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ABSTRACT 

RBC LIFESPAN UNCERTAINTY: MODELS AND ANEMIA 

MANAGEMENT ROBUSTNESS 

MAY 2013 

RUI DAI 

B.S. EAST CHINA JIAOTONG UNIVERSITY, CHINA 

M.S.E.C.E UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Christopher V. Hollot 

 

This thesis discusses the modeling of uncertainty of red blood cell (RBC) lifespan 

distribution in patients suffering from Chronic Kidney Disease(CKD) patients, whose 

anemia is managed through periodic dosing of erythropoietin (EPO). 

In healthy individuals, RBCs containing hemoglobin (Hgb) are produced in the 

bone marrow. When oxygen carried by hemoglobin is transported to human tissues 

throughout the body, the kidneys sense reduced level of Hgb and secretes EPO that 

simulates proliferation of red cell precursors and eventually producing red blood cells. 

However, in CKD patients, their kidneys fail to secrete enough EPO, so that too few 

of RBCs are produced to maintain a sufficient Hgb level. As a result, artificial EPO 

dosing is required when the kidney loses this function to avoid anemia.  

To develop effective artificial EPO dosing schemes, it is important to have models 

of how EPO does dynamically affect hemoglobin levels. Since there is significant 

uncertainty in this process, it is equally valuable to have mathematical models of such 

uncertainties, and in this thesis we focus on uncertainty in the lifespan of red blood 

cells.  

In this thesis, we consider two different types of models for RBC lifespan 

uncertainty: the time-invariant and time-varying cases. In the former, we treat the 

probabilistic distribution of cell lifespans as fixed for a given patient, but variable 

(uncertain) over the population. In the latter case, the cell lifespan distribution can 

change from moment to moment for a given patient.  



Amongst several possible choices of RBC lifespan distributions, this thesis will 

focus on the gamma distribution. For the time-invariant model, a first-order gamma 

distribution is selected as the nominal distribution, and a multiplicative error model is 

proposed to analyze the impact of lifespan uncertainty on anemia management.  

In the time-varying case, the lifespan distribution is not fixed in time, but allowed 

to switch over a finite collection of gamma distributions. In other words, each 

newly-born RBC has a lifespan coming from a distribution chosen from a collection. 

Both of these models are analyzed so as to evaluate the impact of lifespan uncertainty 

on the performance of anemia management schemes; including stability and response 

time.  
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CHAPTER 1 

  INTRODUCTION 

In this chapter, we first introduce some background of erythropoiesis and anemia, 

and then introduce a model of an Anemia Management control system (AMCS). We 

also introduce the dynamics of the red blood cell (RBC) pool which is the focus of the 

thesis. Finally, we conclude this introductory chapter with the motivation and 

contributions of this thesis. 

 

1.1 Backgrounds  

To understand an AMCS, two biological phenomena are introduced: the production 

of RBCs, which is called erythropoiesis, and the role of the kidneys in hemoglobin 

(Hgb) regulation.  

 

1.1.1 Erythropoiesis 

One of the major functions of red blood cells is the exchange of oxygen and carbon 

dioxide; i.e., the transport of oxygen to tissues and of carbon dioxide (CO2) back to 

the lungs [1]. Red blood cells are capable of carrying oxygen because they contain the 

protein hemoglobin which attracts oxygen in circulation. Hemoglobin contains four 

molecules, each of which has an iron atom in the middle. It is these iron atoms which 

attract oxygen and which make Hgb the oxygen carrier. Hgb concentration is a key 

measure of the oxygen level in the blood. It is said that Hgb occupies one third of the 

mass of RBCs [1], which gives a relationship that links the mass of Hgb and to the 

amount of RBCs.  

The process of red blood cell formation is called erythropoiesis. In a healthy human, 

stem cells in the red bone marrow divide into two daughter cells, one of which 

matures into a red blood cell upon receiving the hormone erythropoietin (EPO), the 

other will become a new stem cell. Generally speaking, this daughter stem cell 

evolves through four stages; EPO and iron are needed in the process. As it grows into 

a RBC precursor cell in the bone marrow, it produces more and more Hgb. When 
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The RBC pool dynamic can be treated as a compartmental model, defined by the 

law of mass conservation, where the rate of newly-formed RBCs ( )ink t  forms the 

pool’s input stream and the rate of eliminated RBCs ( )outk t  forms the pool’s output 

stream; and where their difference determines the rate of change in the number of 

RBCs presently in the pool, see Figure 1.3. Also, let HK denote the linear relationship 

between RBCs and Hgb. After taking into consideration the blood volume, the output 

of the RBC pool is Hgb concentration, denoted by [ ]Hgb . Let ( )r t denote the 

number of RBCs, then we get 

( ) ( ) ( )in outr t k t k t   

and                     

[ ]( ) ( )v HHgb t G K r t . 

The elimination rate ( )outk t can be expressed in terms of RBC lifespan  , the time 

from a cell’s birth to death, and the time-varying distribution of such lifespans ( , )l t  ; 

i.e., at time t, newly-born RBCs have lifespans   each chosen from the lifespan 

distribution (pdf) ( , )l t  . From [6, 13], the elimination rate satisfies  

0

( ) ( ) ( , )
t

out ink t k t l t d     
 

and when the RBC lifespan distribution is time-independent, i.e., ( , ) ( )l t l  , then 

the above becomes the convolution  

0

( ) ( ) ( ) ( )( ).
t

out in ink t k t l d k l t     
 

As shown in Figure 1.2, we will focus on this simplified system and the uncertainty 

which comes into play in the RBC pool. 

The RBC pool dynamics directly relate ( )ink t to ( )r t can be expressed as either 

0

( ) ( ) ( ) ( , )
t

in inr t k t k t l t d        
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when the lifespan distribution is time-varying, or as  

( ) ( ) ( * )( )in inr t k t k l t  ,
 

when it’s time-invariant. We will refer to the former as the time-varying case, and the 

latter as the time-invariant model. The study of these two models, as it relates to an 

AMCS is the focus of this thesis. 

 

1.3.2 Transfer function of RBC pool 

From Section 1.3.1, the general RBC pool equation in the time-invariant case is:  

0( ) ( ) ( * )( ); (0) , 0in inr t k t k l t r r t         

where ( )r t  denotes the number of RBCs in the pool. Recall that 

[ ]( ) ( )v HHgb t G K r t . We now assume the blood volume is constant, and 
1

3HK  . 

For simplicity, we take 1H vK G   and as a result, have that the output of the RBC 

pool to be [ ]Hgb . Furthermore, from now on, we will use ( )Hgb t to represent the 

concentration [ ]Hgb . Thus, 

             00
( ) ( ) ( ) ( ) ; (0) , 0

t

in inHgb t k t k t l d Hgb Hgb t      


       

To compute the transfer function of the above system, we assume that the system 

us at rest, implying that 0 0Hgb  . To compute this transfer function we first take the 

Laplace transform of both sides of the above to obtain 

( ) ( ) ( ) ( )in ins Hgb s K s K s L s     

where ( )inK s , ( )Hgb s and ( )L s denote the Laplace transform of ( )ink t , ( )Hgb t and 

( )l  respectively with  

( )
( )

( )in

Hgb s
H s

K s
                  

it is clear that 

( )[1 ( )] 1 ( )
( )

( )
in

in

K s L s L s
H s

s K s s

 
 


.            
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1.4 Properties of the RBC pool 

Having derived the transfer function for the RBC pool dynamic, we are now in a 

position to analyze the frequency response of the RBC pool. This frequency response 

is useful in frequency-domain based design of AMCS. 

 

1.4.1 DC gain of H(s) 

The DC gain of transfer function ( )H s  is given by 

0
( )

s
DC gain H s


 , 

a transfer function’s DC gain describes a system’s steady-state response to a constant 

input.       

From the definition of Laplace transform,  

0 0 00

( ) ( ) ( ) 1.s

s
s

L s l e d l d   
 




            

Applying l’Hôpital’s rule we get  

0 0

1 ( ) 0 ( )
(0) (0) .

1s s

L s L s
H L

s  

                   

Applying the definition of the Laplace transform again, the derivative of ( )L s  is 

given by 

0 0
0 0

'(0) ( ) ( )s s

s s

d
L l e d e l d

ds s
    

  

 

          , 

where here the interchange of differentiation and integration is valid.  

Thus,  

0
0

0
0

0 0

0

0 ( )
( )

1

( )

( )

( ) .

s
s

s

s

s

s

L s
H s

e l d
s

e l d

l d





 

  

  




 



 








     










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Recognizing that 
0

( )l d   


 which is the mean of the lifespan distribution 

function, then the DC gain is given by: 

DC gain (0) .H                   

This computation holds for any lifespan distribution having a Laplace transform. 

 

1.4.2 Stability of H(s) 

As discussed in Section 1.3, the transfer function of the RBC pool is given by 

1 ( )
( )

L s
H s

s


 ,

 

where ( )L s  is the Laplace transform of ( )l  . We now focus on the family of 

gamma distributions [6] so that 

11
( ; , ) ; 0, , 0

( )

kk
k

k

k
l k e k

k


    


  


,           

with Laplace transform 

1
( ) ; 0, 1,2, ,

(1 )k

L s k
s

k

  


 .                 

The parameter k denotes the order, which is a positive integer. It is clear that ( )L s  

has k  repeated poles at 0
k

s


   , so ( )L s has all its poles in the left-half of the 

complex plane.  

For a continuous linear time-invariant system, bounded-input bounded-output 

(BIBO) stability is equivalent to the impulse response being absolutely integrable, 

which in turn, is equivalent to the transfer function having all its poles in the open 

left-half plane. 

Since 
1 ( )

( )
L s

H s
s


  and from Section 1.4.1 (0)H  , we conclude that the 

poles of ( )H s are precisely those of ( )L s . Hence ( )H s is BIBO stable. However, 

since 
1 ( )L s

s


 has a pole-zero cancellation at 0s  , then the RBC pool dynamic is 

not asymptotically stable. However, it is stable in the sense of Lyapunov [32].  
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1.4.3 Frequency response of H(s) 

We now give an upper bound to the magnitude frequency response ( )H j . 

The first bound is 

2
( )H j


 .            

To see this we compute 

1 ( ) 1 ( )1 ( )
( )

L j L jL j
H j

j j

 
  

 
   ,            

from which subadditivity gives 

1 ( ) 1 ( )L j L j 
 

 
 .              

From the Laplace transform, 

0 0
1 ( ) 1 ( )1 ( )

j jl e d l e dL j
    

  

   
 

 
. 

This inequality holds because ( )l   is non-negative. Since 1je   and 

0
( ) 1l d 


 , then 

0 0
1 ( ) 1 ( ) 2

jl e d l d   

  

  
  

.           

As a result,  

1 ( ) 2
( )

L j
H j




 


  . 

Now we show that ( )H j  . Indeed,  
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0 0

0

1 ( )
( )

( ) ( )

( )(1 )
.

j

j

L j
H j

l d l e d

l e d










   



 



  

 










 



            

Since ( )l   is non-negative,  

0 0
( )(1 ) ( ) 1

j jl e d l e d
    

 

   


 
. 

Because cos( ) sin( )je j     , one obtains 

 1 1 cos( ) sin( )

2 2cos( )

2sin 0 0.
2

je j  



   

   

 

   ； ,

               

Then,  

0
0

( ) 2sin ( )2
l d l d

    

 


 


 

. 

The right side of this inequality can be further simplified as 

0 0
( ) ( )l d l d      


 

 


  
. 

As a result: 

0 0
( ) 1 ( )

( ) .
jl e d l d

H j
    

 
 

  
   

   

Figure 1.4 shows the magnitude Bode plot of the RBC pool; the lifespan 

distribution is taken as first-order gamma, with a mean lifespan of 100 days. Note that 

the upper bounds intersect 
2


 . Clearly then, ( )H s has a low-pass frequency 

response with corner frequency less than 
2


days. This result holds for all lifespan 

distributions. 
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performance may be influenced by their possible impact. As a result, there is need to 

study the impact of uncertainty in lifespan distribution, which is the motivation of this 

thesis. We will provide models for such uncertainty and analyze AMCS performance 

in the face of these uncertainties. 

 

1.6 Thesis contributions 

The major contribution of this thesis is to develop two models of RBC lifespan 

uncertainty, so that the robustness and performance of the AMCS can be analyzed. 

Our results provide methods to evaluate and aid in the design of an AMP.  

Consider the RBC pool as a compartmental model, the dynamics are studied based 

on the transfer function derived from the general differential equation. Results 

indicate that the RBC pool is BIBO stable with a steady-state response related to the 

mean lifespan.  

The focus on lifespan uncertainty is based on the family of gamma distributions. 

Both the time-invariant and time-varying models of lifespan uncertainty are derived 

from the general differential equation.  

The time-invariant model for the RBC lifespan distribution uncertainty allows 

lifespan variations amongst the population. We chose a nominal model of the RBC 

pool with first-order gamma distribution, and then conjectured a bound on the 

multiplicative error of the RBC pool. Although the mathematical proof for the bound 

is still open, we provided another weaker bound which is proved. These bounds are 

used to provide constraints on the design of the AMP so as to achieve robustness of 

the system.  

Uncertainty of RBC lifespan varying over time is studied by the time-varying 

model. Each red blood cell choses a lifespan distribution from a pre-determined 

collection of time-invariant gamma distributions, and the separation of this lifespan 

generates a standard form of the system with a set of time-invariant sub-pools and an 

arbitrary switching signal. We analyzed the impact of the AMP’s gain and the two 

parameters (order and mean lifespan) of gamma distributions via Matlab’s LMI 

toolbox. Results show that mean lifespan within a certain range will not have much 
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effect on the stability of the system, and increasing PI-AMP gain leads to faster 

response, however, large order of gamma distributions may result in loss of stability.  
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In Figure 2.5(a), the linearized LK  is the linearization of avgk  around a nominal 

dose 0d , 

0

( ) 1L avg
r d

d
K k r

dr 

  , 

notice that this assumption is not based on the real system, but totally for simplicity. 

Now the system is further simplified as shown in Figure 2.5 (b).  

The Hgb concentration is measured periodically, which we assume to be once per 

week. Samples of Hgb are used by the management protocol; the protocol, 

represented as the controller transfer function dC  is discrete-time. As shown in 

Figure 2.5, the protocol and the sampler comprise the discrete-time components of the 

feedback system, while the other models are continuous-time. This is an example of 

sampled-data control system which includes both discrete-time and continuous-time 

signals and system. Next, we will approximate this sampled-data control system by a 

continuous-time feedback version.  

 

2.3.2 Continuous-time approximation 

In this section, we approximate the sampled-data system by accounting for the 

sampler, discrete-time controller and the zero-order hold. 

From Figure 2.5, the AMC consists of a sampler, where the signal Hgb is sampled 

at discrete instants, i.e., every seven days. The Nyquist sampling theorem [12] gives 

conditions on the sampling period sT under which the continuous-time signal ( )Hgb t

can theoretically be reconstructed from its samples  ( )sHgb kT . It is under such 

condition that we will approximate the sampled-data model of an AMCS. 

To develop this approximation, we first consider the sampling functions 

0

( ) ( )
sT s

n

p t t nT




  , 

where ( )t is the unit impulse and where the Fourier transform of ( )
sTp t is 
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Tustin’s algorithm uses the relationship 

2 1

1s

z
s

T z


 


, 

so the approximate discrete-time controller has form  

2 1

1

( 1)
( ) ( )

2( 1)s

s
zd a P Is

T z

T z
C z C s K K

z


 



   


. 

In the following, we will approximate ( )aG s  by a rational function using a 

first-order Padé approximation: 

1 1
( )

1
2

ssT

a
ss

e
G s

sTsT


 


. 

We illustrate the continuous-time approximation in the next section. 

 

2.3.3 Illustration 

In the previous section, we introduced a continuous-time feedback system to 

approximate the sampled-data control system modeling an AMCS. In this section, we 

illustrate this approximation via simulation [14].  

A simulation of such a sampled-data system is shown in Figure 2.11, with sampling 

time 7sT  days and RBC lifespan taken as a first-order gamma distribution with 

mean lifespan 100  days. The AMP is a discrete-time PI controller with 

0.005PK  , 0.0001IK  ; i.e., 

1
( ) 0.005 0.00035

1d

z
C z

z


 


. 

The target value for Hgb is set to 11.25 g/dL, and the sampler is naturally 

embedded in the front-end of Simulink’s discrete-time controller block.  
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Figure 2.11: Simulink simulation for simplified sampled-data system 

Figure 2.12 shows the simulation of the simplified continuous-time system, so 

applying the Tustin’s transformation gives 

0.0001
( ) 0.005aC s

s
  , 

and 
2

( )
7 2aG s

s



 models the effect of both the sampler and the zero-order hold.  

 

Figure 2.12: Simulation for approximated continuous-time system 

Difference between the ZOH outputs of the two system is shown in Figure 2.13(a) 

for both short time (100 days) and longer time (1000 days), and in Figure 2.13(b) we 

show the comparison of outputs Hgb for both systems, in the same time scale as in 

(a). Since this is a simplified model, the assumption that Hgb starts at zero is applied. 

This is not true for a real system; however, this assumption is made to simplify the 

study.  

There is not much difference between the outputs of the two systems, especially 

when in a longer time scale – consider the long lifespan of RBCs which is over 100 

days. As a result, the approximation provided in previous section is reasonable.  
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(a) 

(b) 

Figure 2.13: Comparison of two systems 
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CHAPTER 3 

UNCERTAINTY IN RBC POOL DYNAMICS (TIME-INVARIANT CASE) 

In this chapter, we consider the time-invariant case of uncertainty in models for the 

RBC pool dynamics. The time-invariant modeling of RBC lifespan uncertainty takes 

into account the variability of the lifespan distribution from individual-to-individual. 

Several examples of lifespan distributions found in literature are reviewed, and we 

will look at some lifespan properties. By proposing the time-invariant uncertainty 

model, we first introduce a nominal system and look into multiplicative perturbation. 

Next, the robust stability of the system is discussed, where we propose a conjecture of 

the multiplicative error bound. Finally, the result of robustness is shown, as well as its 

implication on control design. 

In Chapter 1, we modeled the RBC pool as a compartmental model, the input of 

which is the rate of newly-formed RBCs ( )ink t  and output is the rate of eliminated 

RBCs ( )outk t . The hemoglobin pool content is determined by their difference as 

described by 

( ) ( ) ( )in outHgb t k t k t 


 

where the elimination rate satisfies   

0

( ) ( ) ( , )
t

out ink t k t l t d     
 

here ( , )l t  is the lifespan distribution. In the time-invariant case ( , ) ( )l t l  , the 

elimination rate becomes a convolution 

0

( ) ( ) ( ) ( )( ).
t

out in ink t k t l d k l t     
 

Here we rewrite the RBC pool dynamics showing the dependence on lifespan 

distribution explicitly 

( ) ( ) ( * )( ).in inHgb t k t k l t 

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3.1 Lifespan distributions 

RBC lifespan uncertainty and its impact on AMCS is the focus of the thesis. In the 

time-invariant case, lifespan uncertainty can be interpreted as the variability of 

lifespan distribution from individual-to-individual.  

We assume that each individual possesses a fixed, time-invariant RBC lifespan, but 

that these lifespans can differ from individual to individual.  

 

3.1.1 Properties of lifespan distribution 

We have computed the transfer function of the RBC pool in Chapter 1, which is 

 
 

( ) 1 ( )
( )

( )in

Hgb t L s
H s

sk t




L
L

 

where ( )L s is the Laplace transform of the lifespan distribution ( )l  . It is clear that 

the properties of the lifespan distribution function are essential in analyzing the 

dynamics of ( )H s . Generally speaking, RBC lifespan is defined as a probability 

density function (pdf) [15]. Here, several properties of such pdf ( )l  are listed.  

First of all, the lifespan distribution is non-negative; i.e., 

0 0
( )

0 0
l





 

  

，

，
            

where the lifespan 0   is the random variable. For each cell, the birth-time is 

assumed to be at time 0t  . Also, the lifespan should not be negative by definition.  

Second, ( )l  satisfies:  

0
( ) 1.l d 


  

Third, mean RBC lifespan of a healthy individual is about 120 days [16], while that 

for a CKD patient may be less than 100 days. By definition the mean lifespan is: 

0
( )l d   


 .            
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3.1.2 Examples of lifespan distributions 

Several RBC lifespan distribution functions have been proposed in the literature, 

including the gamma distribution [17], the Weibull [18] and the lognormal [6]. A 

summary is provided in [19]. Analysis shows that the gamma distribution and Weibull 

distributions can be good choices in modeling RBC lifespans; see [15]. 

The gamma distribution is defined as: 

1
,

1 1
( )

( )
k

k k
l e

k




  





 

where  is the lifespan, k  and   are positive constants. The mean and standard 

deviation for the gamma distribution are given by 

k 
 

and 

 2k   

respectively. This distribution has been used to describe the time taken for a cell to 

pass through k compartments (for example phases of the cell cycle), where the time 

spent in each compartment is exponentially distributed with the same parameter  ; 

see [17]. To the mean lifespan  , we re-parameterize the gamma distribution in 

terms of k and : 

1
,

1
( ) .

( )

kk
k

k k

k
l e

k




  



  

The Laplace transform of this parameterization of the gamma distribution is then 

1
( ) .

1
kL s

s
k



  
 

 

The Weibull function was introduced in the context of RBC lifespan in [18] and is 

given by 

1

.

kk
k

e



 

   
  

 
 

 

The two parameters are k  and  , and the mean value is given by  
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1
(1 )

k
    . 

In [18] Weibull distributions were used to model RBC lifespan values in humans; 

and done so with a mean lifespan of 120 days and a standard derivation of 15 days. 

Bebbington et al. [21] proposed a mixture of two modified Weibull distributions. 

They used two survival function to modify Weibull distributions, namely, 1( )S t and 

2 ( )S t , and used the mixture model 

1 2( ) ( ) (1 ) ( )S t pS t p S t    

with  0,1p mixing parameter.  

The lognormal distribution was used to describe the p.d.f. for the reticulocyte 

lifespan in [6] with two parameters,  and m , and function given by 

2

2

(ln )

2
1

2

m

e



 

 

 

with mean value 

2

2
m

e





 . 

In this thesis, we will focus on the family of gamma distribution for several reasons. 

First, it has been proved successful in approximating RBC lifespan via clinical data 

[15]. Second, the gamma distribution has rational Laplace transform. This is useful in 

applying feedback control theory, which is described by ordinary time-invariant 

finite-dimensional differential equation. Third, the two parameters,  and k , can 

directly relate to the physiology:  representing mean RBC lifespan and k the 

number of RBC developmental compartments. Also, the gamma distribution is widely 

used in the literatures [6, 15, 19, 20].  

 

3.2 Time-invariant uncertainty model and robustness 

The time-invariant case of RBC lifespan uncertainty assumes a fixed mean lifespan 

  and uncertain order k . In other words, we consider AMCS robustness to the order 

of lifespan gamma distribution; said another way, we consider a model where patients' 

RBC lifespan distributions are described by a gamma lifespan distribution with the 
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( )
( ) 1.

( )

H s
s

H s
 




 

 

3.2.2 Robust stability 

Now we consider the AMCS and begin analysis of this feedback loop’s 

performance over all admissible perturbed RBC dynamic H . We say that an AMP 

robustly stabilizes an AMCS if the AMCS is stable for every admissible perturbed 

RBC pool dynamic with transfer function H . Likewise, the AMCS is then said to be 

robustly stable.  

Now we consider the details describing an admissible perturbed RBC dynamic. 

Given a time-invariant RBC lifespan pdf ( )l  , it was shown in Section 1.3 that 

( ) ( ) ( * )( ).in inHgb t k t k l t 


 

Taking the Laplace transform of both sides gives 

( ) 1 ( )
( )

( )in

Hgb s L s
H s

K s s


  

where ( )Hgb s , ( )ink s and ( )L s denote the Laplace transforms of ( )Hgb t , ( )ink t  and 

( )l  respectively. Suppose ( )l  is our best estimate of lifespan distribution for a 

patient population, and is referred to as the nominal distribution. By analogy ( )H s  

is called the nominal RBC dynamic, or nominal transfer function. Now, consider 

another plausible lifespan distribution for the population ( )l   and its corresponding 

RBC dynamic ( )H s  the perturbed transfer function. One can then form the feedback 

control system as in Figure 2.10 where 

  ( ) ( ) 1 ( )H s H s s   , 

with the multiplicative error 

( )
( ) 1

( )

H s
s

H s
 


 ,

 

see Figure 3.2. 
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Now, we specialize the above general to the case of gamma distribution. Given a 

mean lifespan   and order k, consider the corresponding gamma lifespan 

distribution. Suppose 1( )H s is taken as the nominal RBC dynamic and that there 

exists a stable transfer function W such that for each k, 

1

( )
1 ( ) , 0.

( )
kH j

W j
H j

  


     

Note that W is a valid multiplicative error bound for all perturbed RBC transfer 

functions .kH  Suppose the nominal closed-loop is stable; i.e., 

1
1

1

( )
( )

1 ( )
a a

a a

C G H s
T s

C G H s
  

is stable. Then, given any k, it follows from the previous that C stabilizes the 

perturbed feedback system; that is, 

( )
( )

1 ( )
a a k

k
a a k

C G H s
T s

C G H s
  

is stable, provided that  

1sup ( ) 1, 0TW j


    . 

The existence of such multiplicative error bound W - one that bounds for all 

perturbed transfer functions kH - is critical for the preceding result to be practically 

useful.  

 

3.3 Error bounds 

In this subsection we provide some useful bounds on the multiplicative error 

1

( )
1

( )
kH j

H j




 . The first bound is looser than the second; however, whereas the former 

is a provable bound, the latter is only conjectural to be the tightest bound.  

 

3.3.1 A multiplicative error bound 

Given mean lifespan  , define 
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30
; 0 1

9( )
2

1 ; 1

 
 





   

  

 

and let ( )W s be a stable transfer function such that ( ) ( )W j    for all 0  . 

Indeed, transfer function of the form 1

2

( )
k s

W s
s k




 will suffice for some 1 2, 0k k  . 

We now prove that ( )W j is a multiplicative error bound, and before doing so, we 

recall from the previous section, that  

1
1

1 ( )
( )

L j
H j

j





 ;  

1 ( )
( ) k

k

L j
H j

j





  

where 1( )L s and ( )kL s are the Laplace transforms for ,1( )l  and , ( )kl  respectively, 

and where k is an integer greater than zero.  

Theorem 3.1 (see proof in appendix A): Let 0  and k  a positive integer be 

given. Then,  

1

( )
1 ( ) ( )

( )
kH j

W j
H j

   


    

for all 0  . Hence, ( )W j is multiplicative error bound; in Figure 3.3, we verify 

the bound ( )  for 100  days and 2,3, ,100k   . 
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1
( ) .

1 ( )a a

S s
C G H s

  

In practice, constanttarHgb  , say 0tarHgb h  so that 

0( )tar

h
Hgb j

j



  

and from the above 

0( ) ( )
h

E j S j 


  . 

Suppose we impose the tracking error bound e so that 

( ) , 0eE j     . 

This error bound e  precludes ( )e t  having any persistent signal components and 

imposes that (0) 0S  . Also, it places a bound on the closed-loop bandwidth. 

Suppose the bandwidth is BW ; i.e., 

0

( )
( ) 1, 0

( )
e

BW
tar

jE j
S j

Hgb j h

  


     . 

It then follows that 

0
BW

e

h


 . 

Notice that the closed-loop time constant is approximately 
1

BW
. Thus smaller e ’s 

leads to faster-responding AMCS. Now, let 0( )P
e

h
W j

 
 , then 

0
sup ( ) eE j


 


 , 

provided that 
0

sup ( ) 1PW S j





 . 

In summary, nominal Hgb tracking performance can be modeled by the 

frequency-domain constraint 

sup ( ) 1PW S j


   
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CHAPTER 4 

UNCERTAINTY IN RBC POOL DYNAMICS (TIME-VARYING CASE) 

In contrast to the time-invariant case considered in the previous chapter we now 

consider RBC lifespan distributions that can vary with time. In this chapter, we will 

introduce a RBC model to capture these time-variations and evaluate stability 

robustness of the AMCS by seeking a quadratic Lyapunov function. As in the 

time-invariant case, we will also consider robust performance and use the dominant 

AMCS time constant as the performance measure. 

 

4.1 Time-varying lifespan distributions 

Chapter 3 considered a time-invariant model of the lifespan distribution which is 

fixed in time for an individual, but perhaps variable over the population. However, the 

RBC pool dynamics may be better modeled using a time-varying lifespan distribution 

to account for temporal variations in an individual’s erythropoiesis processes; e.g., see 

[18, 24]. Here we assume a time-varying model where there exist a finite number of 

potential lifespan distributions, and where each newly-born RBC is endowed with a 

lifespan chosen from this collection. 

Our time-varying model is as follows. For a given individual and at time t , the 

RBC lifespan distribution is arbitrarily chosen from a pre-determined finite set of N 

time-invariant distributions, 

  1 2( , ) ( ), ( ), , ( )Nl t l l l     . 

We assume that ( , )l t  is a measurable function of time. 

As in the time-invariant lifespan model considered in Chapter 3, the family of 

gamma distributions considered is: 

1
,

1
( )

( )

kk
k

k k

k
l e

k




  





, 

where the set of possible distributions is parameterized by mean lifespan  and 

gamma distribution order k ; i.e.,
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 
1 1 2 2, , ,( , ) ( ), ( ), , ( ) .

N Nk k kl t l l l      
 

This model reflects the possibility that for an individual, every newly-born RBC is 

endowed with a lifespan chosen from a set of given time-invariant gamma 

distributions. 

 

4.2 RBC dynamics for time-varying lifespan distributions 

In the previous section, we introduced a time-varying lifespan model where 

lifespans are arbitrarily chosen from a given and fixed set of time-invariant gamma 

distributions. This model, given by  
1 1 2 2, , ,( , ) ( ), ( ), , ( )

N Nk k kl t l l l       , can also be 

expressed as 

 ,
1 1

( , ) ( ) ( ) ;   ( ) 0,1 ; ( ) 1
i i

N N

i k i i
i i

l t t l t t    
 

    , 

where ( )i t  are measurable functions of time. From a technical viewpoint, this 

particular model of time-varying lifespan displays a separation between time t  and 

the lifespan random variable  in that ( , )l t  can be written as the product  

 

1 1

2 2

,

,

1 2

,

( )

( )
( , ) ( ) ( ) ( )

( )
N N

k

k

N

k

l

l
l t t t t

l










   



 
 
   
 
  




 

where each factor depends only on t  or .  This separation will allow us to 

decompose the time-varying convolution integral associated with the RBC pool 

dynamic 

0

( ) ( , )
t

ink l t d     

in terms of convolutions associated with the time-invariant lifespans   

,

0

( ) ( )
i i

t

in kk l t d   . 
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where clx is the state of the closed-loop system.  

Defining  

( ) 0

2 2 2
( ) ; 0,

0 0

rbc rbc

cl p rbc
s s

I rbc

A B t

A t K C t
T T T

K C

 
 
   
 
 
  

  

gives the state-space representation of the closed-loop system as 

( ) ; 0.cl cl clx A t x t   

For the case of 2N  , denote the corresponding closed-loop matrices 1clA and 

2clA as 

1 1

2

1
1 2

1 2

0 0

0 0 0

2 2 2 2

0 0

cl
p p

s s s s

I I

A B

A

A
K C K C

T T T T

K C K C

 
 
 
 
   
 
   

 ; 

1

2 2

2
1 2

1 2

0 0 0

0 0

2 2 2 2

0 0

cl
p p

s s s s

I I

A

A B

A
K C K C

T T T T

K C K C

 
 
 
 
   
 
   

 . 

These matrices correspond to clA when 1 2( , )   is (1,0)  and (0,1) respectively. 

Given these two matrices, we can express the closed-loop dynamics for 2N   

compactly as 

 1 2( ) ; ( ) ,cl cl cl cl cl clx A t x A t A A   

which generalizes to the general case as  

 1 2( ) ; ( ) , , , .cl cl cl cl cl cl clNx A t x A t A A A    

Since ( )i t are measurable, then ( )clA t is also measurable.  
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is quadratically stable if there exist symmetric, positive-definite matrices P and Q  

such that the time derivative of ( )clV x along solutions to the differential equation is 

satisfies 

( )

( )
( )

( ) ( ) ; 0, 0.

cl cl cl

cl
cl

x A t x

T T T
cl cl cl cl cl cl cl

dV x
V x

dt

x A t P PA t x x Qx t x



         



 
 

where we define ( ) ( )T
cl clA t P PA t Q   . 

Now, to prove that quadratic stability implies exponential stability, we assume that 

the system is quadratically stable so that  

2

min( ) ( ) ( )T
cl cl cl clV x x Q x Q x     

and 

2 2

min max( ) ( ) ( )cl cl clP x V x P x    

where min  and max denote the minimum and maximum eigenvalues. Since both P

and Q are positive definite,  

2

max

( )

( )
cl

cl

V x
x

P
  

and  

2

min min
max

( )
( ) ( ) ( )

( )
cl

cl cl

V x
V x Q x Q

P
 


    . 

With min

max

( )
0

( )

Q

P




 , then 

( ) ( )cl clV x V x  , 

and 

0( ( )) ( ) t
cl clV x t V x e  . 

For simplicity, let 2  , so that 

2
0( ( )) ( ) t

cl clV x t V x e  . 

Again, since 
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2

min ( ) ( )cl clP x V x  , 

we get  

2 2
min 0( ) ( ) ( ) t

cl clP x t V x e   , 

so                      
2 2 2

min max 0( ) ( ) ( ) t
cl clP x t P x e    . 

Then, 

2 2 2max
0

min

( )
( )

( )
t

cl cl

P
x t x e

P



  

and 

max
0

min

( )
( )

( )
t

cl cl

P
x t x e

P



 . 

Letting  denote max

min

( )

( )

P

P




 gives 

0( ) t
cl clx t x e   , 

which proves exponential stability. 

Summarizing, if ( )cl cl clx A t x is quadratically stable, then it is exponentially 

stable for arbitrary measurable functions ( )i t . 

Note that exponential stability does not imply quadratic stability. For example, 

from [26] the system 

 1 2( ) ; ( ) ,x A t x A t A A   

where 

1

1 1

1 1
A

  
   

   and   2

1

1 1

a
A

a

  
  

  
. 

is exponentially stable, however, there is no positive definite quadratic Lyapunov 

function to satisfy the quadratic stability criterion for 3 8 10a   .  
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4.5 Robust performance analysis and examples 

From Section 4.4, we showed that quadratic stability implies exponential stability 

so that 

0( ) ; , 0tx t x e      

where max

min

( )

( )

P

P




 . This shows that the response of the closed-loop system has a 

time constant which is no greater than 
1


days. Notice that exponential stability 

actually indicates how fast the system responds - time constant provides an upper 

bound of the speed of response, and this is a performance of such system.  

In this time-varying case, where we assume each RBC is endowed with a lifespan 

from a distribution chosen from a predetermined collection, this performance of 

response is guaranteed for all admissible time-varying lifespan distributions 

 
1 1 2 2, , ,( , ) ( ), ( ), , ( )

N Nk k kl t l l l       . 

In this section, we will first link quadratic stability with robust performance, i.e., 

finding the largest such that  

0( ) tx t x e    

for all admissible time-varying lifespans. Moreover, we would like to explore how 

this best 
1


(time constant) is affected by the parameters of the time-varying family 

of lifespan distributions as well as the parameters of the PI controller. 

 

4.5.1 Robust performance 

In our time-varying case, the system is described by 

 1 2 0( ) ; ( ) , , , , (0)cl cl cl cl cl cl clN cl clx A t x A t A A A x x     

where clx is state of the closed-loop system. Recall that this system is quadratically 

stable if there exists a quadratic Lyapunov function ( ) T
cl cl clV x x Px , where P is a 

symmetric and positive-definite matrix such that 

( ( )) ( ) ( ) ; ( ) 0 , 0T T T
cl cl cl cl cl cl cl clV x t x A t P PA t x x Q x x t t         

 . 
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Now consider bounding this Lyapunov equation as follows: 

( ) ( ) 2 ; 0T
cl clA t P PA t P     . 

Then, 

( ) ( ) 2T T T
cl cl cl cl cl clx A t P PA t x x Px     , 

which is equivalent to 

( ) 2 ( )cl clV x V x  , 

and 

2
0( ( )) ( ) t

cl clV x t V x e  . 

Now, following the development in Section 4.4, we immediately obtain 

0( ) t
cl clx t x e   . 

Since  1 2( ) , , ,cl cl cl clNA t A A A  , it is obvious that  

( ) ( ) 2 ; 0T
cl clA t P PA t P t     

means that  

2 ; 1,2, ,T
cli cliA P PA P i N     . 

As a result, finding the largest  such that  

2 ; 1,2, ,T
cli cliA P PA P i N      

could be transferred into the problem of determining the largest  such that 

0( ) t
cl clx t x e    

for all admissible time-varying lifespan distributions, but not vice versa.  

In this thesis, we will use Mathwork’s LMI toolbox to establish the quadratic 

stability and exponential stability of the time-varying AMCS: 

 ( ) ; ( ) , 1, 2, ,cl cl cl cl clix A t x A t A i N    . 

To begin, we first note that quadratic stability of the above is equivalent to finding 

a symmetric positive definite P such that 

, 1, 2, ,T
cli cliA P PA Q i N     .  

Indeed,  
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 1 2( ) ( ) , 0; ( ) , , ,T
cl cl cl cl cl clNA t P PA t Q t A t A A A        

if and only if T
cli cliA P PA Q   holds for 1,2, ,i N  . 

The LMI toolbox commands for establishing quadratic stability and exponential 

stability are as follows. First, the command 

P=lmivar(1,[n 1]) 

declares matrix P to be the primary LMI variable; i.e., a symmetric matrix of 

dimension n . Second, the desired positive definiteness of P is imposed with  

lmiterm([-1 1 1 P],1,1). 

In determining the largest  such that 2T
cli cliA P PA P    by finding the 

minimum   and corresponding P , LMI toolbox constructs the N Lyapunov 

function T
cli cliA P PA P    via:  

lmiterm([n 1 1 P],1,Acln,'s') 

and 

                         lmiterm([-n 1 1 P],1,1). 

Then, the LMI toolbox command “gevp” is called to solve T
cli cliA P PA P   ; 

i.e., 

[alpha,popt]=gevp(lmis,2) 

where “alpha” is the computed minimum  and “popt” returns the Lyapunov matrix 

P . The P matrix in a normal form3 is given by command 

P=dec2mat(lmis,popt,P) 

if the returned 0  . Also, matrix Q could be computed via  and P . Finally, 

the least estimate of the AMCS’s time-constant is given by 
1


days.  

 

4.5.2 Illustrative example 

  We now give an example of establishing the exponential stability of the AMCS 

                                                 
3   “popt” returns a P matrix with decision variables in the LMI solver, the P matrix in LMIs are of matrix 
variables, thus “dec2mat” is used to compute corresponding matrix values, given decision values of P. 
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 
0 1 2( ) ; (0) ; ( ) ,cl cl cl cl cl cl cl clx A t x x x A t A A    

where  

1
,

1
( ) ; 1, 2

( )

ii

i i

i i i

kk
ki

k k
i i

k
l e i

k




  



 


; 

1 2 1 280; 60; 2; 3k k     ; 

and 

0.005; 0.0001p IK K  . 

We now invoke Mathwork’s LMI toolbox command ‘gevp’ to find the largest 

such that  

0P   

2 , 1,2T
cli cliA P PA P i    . 

The matrices 1clA and 2clA  are: 

1

0.0138 0.0112 0 0 0 1.0820 0

0.0112 0.0362 0 0 0 0.4133 0

0 0 0.0188 0.0190 0.0056 0 0

0 0 0.0190 0.0434 0.0300 0 0

0 0 0.0056 0.0300 0.0879 0 0

0.0015 0.0006 0.0016 0.0007 0.0002 0.2857 0.2857

0.0001 0.0000 0.0001 0.0001 0.00

clA

 
  

 
 

 
  
  00 0 0

 
 
 
 
 
 
 
 
 
  

; 

2

0.0138 0.0112 0 0 0 0 0

0.0112 0.0362 0 0 0 0 0

0 0 0.0188 0.0190 0.0056 1.1100 0

0 0 0.0190 0.0434 0.0300 0.5100 0

0 0 0.0056 0.0300 0.0879 0.1670 0

0.0015 0.0006 0.0016 0.0007 0.0002 0.2857 0.2857

0.0001 0.0000 0.0001 0.0002

clA


 

  
 

 
  
 0.0000 0 0

 
 
 
 
 
 
 
 
 
  

. 

Using Matlab’s ‘gevp’ command as previously discussed, it is determined that this 

system possesses the quadratic Lyapunov function T
cl clx Px where 
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1.0 004

0.0013 0.0012 0.0015 0.0003 0.0008 0.0374 0.0940

0.0012 0.0017 0.0015 0.0006 0.0008 0.0270 0.0406

0.0015 0.0015 0.0017 0.0004 0.0009 0.0376 0.1040

0.0003 0.0006 0.0004 0.0003 0.0002 0.0275 0.0063

0.0008 0.

P e  

  
 
  

   
 0008 0.0009 0.0002 0.0009 0.0039 0.0443

0.0374 0.0270 0.0376 0.0275 0.0039 8.3101 8.1048

0.0940 0.0406 0.1040 0.0063 0.0443 8.1048 10.8220

 
 
 
 
 
 
  
 
    
   

 

1.0 0007*

0.0072 0.0067 0.0082 0.0016 0.0044 0.2039 0.5131

0.0067 0.0094 0.0079 0.0034 0.0046 0.1475 0.2216

0.0082 0.0079 0.0095 0.0020 0.0051 0.2050 0.5676

0.0016 0.0034 0.0020 0.0017 0.0013 0.1500 0.0341

0.0044

Q e 

  
 
  

   
 0.0046 0.0051 0.0013 0.0051 0.0215 0.2418

0.2039 0.1475 0.2050 0.1500 0.0215 45.3542 44.2339

0.5131 0.2216 0.5676 0.0341 0.2418 44.2339 59.0634

 
 
 
 
 
 
  
 
    
   

. 

We verify that 

min ( ) 1.0130e-010P   

min ( ) 5.5287e-013Q   

so that P and Q  are indeed positive-definite, implying that the AMCS is 

quadratically stable and exponentially stable. The returned 0.0055  , thus for the 

uncertain family of time-varying lifespan distributions 

 
1 1 2 2, ,( , ) ( ), ( )k kl t l l    ; 

1 2 1 280; 60; 2; 3k k     ; 

and                       
0.005( 0.02)

( )a

s
C s

s


 , 

the closed-loop response of the AMCS satisfy 

1 1
183

0.0055
  days, 

this indicates that the response of the system after dosing is faster than at least 183 

days.  
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4.5.3 Impact of parameters of lifespans and controller 

In this section we do a modest parametric study to observe the impact that 

parameters describing the time-varying family of lifespan distributions and 

parameters of the PI-AMP ( )aC s have on the closed-loop time constant as computed 

in the previous section. For simplicity, we continue to study the case of 2N  such 

that 

 
1 1 2 2, ,( , ) ( ), ( )k kl t l l     

is parameterized by the numbers 1 2 1 2, , ,k k   . The PI-AMP 

( ) I
a P

K
C s K

s
   

can be re-parameterized as  

( )
( )a

K s z
C s

s


  

where PK K  is the gain and I

P

K
z

K
  is the zero of the PI-AMP. Here we fix 

0.02z   so that the gain K is the only parameter we study for the PI controller. We 

will explore the effects that the set of parameters  1 2 1 2, , , ,k k K   have on the 

AMCS’ time constant.  

 

Example 1: 

In our first example, we fix 

2 1 280; 2; 0.02k k z     ; 

and compute AMCS time constant over parameters 

1 [50,120]  ;  0.005,0.01,0.02,0.04,0.08K  . 

The results are shown in Figure 4.5.  
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 (a) 

 

(b) 
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(c) 

Figure 4.6: distribution of AMCS time constant  1
  parameterized over pool mean 

lifespan    and order of lifespan distribution ( )k  

The plot in Figure 4.6 shows that the AMCS loses quadratic stability for large 

values of 1k  and 2k .  

 

Example 3: 

In this example we consider parametric variations over several values of PI-AMP 

gain K . The objective is to observe the impact of the PI-AMP’s aggressiveness on 

the distribution of AMCS time constant resulting from variations in the time-varying 

RBC lifespan parameters  randomly choose from [50,120] and k from [1,10]. 
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(a) 

 
(b) 
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(c) 

 

(d) 

Figure 4.7: distribution of AMCS time constant  1
  parameterized over pool mean 

lifespan   , order of lifespan distribution ( )k  and PI-AMP gain  K  

It can be seen that both the mean and standard derivation of the time constant 

decreases when PI controller parameter K increases, meaning that as K increases, 

the system tends to respond faster. This is also similar with the results in Figure 4.5.  
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CHAPTER 5 

CONCLUSIONS 

In this thesis, we focused on building models of the RBC lifespan distribution 

uncertainty and analyzing their impact on the AMCS. We first considered the general 

case of RBC pool dynamics, regarding it as a compartmental model with ( )ink t

denoting the rate of newly-born RBCs entering the pool, with ( , )l t  as the 

time-varying lifespan ( )  distribution of the cells and with ( )Hgb t the pool’s output 

describing hemoglobin level. The general dynamic of the RBC pool was given by the 

differential equation 

0

( ) ( ) ( ) ( , )
t

in inHgb t k t k t l t d      


. 

For the time-invariant case where ( , ) ( )l t l  , the RBC pool could be represented 

by its transfer function  

( ) 1 ( )
( )

( )in

Hgb s L s
H s

K s s


  

where L is the Laplace transform of ( )l  . 

In chapter 1 we proved some basic properties of ( )H s , namely: 

i) ( )H s is BIBO stable. 

ii) (0)H  : this property shows the RBC pool dynamics contribution to the 

open-loop gain of the AMCS. 

iii)
2

( )H j


  and ( )H j  : this property demonstrates that the bandwidth of 

the RBC pool is bounded by 
2


 rad/day, also, the time constant of response will 

always be greater than 
2


 days.  

Finally, future research may consider formally establishing the passivity of the 

RBC pool dynamic, and exploring this property in terms of uncertainty and AMCS 

performance.  
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In chapter 3, we first considered a time-invariant model for the RBC lifespan 

distribution uncertainty which allowed lifespan variations amongst the population, 

and focused on the family of gamma distributions described by  

1
,

1
( )

( )

kk
k

k k

k
l e

k




  





, 

its Laplace transform is  
1

( )

1
kL s

s
k



  
 

and associated RBC pool dynamic 

1 ( )
( ) k

k

L s
H s

s


 . We chose a multiplicative model of uncertainty with nominal 

model 

1( )
1

H s
s







, 

and the multiplicative error is 
1

( )
( ) 1

( )
kH j

s
H j




  . We then conjectured a tight bound 

(independent of order k ) on this error 

1 (1 )
( )

jj e
j

j




 
  . 

This conjecture is still open and we showed the looser bound (see Appendix, Figure 

A.1): 

30
; 0 1

9( )
2

1 ; 1

j
 







    

  

. 

The primary implication of these bounds is that they provide useful constraints on 

the AMCS’ complementary sensitivity to achieve robust performance; see Figure 3.6 - 

3.8. One future direction in this inquiry is to consider multiplicative error models 

arising from different choices of nominal RBC dynamics. In this thesis we solely 

considered 1( )H s as nominal. However, it may make sense to choose ( )kH s  for 

some given k , as nominal, and then the question on a suitable bound on the 

multiplicative error can be asked.  

In chapter 4, we studied a time-varying model of RBC lifespan distributions 
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wherein the lifespan for each new cell is chosen according to a choice of distribution 

from a finite collection of time-invariant distributions:  

 1 2( , ) ( ), ( ), , ( )Nl t l l l     . 

A key definition of this model is the separation 

 

1 1

2 2

,

,

1 2

,

( )

( )
( , ) ( ) ( ) ( )

( )
N N

k

k

N

k

l

l
l t t t t

l










   



 
 
   
 
  




 

where ( )i t is time varying and 
1

( ) 1
N

i
i

t


 . This allows us to express the AMCS in 

a standard form: 

 1 2( ) ; ( ) , , ,cl cl cl cl cl cl clNx A t x A t A A A   . 

Within this framework, we conducted Matlab experiments to analyze the impact on 

AMCS performance due to a PI-AMP’s gain and to different collections of 

distributions. We saw that time variant in mean lifespan did not adversely affect 

stability; the gamma distribution order could cause instability for large ranges. The 

main analytical tool used for these time-varying dynamical systems was quadratic 

Lyapunov functions. Future research could consider other Lyapunov candidates such 

as polytopic Lyapunov functions which may be better suited to this class of 

uncertainties which do fall into the large category of polytopic uncertainty [27].  
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APPENDIX 

PROOF FOR THEOREM 3.1 

A   Proof for Theorem 3.1 

Define                      
1

1
k k

j
Z

j
k






  
 

 

Lemma 1: For 0 1  and positive integer k : 

 2 21
1 1kZ

k
     

 
 

   
2

4

3

1 ( 1)( 1)( 2)
Re( ) 1 1

2 8k

k k k
Z

k k


         

 
 

hence 

 2 410
1

27kZ    . 

Proof for Lemma 1: 

Since 
1

1
k k

j
Z

j
k






  
 

, in particular 1 1Z  , then 
 

2 2 2

2
1

11
1 kk k

ZH Z

H j 


   . 

Also, kZ is a complex number,  

2 2
1 1 2Re( )k k kZ Z Z    . 

Now using the Taylor expansion, it is easy to get that around 0  when 

0 1  ,  

 21
2

2
1

( 1) ( 2)!( 1)
1

( 2)!( 1)! !

nn

k n
n

k n n k n
Z

n k k n n





     
  

    , 

 2

1
2

1

( 2 2)!
2 Re( ) 2 2 ( 1) (2 1) .

( 2)! (2 )!

n

n
k n

n

k n
Z n

k k n






 
       

   

The Taylor Inequality gives 

 2 21
1 1kZ

k
     

 
, 



66 

   2 4

3

1 ( 1)( 1)( 2)
2Re( ) 2 1

4k

k k k
Z

k k
            

 
, 

this gives 

     

 

2 2 2 4

3

4

3

1 1 ( 1)( 1)( 2)
1 1 1 1 2 1

4

( 1)( 1)( 2)
.

4

k

k k k
Z

k k k

k k k

k

  



                   
   

  
 

 

For 3k  , the function 
3

( 1)( 1)( 2)
( )

4

k k k
f k

k

  
  has 

3

2

2 2

( 1)( 1)( 2)
( )

4

1 3

2

k k k
f k

k

k k

k k

       
 

  

 

so when 3k  , we get 

10
( ) 0, ( ) (3)

27
f k f k f    , 

the result is that when 3k  , 

 2 410
1

27kZ    , 

then  

 

 

 
 

4
2 2

2

2 2
1

10
1 10271

27
kk

ZH

H




 


     , 

so the upper bound is given by 

 2

1

10 30
1

27 9
kH

H
      . 

This upper bound also holds when 1 and 2k  : 

For 1k  , 
1

30
1 0 ; 0 1.

9
kH

H
        

For 2k  ,  
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2221
2

41
( ) 4( )

( ) 1
4

kH

H






  
 

  
 

, 

it is easy to compare 
2( ) 4


 

and 
30

9
 , that 

2

30
; 0 1.

( ) 4 9

  


   


 

As a result, it is true for all 0 1   and all integer 0k  that 

1

30
1 .

9
kH

H
    

Lemma 2: For 1  and all positive integer k , 

1 2kZ    . 

Proof for Lemma 2: 

First,  

11 1

1 ( )
1 ( )

1
1 ( ) 1 ( )

11 11

11

1
1

1

1
.

k

k k

kk

k

L j
H L jj

L jH L j
j

j

jj
kk

j

Z




 













  
 


          







 
Now look at the numerator of the above result, which is  

0 0 0

( )
1 ( ) ( )j jk

k k k

dl
Z l d e d l e d

d
      


         , 

since             ( )
( ) ( )j j jk

k k

dl
l e e j l e

d
    


       

also            
0 00

( )
( ) ( )j j jk

k k

dl
l e e d j l e d

d
      


         
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and 
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0 00
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Now we know that 
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the magnitude is thus given by 

 

2 2

2 2

2

1 2 2 sin( ) 2cos( )

2 2 2

2 2 ; 1.

j jj e e       

  

  

       

   

    

 

So now go back to the equation that 
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Proof for Theorem 3.1: 
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