(jo)
I T

from which subadditivity gives

1-L(jo)| <1+|L(ja))|
® B ® '

From the Laplace transform,

1+|L(JCO)| _ 1+U0 I(T)efj’”TdT . 1_|_J‘:|(T)‘e—jwr

[0 [0 @

dr

This inequality holds because I(z) 1is non-negative. Since ‘e‘j“”:l and

J.:I(r)dr =1, then

1+j0°°|(r)\e-im dr 1+j0°°|(r)dr 2

w w [0

As a result,

Lt|LGie)] 2
e

H(jo) <
w

Now we show that |H (je)| <7 . Indeed,



(o - 202
(4]
I:l(f)dr— J.:I(T)e’j“"dr
w

[1a-e)yde

0

(0]

Since I(z) isnon-negative,

I 16— )dr J@p-e

0 )

dr

Becausee " = cos(wr) — jsin(wr) , one obtains

‘l—e”"‘” =[1-[cos(wr) - jsin(er)]
=,/2-2cos(w7)
=2sin «r <wr; w>0,7>0.
Then,
© . |oT v
J;) |(T)-25|n 2dT<J'O I(r)-a)rdr
® a ® '

The right side of this inequality can be further simplified as

le(r)-wrdr ) wj:|(r)rdr

0

=7.
() ()

As a result:

w

Figure 1.4 shows the magnitude Bode plot of the RBC pool; the lifespan

distribution is taken as first-order gamma, with a mean lifespan of 100 days. Note that

the upper bounds intersect a)zé. Clearly then, H(s)has a low-pass frequency

T

response with corner frequency less than édays. This result holds for all lifespan
T

distributions.

10



Magriude ()

Frequency (radisec)

Figure 1.4: Frequency response of H(jw)

1.5 Thesis Motivation

There are several factors that influence regulation of Hgb levels, and uncertainty in
RBC lifespan distribution may be one of the prominent factors.

Wojciech Krzyzanski et al [6] proposed lifespan-based response models, which
included comparisons of several probability density functions. However, these
simulations were based on perfect knowledge of the lifespan distributions.

Although several potential lifespan distribution functions have been proposed and
analyzed, the real RBC lifespan remains unknown. There is no rule of which type of
probability density function it should be, so it is difficult to determine whether or not
any particular protocol design is able to achieve the target Hgb concentration level,
even if all the other elements in the system are simplified and fixed. An AMP may
result in good AMCS performance for one particular distribution; but very possibly it
may not be capable to work with another distribution. It is thus necessary to determine
the effectiveness of the anemia management protocol, taking into consideration that
the RBC lifespan distribution may vary among the population or vary within an
individual over time.

The objective in designing an anemia management protocol is to maintain Hgb

level within a target range. Unknown RBC lifespan distributions and AMCS

11



performance may be influenced by their possible impact. As a result, there is need to
study the impact of uncertainty in lifespan distribution, which is the motivation of this
thesis. We will provide models for such uncertainty and analyze AMCS performance

in the face of these uncertainties.

1.6 Thesis contributions

The major contribution of this thesis is to develop two models of RBC lifespan
uncertainty, so that the robustness and performance of the AMCS can be analyzed.
Our results provide methods to evaluate and aid in the design of an AMP.

Consider the RBC pool as a compartmental model, the dynamics are studied based
on the transfer function derived from the general differential equation. Results
indicate that the RBC pool is BIBO stable with a steady-state response related to the
mean lifespan.

The focus on lifespan uncertainty is based on the family of gamma distributions.
Both the time-invariant and time-varying models of lifespan uncertainty are derived
from the general differential equation.

The time-invariant model for the RBC lifespan distribution uncertainty allows
lifespan variations amongst the population. We chose a nominal model of the RBC
pool with first-order gamma distribution, and then conjectured a bound on the
multiplicative error of the RBC pool. Although the mathematical proof for the bound
is still open, we provided another weaker bound which is proved. These bounds are
used to provide constraints on the design of the AMP so as to achieve robustness of
the system.

Uncertainty of RBC lifespan varying over time is studied by the time-varying
model. Each red blood cell choses a lifespan distribution from a pre-determined
collection of time-invariant gamma distributions, and the separation of this lifespan
generates a standard form of the system with a set of time-invariant sub-pools and an
arbitrary switching signal. We analyzed the impact of the AMP’s gain and the two
parameters (order and mean lifespan) of gamma distributions via Matlab’s LMI

toolbox. Results show that mean lifespan within a certain range will not have much

12



effect on the stability of the system, and increasing PI-AMP gain leads to faster

response, however, large order of gamma distributions may result in loss of stability.
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CHAPTER 2

SIMPLIFIED ANEMIA MANAGEMENT MODEL
In this chapter, we introduce a simplified model of anemia management that will be

used in the remainder of the thesis. These simplifications allow the original model in
Figure 1.2, which is nonlinear and hybrid-time, containing both continuous and
discrete-time components, to be expressed in terms of linear, continuous-time
elements. This will allow for standard uncertainty modeling and robust feedback

results to be employed.

2.1 PK/PD model

Due to the discrete-time nature of EPO dosing, and the nature of nonlinear PK/PD
dynamics, the rate at which new RBCs are produced is pulsatile in time. Given the
low-pass nature of the anemia management feedback system in general, and the RBC
pool in particular, the high-frequency components of these pulses are filtered out,
leaving the average-value of PK/PD dynamics’ output as the significant driving signal
of this loop. In this section, we will consider this PK/PD model and explain the
technique of “averaging” introduced in [7], to arrive at a linear sampled-data model

for the AMCS (Anemia Management Control System).

2.1.1 Introduction

As introduced in Chapter 1, the PK/PD model describes the rate at which RBCs are
produced due to the instigation of EPO doses. Figure 2.1 illustrates this system where

the

{d) £, (0

———{ PK/PD |——

Figure 2.1: PK/PD model

intravenous rHuepo doses are denoted by d., where i presents the i-th dose and

where the production rate of RBCs is k, (t). From [6, 7] the PK/PD dynamics are

modeled by the differential equations:

14



a

V,E(t)

E(t)=- T EQ + izzo:did(t—iTs); E(0)=E,
kin (t) — Smax(E + EN)
SC, +(E+E,)

where E(t)is the level of plasma EPO due to the dosing, and E, is EPO’s

endogenous level. Both the differential and output equation use saturating functions

with parameters V. K., S.uand SC,, asdefinedin [7].

max ! m?

2.1.2 Approximating the pulsatile nature of PK/PD
As mentioned, the output k. (t) of the PK/PD dynamic is pulsatile, even when the
dosing regimen is constant, and now we discuss approximating these pulses by a

piecewise constant signal representing the average of k, (t) over the dosing period

T,.

S

Suppose k,,(t) evolves as illustrated in Figure 2.2(b), due to the dosing in Figure

2.2(a).
d(r)
d
d, A d, J d, [ !
T, oT, 3T, AT,
(a)
k!.”(f }
T, 2T, 3T, 4T, t
(b)

Figure 2.2: RBC production rate
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In Figure 2.3 we give a zero-order approximation to the pulses in Figure 2.2(b)

where

A 1 G
Ko (@) 2 [ K (O,

S

and k, (t)is defined by
K (0)2 3, (AUt —iT,) ult— (i +D)T, 1}

e, (0]

;‘.:;\0 (d; )

ka;'\ 4 (dl )

T, 2T, 3T, 4T, {
Figure 2.3: T-averaging of RBC production rate

The technique of “averaging” used in approximating k. (d;) has been computed

in [7]. A block diagram representative for the relationship between EPO dose d, and

k. 1s shown in Figure 2.4.

d!.}- km' (df) ]\T
1.} 5 (ks ()} 1 kO

Figure 2.4: PK/PD model approximation

2.2 Iron, blood volume and endogenous EPO

In an anemia management system, four factors influence the Hgb concentration —
as seen in Figure 1.2 — the iron required to form the Hgb molecules, blood volume
which will affect the concentration of Hgb, the amount of endogenous EPO produced
by the kidneys, and the exogenous EPO.

While iron supplements are necessary to meet the demands of erythropoiesis [9, 10],
there is no evidence showing that iron intake causes change to Hgb concentration. In

this thesis we will assume the iron pool is constant. The blood volume is also

16



considered constant. A study in [11] shows that even if there is a possible change of
blood volume, it occurs much faster than the process of erythropoiesis. So it is
reasonable to assume a constant blood volume for simplicity.

As no literature and research indicate the endogenous EPO level with exact data,
we assume that the secreted endogenous EPO is constant for simplicity.

These assumptions are made for a simplified system, of which the focus is the RBC

pool and its lifespan uncertainty.

2.3 Continuous-time model of AMCS

The assumptions discussed in previous section lead to an AMCS modeled as a
sampled-data control system. In this section we will approximate it by a
continuous-time system since this is a natural domain to model uncertainty in the

RBC pool dynamics.

2.3.1 Sampled-data control system

Under the assumptions made in Section 2.2, the AMCS can be represented as in

Figure 2.5.
Hebi, g £, 0 Hb
-C, K, ZOH RBC
sampling
(a)
rHuEPO k. (1 Hgb
Hgbtar ' {d} m() &
-Cq4 ZOH RBC
sampling
(b)

Figure 2.5: sampled-data system
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In Figure 2.5(a), the linearized K is the linearization of k., around a nominal

dose d,,

d
K =—k (N =1,
L dr avg()

r=d,
notice that this assumption is not based on the real system, but totally for simplicity.
Now the system is further simplified as shown in Figure 2.5 (b).

The Hgb concentration is measured periodically, which we assume to be once per

week. Samples of Hgb are used by the management protocol; the protocol,
represented as the controller transfer function C, is discrete-time. As shown in
Figure 2.5, the protocol and the sampler comprise the discrete-time components of the
feedback system, while the other models are continuous-time. This is an example of
sampled-data control system which includes both discrete-time and continuous-time

signals and system. Next, we will approximate this sampled-data control system by a

continuous-time feedback version.

2.3.2 Continuous-time approximation
In this section, we approximate the sampled-data system by accounting for the

sampler, discrete-time controller and the zero-order hold.

From Figure 2.5, the AMC consists of a sampler, where the signal Hgb is sampled

at discrete instants, i.e., every seven days. The Nyquist sampling theorem [12] gives

conditions on the sampling period T, under which the continuous-time signal Hgb(t)

can theoretically be reconstructed from its samples {Hgb(kT,)}. It is under such

condition that we will approximate the sampled-data model of an AMCS.

To develop this approximation, we first consider the sampling functions
pr () =D 8(t-nT),
n=0

where 5(t) is the unit impulse and where the Fourier transform of p, (t) is
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) 27 & 2k
PTS(JCO):T— Z 5((0—1_—} :
s k=—ow

S

In Figure 2.6 we reframe the sampled-data AMCS using p; (t) and the
impulse-modulation model of sampling. Figure 2.6(a) is the sampled-data system
which contains a discrete-time controller C,, this is equivalent to what is shown in
Figure 2.6(b) where the sampler is moved and the controller is now continuous-time,
denoted by C,. Now all the compartments in Figure 2.6(b) are continuous-time,

except the sampled signal xbefore it is held by the ZOH. Next step is to replace the

discretization by the impulse-modulation model as shown in Figure 2.6(c). Here the

input of ZOH is denoted by X(t).

Hgby [Hgbiarla f\Tﬁ, (1 Hgb
C, ZOH RBC >
[Hgb]y
(a)
Hgb ar X X E_” (I Hgb
0O C, | zoH RBC
(b)

Bt 3 Hgb
Hgb[ X {. —m ('t g
se. C, ZOH RBC

()
Figure 2.6: Sampling model

The sampled signal X(t) is
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X(t) = x(t) p;. (t)
=Y x(®)s(t-nT,),
n=0
and its Fourier transform is

X(jo) = X(j0)*P, (jo)]
1

i . 2k
= X ——) |
T & {J(w T )}

The Fourier transform of k. (t)is

Ry (o) -y X[““"Z?_ﬂ)}

ja)Ts k=—00 s
where the Fourier transform of the impulse response of the ZOH function is

1_ e—j(uTs

jo

—sT,

s

The ZOH function may be represented by the transfer function 1-

as shown
S
in Figure 2.7.
pr (1) —
Hgb,, : X [ o7 ay Hgb
g C, D, — RBC

Figure 2.7: Impulse-modulation model for sampling

Equation i(t):Zx(t)cS(t—nTs) indicates that X(jw) is a periodic function in

n=0

® with period ?I'_ﬂ comprised of a sum of frequency-shifted X (jw), each with

S

amplification factor Ti As a result, X(jw)can be theoretically recovered from

S

X(jo) if:
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(i) X(jw) itself is band-limited to [Ole ; said another way, the sampling frequency

S

is appropriately chosen to avoid aliasing.

(i) X (jw) is acted upon by an ideal low-pass filter with cut-off frequency of T£

S

In practice both of these conditions are simultaneously met when the

complementary sensitivity function T(s)of the AMCS is low-pass with a cut-off

frequency less than Tﬂ Figure 2.8 illustrates this when it is assumed that the

S

continuous-time AMP controller C, results in such a closed-loop bandwidth, so now

X(ja)) Is not a product as stated before but just a sum of the basic band signal and all

the others.

Hgby, X(jo) Hgb

RBC

Figure 2.8: Impulse-modulation model for sampling (frequency domain)

From this block diagram,

X(J'w)=TJ(J'w)[Hgb]tar(J'w)+TST(J'60)i X[j(w—zi—ﬂ)],

k=—00

k=0

where T (s) is the complementary sensitivity of this feedback system; i.e.,

1+Q,(s)
where
Q.(5)=H(®)- 125 ().
sT

S
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When T(s) is designed (via selection of C,) so that it is a low-pass fillter with cut-off

frequency less than Tl the Nyquist frequency, then

S

T(jo) 3, XIi(o- 25 =0

k=0
X (jo) =TT (jo)Hgb,, .

This is illustrated in the following block diagram representing a continuous-time

approximation to the sampled-data model of AMCS.

~ . — k, (1) Hgb

0

In this thesis, the continuous-time control system in Figure 2.10 will be the set-up

Hgb,

Figure 2.9: A simplified system

upon which we will study robustness with respect to uncertainty in the RBC pool

1_ e_STS

dynamics. Here G,(s) = . This setting is also useful for AMP design in that

S

the continuous-time controller C, in Figure 2.10 leads directly to a protocol whose

natural domain is discrete-time. We will now illustrate this using the Tustin

transformation.

]

Hgb

-C, G, RBC

Figure 2.10: Simplified continuous-time system

Tustin’s transformation is an algorithm mapping the s-plane to z-plane [13]. To

illustrate, we take the AMP to be a PI controller with with proportional gain K, and
integral gain K, ; the transfer function of which is given by

C.(s) = K, +0.
S
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Tustin’s algorithm uses the relationship

[HEN

Z_

2
S=—-
T, z+

i)

-

so the approximate discrete-time controller has form

T.(z+1)
C,(2)=C_ (s =K, +K, -2 )

In the following, we will approximate G,(s) by a rational function using a

first-order Padé approximation:

1-e* 1
sT. ., ST~
2

G,(s)=
s 1+

We illustrate the continuous-time approximation in the next section.

2.3.3 Hlustration

In the previous section, we introduced a continuous-time feedback system to
approximate the sampled-data control system modeling an AMCS. In this section, we
illustrate this approximation via simulation [14].

A simulation of such a sampled-data system is shown in Figure 2.11, with sampling

time T, =7days and RBC lifespan taken as a first-order gamma distribution with

mean lifespan 7 =100 days. The AMP is a discrete-time Pl controller with
K, =0.005, K, =0.0001; i.e.,

C, (2) = 0.005+0.00035 2%

z-1
The target value for Hgb is set to 11.25 g/dL, and the sampler is naturally

embedded in the front-end of Simulink’s discrete-time controller block.
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Scope

numiz) J_LL > 100 I:l
=1 100s+1

target Hgh Disorete Fero-Order RBC pool Hgb
Transfer Fon Held

h

Figure 2.11: Simulink simulation for simplified sampled-data system
Figure 2.12 shows the simulation of the simplified continuous-time system, so

applying the Tustin’s transformation gives

C.(s)= o.oom%,

and G,(s) = T models the effect of both the sampler and the zero-order hold.
S+
[
Scopel
11.25 PIDYs) o 2 o 100 o [
Ts+2 100s5+1
target Hgb1 FID Controller Ga REC pooli Hgb1

Figure 2.12: Simulation for approximated continuous-time system
Difference between the ZOH outputs of the two system is shown in Figure 2.13(a)

for both short time (100 days) and longer time (1000 days), and in Figure 2.13(b) we

show the comparison of outputs Hgb for both systems, in the same time scale as in

(@). Since this is a simplified model, the assumption that Hgb starts at zero is applied.

This is not true for a real system; however, this assumption is made to simplify the
study.

There is not much difference between the outputs of the two systems, especially
when in a longer time scale — consider the long lifespan of RBCs which is over 100

days. As a result, the approximation provided in previous section is reasonable.
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Figure 2.13: Comparison of two systems
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CHAPTER 3

UNCERTAINTY IN RBC POOL DYNAMICS (TIME-INVARIANT CASE)
In this chapter, we consider the time-invariant case of uncertainty in models for the

RBC pool dynamics. The time-invariant modeling of RBC lifespan uncertainty takes
into account the variability of the lifespan distribution from individual-to-individual.
Several examples of lifespan distributions found in literature are reviewed, and we
will look at some lifespan properties. By proposing the time-invariant uncertainty
model, we first introduce a nominal system and look into multiplicative perturbation.
Next, the robust stability of the system is discussed, where we propose a conjecture of
the multiplicative error bound. Finally, the result of robustness is shown, as well as its
implication on control design.

In Chapter 1, we modeled the RBC pool as a compartmental model, the input of

which is the rate of newly-formed RBCs k. (t) and output is the rate of eliminated

RBCs k . (t). The hemoglobin pool content is determined by their difference as

out

described by

Hgb(t) = Ky, (£) — Koy, ()

where the elimination rate satisfies
t
Ko (1) = [k (t=2)I(7,t=7)d
0

here I(t,7)is the lifespan distribution. In the time-invariant case I(t,z)=I1(z), the

elimination rate becomes a convolution
t
Ko (1) = [l (t=2)1(2)d 7 2 (k,, *1)(1).
0

Here we rewrite the RBC pool dynamics showing the dependence on lifespan

distribution explicitly

Hgb(t) = k;, (t) — (i, *1)(1).
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3.1 Lifespan distributions

RBC lifespan uncertainty and its impact on AMCS is the focus of the thesis. In the
time-invariant case, lifespan uncertainty can be interpreted as the variability of
lifespan distribution from individual-to-individual.

We assume that each individual possesses a fixed, time-invariant RBC lifespan, but

that these lifespans can differ from individual to individual.

3.1.1 Properties of lifespan distribution
We have computed the transfer function of the RBC pool in Chapter 1, which is

» L{Hgb(t)} 1-1L(s)
- kO s

H (s)

where L(s)is the Laplace transform of the lifespan distribution 1(z). It is clear that

the properties of the lifespan distribution function are essential in analyzing the

dynamics of H(s). Generally speaking, RBC lifespan is defined as a probability

density function (pdf) [15]. Here, several properties of such pdf 1(z) are listed.

First of all, the lifespan distribution is non-negative; i.e.,

>0, >0
I(r) = i
O’ T<0

where the lifespan 7 >0 is the random variable. For each cell, the birth-time is

assumed to be at time t>0. Also, the lifespan should not be negative by definition.

Second, I(7) satisfies:

jo°"|(r)dr =1.
Third, mean RBC lifespan of a healthy individual is about 120 days [16], while that
for a CKD patient may be less than 100 days. By definition the mean lifespan is:

J.:z'l(z')dz'=z_'.
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3.1.2 Examples of lifespan distributions

Several RBC lifespan distribution functions have been proposed in the literature,
including the gamma distribution [17], the Weibull [18] and the lognormal [6]. A
summary is provided in [19]. Analysis shows that the gamma distribution and Weibull
distributions can be good choices in modeling RBC lifespans; see [15].

The gamma distribution is defined as:

1 1 —
L (1)=———7"" ¢
k,H( ) ek F(k)
where zis the lifespan, k and & are positive constants. The mean and standard
deviation for the gamma distribution are given by

7 =ko
and

o=k
respectively. This distribution has been used to describe the time taken for a cell to
pass through k compartments (for example phases of the cell cycle), where the time
spent in each compartment is exponentially distributed with the same parameter &;
see [17]. To the mean lifespan 7, we re-parameterize the gamma distribution in

terms of k and 7 :

Kk 1 ., -«
——Tklef.

Ik,? (r)= 7 (k)

The Laplace transform of this parameterization of the gamma distribution is then

st )
oy
k

The Weibull function was introduced in the context of RBC lifespan in [18] and is

%G)H RGl

The two parameters are k and A4, and the mean value is given by

given by
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T /11“(1+1).
k
In [18] Weibull distributions were used to model RBC lifespan values in humans;
and done so with a mean lifespan of 120 days and a standard derivation of 15 days.

Bebbington et al. [21] proposed a mixture of two modified Weibull distributions.

They used two survival function to modify Weibull distributions, namely, S, (t)and

S, (t), and used the mixture model

S(t) = pSl (t) + (1_ p)sz (t)
with p [0,1] mixing parameter.

The lognormal distribution was used to describe the p.d.f. for the reticulocyte

lifespan in [6] with two parameters, o and m, and function given by

with mean value

In this thesis, we will focus on the family of gamma distribution for several reasons.
First, it has been proved successful in approximating RBC lifespan via clinical data
[15]. Second, the gamma distribution has rational Laplace transform. This is useful in
applying feedback control theory, which is described by ordinary time-invariant
finite-dimensional differential equation. Third, the two parameters, 7and k, can
directly relate to the physiology: 7 representing mean RBC lifespan and Kk the
number of RBC developmental compartments. Also, the gamma distribution is widely

used in the literatures [6, 15, 19, 20].

3.2 Time-invariant uncertainty model and robustness

The time-invariant case of RBC lifespan uncertainty assumes a fixed mean lifespan
7 and uncertain order k. In other words, we consider AMCS robustness to the order
of lifespan gamma distribution; said another way, we consider a model where patients'

RBC lifespan distributions are described by a gamma lifespan distribution with the
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same mean RBC lifespan, but where the order k may differ from patient to patient.
The model of uncertainty requires a so-called nominal lifespan, and for simplicity, a
first-order (k =1) gamma distribution is chosen. The next step is then to construct a
model for perturbations to the nominal and derive robust stability conditions for the
AMCS.

The main problem that we tackle for the remainder of this chapter is to build an
uncertainty model, due to our lack of knowledge of this order parameter k. Such
model of uncertainty can then be used to design an AMCS which performs robustly

forall k.

3.2.1 Multiplicative error model

In feedback control design, a model of the physical system to be controlled is
necessary. However, the model will never be a perfect description of the physical
system. It is thus important to take the error [22] model and the physical system into
account. In order to achieve this, an uncertainty model consisting of two components:
a nominal system; and a set of perturbed systems that together are used to model the
effects of system uncertainty [23]. The set consisting of this nominal model and
perturbation is called the admissible perturbation model.

For feedback control system design, it is useful to describe the difference, or the
system error between the nominal model and all the admissible perturbed models, and
to bound this error. Several error models are common, such as the multiplicative and

additive error models. We will use a multiplicative error model as shown in Figure 3.1

P - - - i

>

, !
H U

Figure 3.1: Perturbed model with multiplicative error

where H denotes the nominal transfer function of the RBC pool dynamic, H a

perturbed transfer function, and A the associated multiplicative error defined by
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A H(S)

A=)

3.2.2 Robust stability

Now we consider the AMCS and begin analysis of this feedback loop’s
performance over all admissible perturbed RBC dynamic H . We say that an AMP
robustly stabilizes an AMCS if the AMCS is stable for every admissible perturbed
RBC pool dynamic with transfer function H . Likewise, the AMCS is then said to be
robustly stable.

Now we consider the details describing an admissible perturbed RBC dynamic.

Given a time-invariant RBC lifespan pdf I(z), it was shown in Section 1.3 that

Hgb(t) = k;, (1) - (k,, *1)(©).
Taking the Laplace transform of both sides gives

H(s)2 Hgb(s) _1-L(s)
Kin (S) S

where Hgb(s) ,k, (s) and L(s) denote the Laplace transforms of Hgb(t),k, (t) and

! Nin

I(7) respectively. Suppose I(z)is our best estimate of lifespan distribution for a

patient population, and is referred to as the nominal distribution. By analogy H (s)
is called the nominal RBC dynamic, or nominal transfer function. Now, consider

another plausible lifespan distribution for the population 1(z) and its corresponding

RBC dynamic H(s) the perturbed transfer function. One can then form the feedback
control system as in Figure 2.10 where

H(s)=H(s)[1+A(s)],
with the multiplicative error

A()Amsi |

see Figure 3.2.
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Figure 3.2: AMCS with perturbed RBC pool dynamic
The question for anemia management with respect to this setup is the following:
Suppose the controller C stabilizes the feedback control system when the RBC
dynamics is described by the nominal transfer function H(s). Then, under what

conditions does this same controller C stabilize the feedback loop when the RBC
dynamics is the perturbed function H(s)? Said another way, when does an AMP,
designed for stable Hgb regulation for patients with nominal lifespan distribution
I(z), also stabilize patients having the RBC lifespan distribution I (z)? This is a
standard problem in robust control (for example see [22]), and to answer it we require
H(s) and H(s)to share the same unstable poles’, and require a stable transfer

function W, referred to as a multiplicative error bound , such that

H(jo) .

Let T(s) denote the nominal complementary sensitivity function

1+C,G,H(s)

and suppose C stabilizes the nominal feedback system; i.e., T(s) is stable. Then, the
perturbed complementary sensitivity function

C,G,H(s)

TO=1 C.G,H(5)

is also stable if

sup[TW (jo)|<1, Veo=0.

! This is a generally-stated requirement, and one that is satisfied for the RBC transfer functions considered here.
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Now, we specialize the above general to the case of gamma distribution. Given a

mean lifespan 7 and order k, consider the corresponding gamma lifespan

distribution. Suppose H,(s)is taken as the nominal RBC dynamic and that there

exists a stable transfer function W such that for each k,

‘%—4S[\N(jw)|, Vw>0.

Note that W is a valid multiplicative error bound for all perturbed RBC transfer

functions H,. Suppose the nominal closed-loop is stable; i.e.,

CaGa H 1 (S)

T (s)2_—aZa 11>/
1) 1+C,G,H,(s)

is stable. Then, given any k, it follows from the previous that C stabilizes the

perturbed feedback system; that is,

CaGa H Kk (S)

T (s) 2
(5) 1+C,G,H,(s)

is stable, provided that
Sup[TW (jw)| <1, Vw=0.
The existence of such multiplicative error bound W - one that bounds for all
perturbed transfer functions H, - is critical for the preceding result to be practically

useful.

3.3 Error bounds
In this subsection we provide some useful bounds on the multiplicative error

‘Hk(jw)_

H.(io) J.‘ The first bound is looser than the second; however, whereas the former
o

is a provable bound, the latter is only conjectural to be the tightest bound.

3.3.1 A multiplicative error bound

Given mean lifespan 7, define
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30

—- o7, 0<wT <1
(@) =
T

and let W (s)be a stable transfer function such that y(w)<W (je)| for all @>0.

Indeed, transfer function of the form W (s) = kli will suffice for some k;, k, >0.
s+Kk,

We now prove that W (je) is a multiplicative error bound, and before doing so, we

recall from the previous section, that

. 1-L(jo . 1-L(jo
Hy(jo) =0 () =120
Jo Jo
where L (s)and L, (s)are the Laplace transforms for I_ (z)and I, (z)respectively,

and where K is an integer greater than zero.
Theorem 3.1 (see proof in appendix A): Let 7 >0and k a positive integer be

given. Then,

‘Hk(jw)_

H,(jo) JFﬂa)) <W(jo)

for all @>0. Hence, W (jw)is multiplicative error bound; in Figure 3.3, we verify

the bound y(w)for 7 =100daysand k =2,3,---,100.
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Figure 3.3: Verification of Theorem 3.1 for 7 =100and k =2,3,---,100

3.3.2 Conjectured tighter bound
We now conjecture a tighter error bound.

Conjecture: Given mean lifespanz, let

s 1-(1+s7)e™

W (s) =
Then given k,
H, (jo) 0
———-1<W(jo)|Ly(w), VYo=0.
H,(jo) ’\N ‘
Furthermore,
-jotr R
- —4=‘W(Jw)‘, V>0,
H, (jo)

showing that the error bound is achieved for the lifespan distribution 1(z)=06(r-7).

Figure 3.4 verifies the conjecture for 7 =100and k =2,3,---,10000.
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Magnitude (dB)

Figure 3.4: Matlab example of the conjecture for k =2,3,---,10000

3.4 Robust stability

In this section, we apply the error bounds determined in the previous section to the

design of robustly stabilizing AMPs. For the error bound W , the condition for robust

L and T, when

~

VVT1‘<1. In Figure 3.5, we provide a bode plot

stability is sup

>0

K, =0005, K, =0.000L; T =7; =100, and C,(s) =K, + v -0,005+22%.
S S
2
()T = 2y (gotmh@_ 100
g1 2 Ts+2 s 100s +1
=

S
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/ W( je)

Magrituds (dB)

T (jeo)|

Frequency (radizec)

Figure 3.5: Robust stability for LTI case

It is clear from Figure 3.5 that sup’\/VTl‘ <1 and hence that the controller C,(s)

»>0

robustly stabilizes this AMCS. From Figure 3.5, we also can notice that the error

bound W places a bandwidth? constraint on the closed-loop transfer function of

about 0.025 rad/day. In designing a Pl controller for this system, if the bandwidth

goes beyond the constraint, it is possible that the stability criterion will be violated.

The robust stability criterion sup’\/f/T‘<1 is useful in AMP design. With Q(s)
denoting the compensated open-loop transfer function
Q(S) 2 Ca 'Ga ’ Hl(s) )

then for those frequencies wsuch that |P(je)| <1, it follows that

Q(jw)
1+Q(jo)

Consequently for these sets of frequencies @, the robust stability condition is

T.(je)| = ~[Q(jw)|.

ensured if

2 Roughly speaking the bandwidth is the corner frequency of the low-pass filter characteristic of T(jw)|.
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Qjo)| <

1 ‘
W(jw)
This inequality provides a design guideline for C_(s) in high frequency ranges. In

the next figure, we use the previous data and show that Bode plots for |Q(ja))| and

to confirm that this particular AMP design satisfies |Q(j&)| <|-— ‘
W(jo)

W (jo)

Bode Diagram

1/.
AW fe)

- |c-G.-H (jo)

Magriude (d8)
/
I
!

\T( je)

Frequency (radisec)

Figure 3.6: Implication on control design

3.5 Robust performance

Now we consider the notion of robust performance which together with robust
stability includes a performance constraint on all perturbed modelsin H .

Nominal Performance: First, we introduce the notion of nominal performance.
Suppose the target Hgb level is Hgb, . The tracking error between Hgb,, and
measured Hgb is the tracking error e which can be expressed in the frequency
domain by

E(jo) =S(jo)Hgb,, (jo)

where S is the sensitivity function of the feedback loop and given by
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A 1

REEXIC)

In practice, Hgb,, =constant, say Hgb,, =h, so that

. h
Hgb,, (jo) =—-
jo
and from the above
i i h
[E(jo)|=|S(jo)|-—=.
a
Suppose we impose the tracking error bound &, so that
|E(ja))|£ge, Vo>0.
This error bound ¢, precludes e(t) having any persistent signal components and
imposes that S(0)=0. Also, it places a bound on the closed-loop bandwidth.

Suppose the bandwidth is oy, ; i.e.,

_ | |z
_\Hgbtar(ja))\s\ e ‘<1,0Sa)Sa)BW.

It then follows that

0
Wy <—

&

Notice that the closed-loop time constant is approximately . Thus smaller ¢,’s

Wpyy

leads to faster-responding AMCS. Now, let WP(ja))éi, then sup|E(jw)|<e,,
.

o >0

provided that supW,S(jw)|<1.

>0

In summary, nominal Hgb tracking performance can be modeled by the

frequency-domain constraint

SupW,S(jw)| <1
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where W, models Hgb target-tracking performance and we set h, =11.25,¢, = 2000.

Figure 3.7 gives a graphical illustration of this nominal performance constraint, where

we have the same parameters as in previous section; i.e.,

0.0001 2
5 Hi(8)

C.(s)=0.005+ 2% G (5)- 100
S s+

T 100s+1

Baode Dsagram

1 -

Magnitude (dB)

Frequency (radisec)

Figure 3.7: Nominal performance of AMP

Notice that this particular nominal performance constraint requires

p(jo)
S(0)=0 and for C,(s)to contain an integrator, which it does.

Robust Performance: Let S, (S)denotes the sensitivity function for the feedback

system in Figure 3.2, our model of an AMCS, when the perturbed RBC dynamic has

transfer function H, (s). With the performance weight W,as given previously, we
say that an AMP C_(s) achieves robust performance if

Sl;JUp|WPSk(ja))| <1
for all gamma distribution orders k. Such an AMP insures closed-loop stability and

Hgb target tracking performance for all H, (s). From [22], the preceding condition is

equivalent to
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sup [[\NP81|+’\NT1H <1
whose significance lies in the fact that robust performance can be quantified solely in

terms of the nominal feedback system’s sensitivity function S,and complementary

sensitivity transfer function T,. In the next figure we plot |WP81(ja))|+‘V\7Tl(ja))‘ for

the same design parameters previously use.

1 r - . - — —

091

08| : ERELE
[¥,5,(jo)|+ [P, (jo)

0.7
0.6 :
i W,S,(jo)
04}
0.3
02}

4 _Il"T._{_;'ra]
01

Figure 3.8: Robust performance for the time-invariant system

From Figure 3.8, we can see that the robust performance condition

sup[|WP81| + ’V\A/Tlu <1lis satisfied. This indicates that the system successfully achieves

both robust stability and robust performance with the designed controller.
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CHAPTER 4

UNCERTAINTY IN RBC POOL DYNAMICS (TIME-VARYING CASE)
In contrast to the time-invariant case considered in the previous chapter we now

consider RBC lifespan distributions that can vary with time. In this chapter, we will
introduce a RBC model to capture these time-variations and evaluate stability
robustness of the AMCS by seeking a quadratic Lyapunov function. As in the
time-invariant case, we will also consider robust performance and use the dominant

AMCS time constant as the performance measure.

4.1 Time-varying lifespan distributions

Chapter 3 considered a time-invariant model of the lifespan distribution which is
fixed in time for an individual, but perhaps variable over the population. However, the
RBC pool dynamics may be better modeled using a time-varying lifespan distribution
to account for temporal variations in an individual’s erythropoiesis processes; e.g., see
[18, 24]. Here we assume a time-varying model where there exist a finite number of
potential lifespan distributions, and where each newly-born RBC is endowed with a
lifespan chosen from this collection.

Our time-varying model is as follows. For a given individual and at time t, the
RBC lifespan distribution is arbitrarily chosen from a pre-determined finite set of N

time-invariant distributions,
I(t,7) e {Il(z'), L, (7),....1 (z')} :
We assume that I(t,7) is a measurable function of time.

As in the time-invariant lifespan model considered in Chapter 3, the family of
gamma distributions considered is:

k kz
R

Ik,? (7) Z?%T

where the set of possible distributions is parameterized by mean lifespan 7 and

gamma distribution order k;i.e.,
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1t ) e {l - (D) o (@)l (D).
This model reflects the possibility that for an individual, every newly-born RBC is
endowed with a lifespan chosen from a set of given time-invariant gamma

distributions.

4.2 RBC dynamics for time-varying lifespan distributions
In the previous section, we introduced a time-varying lifespan model where

lifespans are arbitrarily chosen from a given and fixed set of time-invariant gamma
distributions. This model, given by 1(t,z) {k1 @)1, . (7)... (r)} can also be

expressed as

69 =2 A0 () AW {0l X AWM=1,

i=1

where A (t) are measurable functions of time. From a technical viewpoint, this
particular model of time-varying lifespan displays a separation between time t and
the lifespan random variable zinthat I(t,7) can be written as the product

i Ikl,?l (7) ]

Ik?
I(t,7) = [4 () %a)~-zﬁn]2f“)

_IkN,T;, (T)_

where each factor depends only on t or z. This separation will allow us to
decompose the time-varying convolution integral associated with the RBC pool

dynamic
t [r—
IKAﬂKat—ddr
0
in terms of convolutions associated with the time-invariant lifespans

Kn (O (- 1)d7.

[ S——
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N
To see this property’s use, we write, under the assumption Zﬂ,, (t)y=1:
i=1

Hb(t) =k, () - [ K, (D)I(z,t-7)dz
kO [K(OXAEN, -7
=3 A0k 0-3 [ 4@k, @, -2z,

This differential equation is illustrated in Figure 4.1. With this, the RBC pool can

be considered as a collection of N sub-pools where the i—th sub-pool contains

only RBCs with lifespans chosen from distribution I, _(z). The uncertain parameters

A (t) then determine which sub-pool a newly-born RBC joins.

A(0) ; I, . (7) 4Q—> [ E

. E + E Heb

_ ] Losmemeserenmaisena 1
O L O™

———> A1) i L+ (D) ‘)Q—> [

o

Figure 4.1: Time-varying RBC pool with sub-pools
In Figure 4.1, the boxed blocks represent the time-invariant sub-pools. The

condition

A (t) €{0,1}; At) =1

N
oy

means that at time t, a new RBC entering circulation becomes a member of only one

sub-pool.

4.3 The AMCS
In this section we look at the differential equation describing the AMCS when the

RBC lifespan is time-varying. The open-loop consists of three sub-systems: the Pl

44



AMP C,, the sampler and hold function G,, and the RBC pool dynamic (RBC). We

will write down the differential equation for each compartmental dynamic and then

generate that for the closed-loop system.

u Ye f-g Hgb
C, G, RBC

- « -
Xe Xg

PI controller

Figure 4.2: Simplified state-space model of AMP system
Figure 4.2 shows the AMCS block diagram annotated with system states

{Xe 1 Xg1 Xne | - Let C,(s) denotes the transfer function of a PI AMP, with proportional
and integral parameters K, and K, respectively. The transfer function of the Pl
controller is
C.(s)=K,+1L,
S
and with the input of —u, it is described by the differential equation

X. =—K,u
Yo =X — KpU.

The AMP’s state space representation is then
[A..B.,Cc,D.]=[0,-K,,1-K.].

In Chapter 3, an approximation of sample and zero-order hold was given as

2
TS
G,(5)=—=5
S+—
TS
and its differential equation is
2 2
Xe = _T_sXG +f Ye
_ln = XG
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Let X, and [A,B,C;] be the state and state representation for I, _(7)

rbci

respectively. Now consider the case N =2, the differential equations for the two

RBC sub-pools are

Xrbcl = Aixrbcl + ﬂl (t) BlKn ’
Hgb1 = Clxrbcl

and

Xrbcz = AZXrbCZ +ﬂ'2(t) lezin;
Hgbz =CyXpeo

where Hgb = Hgb, + Hgb, . Figure 4.3 illustrates the structure of the two sub-pools.

:' :
A1) o () ﬂQ—» | :
]
3 | : |
| i
, : i
A0 Iy, 5 (7) | :
H " i [4:.B,.C,]. x50,
i i

Figure 4.3: Time-varying model of RBC pool with two potential lifespans

[4.B,.C]. X,

The concatenation of states [X,,,X,,.,]" has differential equation

{Xrbcl}:{p‘i O:|{Xrbclj|+{ﬂl(t)81:|ﬁn
Xrch 0 Az Xrbcz /12 (t)BZ

Hgb=[Cl C2]|:Xrbcl:|

rbc2

and for notational purposes we identify:

_|A O] | AOB L
Arbc_{o AZ:|’ BrbC(t)_|:Z,2(t)Bz:|, Crbc _[Cl CZ]

From Figure 4.2, the feedback equation is u=Hgb, so that the state space

equation for the closed-loop system can be expressed as

Abc Brbc (t) 0

Xrbc
. . 2 2 2
Xa=| %X |= _?Kpcrbc _T_ T_ X
)~( S S
© -K,C 0 0
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where x, is the state of the closed-loop system.

Defining
A’bc Brbc(t) 0
al 2 2 2
t)=|-=—K,C — —|; t=0,
A:I() T p~rbc -I-s -I-S
—K,C 0 O

rbc

gives the state-space representation of the closed-loop system as

Xcl = A:I (t)xcl ; tZO
For the case of N =2, denote the corresponding closed-loop matrices A,,and

AC|2 as

A 0 B, 0
0 A, 0 0
A= 2 2 2 2 ;
B A A
—K,C, KC, 0 0]
[ A 0 0 0]
0 A, B, O
A
At 2y 2yg, 2 2|
TS P TS P TS TS
| -K.C,  -KC, 0 0]

These matrices correspond to A, when (4,4,) is (L,0) and (0,1) respectively.

Given these two matrices, we can express the closed-loop dynamics for N =2
compactly as

X = Ay (t)xcl; A, (t)e {A:u’ ACIZ}

which generalizes to the general case as
X =A%, Ay (t) € {'%11 Avzie Ay }

Since A (t) are measurable, then A, (t) is also measurable.
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4.4 Quadratic stability
First, we introduce the notion of exponential stability. The given time-varying

system is
Xcl = Acl(t)xcl ; '%(t) E{A&uﬂ%z’“" ACIN}; t>0; Xc|(0) = X0 -
Since A, (t) is measurable, then this differential equation has a solution almost

everywhere in some interval te[0,t]; e.g., see [30]. Next, we will discuss the

exponential stability of this differential equation. Exponential stability indicates that

X, = A, (t)x, has a solution over all te[0,); e.g., see [31].
This differential equation is said to be exponentially stable (around x,,=0) if
there exist numbers «, > 0such that
x4 @) < B[ %q0]le™; VE=0.
A plot of an exponentially stable system can be seen in Figure 4.4 where |x, (t)| is

bounded by A|x,/e .

X, )
B

X cll

e-a!

Figure 4.4: Performance with decay rate

In this thesis, we will establish exponential stability of the above time-varying system

by seeking a quadratic Lyapunov function V (x,) = x,"Px, . In this case, we say that

this system is quadratically stable. From Lyapunov theory [28], the system

Xcl = '%(t)xu ; Ac|(t)€{ﬂ|1’p\:|zv"'v'%n\1}; t>0; Xc|(0) = X0
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is quadratically stable if there exist symmetric, positive-definite matrices Pand Q

such that the time derivative of V(x,)along solutions to the differential equation is

satisfies

V(X )A dV(XCI)
i dt Xg =Ry (t)xcl

=x,' [AC,T (t)P+PA, (t)] X, <X Qx,; Vt>0, vx, =0.

where we define A,"(t)P+PA, (t)<-Q.

Now, to prove that quadratic stability implies exponential stability, we assume that

the system is quadratically stable so that
V(%) < %" (=Q)%y <2y Q)Xo
and
o P X <V (%) < A (P X[
where A, and A _. denote the minimum and maximum eigenvalues. Since both P

and Qare positive definite,

2 V(X
bl =%
and
v (XCI) < _lmi“ (Q) ”XCI ”2 < _ﬂ“min (Q) ;/(XEQ) .

With 5é;t”“”—(Q)>0, then
Avax (P)

V(x,) <=0V (%),
and
V (%, (1)) <V (x40)e ™.
For simplicity, let 6 =2« so that
V(% (1) <V (% 0)e ™.

Again, since
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ﬂ’min (P) ”Xcl ”2 <V (Xcl) '

we get
Ain PY[Xa O <V (%g0)e7,
SO ﬂ’min (P) ”Xcl (t)”2 < ﬂ“max (P) ”XCIO”2 eizat '
Then,
Arnex (P) 24
% O < m”xuo”2 e
and
A (P w
O] 2 0 ol
Letting f denote /j'{::—ég gives

[ O < Blxaolle™
which proves exponential stability.
Summarizing, if X%, =A,(t)x, is quadratically stable, then it is exponentially
stable for arbitrary measurable functions A, (t).

Note that exponential stability does not imply quadratic stability. For example,

from [26] the system
x=A@M)x; At)e{A, A}

where

-1 -1 ’ -1 -a
A :{ } an A = :
1 -1 J A
is exponentially stable, however, there is no positive definite quadratic Lyapunov

function to satisfy the quadratic stability criterion for 3+ J8<a<10.
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4.5 Robust performance analysis and examples
From Section 4.4, we showed that quadratic stability implies exponential stability

so that
@] < Alple ;550
ﬂ’max (P)

min

where = . This shows that the response of the closed-loop system has a

time constant which is no greater than — days. Notice that exponential stability
o

actually indicates how fast the system responds - time constant provides an upper
bound of the speed of response, and this is a performance of such system.

In this time-varying case, where we assume each RBC is endowed with a lifespan
from a distribution chosen from a predetermined collection, this performance of

response is guaranteed for all admissible time-varying lifespan distributions
1) el - () o (@), - (D)

In this section, we will first link quadratic stability with robust performance, i.e.,

finding the largest « such that

[]< Al
for all admissible time-varying lifespans. Moreover, we would like to explore how
this best %(time constant) is affected by the parameters of the time-varying family

of lifespan distributions as well as the parameters of the PI controller.

4.5.1 Robust performance

In our time-varying case, the system is described by
Xg = Au(Ox,5 Ayt e {Acuv Avzie A }, X4 (0) = X0

where X, is state of the closed-loop system. Recall that this system is quadratically

stable if there exists a quadratic Lyapunov function V(x,)=x,'Px,, where Pis a

cl !
symmetric and positive-definite matrix such that

V(% (1) =%, [ AT P +PA, (1) | Xy <=X[Qx,; WX, (1) 0, vt > 0.
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Now consider bounding this Lyapunov equation as follows:
A, (t)P+PA,(t)<-2aP; a>0.
Then,
X [ A" ()P +PA, (1) | x4 <—2a%,"Pxy,
which is equivalent to
V(x,)<—2aV (%),
and
V (%, (1)) <V (x40
Now, following the development in Section 4.4, we immediately obtain
[ O < Bl e
Since A, (t) € {Ay,, Ay, Ay } . it is obvious that
A" (t)P+PA,(t)<-2aP; t>0
means that
A, P+PA, <-2aP;i=12--N.
As a result, finding the largest « such that
Ay P+PA, <-2aP; i=12N
could be transferred into the problem of determining the largest « such that
% Ol < Bl
for all admissible time-varying lifespan distributions, but not vice versa.

In this thesis, we will use Mathwork’s LMI toolbox to establish the quadratic

stability and exponential stability of the time-varying AMCS:
g = A% s Ay®) € {A;,1=12,- N}

To begin, we first note that quadratic stability of the above is equivalent to finding

a symmetric positive definite P such that
AP+PA, <-Q,i=12-N.

Indeed,

52



A;(t)P"'PAH(t)S_Q’ vt 20; 'Au(t)e{p\:u"%z"“’p\;m}
if and only if AP +PA, <-Qbholds for i=12,---,N.

The LMI toolbox commands for establishing quadratic stability and exponential

stability are as follows. First, the command
P=Imivar(1,[n 1])
declares matrix P to be the primary LMI variable; i.e., a symmetric matrix of
dimension n. Second, the desired positive definiteness of P is imposed with
Imiterm([-1 1 1 P],1,1).

In determining the largest « such that A, P+PA, <-2aP by finding the
minimum —« and corresponding P, LMI toolbox constructs the N Lyapunov

function A,'P+PA, <-aP via:

Imiterm([n 1 1 P],1,Acln,'s")
and
Imiterm([-n 1 1 P],1,1).
Then, the LMI toolbox command “gevp” is called to solve A,'P+PA, <-aP;
e,
[alpha,popt]=gevp(Imis,2)
where “alpha” is the computed minimum —« and “popt” returns the Lyapunov matrix
P.The P matrix inanormal form® is given by command
P=dec2mat(Imis,popt,P)

if the returned —a <0. Also, matrix Qcould be computed via «and P. Finally,

the least estimate of the AMCS’s time-constant is given by 1 days.
(94

4.5.2 lllustrative example

We now give an example of establishing the exponential stability of the AMCS

®  “popt” returns a P matrix with decision variables in the LMI solver, the P matrix in LMIs are of matrix

variables, thus “dec2mat” is used to compute corresponding matrix values, given decision values of P.
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Xg = Ay (t)xcl v Xy 0)= Xety A, (t)e {Acu' A:IZ}

where
ki _kir
Ik-?-(T)ziii_k_ 1 e T i=12;
RN T ()
7,=80; 7,=60; k =2; k,=3;
and

K, =0.005 K, =0.0001.

We now invoke Mathwork’s LMI toolbox command ‘gevp’ to find the largest «
such that

P>0

AlP+PA, <—2aP, i=1,2.

The matrices A, and A,, are:

(200138 00112 0 0 0 -10820 0
~0.0112 -0.0362 0 0 0  -04133 0
0 0  -00188 -0.0190 0.0056 O 0

A,=| O 0 00190 -0.0434 00300 0 0o |
0 0 00056 -00300 —0.0879 0 0

0.0015 -0.0006 0.0016 0.0007 -0.0002 -0.2857 0.2857

| 0.0001 -0.0000 0.0001 0.0001 -0.0000 O 0 |

[-0.0138 00112 0 0 0 0 0 ]
~0.0112 -0.0362 0 0 0 0 0
0 0  -00188 -0.0190 0.0056 -1.1100 O
A,=| O 0 00190 -0.0434 00300 05100 O
0 0 00056 -0.0300 -0.0879 01670 O

0.0015 -0.0006 0.0016 0.0007 -0.0002 -0.2857 0.2857

| 0.0001 -0.0000 0.0001 0.0002 -0.0000 O 0

Using Matlab’s ‘gevp’ command as previously discussed, it is determined that this

system possesses the quadratic Lyapunov function x],Px, where
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P =1.0e—-004 =

[ 0.0013 0.0012 0.0015 -0.0003 -0.0008 -0.0374
0.0012 0.0017 0.0015 -0.0006 -0.0008 0.0270
0.0015 0.0015 0.0017 -0.0004 -0.0009 -0.0376

—0.0003 -0.0006 -0.0004 0.0003 0.0002 -0.0275
—0.0008 0.0008 -0.0009 0.0002 0.0009 0.0039
-0.0374 0.0270 -0.0376 -0.0275 0.0039 8.3101

| 0.0940 0.0406 0.1040 0.0063 —0.0443 -8.1048

Q=1.0e-0007*

[ 0.0072 0.0067 0.0082 -0.0016 -0.0044 -0.2039
0.0067 0.0094 0.0079 -0.0034 -0.0046 0.1475
0.0082 0.0079 0.0095 -0.0020 -0.0051 —0.2050

-0.0016 -0.0034 -0.0020 0.0017 0.0013 -0.1500

—-0.0044 -0.0046 -0.0051 0.0013 0.0051  0.0215

—-0.2039 0.1475 -0.2050 -0.1500 0.0215 45.3542

| 05131 0.2216 0.5676 0.0341 -0.2418

We verify that

A (P) =1.0130e-010

/.. (Q) =5.5287e-013

so that P and Q are indeed positive-definite, implying that the AMCS is

quadratically stable and exponentially stable. The returned « =0.0055, thus for the

uncertain family of time-varying lifespan distributions

1t.7) efly . ()], .. (D)} ;

7,=80, 7,=60; k =2; k,=3;
and C.(9)- 0.005(s +0.02)
the closed-loop response of the AMCS satisfy
%z o.o%)ss ~183days,

this indicates that the response of the system after dosing is faster than at least 183

days.
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4.5.3 Impact of parameters of lifespans and controller
In this section we do a modest parametric study to observe the impact that

parameters describing the time-varying family of lifespan distributions and

parameters of the PI-AMP C_ (s) have on the closed-loop time constant as computed

in the previous section. For simplicity, we continue to study the case of N =2 such

that
It7) el . @), . ()}
is parameterized by the numbers k;,k,,7;,7,. The PI-AMP
C.(5) =K, +%

can be re-parameterized as
K(s+2)

C.(s)=

where K=K, is the gain and z:% is the zero of the PI-AMP. Here we fix
P

z=0.02 so that the gain K is the only parameter we study for the PI controller. We

will explore the effects that the set of parameters {k,k,,7;,7,,K} have on the

AMCS’ time constant.

Example 1:

In our first example, we fix
7,=80; k =k,=2;, z=0.02;
and compute AMCS time constant over parameters
7, €[50,120]; K= {0.005,0.01,0.02,0.04,0.08} .

The results are shown in Figure 4.5.
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Figure 4.5: AMCS time constant (%) vs. pool mean lifespan (?l) parameterized

by gain of the PI-AMP (K)

Several conclusions in Figure 4.5 are made. First, this time-varying AMCS is
exponentially stable for all parameters considered, for there is no negative value of
time constant. Second, the AMCS time constant decreases with increasing K i.e., as

the PI-AMP becomes more aggressive.

Example 2:
The next example is aimed at studying the impact on AMCS stability by the order

of gamma distribution k.
In the case of N=2, we keep (7,,7,)in the range of [50,120]. Then we
randomly choose (kl,kz)from uniform distributions over [1,10], [1,15] and [1,20]

respectively, with the parameters of the PI-AMP fixed at K =0.005 and z=0.02.
Figure 4.6 is a histogram of the AMCS time-constant, where the x-axis is the AMCS

time constants.
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Figure 4.6: distribution of AMCS time constant (%) parameterized over pool mean

lifespan (7') and order of lifespan distribution (k)

The plot in Figure 4.6 shows that the AMCS loses quadratic stability for large

values of k; and K,.

Example 3:
In this example we consider parametric variations over several values of PI-AMP
gain K. The objective is to observe the impact of the PI-AMP’s aggressiveness on

the distribution of AMCS time constant resulting from variations in the time-varying

RBC lifespan parameters 7 randomly choose from [50,120] and k from [1,10].
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Figure 4.7: distribution of AMCS time constant ( % ) parameterized over pool mean
lifespan (7), order of lifespan distribution (k) and PI-AMP gain (K)

It can be seen that both the mean and standard derivation of the time constant
decreases when PI controller parameter K increases, meaning that as K increases,

the system tends to respond faster. This is also similar with the results in Figure 4.5.
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CHAPTER 5

CONCLUSIONS
In this thesis, we focused on building models of the RBC lifespan distribution

uncertainty and analyzing their impact on the AMCS. We first considered the general

case of RBC pool dynamics, regarding it as a compartmental model with Kn(t)
denoting the rate of newly-born RBCs entering the pool, with I(t,z) as the

time-varying lifespan (z) distribution of the cells and with Hgb(t) the pool’s output
describing hemoglobin level. The general dynamic of the RBC pool was given by the

differential equation

Hab(t) =Ky () - [, (- )l (e,t - )de

For the time-invariant case where I(t,z)=1(z), the RBC pool could be represented

by its transfer function

2 Hgb(s) _1-L(s)

: (S) Kin (S) S

where L is the Laplace transform of 1(7).
In chapter 1 we proved some basic properties of H(s), namely:
i) H(s)is BIBO stable.

i) H(0)=7 : this property shows the RBC pool dynamics contribution to the

open-loop gain of the AMCS.

iii)[H (jo)| <2 and |H(jo)| <7 : this property demonstrates that the bandwidth of
w

the RBC pool is bounded by % rad/day, also, the time constant of response will
T

always be greater than % days.

Finally, future research may consider formally establishing the passivity of the
RBC pool dynamic, and exploring this property in terms of uncertainty and AMCS

performance.
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In chapter 3, we first considered a time-invariant model for the RBC lifespan
distribution uncertainty which allowed lifespan variations amongst the population,

and focused on the family of gamma distributions described by

kk 1 1 ke

Ik,?(r) Z?—kmf v

its Laplace transform is L(s):% and associated RBC pool dynamic
%)
K

Hk(s)zﬂ. We chose a multiplicative model of uncertainty with nominal
S

model

T
sT+1’

Hl(s) =

A H, (jo)

and the multiplicative error is A(S) -
H,(jo)

—1. We then conjectured a tight bound

(independent of order k) on this error

jot

This conjecture is still open and we showed the looser bound (see Appendix, Figure

A.l):

@-aﬁ; 0<w7 <1
|A(ja))|$

T
The primary implication of these bounds is that they provide useful constraints on
the AMCS’ complementary sensitivity to achieve robust performance; see Figure 3.6 -
3.8. One future direction in this inquiry is to consider multiplicative error models

arising from different choices of nominal RBC dynamics. In this thesis we solely

considered H,(s)as nominal. However, it may make sense to choose H,(s) for

some given k, as nominal, and then the question on a suitable bound on the
multiplicative error can be asked.

In chapter 4, we studied a time-varying model of RBC lifespan distributions
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wherein the lifespan for each new cell is chosen according to a choice of distribution

from a finite collection of time-invariant distributions:
I(t,7) e {Il(r), L, (7),...,1 (r)} :

A key definition of this model is the separation

i Ikl,?l (7) ]

Ik?
It =[40) LO - AO] m:(f)

_IkN N (T)_
N

where A, (t)is time varying and ZAI(I) =1. This allows us to express the AMCS in
i=1

a standard form:

Xg = An(O)x, 5 Ay(t) {A:Il’ Az A } '
Within this framework, we conducted Matlab experiments to analyze the impact on
AMCS performance due to a PI-AMP’s gain and to different collections of
distributions. We saw that time variant in mean lifespan did not adversely affect
stability; the gamma distribution order could cause instability for large ranges. The
main analytical tool used for these time-varying dynamical systems was quadratic
Lyapunov functions. Future research could consider other Lyapunov candidates such
as polytopic Lyapunov functions which may be better suited to this class of

uncertainties which do fall into the large category of polytopic uncertainty [27].
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APPENDIX
PROOF FOR THEOREM 3.1

A  Proof for Theorem 3.1

joT +1
. k

(]a)r +1j
k

Lemma 1: For 0< w7 <1and positive integer k:

1z, Sl+(l—%)-(aﬁ)2

Define Z, =

Re(Z.) 21{1_1) (07)  (k-D(k Dk +2) (s
k) 2 8k

hence

10

2
1-z,] <>

-(w?)e

Proof for Lemma 1:

joT +1 1—1‘

Hl

2=|1—Zk|2:|1—2k|2.

Since Z, = | ja)F| (aﬁ)z

-, in particular Z, =1, then

joT

+1]
k

Also, Z,isacomplex number,

-z, =1+|z,[ -2Re(Z,).

Now using the Taylor expansion, it is easy to get that around @7 =0 when

0<wt <1,

Zf-1+3 (—1)”’1(k2+n—2)!(n-k+n—1) (07)”
) n-k"-(k-2)/(n-1)! n!

~ R S .(k+2n—2)!.(a)?)2n
2Re(Z,)=-2 2;,( )" (2n-1) ENTEE TR

The Taylor Inequality gives

1z, s1+(1—%j-(aﬁ)2,
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—2Re(Z,)<-2 _(1_%)(&)?)2 N (k —1)(k4-l:3)(k +2) -(co?)“ |

this gives

1-27,[ Sl+1+(l—%j-(a)z_')2 —2—(1—%)((0?)2 K _1)(2:;3)“ *2) (7))’
C(k=D(k+)k+2)
- 4k°

(a)z_')4 :

y kDK EDK+D)
4k

(k -1k +1)(k +2) }

For k >3, the function f(k

4k3
__ 1 K-k-3
2k? K2

f'(k) {

sowhen k >3, we get
10
f'(k)>0, f(k)>f(3)=—,
(k) (k)= f(3) >7
the result is that when k >3,
-z [ s%-(aﬁ)“,

then

(),

10 _\4
i_{ _p-zf 27797 10
H, (a)?)2 (a)?)2 27

so the upper bound is given by

i—J{S E-(a)?)2 —@-a)—

T.
H, 27

This upper bound also holds when k =1and 2:

H, V30

For k=1, ——4:OST-w?; 0<w7T <1.

1

For k=2,
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|Hk_4_ 4 T
IH, v (0T)*+4
J@ﬂr)2+{1—(wr) }
4
it is easy to compare foz and \/%-a)_, that
(07)" +4 9
i <\/%-a)?; 0<w7 <1.

(wT)*+4 9
As aresult, it is true for all 0<w7 <1 and all integer k > 0that

qu/%_
< aT.

H, 9

Lemma 2: For 7 >1and all positive integer k,
-7 |<oT+2.

Proof for Lemma 2:

First,

1- Lk(ja))
jo | 1-L(jo)|

[H,
1-L(jo)| |1-L(jo)|
jw

_1‘=

H

1 1 1 joT +1
NN NN
Jot 41 (JCUT _i_lj
_ k B k

-1 oT
joT +1
:|1—zk|
ot

Now look at the numerator of the above result, which is

1—Zk—J- | (T)dT— J- d|d(T)e jord - _J‘ Ik(z,)efjmdz,’

since (Ik (r)elr )’ = Me*j”” —jo-1 (r)e7 1"
dr
- jor ® dl T ot H - jor
also (I (r)e! )Ozjo d(T)eJ dr jja)-lk(r)el dr
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and

[ B gbrge— 1, () )

® . . —jor

i +j0 jo-l, (r)e " dr
= [7 ol (e 1dr,

then

h-z,|= U:Ik(r) (1-Tjo-e - )ds

= [1L@|1-Fjw-e i —e )| de.

Now we know that
1-Tjow-e " —e ) =1-T jo[cos(wr) - jsin(wr)]-[cos(wr) - jsin(wr)]
=[1- w7 sin(w7) - cos(wr) ]+ j[sin(wr) — @T cos(wr)],
because

-7 jo-e o —e i i

= [1— o7 sin(wr) - Cos(a)z')]2 + [Sin(a)z') -7 Cos(a)r)]2

=2+ 07’ - 207 sin(wr) — 2cos(wr),

the magnitude is thus given by

1_2__ja).e—j(u‘r_e—j(ur =\/2+a)22—_2 _2(02_-S|n(a)2')—2COS(a)T)

<2+ 0T + 20T +2
< (2+a)?)2 =2+07, T >1.

So now go back to the equation that

|1—Zk|:_[Owlk(r)‘(l—?ja)-e‘j“" —e 17 )dr,
we get
1-z,|< _[:Ik(r)(a)?+ 2)dr =07 +2,
SO
R

Proof for Theorem 3.1:
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The upper bound we provide for the multiplicative error is a piecewise continuous

function. Using the results of Lemma 1 and Lemma 2, it is concluded that

@-(o?; 0<w7 <1
‘m_ 9
H
! 1+i_; o7 >1
T

Figure A.1 is the matlab exercise for the above error upper bound.

1 T T T

?.2 1 ] 1 ]

10 10 10 10 10
T

Figure A.1: Matlab example of the looser conjecture (k =2,3,---,100)
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