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ABSTRACT

A BANDED SPIKE ALGORITHM AND SOLVER
FOR SHARED MEMORY ARCHITECTURES

SEPTEMBER 2011

KARAN MENDIRATTA

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Eric Polizzi

A new parallel solver based on SPIKE-TA algorithm has been developed using

OpenMP API for solving diagonally-dominant banded linear systems on shared mem-

ory architectures. The results of the numerical experiments carried out for different

test cases demonstrate high-performance and scalability on current multi-core plat-

forms and highlight the time savings that SPIKE-TA OpenMP offers in comparison

to the LAPACK BLAS-threaded LU model. By exploiting algorithmic parallelism in

addition to threaded implementation, we obtain greater speed-ups in contrast to the

threaded versions of sequential algorithms. For non-diagonally dominant systems, we

implement the SPIKE-RL scheme and a new Spike-calling-Spike (SCS) scheme using

OpenMP. The timing results for solving the non-diagonally dominant systems using

SPIKE-RL show extremely good scaling in comparison to LAPACK and modified

banded-primitive library.
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CHAPTER 1

AN INTRODUCTION TO SPIKE ALGORITHM

1.1 Motivation

Linear systems arise in different walks of science and engineering applications such

as computational mechanics (fluids, structures, and fluid-structure interactions), com-

putational nanoelectronics (quantum mechanical simulations), and even in the field

of financial mathematics (random walks and geometric brownian motion). Certain

applications of specialized types, such as the “transport problems” in nanowires and

nanotubes, and “traffic flow problems” inherently requires solving banded systems.

Most applications often give rise to very large sparse linear systems that can be re-

ordered to produce either narrow banded systems or low-rank perturbations of narrow

banded systems, with the systems being either dense or sparse within the band. For

example, in finite-element analysis, the underlying sparse linear systems can be re-

ordered to result in a banded system in which the width of the band is but a small

fraction of the size of the overall problem. In turn, specific techniques can be used

to further reduce the bandwidth and create a robust preconditioner for an iterative

solver.

Traditional numerical algorithms and library packages like LAPACK are yet facing

new challenges for addressing the current large-scale simulation needs for ever higher

level of efficiency, accuracy, and scalability in modern parallel architectures. Thus

developing robust banded parallel solvers that are efficient on both parallel high-end

architectures, and low-cost clusters is of great importance. Fast and efficient banded

solvers, as mentioned previously, are also required to function as preconditioners for
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iterative methods for solving linear systems, and/or large eigenvalue problems.

From an algorithmic and implementation point of view for developing a scalable,

fast and robust banded solver, a lot of factors come into play; in particular, the com-

plexity of the system, the data locality, arithmetic considerations (Real vs Complex,

Single vs Double precision), architectural considerations:- shared-memory(OpenMP),

distributed memory(MPI), GPU, Cloud and various other high-end computing plat-

forms.

While parallel distributed numerical packages do offer HPC users valuable tools for

solving large scale problems, the growing size of the number of cores in a compute

node forestalls distributed programming model (i.e. MPI) for many users. We have

therefore been working on implementing a banded solver for shared-memory archi-

tectures, as we want to maintain the same scalability (in comparison to the MPI

version), but at the same time enable the end-user to use the same solver for both

sequential or parallel execution. We ensure the ease-of-usability, by hiding all the

preprocessing steps from the user and allowing him to just specify the number of

processors he wants to use for execution at run-time, unlike the MPI case where the

user is responsible for distributing the system matrix on different processors before

hand.

1.2 Introduction

The SPIKE algorithm is based on a divide and conquer design paradigm, involving

the following steps:

(a) Pre-processing:

(i) partitioning of the original system on different processors, or SMPs

(ii) factorization of each diagonal block and extraction of a reduced system of

much smaller size;

2



(b) Post-processing:

(iii) solving the reduced system, and

(iv) retrieving the overall solution. SPIKE has several built-in options that

range from using it as a pure direct solver to using it for producing various

preconditioners for any outer iterative scheme.

The primary advantage of SPIKE algorithm’s divide-and-conquer design is that it

makes it naturally adapted for execution in multi-processor machines, because distinct

sub-problems can be executed on different processors. In addition, for shared-memory

systems especially, the communication of data between processors does not need to be

planned in advance. Also, such a design tends to make efficient use of memory caches,

thus overall rendering the algorithm an inherent additional parallel dimension.

1.3 The Algorithm

The SPIKE algorithm is designed to solve banded systems on a parallel machine.

The basic idea was introduced by Sameh and Kuck[7] who considered the tridiagonal

case and Chen, Kuck, and Sameh[3] who studied the triangular case. Lawrie[12]

and Sameh applied the algorithm to the symmetric positive definite systems, while

Dongarra and Sameh[10] considered the strictly diagonally dominant case. Variations

of the SPIKE algorithms for tridiagonal systems were introduced by Sun, Zhang,

and Ni[24], who also analyzed the truncation error for tridiagonal systems which are

evenly diagonally dominant. The truncation error for tridiagonal Toeplitz systems,

which are also strictly diagonally dominant, as well as symmetric or skew symmetric

was considered by Sun[25]. Another variation of the SPIKE algorithm for strictly

diagonally dominant systems was studied by Larriba-Pey, Jorba, and Navarro[11].

Polizzi and Sameh[17] have extended the SPIKE algorithms to the general banded

case, and they developed the SPIKE package.

3



A matrix A = [aij] is diagonally dominant by rows if,

∑
i 6=j

|aij| ≤ |aii| (1.1)

for all i. If the inequality is sharp, then A is strictly diagonally dominant by rows.

If A is non-singular and diagonally dominant by rows, then the diagonal entries

are non-zero and the dominance factor is defined as follows:

ε = max

∑
i 6=j |aij|
|aii|

(1.2)

If ε > 0, then the degree of diagonal dominance d is given by,

d = ε−1 (1.3)

The degree of diagonal dominance is central to the analysis of the truncated

SPIKE algorithm which will be explained in detail in Chapter 3. For illustrating the

underlying concepts and working of SPIKE algorithm, we consider the non-singular

linear system,

Ax = f (1.4)

where A is a n by n banded matrix, and the number of super-diagonals k is assumed

to be equal to the number of sub-diagonals and that the matrix is narrow banded,

i.e., k << n. Let p denote the number of processors. For simplicity it is assumed

that p divides n. Let the system be partitioned into the block diagonal form shown

below,

4



Ax =



A1 B1

C2 A2
. . .

. . . . . . . . .

. . . . . . Bp−1

Cp Ap





x1

x2
...

...

xp


=



f1

f2
...

...

fp


(1.5)

where Ai, i = 1, 2, .., p is a banded matrix of order µ = n/p and bandwidth 2k+ 1,

Bi and Ci are matrices of size µ× k.

Bi =

0 0

bi 0

 , Ci+1 =

0 ci+1

0 0

 , i = 1, 2, ..., p− 1 (1.6)

where bi and ci + 1 are triangular matrices of size k×k. Let D denote the main block

diagonal, i.e.,

D = diag{A1, A2, .., Ap} (1.7)

If both sides of (1.5) are Pre-multiplied by D−1, we obtain a reduced linear system

of the form Sx = g, as shown below:



Iµ V1

W2 Iµ V2

. . . . . . . . .

Wp−1 Iµ Vp−1

Wp Iµ





x1

x2
...

xp−1

xp


=



g1

g2
...

gp−1

gp


(1.8)

in which Vi denotes the right spikes and Wi denotes the left spikes, with k columns

given by,

5



Vi = A−1i

 0

Bi

 , and Wi = A−1i

Ci
0

 (1.9)

and Vi and Wi are partitioned as,

Vi =


V

(t)
i

V
(m)
i

V
(b)
i

 , and Wi =


W

(t)
i

W
(m)
i

W
(b)
i

 (1.10)

where V
(t)
i , V

(b)
i , W

(t)
i , and W

(b)
i are the tips of the spike of size k × k The

superscripts t,m, and b are abbreviations of the words top, middle, and bottom,

respectively. Also, xi and gi are partitioned conformally as,

xi =


x
(t)
i

x
(m)
i

x
(b)
i

 , and gi =


g
(t)
i

g
(m)
i

g
(b)
i

 (1.11)

As an illustration, the system above for p = 3 is shown below,



Ik V
(t)
1

Iυ V
(m)
1

Ik V
(b)
1

W
(t)
2 Ik V

(t)
2

W
(m)
2 Iυ V

(m)
2

W
(b)
2 Ik V

(b)
2

W
(t)
3 Ik

W
(m)
3 Iυ

W
(t)
3 Ik





x
(t)
1

x
(m)
1

x
(b)
1

x
(t)
2

x
(m)
2

x
(b)
2

x
(t)
3

x
(m)
3

x
(b)
3



=



f
(t)
1

f
(m)
1

f
(b)
1

f
(t)
2

f
(m)
2

f
(b)
2

f
(t)
3

f
(m)
3

f
(b)
3



(1.12)

6



where υ = µ− 2k.

It is from these narrow block columns or spikes extending from the main diagonal

that the algorithm has derived its name. The matrix S is referred to the SPIKE

matrix.

Observe that the union of the k equations above and the k equations below the p− 1

partition lines forms an independent subsystem of order 2k(p − 1). This is referred

to as the “reduced” system and written as, Rxr = gr . It has the form

Ax =



E1 F1

G2 E2
. . .

. . . . . . . . .

. . . . . . Fp−2

Gp−1 Ep−1





xr,1

xr,2
...

xr,p−1


=



gr,1

gr,2
...

gr,p−1


(1.13)

where,

Ei =

 Ik V
(b)
i

W
(t)
i+1 Ik

 , Fi =

 0 0

V
(t)
i+1 0

 , and Gi+1 =

0 W
(b)
i

0 0

 , (1.14)

and,

xr,i =

x
(b)
i

x
(t)
i+1

 , and gr,i =

g
(b)
i

g
(t)
i+1

 (1.15)

The subscript r is an abbreviation of the word “reduced” and i = 1, . . . , p − 1

Once the reduced system has been solved to obtain the partial solution, and as the as

the system is largely decoupled, the retrieval can be carried out in perfect parallelism

using:

x1 = g1 − V1x(t)2 (1.16)
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xi = gi −Wix
(b)
i−1 − Vix

(t)
i+1, i = 2, . . . , p− 1 (1.17)

xp = gp −Wpx
(b)
p−1 (1.18)

It should also be noted that x0, xp+1,W1 , and Vp are undefined and are assumed

zero. If the calculations are carried out using exact arithmetic, then the above retrieval

gives the exact solution of Ax = f .

Thus to summarize, the SPIKE algorithm can be broken down into the following

steps:

1. Factorize independently the diagonal blocks of A. This is much more efficient

than factorizating A directly.

2. Compute the spikes using the factorization obtained in the previous step and

compute the modified right hand side.

3. Form and solve the reduced system to obtain the partial solution above and

below each partition.

4. Retrieve the rest of solution of x.

1.4 SPIKE Variants

The original SPIKE algorithm explained in the previous has many variants. These

variants target systems of equations with certain properties in order to reduce the

amount of computation performed. They also increase the amount of parallelism

available during different stages of the algorithm.

SPIKE presents different computation options depending on the properties and type

of the matrix and the platform architectures.

1. SPIKES can be computed:
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(a) Explicitly

(b) On-the-fly

(c) Approximately

2. The diagonal blocks can be solved:

(a) Directly (PLU,LU,UL etc.)

(b) Iteratively

3. The reduced system can be solved

(a) Directly (Recursive SPIKE)

(b) Iteratively along with a preconditioning scheme

(c) Approximately (Truncated SPIKE)

The figure 1.1 below illustrates and summarizes different versions of SPIKE algo-

rithms under different factorization schemes.

My focus for implementation and analysis for this thesis is on the variant that use

a truncated scheme to solve the reduced system. The truncated scheme is useful for

systems that are diagonally dominant. In diagonally dominant systems, the values in

the spikes far from the diagonal are likely to be very close to zero and therefore con-

tribute little to the solution. Consequently, the truncated scheme treats these values

as zero and only computes the k×k portion of the spikes close to the diagonal, specifi-

cally, V (b) and W (t) . This is accomplished by either using the LU or UL factorization

computed for the blocks of the diagonal. Since the matrix is diagonally dominant,

the LU-factorization of each block Aj can be performed without pivoting, using for

example the modified LAPACK routine ‘X’DBTRF proposed in ScaLAPACK. The

truncated approach also consists of performing a UL-factorization without pivoting.

Similar to the LU-factorization, this allows obtaining the top block of Wj involving
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Figure 1.1. Table showing different variants of the polyalgorithm SPIKE
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only the top k × k blocks of the new U and L. The numerical experiments indicate

that the time consumed by this LU/UL strategy, is much less than that taken by per-

forming only one LU factorization per diagonal block and generating the entire left

spikes. Using a permutation of the rows and columns of each diagonal block, we can

use the same LAPACK routines to obtain the UL-factorization. Also, an alternative

to performing a UL-factorization of the block Aj could be to approximate the top of

the left spike,W
(t)
i ,of order k, by inverting only an l × l (l > m) top diagonal block

(left top corner) of the banded block Ai. Typically, we choose l = 2k to get a suitable

approximation of the k × k left top corner of the inverse of Ai. The quality of this

approximation depends on the degree of diagonal dominance.

LU factorization of Ai is used to solve the bottom tips, Vi , of the spikes and the

UL factorization of Ai is used to solve for the top tips, Wi , of the spikes. Polizzi and

Sameh [17] found experimentally that it is faster to extract the truncated reduced

system using LU/UL combinations on the machines were arithmetic operations re-

quire much less time than memory references. The LU/UL strategy also has a greater

data locality and computing LU/UL factorizations is a BLAS-3 operation, which is

highly optimized.
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CHAPTER 2

OPENMP AND MPI

2.1 OpenMP

OpenMP is a new API for multi-platform shared-memory programming on UNIX

and Microsoft Windows NT platforms. OpenMP provides comment-line directives,

embedded in C/C++ or Fortran source code, for

1. scoping data

2. specifying work load

3. synchronization of threads

OpenMP provides function calls for obtaining information about threads.

e.g., omp num threads(), omp get thread num() The main idea behind OpenMP is

using a new form of programming formalism that is built under the blanket of an :-

1. An existing sequential language modified to handle parallelism like C/C++ and

Fortran

2. A parallelizing compiler

3. Library routines/compiler directives compatible with the sequential language

Under OpenMP Shared Memory Parallelization, all processors can access all the mem-

ory in the parallel system (one address space). The time to access the memory may

not be equal for all processors implying that the memory might not necessarily be

flat. Also, Parallelizing on a SMP(symmetric multiprocessing) does not reduce CPU
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time , it rather it reduces wall clock time. Parallel execution is achieved by gener-

ating multiple threads which execute in parallel. Number of threads (in principle)

is independent of the number of processors. In the following sections, we are going

to elaborate on the basics of SMP parallelization, threads and variable scoping in an

OpenMP environment.

SMP Parallelization

Symmetric Multiprocessing or SMP involves a multiprocessor computer hardware ar-

chitecture where two or more identical processors are connected to a single shared

main memory and are controlled by a single OS instance. Most common multipro-

cessor systems today use an SMP architecture. For multi-core processors, the SMP

architecture applies to the cores, treating them as separate processors, which may be

interconnected using buses, crossbar switches or on-chip mesh networks. SMP finds

many uses in science, industry, and business which often use custom-programmed

software for multi-threaded processing. The basic concepts behind SMP parallelism

will be discussed in detail in the following sections.

Threads

The threads under SMP constructs are not full UNIX processes. They are lightweight,

independent “collections of instructions” that execute within a UNIX process.

1. All threads created by the same process share the same address space.It can be

considered both as a blessing and a curse due to the fact that “inter-thread”

communication is efficient, but it is easy to stomp on memory and create race

conditions.

2. Because they are lightweight, they are (relatively) inexpensive to create and

destroy exploiting the fact that creation of a thread can take three orders of

magnitude less time than process creation.
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3. Threads can be created and assigned to multiple processors.

SMP Parallelism and OpenMP Threads

Using a parallelizing compiler and its directives, we can generate pthreads using

industry-standard directives (e.g. !$OMP etc.)

1. All OpenMP programs begin as a single process: the master thread

2. FORK: the master thread then creates a team of parallel threads.

3. Parallel region statements executed in parallel among the various team threads.

4. JOIN: threads synchronize and terminate, leaving only the master thread.

Variable Scoping

The most difficult part of shared-memory parallelization is to ascertain the following:

1. The memory that is going to be shared.

2. The memory that would be private (i.e. each processor will have its own copy)

3. And how the private memory is going to be treated vis-â-vis the global address

space.

Variables are shared by default, except for loop index in parallel do loop. It also

must mesh with the Fortran view of memory. The variables broadly speaking can be

classified as:

• Global: shared by all routines

• Local: local to a given routine and saved vs. non-saved variables.

2.2 MPI

Message Passing Interface (MPI) is an API specification that allows processes to

communicate with one another by sending and receiving messages. It is typically used
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to implement parallel programs that are intended for execution on high performance

clusters and supercomputers, where the cost of accessing non-local memory is high.

MPI controls its own internal data structures i.e. supports heterogeneity.

A MPI communicator is a handle representing a group of processes that can com-

municate with each other. All MPI communication calls have a communicator argu-

ment like MPI COMM WORLD which is defined when an MPI INIT call is made.

The calling sequence to create a parallel program in MPI is described in the next

section.

Using MPI

1. Initializing MPI:

MPI INIT must be the first MPI routine called (only once)

2. Process Rank:

It is used to identify the source and destination of message

(a) There is a Process ID number within the communicator that starts with

zero and goes to n− 1, where n is the number of processes requested

3. Exiting MPI:

No calls to MPI routines after finalization. For example the Fortran call, CALL

MPI FINALIZE tells the compiler to exit the distributed environment. The

number of processes running after this routine is called is undefined.

2.3 OpenMP vs MPI

The table belows summarizes the key differences between OpenMP and MPI:
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OpenMP MPI
1. Platform specific, i.e. Only for shared
memory-architectures

1. Platform independent, i.e. Portable to
all platforms

2. Easy to incrementally parallelize but
more difficult to write highly scalable pro-
grams

2. Highly distributed, i.e. everything
needs to be parallelized or nothing

3. Small API based on compiler directives
and limited library routines

3. API based on vast collection of library
routines

4. Same program can be used for sequen-
tial and parallel execution

4. Possible but difficult to use same pro-
gram for both serial and parallel execution

5. Global and local scoping i.e. Shared and
private variables

5. Grossly local scoping as variables are
local to each processor

Table 2.1. OpenMP vs MPI
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CHAPTER 3

SPIKE OPENMP FOR DIAGONALLY-DOMINANT
SYSTEMS

3.1 The TA-SPIKE algorithm

The TA-SPIKE algorithm described in [19] combines both the advantages of the

LU/UL strategy of the truncated SPIKE scheme, and a new unconventional parti-

tioning scheme to achieve an effective load balancing between processors/cores.

3.1.1 Truncated SPIKE

The truncated SPIKE scheme introduced in [16] is an optimized version of the

SPIKE algorithm with enhanced use of parallelism for handling diagonally dominant

systems. These systems may arise from several science and engineering applications,

and are defined if the degree of diagonally dominance, d, of the matrix A is greater

than one; where d at stated previously, is given by:

d = min
|Ai,i|∑
j 6=i |Ai,j|

. (3.1)

If this property is satisfied, one can show that the magnitude of the elements of the

right spikes Vj would decay from bottom to top, while the elements of the left spikes

Wj would decay in magnitude from top to bottom [21, 22]. Since the size of the

diagonal blocks Aj is assumed much larger than the size m of the blocks Bj and Cj,

the bottom blocks of the left spikes W
(b)
j and the top blocks of the right spikes V

(t)
j

can be approximately set equal to zero. It follows that the resulting “truncated”
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reduced system is simply block diagonal composed by p − 1 independent 2m × 2m

block systems (P represents the number of partitions) of this form:

 Im V
(b)
j

W
(t)
j+1 Im


X(b)

j

X
(t)
j+1

 =

G(b)
j

G
(t)
j+1

 ,  = 1, . . . , p− 1, (3.2)

where Xj and Gj denote the jth partition of the solution X and the modified right

hand side G. Therefore the block G
(b)
j (resp. X

(b)
j ) is associated to the bottom tip of

Gj (resp. Xj), while the block G
(t)
j+1 (resp. X

(t)
j+1) is associated to the top tip of Gj+1

(resp. Xj+1). The reduced linear systems are then decoupled and can be solved in

parallel.

Within the framework of the truncated scheme, two other major contributions

have also been proposed for improving computing performance and scalability of the

factorization and solve stages:

(i) a LU/UL strategy, and

(ii) a new unconventional partitioning scheme.

3.1.2 LU/UL strategy

The LU/UL strategy can be used to avoid computing (generating) the entire

spikes in order to obtain the tips V b
j and W t

j+1 (j = 1, . . . , p − 1). As illustrated

in Figure 3.1, computational solve times to obtain the bottom tip V b
j can be drasti-

cally reduced by using the LU factorization without pivoting on each diagonal block

Aj=1,...,p−1. In turn, a UL factorization without pivoting on each diagonal block

Aj=2,...,P can be used to obtain the tips W t
j involving only the top m ×m blocks of

the new U and L matrices.

Finally, it should be noted that the two-partitions case can take advantage of

a single LU or UL factorization without pivoting respectively for A1 and A2. The
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(exact) resulting single block reduced system can then be obtained and solved with

minimal efforts. As a result, the number of arithmetic operations of SPIKE using the

LU/UL strategy for the two-partitions case and running on two processors/cores, is

essentially divided by two as compared to the sequential LAPACK in the factorization

and solve stages.

Figure 3.1. The bottom of the spike Vj can be computed using only the bottom
m×m blocks of L and U . Similarly, the top of the spike Wj may be obtained if one
performs the UL-factorization.

3.1.3 Partitioning for TA scheme

Most often, parallel algorithms which aim at achieving linear scalability on large

number of processors/cores, inherit extensive preprocessing stages with increased

memory references or arithmetic operations, leading to performance degradation on

small number of processors/cores. For example, using the LU/UL strategy de-

scribed above with a number of partitions greater than two, each middle partition

j = 2, . . . , p− 1 has now to perform both LU and UL factorizations. In order to de-

crease the number of arithmetic operations, a new parallel distribution of the system

matrix is here considered, which involves using less partitions than number of proces-

sors/cores k (i.e. p < k). In practice, the new number of partitions will be equal to

p = (k + 2)/2 (where k is an even number of processors/cores). Figures 3.2 and 3.3

illustrate the new partitioning of the matrix right hand side and solution, respectively

for the cases k = 4, p = 3 and k = 8, p = 5. Within this new partitioning, the new

block matrices Aj, j = 1, . . . , p, are associated to the first p processors/cores, while
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the rest of them going from p + 1 to k hold another copy of the block matrix Aj,

j = 2, . . . , p− 1.

Figure 3.2. Illustration of the unconventional partitioning of the linear system for
the TA-SPIKE algorithm in the case of 4 processors/cores. A1 is sent to processor 1,
A2 to processor 2 and 4, and A3 to processor 3.

Figure 3.3. Illustration of the unconventional partitioning of the linear system for
the truncated SPIKE algorithm in the case of 8 processors/cores. A1 is sent to
processor 1, A5 to processor 5, and Ai for i = 2, . . . , 4 to processor i and i+ 4.

As described above using the LU/UL strategy, the V
(b)
j (j = 1, . . . , p− 1) can be

obtained here with minimal computational efforts via the LU solve step on proces-

sors/cores 1 to p− 1, while the W
(t)
j (j = 2, . . . , p) can be obtained in the similar way

by performing a UL solve steps on processors/cores p to k. In the example of k = 4,

we perform now independently the factorizations LjUj ← Aj for partitions j = 1, 2,
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and ÛjL̂j ← Aj for partitions j = 2, 3. Using this new partitioning scheme the size

of the partitions does increase but the number of arithmetic operations by partition

decreases along with the size of the truncated reduced system. As compared to a

sequential LU algorithm, the speed-up for the factorization stage of the TA-SPIKE

scheme is then expected ideally equal to the new number of partitions, i.e. 2× on

two processors/cores, 3× on four, 5× on eight, etc.

Finally, it should be noted that the same speed-up performance is expected for

the solve stage as well. It is indeed possible to compute the final solution using

essentially only one forward sweep and one backward sweep by partitions (the costs

for communications and for the solve of the truncated reduced system, are considered

minimal). Figure 3.4 illustrates, in particular, that the Gb
j j = 1, . . . , p − 1 blocks

which appears in the reduced system (3.2), can be generated mainly using only one

forward sweep of the LU factorization on partition j.

Figure 3.4. The bottom of the modified right hand side Gj can be computed using
an entire forward sweep on L follows by and a very small fraction of backward sweep
on U .

Similarly, the generation of Gt
j+1 j = 1, . . . , p− 1 can be obtained independently

using only one entire backward sweep of the UL factorization on partition j+1. Once

the reduced system solved (with minimal costs), the entire solution can be retrieved

as follows:

Aj Xj = Fj −

 0

Im

BjX
(t)
j+1 −

Im
0

CjX(b)
j−1, j = 2, . . . , p− 1, (3.3)
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where the third term (resp. the second term) of the right hand side is absent for the

case j = 1 (resp. j = p). Since both LU and UL factorizations are available for Aj

i.e. Aj = LjUj and Aj = ÛjL̂j (within the TA-scheme these factorizations have been

assigned to different processors/cores), one can rewrite the above equation as follows:

Xj = U−1j

L−1j Fj − L−1j

 0

Im

BjX
(t)
j+1

− L̂−1j
Û−1j

Im
0

CjX(b)
j−1

 . (3.4)

As a result, the first term of the right hand side mainly involves performing only

one entire backward sweep on processors 1, . . . , p − 1. Indeed, the forward sweep

for obtaining L−1j Fj has already been performed as a necessary step for generating

the tips of the modified right side Gj (see Figure 3.4), while the second term in

the expression would involve only a very small fraction of forward sweep. Similarly,

the second term of the right hand side involves mainly performing only one entire

forward sweep on processors p, . . . , k (only a very small fraction of backward sweep

is also needed here).

3.1.4 Error Analysis

In this section a theoretical error analysis of the truncated SPIKE algorithm,

carried out by Carl Mikkelsen and Murat Manguoglu [22] is summarized.

Let u denote the unit roundoff error on the machine, and following Higham [14],

the authors define,

γj = ju/1− ju (3.5)

when ju < 1.

if the unit roundoff error is sufficiently small, they define

α = γ3k+2(
d+ 1

d− 1
)2 < 1 (3.6)
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1. Stage 1:

Each matrix Ai has dimension µ and is strictly diagonally dominant by rows.

The computed LU factorization satisfies:

A+4Aj = L̂iÛi, |4Ai| ≤ γ3k+2|L̂i||Ûi|, (3.7)

where,

‖ |L̂i||Ûi| ‖∞≤
d+ 1

d− 1
‖ A ‖∞ (3.8)

when the unit roundoff error u is sufficiently small. The same type of estimate

is obtained for the computed UL factorization.

2. Stage 2:

In the truncated SPIKE algorithm, the entire SPIKE matrix is not computed

but substituting is stopped as soon as the truncated reduced system matrix has

been computed. However, in order to estimate the error, it is convenient to

consider the computation of the entire SPIKE matrix S.

Since T̂ − T is a sub-matrix of Ŝ − S, following accuracy bound is obtained:

‖ T̂ − T ‖∞≤‖ Ŝ − S ‖∞≤
2α

1− α
‖ S − I ‖∞≤

2α

1− α
(3.9)

3. Stage 3:

By Theorem 2, the truncated reduced system is a good approximation of the

reduced system if d is not too close to 1 and if the partitions are not too small.

By Theorem 1 ,the truncated reduced system is strictly diagonally dominant by

rows with a degree no less than the original system. It consists of p−1 indepen-

dent systems which are of dimension 2k. It follows that if Gaussian elimination

runs to completion, then the computed solution x̂tr of the computed truncated
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reduced system T̂ xtr = ĝr satises

(T̂ +4T̂ )x̂tr = ĝrand|4T̂ | ≤ γ6k|L̂t||Ût| (3.10)

where L̂tÛt is the computed LU factorization of the computed truncated re-

duced system matrix T̂ . It follows that,

‖ x̂tr − xtr ‖∞≤
β

1− β
‖ xtr ‖∞, ‖ T̂ x̂tr − ĝr ‖∞≤

β

1− β
‖ gr ‖∞ (3.11)

provided the unit round off error is small enough such that β < 1

4. Stage 4:

Adjusting the original right-hand side, i.e., computing

hi = fi − Cixbi−1 −Bix
t
i+1 (3.12)

introduces a small forward error. Ci affects only the top of fi and Bi affects

only the bottom fi The component wise relative forward error is no more than,

ĥi − hi ≤ γk+1(|fi| −+Ci||xbi−1|+ |Bi||xti+1|) (3.13)

regardless of the order in which the scalar products are evaluated. Both the

norm-wise relative residual as well as the norm-wise relative forward error are

at most α
1−α

In a nutshell, if d is not too close to 1 and if the partitions are not too small, then

the errors at every stage of the algorithm are small. The simplest way to evaluate

the overall error was to calculate the residual and estimate,

‖ x− y ‖∞≤‖ A−1 ‖∞≤‖ f − Ay ‖∞≤
1

1− d−1
‖ f − Ay ‖∞ (3.14)
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which turns out to be fairly effective as long as d is not too close to 1.

3.1.5 Theorems

Theorem 1 1. Let A be strictly diagonally dominant by rows with degree d > 1.

Then the matrices S, R, and T are strictly diagonally dominant by rows with degree

no less than d, specifically

d ≤ d(S) ≤ d(R) ≤ d(T ),

with equality possible. The condition numbers are upper bounded by d+1
d−1 with equality

possible.

Theorem 2 1. Let A be an n by n narrow banded matrix with upper and lower band-

width k, and strictly diagonally dominant by rows with degree d. Then the truncation

error satisfies

‖ R− T ‖∞≤ maxi=1,...,pd
−qi (3.15)

where qi = bµi/kc and µi, and is the size of the ith partition.

3.2 SPIKE-TA OpenMP

As mentioned in the previous section, the theoretical speed-up of SPIKE-TA

(or scaling factor) in comparison to LAPACK sequential is expected to be equal

to the number of partitions p, given by k/2 + 1, where k represents the number of

threads (k even number). It should be noted that in contrast to its counterpart MPI-

implementation, the system matrix is not supposed to be distributed privately on

the different threads by the user before entering the factorization stage. Since the

entire system matrix is shared in memory, an additional copy of the matrix is also

needed for k > 2 in order to perform both LU and UL factorizations independently on

each thread. The partitioning stage is naturally hidden from the user in the SPIKE
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OpenMP version, while on the other hand, it is unlikely that the unconventional par-

titioning of the TA-scheme can be handled with ease via MPI-programming from the

user perspective. Although the extra copy which becomes a work array for the UL

factorization, can be done in perfect parallel manner using all the available threads,

one can expect a degradation of performance as compared to the ideal speed-up. It

also makes SPIKE-OpenMP more expensive in memory as compared to LAPACK

(we note, however, that since factorizations are performed without pivoting no extra-

storage is necessary for the banded LAPACK format).

Both the routines ‘XSPIKE TRF’ and ‘XSPIKE TRS’ respectively for factoriza-

tion and solve stages, have been created to mimic the functionalities of the LAPACK

routines ‘XGBTRF’ and ‘XGBTRS’ (or the auxiliary routines ‘XDBTRF’ and ‘XDB-

TRS’ contained in the ScaLAPACK package [4] when applied to diagonally dominant

systems). The SPIKE implementation makes uses of our in-house sequential (BLAS-

3) banded primitives:

(i) ‘XGBALU’ and ‘XGBAUL’ respectively for approximate LU and UL banded

factorizations (approximate stands for ‘no pivoting and diagonal boosting if

necessary’) which, in turn, are exact for diagonally dominant systems;

(ii) ‘XTBSM’ for banded triangular solve which involves multiple right hand sides.

The banded primitives library named ‘libbprim’ can currently be obtained from

the public FEAST eigenvalue solver package [23].

3.3 Results and Discussion

The numerical experiments were carried out on an Intel Nehalem X5550 node

featuring eight cores, running at 2.66Ghz, with RAM: 48GB (12 x 4GB) DDR3-

1333 Registered ECC (2 Modules/channel: 1066MHz max speed), 8MB Cache and,

6.4GT/s QPI.
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The BLAS, BLAS-threaded and LAPACK were obtained from the Intel MKL

version 10.1.0.015. The shell variable OMP NUM THREADS=k defines the number

of threads for SPIKE OpenMP, while the shell variable MKL NUM THREADS=k

controls the number of threads used by the MKL-LAPACK routines. The MKL-

LAPACK results obtained with k = 1 are used as references for the sequential times,

and the parallel runs are performed for the cases k = 2, k = 4 and k = 8. Denoting

N the size of the system matrix (which is taken symmetric here), b its bandwidth,

and #rhs the number of right hand sides, we propose to perform three sets of exper-

iments reported in Table 3.3. We use toeplitz matrix (diagonal-constant matrix i.e.

diagonals elements don’t change), as our system matrix(A) in these experiments. For

diagonally-dominant systems, A = [0.1 . . . 1.0 . . . 6.0 . . . 1.0] (6.0 on the diagonal, 1.0

on the two off-diagonals), and the constant vector 1.0 as the RHS.

At first, the scalability performances of MKL-LAPACK and SPIKE-OpenMP are

compared for different size matrix N while a fixed bandwidth of b = 200 and only

one right hand side are considered (Figure 3.5). MKL-LAPACK exhibits either some

slight performance degradations mainly on two cores or very limited speed-up perfor-

mances on four and eight cores (from ∼ 0.9× to ∼ 1.3× ). In contrast, a speed-up of

2× is consistently obtained for all cases using SPIKE-OpenMP on two cores, while

for large N/b ratio, the speed-up performances improves to ∼ 2.7× on four cores and

∼ 3.9× on eight cores. It should be noted that if the timing of the extra-copy of the

matrix is not accounted for (i.e. if an additional copy is provided by the user for exam-

ple), one obtains instead the (expected) speed-up of 3× and 4.8× respectively on four

and eight cores. For smaller N/b ratio and in particular for the cases of N = 20, 000,

N = 40, 000 and N = 80, 000 a degradation of performance is observed while going

from four to eight cores. The computational time becoming very small for four cores

(example: T = 0.1179/2.391 = 0.049s for N = 20, 000), the cost of communications

are expected to exceed the cost of computations and these performance degradations
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Time(s) LAPACK speed-up SPIKE-TA OMP speed-up
# threads 1 2 4 8 2 4 8

b=200 #rhs=1

N=20,000 0.1179 0.887 0.906 1.078 1.822 2.391 1.384
N=40,000 0.2051 0.987 1.297 1.229 1.853 2.540 1.769
N=80,000 0.3915 1.033 1.102 1.180 2.014 2.643 2.204
N=160,000 0.7537 1.019 1.088 1.173 2.137 2.697 3.011
N=320,000 1.4962 0.879 1.008 1.162 2.178 2.689 3.482
N=640,000 2.9736 1.127 1.137 1.332 2.192 2.730 3.765
N=1,280,000 5.9268 0.921 1.330 1.244 2.195 2.719 3.940

N=1,280,000 #rhs=1

b=125 4.1719 1.005 1.007 1.008 2.161 2.763 4.033
b=250 8.7000 1.048 1.222 1.445 2.157 2.780 4.065
b=500 23.450 1.448 1.552 2.130 2.116 2.771 4.343
b=1000 77.223 1.369 2.085 2.948 2.079 2.799 4.177

N=1,280,000 b=1000

#rhs=10 84.589 1.672 2.230 2.970 2.163 2.931 4.406
#rhs=100 139.95 1.838 2.727 4.178 2.773 3.793 5.834

Table 3.1. Three sets of experiments are used to illustrate the performances and
scalability of MKL-LAPACK and SPIKE-OpenMP for solving real and double pre-
cision diagonally dominant systems. Both solvers are running on a Intel Nehalem
node X5550 featuring eight cores running at 2.66Ghz, with 48Gb total memory. The
accuracy results on the residuals obtained by both solvers, not reported here, are
comparable (accuracy machine).
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SPIKE-TA OMP speed-up SPIKE-TA MPI speed-up
# threads 2 4 8 2 4 8

b=200 #rhs=1

N=20,000 1.822 2.391 1.384 1.914 2.415 1.851
N=40,000 1.853 2.540 1.769 2.030 2.249 2.040
N=80,000 2.014 2.643 2.204 2.163 2.523 2.029
N=160,000 2.137 2.697 3.011 2.249 2.781 3.05
N=320,000 2.178 2.689 3.482 2.301 3.011 3.347
N=640,000 2.192 2.730 3.765 2.287 3.053 3.911
N=1,280,000 2.195 2.719 3.940 2.288 3.061 4.121

N=1,280,000 #rhs=1

b=125 2.161 2.763 4.033 2.351 3.153 4.490
b=250 2.157 2.780 4.065 2.365 3.222 4.571
b=500 2.116 2.771 4.343 2.357 3.115 4.579

Table 3.2. Two sets of experiments are used to compare the performances and scal-
ability of SPIKE-OpenMP and SPIKE-MPI, truncated implementations for solving
real and double precision diagonally dominant systems.

are likely to arise from the limitations of the architecture. As clear from Figure 3.5,

for appropriate N/b ratio, however, SPIKE-OpenMP is expected to keep scaling on

shared memory architectures as we move to more than eight cores.

In the second set of experiments, we propose to fix the system size at N = 1, 280, 000

and decrease the N/b ratio by increasing the bandwidth b. The MKL-LAPACK scal-

ing performances become better with larger bandwidth since the speed-up of ∼ 1.4×,

∼ 2.0× and ∼ 2.9× are respectively obtained for the case b = 1, 000 running on two,

four and eight cores. Indeed, the underlying threaded BLAS level-3 is likely to become

much more effective for larger dense bandwidth. The scalability results obtained by

SPIKE are consistent with the ones observed in the first set of experiments with a

slight improvement here on eight cores.

Finally, both the speed-up of the threaded MKL-LAPACK and SPIKE-OpenMP

improved drastically while considering multiple right hand sides. Indeed, it is unlikely

that the solve stage (i.e. forward and backward steps) in MKL-LAPACK sequential,
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Figure 3.5. This figures shows the graphical representation of the speed-up of
SPIKE-TA OpenMP, varying N with fixed b and #rhs

takes advantages of a BLAS-3 implementation since the underlying LAPACK basic

algorithm does not (hence the need for developing the banded primitives library

mentioned in the previous section). In this set experiments where the solve times

becomes more important than the factorization times, the scalability results of MKL-

LAPACK and SPIKE-OpenMP (i.e. going from two to four cores and then four to

eight cores), perform well, but the SPIKE-OpenMP timing performances are still

much faster.

The table 3.3 illustrates the results we obtain after performing two new sets of

experiments on the same Intel Nehalem machine to gauge how SPIKE-TA OpenMP

performs in comparison to its distributed memory MPI version: varying the size of

the system, N from 20, 000 to 1, 280, 000, with constant bandwidth, b during the first

experiment (Figure3.6), and varying the b with constant N in the second experiment.

As clear from the table, OpenMP matches up the MPI the speed-up for the runs
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on two processors/threads irrespective of the size of the system or the bandwidth.

For the runs on the 4 processors/threads, OpenMP evenly matches up MPI for small

systems, but falls marginally short on speed-up as the size of the system or the

bandwidth become large. For the 8 processor runs, OpenMP consistently gets a

speed up of 4×, while MPI marginally strides ahead with a speed 4.2× for large

N and/or b. However, our OpenMP implementation takes into account the times

incurred for an additional copy of the system matrix, but if we would just account for

the time taken for factorize and solve, the minor slump in speed-up would be negated,

and exactly match up with that of MPI.

Figure 3.6. This figures shows the graphical representation of the speed-up of
SPIKE-TA MPI, varying N with fixed b and #rhs, qualitatively similar to OpenMP
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CHAPTER 4

SPIKE OPENMP FOR NON-DIAGONALLY DOMINANT
SYSTEMS

4.1 Schemes

We have implemented the following two schemes in particular to tackle the systems

that are non-diagonally dominant :-

1. SPIKE-RL: We have implemented the SPIKE-RL (recursive) version in OpenMP,

as numerical experiments show that good-scaling in observed in comparison to

LAPACK for solving non-diagonally dominant systems. A description of the

RL-scheme is summarized in the next section.

2. Spike-calling-Spike (SCS): Based on good scalability results for the timings we

obtained on 2-threads (processors), we implemented a 2 × 2 MPI kernel in

addition to the 2 × 2 OpenMP factorize and solve routines, and from within

the MPI kernel call these routines for solving non-diagonally dominant systems.

The timings were expected to be similar in comparison to the SPIKE-RL for

the 2 and 4 threads case. We hence implemented a SCS solver, specific for

the 4-processor case, so we could compare the timing results with our OpenMP

implementation of SPIKE-RL scheme.

The 2×2 MPI kernel has been implemented using the modified Banded Primitive

[23] routines, and the 2×2 OpenMP factorize and solve routines were extracted

from our OpenMP implementation of the SPIKE-TA algorithm. The following

table shows preliminary speed-up results we obtained for the 4-processor case:-
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Time(s) SCS MPI-OpenMP speed-up 4-threads
b=200 #rhs=1

N=20,000 1.379
N=40,000 1.405
N=80,000 1.466
N=160,000 1.507
N=320,000 1.580
N=640,000 1.590

N=1,280,000 1.592

Table 4.1. SCS speed-up on 4-processors

N denotes the size of the system matrix, b denotes the bandwidth and # rhs,

the number of right-hand sides. The speed-up results for different system sizes

Table(4.1), suggest that the speed-up on 4-threads is less in comparison to

SPIKE-RL scheme for same system parameters (N, b, # rhs). We hence con-

clude that 2× 2 kernel, which showed excellent scalability on 2-processors, isn’t

effective when cast for 4-processors using nested 2× 2 kernel calls, because re-

cursive implementation on large vectors, i.e. spikes V and W, is less effective in

comparison to a recursive implementation on smaller vectors like reduced sys-

tem, as is done in the SPIKE-RL scheme. Consequentially, we instead pursued

with implementing the SPIKE-RL (recursive) algorithm in OpenMP.

4.2 Recursive SPIKE

4.2.1 Two partitions case

The recursive version of the SPIKE algorithm is general enough for handling non-

diagonally dominant systems. We need just the tips of the spikes in the RL scheme

for forming the reduced system and then solving it. The RL-scheme saves memory as

we are not required to store the entire SPIKE matrix. The RL scheme uses recursion

on reduced system which is much smaller in comparison to doing recursion on the
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entire partitions of the system(which is the case in Spike-calling-Spike version). Here,

since we are dealing with non-diagonally dominant systems, we need both the top and

bottom of both the spikes, unlike the Truncated scheme for the diagonally dominant

case, where we could neglect the top of V (super-diagonal spike) and bottom of W

(sub-diagonal spike). Another point worth mentioning for the RL-scheme is that the

# partitions = # processors, in power of 2. The following steps demonstrate the

working of the RL scheme:

1. Preprocessing Stage:

The first step of the preprocessing stage is to factorize the diagonal blocks

Aj. For numerical stability, LAPACK’s XGBTRF routines can be used to LU

factorize them with partial pivoting. Alternatively, they can be also factorized

without partial pivoting but with a “diagonal boosting” strategy. The latter

method tackles the issue of singular diagonal blocks. In concrete terms, the

diagonal boosting strategy is as follows. Let ε denote a configurable machine

zero and ‖ • ‖ is the 1-norm. In each step of LU factorization, the pivot should

satisfy the condition: |pivot| > ε ‖ A ‖1

If the pivot does not satisfy the condition, it is then boosted by:

pivot = pivot+ ε′ ‖ Aj ‖1 if pivot ≥ 0

pivot = pivot− ε′ ‖ Aj ‖1 if pivot ≤ 0

2. Post-processing Stage:

In the two-partition case, i.e., when p = 2, the reduced system ŜX̂ = Ĝ has the

form 

Im 0 V
(t)
1 0

0 Im V
(b)
1 0

0 W
(t)
2 Im 0

0 W
(t)
2 Im 0





X
(t)
1

X
(b)
1

X
(t)
2

X
(b)
2


=



G
(t)
1

G
(b)
1

G
(t)
2

G
(b)
2


(4.1)

34



An even smaller system can be extracted from the center:

 Im V
(b)
1

W
(t)
2 Im


X(b)

1

X
(t)
2

 =

G(b)
1

G
(t)
2

 (4.2)

that can be solved using the blocked LU factorization.

 Im V
(b)
1

W
(t)
2 Im

 =

 Im 0

W
(t)
2 Im


Im V

(b)
1

0 Im −W (t)
2 V

(b)
1

 (4.3)

Once X
(b)
1 and X

(t)
2 are computed, X

(b)
1 and X

(t)
2 can be retrieved using the

following:

X
(t)
1 = G1(t)− V (t)

1 X
(t)
2 (4.4)

X
(b)
2 = G2(t)−W (b)

2 X
(b)
1 (4.5)

This can be generalized to cases where p or the number of partitions is a power

of two, i.e., p = 2d.

4.2.2 Multiple partitions case

It is assumed that the number of partitions is given by p = 2d (d > 1). After

forming the spike matrix S, the number of partitions of the new linear system SX = G

can be divided by two, and another level of the SPIKE algorithm may be applied.

This process is repeated recursively until only two partitions for the newest matrix S

are obtained. The resulting reduced system has then the form (4.2).

Recursive scheme is not concerned with the overall matrix S but rather with the

matrix Ŝ of the reduced system itself. This allows simplified implementation, and

reduces the memory requirements while saving all the different levels of the new

spikes. In the reduced system, the matrix Ŝ is block tridiagonal.
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Observing that we can also extract an independent reduced system of an order

2mp, rather than order 2m(p − 1), if we include in addition the top m rows and

the bottom m rows of the first and last partition, respectively. The structure of the

reduced system remains block tridiagonal but in this case, each diagonal block is

an identity matrix of order 2m, and the off-diagonal blocks associated with the kth

diagonal block are given by

0 W
(t)
k

0 W
(b)
k

 for k = 2, ..., p and,

V (t)
k 0

V
(b)
k 0

 for k = 1, ..., p− 1 (4.6)

Denoting the spikes of the new reduced system at level 1 of the recursion by v
[1]
k

and w
[1]
k , where

v
[1]
k =

V (t)
k

V
(b)
k

 , and w
[1]
k =

W (t)
k

W
(b)
k

 (4.7)

the matrix S̃1 of the new reduced system, for p = 4 takes the form

Figure 4.1. The spike matrix of the new reduced system for p=4

In preparation for level 2 of the recursion of the SPIKE algorithm, we choose now

to partition the matrix S̃1 using p/2 partitions each of size 4m. The matrix can then

be factored as,
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S̃1 = D1S̃2 (4.8)

where D1 is formed by the p/2 diagonal block of S̃1 each of size 4m, thus S̃2

represents the new Spike matrix at level 2 composed of the spikes v
[2]
k and w

[2]
k . For

four partitions, p = 4, these matrices are of the form,

and

In general, at level i of the recursion, the spikes v
[i]
k , and w

[i]
k , with k ranging

from 1 to p/(2i), are of order 2im ∗m. Thus, if the number of the original partitions

p is equal to 2d, the total number of recursion levels is d − 1 and the matrix S̃1 can

be expressed in the factored form,

S̃1 = D1D2....Dd−1S̃d (4.9)

where the matrix S̃d has only two spikes v
[d]
1 and w

[d]
2 . The linear reduced system can

then be written as
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S̃dX̃ = B (4.10)

where B is the modified right-hand-side given by

B = D−1d−1....D
−1
2 D−11 G̃ (4.11)

assume that the spikes v
[i]
1 and w

[i]
2 of the matrix S̃i are known at a given level i, then

we can compute the spikes v
[i+1]
k and w

[i+1]
k at level i+1 as follows:

Step 1: Denoting the bottom and top blocks of the spikes at the level i by

v
[i](b)
k =

(
0 Im

)
vik; w

[i](t)
k =

(
Im 0

)
wik (4.12)

and the middle block of 2m rows of the spikes at the level i+1 by

 ˙
v
[i+1]
k

¨
v
[i+1]
k

 =

(
0 I2m 0

)
v
[i+1]
k ;

 ˙
w

[i+1]
k

¨
w

[i+1]
k

 =

(
0 I2m 0

)
w

[i+1]
k (4.13)

and the reduced systems can be formed as following:

 Im v
[i](b)
2k−1

w
[i](t)
2k Im


 ˙
v
[i+1]
k

¨
v
[i+1]
k

 =

 0

v
[i](t)
2k

 , k = 1, 2, . . . ,
p

2i−1
− 1 (4.14)

and

 Im v
[i](b)
2k−1

w
[i](t)
2k Im


 ˙
w

[i+1]
k

¨
w

[i+1]
k

 =

w[i](b)
2k−1

0

 , k = 2, 3, . . . ,
p

2i−1
(4.15)

These reduced systems are solved similarly to (4.2) to obtain the solutions of

the center parts of the spikes at the level i + 1.
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Step 2: The entire solution of the spikes at the level i + 1 is retrieved as follows:

(
I2im 0

)
v
[i+1]
k = −v[i]2k−1

¨
v
[i+1]
k ,

(
0 I2im

)
v
[i+1]
k = v

[i]
2k − w

[i]
2k

˙
v
[i+1]
k (4.16)

and

(
I2im 0

)
w

[i+1]
k = w

[i]
2k−1 − v

[i]
2k−1

¨
w

[i+1]
k ,

(
0 I2im

)
v
[i+1]
k = −w[i]

2k

˙
w

[i+1]
k (4.17)

In order to compute one step of the modified RHS as G̃i = D−1i
˜Gi−1 (with the first

being G̃1 = D−11 G̃) one has to solve the linear system DiG̃i = ˜Gi−1, which is a block

diagonal. For each diagonal block k, the reduced systems are similar to those in (4.14)

and (4.15), but the RHS is now defined as a function of ˜Gi−1. Once we get the partial

solution at the center part of each G̃i, associated with each block k in Di, the entire

solution is retrieved as in (4.16) and (4.17). In the same way, the linear system in

4.10 involves only one reduced system to solve and only one retrieval stage to get the

solution X̃. Finally, the overall solution X is obtained using the following equations:

X ′1 = G′1 − V ′1X(t)
2 (4.18)

X ′j = G′j − V ′jX(t)
j+1 −W ′

jX
(b)
j−1, j = 2, . . . , p− 1. (4.19)

X ′p = G′p −W ′
jX

(b)
p−1 (4.20)

4.3 Implementation

As mentioned previously, for the recursive spike algorithm, we have number of

partitions same as the number of processors. The recursive scheme unlike the trun-

cated scheme requires generation of entire spike, as the tips of the spikes, V b
i , V t

i (i =
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1, . . . , p−1) and W b
j ,W

t
j (j = 2, . . . , p), are required to computed for forming reduced

systems at different levels of recursion.

However, since preprocessing factorization stage which involves computing spikes

is predominantly the most time consuming part of the entire solver, we use a trick

to speed up this stage. We use LU/UL strategy that allows us to save two sweeps in

total on the first and the last partition combined. Furthermore, as an enhancement,

for the first and the last partition, we use only a small solve sweep (DTBSM) for L

and U, and complete partition sweeps on the middle partitions, totalling three sweeps.

Therefore, we save four sweeps in total, two on both the first and the last partition.

We can do this V t
1 and W b

n, n : last partition index are not used anywhere during

the final retrieval of the solution, and doesnt corrupt the final residual.

We cast two subroutines, the first one, dspikerl trf which assimilates the spikes

matrices and reduced system at different recursion levels, and the second one dspikerl trs,

that obtains the modified rhs, solves the reduced system and performs the retrieval

of the overall solution.

Figure 4.2. Figure showing the factorization step, and forming reduced systems at
different levels of recursion for SPIKE-RL

The above figure (4.2) illustrates the factorization stage of system matrix, i.e. cal-

culating spikes V,W and forming the reduced systems at different levels of recursion.

We associate to each CPU a particular reduced system (which is required for the
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recursion). For example, as above, when the number of partitions are eight (run on

8-threads or processors equivalently), the following are the reduced system-processor

associations:

1. for level 1 of recursion we get the reduced systems associated with CPU= 1,3,5,7

2. for level 2 we get the reduced systems associated with CPU= 2,6

3. for level 3 we get the reduced systems associated with CPU= 4

4.3.1 Load-balancing

For the recursive scheme, we use a non-uniform partitioning strategy for execu-

tion on more than 2 two threads (or processors). Since the first and the last matrix

partitions do less computational sweeps in comparison to middle partitions, we hence

make their size larger than the rest of the partitions. This allows us to leverage the

timing benefit, by doing full-computation on smaller matrix partitions. An input pa-

rameter ratio, which is the ratio between the size of first (last) partition and middle

partitions, governs how large the first and last partitions would be relative to the

middle ones. We formulate an expression based on the size of a partition, compu-

tational cost associated with that partition, and assuming the cost of LU is greater

than one sweep but less than two sweeps (1− sweep < LU < 2− sweeps). Using this

relation, we determine an optimum value of this ratio, and confirm it using numerical

evidence (provided in next section).

Let nbpart denote the number of partitions. It may be noted that the size of,

partition(1) = partition(nbpart) (4.21)

partition(2) = partition(i) i = 3, . . . , (nbpart− 1) (4.22)
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The optimal load balancing ratio is obtained by solving the following set (4.3.1),

(4.3.1) of expressions:

2 ∗ x+ (nbpart− 2) ∗ y = 1, (4.23)

where, x: first partition fraction of total, y: second partition fraction of total

(2i + 2) ∗ y =
1

2
(4.24)

where, i is the total number of recursion levels.

We hence coin a new term, the optimal ratio, Rt , given by,

Rt =
x

y
(4.25)

Using the above relations, we get Rt = 3.

4.3.2 Retrieval

Since in many applications, often many linear systems with the same coefficient

matrix A but with different RHSs have to be solved, optimization of the solve stage

is also necessary. We aim to save time during the retrieval by doing a small solve

sweep (DTBSM) for U for the first partition and a similar small sweep for L for the

last partition, while solving for the modified rhs i.e. Ajgj = fj. After obtaining the

reduced solution, we finish U on the first partition, and L on the last partition, prior

to performing vector addition to update the final solution. The retrieval in essence is

similar to the one performed in the truncated scheme.

4.4 Results and Discussion

We use the same shell variables as described in the previous chapter for the trun-

cated spike algorithm. The MKL-LAPACK results obtained with k = 1 (k defines the
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number of threads used by OpenMP and MKL-LAPACK) are used as references for

the sequential times, and the parallel runs are performed for the cases k = 2, k = 4

and k = 8. Denoting N the size of the system matrix (which is taken symmetric

here), b its bandwidth, and #rhs the number of right hand sides, we perform three

sets of experiments reported in Table(4.4). For non-diagonally dominant systems,

A = [0.1 . . .− 4.0 . . . 3.0 . . .− 4.0d] and the constant vector 1.0 as the RHS, for all the

experiments.

Time(s) LAPACK speed-up SPIKE-RL OMP speed-up
# threads 1 2 4 8 2 4 8

b=200 #rhs=1

N=20,000 0.112 1.047 1.190 1.235 1.821 1.864 1.136
N=40,000 0.209 1.050 1.135 1.304 1.837 2.245 1.935
N=80,000 0.414 1.015 1.180 1.222 1.964 2.565 2.192
N=160,000 0.822 1.026 1.117 1.196 2.081 2.740 3.102
N=320,000 1.626 1.007 1.053 1.221 2.077 2.756 3.380
N=640,000 3.230 1.009 1.042 1.149 2.083 2.692 3.557
N=1,280,000 6.425 1.004 1.193 1.262 2.059 2.700 3.564

N=1,280,000 #rhs=1

b=125 4.051 1.0080 1.0050 1.0374 1.897 2.544 3.328
b=250 9.070 1.0549 1.3437 1.4239 2.057 2.751 3.476
b=500 27.78 1.2314 1.7717 2.1857 2.283 2.806 3.566
b=1000 99.09 1.4022 2.6090 3.3727 2.522 3.161 3.788

N=1,280,000 b=1000

#rhs=10 104.9 1.3863 2.5812 3.3915 2.576 3.178 3.957
#rhs=100 158.5 1.5680 2.7081 4.0649 3.040 3.738 4.731

Table 4.2. Scalability comparison, LAPACK vs SPIKE-RL OpenMP: Three sets of
experiments are used to illustrate the performances and scalability of MKL-LAPACK
and SPIKE-RL OpenMP for solving real and double precision non-diagonally dom-
inant systems. Both solvers are running on a Intel Nehalem node X5550 featuring
eight cores running at 2.66Ghz, with 48Gb total memory. The accuracy results on
the residuals obtained by both solvers are comparable of the order of ∼ 10−10, and
no diagonal-boosting is observed.

As clear from the table(4.4) above, we see that LAPACK doesn’t scale at all

for small N and small bandwidths. Scaling is only observed for extremely large N
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(∼ 1, 280, 000) with large bandwidths (∼ 1000) and multiple right hand sides. As

such for bigger matrices, use of BLAS-threaded in their implementation boosts the

speed-up on four and eight processors.

In comparison to our in-house banded primitives Table(4.4) ([23]) , consistent

scaling, 1.8× on two processors, 2.5× on four processors and 2.9× on eight processors,

is observed by by our SPIKE- Recursive OpenMP implementation. It may be noted

that our implementation does not do pivoting, as is the case with banded primitive.

Like LAPACK, the banded primitive routines, only show scaling for large system

parameters. Moreover, SPIKE-RL is expected to scale beyond 8-processors, while

banded-primitive speed-ups will level-off or saturate after a point as we go beyond

eight processors. The banded primitives for smaller systems, don’t show any signifi-

cant speed-up(scaling). On 2-processors in fact, it is slower (∼ 0.95×) in comparison

to sequential run on one processor(k = 1). In our SPIKE-RL implementation, as

a time-saving artifice, the generation of the spikes at the various levels is included

in the factorization step. In this way, the solver makes use of the spikes stored in

the memory thus allowing solving the reduced system quickly and efficiently. We

also optimize and speed-up the retrieval, which is a part of the solve stage, by doing

it similar to way we did for the SPIKE-truncated case. The residual using all the

schemes, namely, LAPACK, Banded Primitive and SPIKE-RL, are comparable and

of the order of ∼ 10−10, and is even better for smaller systems.

Determining Rt experimentally

After conducting numerical experiments for different ratio values (in steps of 0.2)

as shown in Table(4.4), Figure(4.3) and Figure(4.4), we find the run time is minimum

when the ratio of the sizes is 3.2, which is in very good agreement to our mathematical

estimate of Rt = 3. This enables us good time savings and helps us to beat LAPACK.

Furthermore, we gauge impact of Rt on time taken for the solve stage (solve time),

as shown in the Figure(4.5) for N = 640, 000, b = 200,#rhs = 1.

44



Time(s) Banded Primitive speed-up SPIKE-RL OMP speed-up
# threads 1 2 4 8 2 4 8

b=200 #rhs=1

N=20,000 0.0993 0.984 1.160 0.982 1.615 1.502 1.007
N=40,000 0.1863 0.999 1.210 1.150 1.637 2.001 1.725
N=80,000 0.3505 0.969 1.247 1.105 1.661 2.170 1.854
N=160,000 0.6895 0.974 1.245 1.313 1.746 2.298 2.602
N=320,000 1.3603 0.955 1.112 1.228 1.737 2.306 2.828
N=640,000 2.702 0.953 1.185 1.206 1.742 2.252 2.976
N=1,280,000 5.387 0.960 1.113 1.187 1.726 2.263 2.988

N=1,280,000 #rhs=1

b=125 3.3790 0.987 0.985 0.972 1.583 2.122 2.776
b=250 7.7801 1.009 1.228 1.439 1.765 2.306 2.982
b=500 22.0112 1.243 1.830 2.223 1.810 2.223 2.825
b=1000 73.9901 1.554 2.599 3.904 1.883 2.360 2.828

N=1,280,000 b=1000

#rhs=10 77.07 1.5716 2.5385 3.9082 1.893 2.335 2.907
#rhs=100 99.09 1.6287 2.6616 4.0896 1.901 2.338 2.959

Table 4.3. Scalability comparison, Banded Primitive vs SPIKE-RL OpenMP: The
same three sets of experiments, on a non-diagonally dominant real double-precision
system matrix, carried out on the same machine, are used to illustrate their perfor-
mance and scalability

Figure 4.3. Total time in seconds for, N = 640, 000, b = 200, and #rhs = 1, on
two, four and eight-threads. Total Time for two threads = 1.551 sec. Fastest run
(smallest time) on both 4 and 8-threads is at value(ratio) 3.2
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Figure 4.4. Total time in seconds for, N = 640, 000, b = 500, and #rhs = 1, on
two, four and eight-threads. Total Time for two threads = 6.054 sec. Fastest run
(smallest time) on both 4 and 8-threads is at value(ratio) 3.4

Figure 4.5. Solve time in seconds for, N = 640, 000, b = 200, and #rhs = 1, on
two, four and eight-threads. Solve Time for two threads = 0.181 sec.
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Ratio N=640,000, b=200, # rhs=1 N=640,000, b=500, # rhs=1
# threads 4 8 4 8

1 2.230 1.302 9.290 5.610
1.2 2.027 1.285 9.140 5.331
1.4 1.837 1.269 8.410 5.314
1.6 1.745 1.195 7.751 4.900
1.8 1.604 1.165 7.177 4.748
2 1.507 1.084 6.720 4.615
2.2 1.421 1.072 6.302 4.472
2.4 1.351 1.015 5.942 4.308
2.6 1.302 1.003 5.652 4.193
2.8 1.248 0.989 5.350 4.087
3 1.205 0.934 5.110 3.960
3.2 1.202 0.928 4.911 3.839
3.4 1.208 0.993 4.796 3.686
3.6 1.215 1.005 4.860 3.890
3.8 1.252 1.027 4.899 3.741
4 1.268 1.035 4.961 3.891
4.2 1.277 1.062 4.997 3.960
4.4 1.299 1.068 5.048 4.042
4.6 1.305 1.070 5.081 4.079
4.8 1.311 1.073 5.123 4.134
5 1.315 1.083 5.15 4.188

Table 4.4. Total(Fact + Solve) time in seconds for different partition-size ratios for
N=640,000; B=200 and B=500; # rhs=1, for two, four and eight threads.
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We can conclude that the solve time, which is faster in comparison to factorize

time, is the fastest at an average ratio of about 3.2 with regard to four and eight-

threads. The solve time vs. Rt curve for four and eight threads seems to be noisy, as

the solve time being only a fraction of the total time, exhibits more volatility arising

on account of cache access misses.

Hence, with experimental timing evidence backing our claim, we set the value of the

partition size ratio(Rt) to 3.2 while carrying out the three sets of timing experiments

for SPIKE-RL.
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CHAPTER 5

CONCLUSION

A shared-memory version of the SPIKE-TA algorithm has been implemented us-

ing OpenMP directives for solving diagonally dominant banded linear systems. To

extend the solver capability, another version, the SPIKE-RL algorithm, has also been

implemented for solving non-diagonally dominant systems. system has also been im-

plemented for shared-memory machines The resulting SPIKE-OpenMP solver aims

at providing a scalable shared-memory parallel version of the sequential LAPACK

banded routines, as well as competing with LAPACK performances obtained using

a BLAS-threaded library. Significant performance and scalability results have been

obtained. In general, such results have to be expected from a higher level parallelism

paradigm (i.e. SPIKE-TA acts at a coarser parallelism level) rather than exclusively

using low-level parallel optimizations. As compared to the LAPACK sequential LU

algorithm, however, the SPIKE-TA scheme inherits a more memory expensive prepro-

cessing stage if the number of partitions is greater than two. The SPIKE-Recursive

scheme for non-diagonally dominant systems on the other hand is less expensive in

memory, requiring only the tips of the spikes to be saved for computation during the

factorization and solve stages. It may be noted that while the SPIKE-RL scheme

does not use pivoting, LAPACK on the contrary does use pivoting for non-diagonally

dominant systems, making it more expensive in time.

Finally, we note that the TA-scheme using two partitions can also be cast as a direct

system solver when applied to non-diagonally dominant systems. No spike trunca-

tion is necessary, and although the factorizations are performed without pivoting,
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the overall system would only be slightly modified if a diagonal boosting takes place,

leading to very accurate solutions after very few iterative refinements. In Table(3.3),

one can observe that the speed-up ∼ 2× obtained using SPIKE-TA OpenMP on two

cores is, for most cases, superior to the speed-up obtained by MKL-LAPACK on

eight cores for diagonally dominant systems. As evident from Table(4.4), the SPIKE-

RL shows ∼ 2× on two cores, ∼ 2.7× on four and ∼ 3.5× on eight. We expect

it to continue scaling beyond eight cores as well. Thus, the scalability results hold

for non-diagonally systems as well. Although many other SPIKE-schemes have been

proposed and implemented using MPI-directives to deal with non-diagonally systems

[16, 17], they may suffer from expensive memory management on shared memory

architectures using more than two cores.

The goal would now be to develop a banded package for shared-memory machines as

an alternative(replacement) to(for) LAPACK-BLAS threaded solver, ‘X’GBTRF (fac-

torize), ‘X’GBTRS (solve) routines with the SPIKE counterparts, developed during

this research for both diagonally-dominant and non-diagonally dominant systems. We

need to match-up with the current LAPACK libraries only in terms of functionality,

as we are more competitive in scalability. Adding an option for the transpose(‘T’)

of the matrix, along with supporting single-precision and complex arithmetic, and

enhancing the capability to run on odd number of processors, would round-up the

SPIKE-OpenMP package and make it equally competent in terms of functionality as

well.

50



BIBLIOGRAPHY

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, et al.
LAPACK users guide. 3rd ed. Philadelphia, PA: Society for Industrial and Appl.
Math.; (1999).

[2] A. Cleary and J. Dongarra.Implementation in ScaLAPACK of divide and con-
quer algorithms for banded and tridiagonal linear systems. University of Tennessee
Computer Science Technical Report, UT-CS-97-358; (1997).

[3] S.C. Chen, D.J. Kuck, and A. Sameh, Practical parallel band triangular system
solvers, ACM Trans. Math. Software, 4, pp. 270277(1978).

[4] L.S. Blackford, J. Choi, A. Cleary, E. DAzevedo, J. Demmel, I. Dhillon, et al.
ScaLAPACK users guide. Philadelphia, PA: Society for Industrial and Appl.
Math.; (1997).

[5] P. Arbenz, A. Cleary, J. Dongarra, and M. Hegland, A comparison of parallel
solvers for diagonally dominant and general narrow banded linear systems II, Eu-
roPar Parallel Processing, p. 10781087;(1999)

[6] A. Sameh. Numerical parallel algorithms: a survey. In: Kuck D, Lawrie D, Sameh
A, editors. High speed computer and algorithm organization. New York: Academic
Press; p. 207-228 (1977).

[7] A. Sameh and D. Kuck. On stable parallel linear system solvers. J. ACM, 25, p.
81-91; (1978).

[8] A. Sameh. On two numerical algorithms for multiprocessors. Proc of NATO adv
res workshop on high-speed comp. Series F: computer and systems sciences, vol.
7. Berlin: Springer; p. 31128, (1983).

[9] D. Lawrie and A. Sameh.The computation and communication complexity of a par-
allel banded system solver. ACM Trans Math Software, 10(2); p. 185-195; (1984).

[10] J. Dongarra and A. Sameh.On some parallel banded system solvers. Parallel Com-
puting, 1, p. 223-235; (1984).

[11] J.-L. Larriba-Pey, A. Jorba, and J.J. Navarro, Spike algorithm with savings for
strictly diagonal dominant tridiagonal systems, Microprocessing and Micropro-
gramming, 39, pp. 125128 (1993).

51



[12] D.H. Lawrie and A. Sameh, The computation and communication complexity
of a parallel banded system solver, ACM Trans. Math. Software, 10, pp. 185195
(1984).

[13] M. Berry and A. Sameh. em Multiprocessor schemes for solving block tridiagonal
linear systems. Int J. Supercomput. Appl., 2(3): p. 37-57; (1988).

[14] N.J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM,
Philadelphia, PA, (2002).

[15] A. Sameh, and V. Sarin. Hybrid Parallel Linear Solvers. International Journal
of Computational Fluid Dynamics, Vol 12, p. 213-223, (1999).

[16] E. Polizzi, A. Sameh. A Parallel Hybrid Banded System Solver: The SPIKE
Algorithm, Parallel Computing, V. 32, 2, p. 177-194 (2006).

[17] E. Polizzi, A. Sameh. SPIKE: A parallel environment for solving banded linear
systems, Computers & Fluids, 36 p. 113-120 (2007).

[18] A distributed memory version of the SPIKE package can be obtained from:
http://software.intel.com/en-us/articles/intel-adaptive-spike-based-solver/

[19] E. Polizzi. The SPIKE software. Book Chapter in Springer Encyclopedia of Par-
allel Computing, D. Padua (Ed.), Springer, to appear. (2010).

[20] O. Schenk and K. Gartner. Solving Unsymmetric Sparse Systems of Linear Equa-
tions with PARDISO. Journal of Future Generation Computer Systems, 20(3), p.
475-487; (2004).

[21] S. Demko, W.F. Moss and P.W. Smith.Decay rates for inverses of band matrices.
Math Comput., 43(168), p. 491-499; (1984).

[22] C.C.K. Mikkelsen and M. Manguoglu. Analysis of the Truncated Spike Algorithm.
SIAM Journal on Matrix Analysis and Applications, 30(4), p.1500-1519; (2008).

[23] http://www.ecs.umass.edu/∼polizzi/feast; (2009).

[24] X.-H. Sun, H. Zhang, and L.M. Ni, Efficient tridiagonal solvers on multicomput-
ers, IEEE Trans. Comput., 41, p. 286296 (1992).

[25] X.-H. Sun, Application and accuracy of the parallel diagonal dominant algorithm,
Parallel Comput., 21, p. 12411267 (1995).

52


