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Exploitation of Hertz’s contact pressures in friction drives
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Abstract: The paper is intent on the applications of equations which describe the Hertz’s surface pressures in friction 
drives. In the paper the reduced equations are derived, which are useful to the surface pressures calculation in friction 
drives when ball – ball, cylinder – cylinder, cone – cone are kept in touch and their graphical representation of stress 
distribution in the contact area is presented. Using the Hertz’s surface pressures and the Mohr’s circles the substance 
of pitting start is derived and the stress distributions using the elementary joists, which were situated on the axe z in 
the section under the contact joist, are represented.
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At friction drives the circumference power is 
transmitted by friction from one rolling body to 
the second. Always the thrust is necessary. At most 
designs of friction drives it deduces high forces 
to shafts and bearings. Therefore the high surface 
pressures result on the contact joists. These pres-
sures are one of main factors which influence the 
friction drives.

The basic condition of friction drive is based on 
the equilibrium of circumference power F0 and fric-
tion power Ft. When we speculate about the degree 
of safety k (starting, turning-out, impact influences 
etc.) we get the basic condition in the form

F0 × k = Ft (1)

When we express the friction power as the prod-
uct of the thrust FK and coefficient of friction f and 
introduce it in the foregoing equation we get the 
basic condition of the friction drive (Figure 1).

F0 × k = f × Fn  (2)

According to the contact we can classify the sur-
face pressures as the surface contact, line contact, 
point contact.

According to the material elasticity we can classify 
the surface pressures in:

Hertz’s pressures – the modulus of elasticity in 
tension of both materials is constant, owing to load 
it does not vary.

Stribeck’s pressures – the modulus of elasticity in 
tension of one of materials is not constant, it varies 
according to the load (rubber, plastic etc.).

In friction drives operation the Hertz’s pressures 
are in foreground and they influence considerably 
the drive, namely pressures with line and point 
contact.

Therefore this paper is intent on these pressures.

Figure 1. Functional diagram of the friction drive

Ft  = Fn × f F0 × k
Fn

N
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Hertz’s surface pressures

As early as in the year 1881 Heinrich Hertz formu-
lated the relation between the load value of projected 
area of surface pressures and the bringing near at 
the contact of generally curved bodies. The solution 
derived by Heinrich Hertz gives only the orienta-
tion values of contact pressures. The in this way 
calculated contact pressures can very in some cases 
as much as 50% from real values (Klaprodt 1980). 
Later much authors tried to describe the contact 
pressures theory. But till now the accurate solution 
of the contact pressures calculation was not found. 
(Klaprodt 1980; Bolek & Kochman 1990).

Heinrich Hertz introduced several simplified 
premises.

The place of the highest stress is under the middle 
of the upper surface of function of both bodies and 
near the front surface is the accumulation of stress.

The modulus of elasticity in tension of both ma-
terials is constant, it does not vary according to the 
load. Strains are regarding to the bodies sizes very 
low and their profile is in one plane (Hertz 1896).

For the calculation these four laws defined by 
Heinrich Hertz are valid.
(1) Isotropy and homogenity of projected area ma-

terial.
(2) In the course of deformation the Hooke´s law 

must be valid.
(3) Shear stress is equal to zero. The influence about 

friction is not speculated.
(4) Projected areas are equal.

Point Contact

Two spherical bodies are contiguous in only one 
point. Owing to load and deformation of the bodies 
the point contact varies into surface contact (Fig-
ure 2). This surface is elliptic. When the bodies are 
geometrical identical, the contact surface is circular 
(Herák 2005; Zachariáš 2005).

The maximum sizes of an ellipse the main radiuses 
are in the main geometrical directions of the contact 
surface. For calculation Hertz replaced this ellipse 
by a circle of the same surface (Hertz 1896). Then 
he derived the equation for the diameter of the con-
tact surface δ (Timoshenko & Goodier 1951)

 (3)

where:
F – load force,
m – coefficient which characterizes the pressure distribu-

tion between bodies. The m value is calculated using 

the solution of elliptic integrals. The coefficient m can 
be found in form of a table in the literature (Fröhlich 
1980).

ρH – the sum of the surfaces curvature radiuses.

 (4)

where:
rI, rII, RI, RII – curvature radiuses of single bodies in the 

directions of main planes.
In the case of the concave contact they are 
added (+), in the case of the convex contact 
they are subtracted (Figure 3).

E12 – theoretical reduced modulus of elasticity in 
tension of the contact bodies.

 (5)

E1o, E2o – constrained modulus of elasticity in tension 
(the bodies cannot arbitraily deform, their 
deformations interact)

 (6)

where:
E1, E2 – modulus of elasticity in tension of single bodies,
µ1, µ2 – Poisson’s ratio of single body materials.
ER – reduced modulus of elasticity in tension:
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Figure 3. Concave (+) and convex (–) contact of the bodies

Figure 2. Diagram of the point contact
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 (7)

where:
ϕE – constant which expresses the material influence of 

bodies which contact.

For steel/steel ϕE = 1 for other materials combi-
nation the values are shown in Table 1 (Fröhlich 
1980).

After introducing in former equations we can de-
termine the reduced modulus elasticity in tension 
for most often used contact couples.

When we know the diameter value of the contact 
surfaces δ we can simply determine the surface 
stress ps (we presuppose the even, rectangular pres-
sure distribution) (Figure 4).

 (8)

But the real contact stress distribution is para-
bolic. For the point contact the ratio between the 

average contact stress and maximum contact stress 
(Hertz 1896; Timoshenko & Goodier 1951)

σmax = 1.5 × pS (9)

After simple introduction we can write the equa-
tion

 (10)

After the equation adaptation, simplification and 
introduction in former equation we can write the 
equation for the maximum contact pressure at the 
point contact.

 (11)

The maximum contact stress value depends on the 
load, material of contact bodies, bodies geometry 
and contact type (concave, convex).

For different geometry of any bodies the calcula-
tion can be made using the former equations, but 
for calculation the bodies must be substituted by 
osculating circles and the cage solved as the point 
contact of two spheres.

Contact stress – contact of two spheres

We describe the calculation of contact stress of 
two spheres, for calculation we choose the steel of 
body materials. For other materials the calculation is 
the same, only the material constants are others.

From former chapter we know the reduced modu-
lus of elasticity of the contact bodies (steel + steel):
ER = 226 000 MPa

The sum of main planes flexion radiuses we deter-
mine according to the equation

 
(12)

When we introduce the former equation in the 
equation (3), we get the equation for the contact 
surface diameter.

 
(13)

The mean coefficient m for the contact of two 
spheres steel/steel is approximately equal to  
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Table 1. Material of contact couples and its reduced modulus 
of elasticity in tension

Material of contact 
couples

Reduced modulus of elasticity 
in tension ER (MPa)

Steel + steel 226 000

Steel + bronze 152 500

Steel + gray iron 121 500

Figure 4. Contact of two spheres
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m = 0.45. The value depends on the flexion and the 
total geometry of the bodies (Fröhlich 1980). By 
simple adaptation we get the equation for the diam-
eter of the deformed surface.

 
(14)

The symbol +/– determines the concave and con-
vex contact.

After introduction in the relation (11) the equa-
tion derived by us for the contact surface diameter 
we get the relation for the maximum contact stress 
value of two steel spheres

 (15)

after a simple adaptation we get

 (16)

Line contact

It is a contact of two cylindrical bodies, the theo-
retical contact line is deformed by load into a tetra-
hedral concurrent surface.

In practice the contact stress is calculated by use 
of substituted contact cylinders, both cylindrical 
bodies are substituted by cylindrical bodies with 
reduced radiuses.

Contact cylinder with cylinder

At the contact of two cylinders the contact line 
grows in the tetrahedral form.

For the contact surface calculation Hertz derived 
following relation (Hertz 1896; Timoshenko & 
Goodier 1951).

 (17)

All quantities are the same as at the point contact 
calculation, in addition the length of the contact 
line b appears.

If we know the contact surface diameter, we can 
simply determine the mean surface pressure ps (we 
presume the contact distribution uniform, tetrahe-
dral) (Figure 5) (Švec 1999).

 (18)

But the real course of contact pressure is para-
bolic. For the point contact the ratio between the 
mean surface pressure and the maximum contact 
stress was determined.

Control of Food Quality and Food Research. = 1.28 ps (19)

After simply introduction we can write the equa-
tion

σmax = 1.28      F  (20) 
                     δ × b

By adaptation, simplification and introduction in 
the former equation we can write the equation for 
the maximum contact pressure quantity at the line 
contact.
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Figure 5. Diagram of two cylinders contact
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(21)

Further we describe the calculation of the contact 
stress at two cylinders contact. The cylinder mate-
rial is steel. For other materials the calculation is the 
same, only the material constants are different.

From the chapter 4 we know the reduced modulus 
of elasticity of the contact bodies (steel + steel):
ER = 226 000 MPa

The sum of main planes flexion radiuses we deter-
mine according to the equation.

 (22)

When we introduce the equation (22) in the equa-
tion (17), we get the equation for the contact plane 
width calculation.

  
 

(23)
After a simple adaptation we get the equation for 

the contact plane width calculation.

 
(24)

 
The symbol +/– determines the concave and con-

vexe contact.
When we introduce the equation (24) derived by 

us into the equation (21) we get the relation of the 
maximum contact tress at the two steel cylinder 
contact.

 (25)

After a simple adaptation we get

 (26)

Contact pressures cone-cone

At the calculation of cone-cone contact pressure 
the two-dimensional line contact originates. The 
calculation is the same as at the contact cylinder-
cylinder, but the initial equation (26) is multiplied by 
a constant of the contact pressure K resultant posi-
tion. This constant is described by several authors 
in special literature (Fröhlich 1980) presents the 
value K = 0.33.

Further this constant is described by e.g. Berndt, 
Bochman, Föppel, Palmgren, Lundberg, Klaptrod, 
Faires and others.

Equations derived by formerly mentioned authors 
are mostly functions determined from complete el-
liptic integrals (Tripp 1985). Using these integral for-
mulas the constant result is approximately K = 0.3.

In practice the calculation according to Fröhlich 
is suitable.

 
(27)

 

When we express the force F we get the formula 
(27).
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Figure 6. Pressure stress acting 
on the elementary joist placed 
in the middle of the contact 
length b
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(28)

where:

When we express the force F from the former for-
mula, we get the equation for the maximum contact 
force at the contact cone-cone.

 (29)

Pitting

In the former chapter we derived the equations 
for the contact surface size and for the course of 
contact pressures distribution. From practical stress 
measurements of two cylindrical bodies contact the 
course of stress distribution in the body sections 
near the contact surface was determined. If we shall 
speculate about the bodies relative motion (what is 
the typical example of the friction drive), except the 
contact pressure the very high friction force will act 
in the contact surface (Krause & Demirci 1975).

In the contact place in the middle of the contact 
length b three normal pressure stresses σy , σx, σz 
act on the elementary joist. The stress σy and σz are 
equal σy = σz =ρmax, while in the x direction the pres-
sure stress is only half σx = 0.5ρmax (Figure 6). When 
we plot these stresses in the Mohr’s circle, we get the 

overview about the stress distribution in the given 
element sections (Figure 6). It is evident that the 
maximum shear stress in the middle of the contact 
surface is in the planes which are diverted from the 
axis y or if need be z direction of an angle γ = 4.5° 

and its value is τxz = τxy = 0.5 (pmax – σx)
If we effect the section through the body in the 

plane parallel with the contact surface in a low depth 
under the contact surface, the normal stresses will 
be according to the increase of the section plane mi-
nor and of course different (Figure 7) from the state 
stress. The representation using Mohr’s circles for 
triaxial state of stress gives us again the graphic view 
of the stress distribution in the element (Figure 8) 
(Faires 1955; Krause & Jühe 1977).

If we plot single normal stresses in the sections 
parallel to the contact surface in various distance 
from the contact surface we get the graphically 
relation between the stress and the depth of cut 
(Figure 7). From here derived shear stresses τyz =  
(σz – σy)/2, τxz = (σz – σx)/2, τxy = (σy – σx)/2, which 
act in the planes diverted of 45° from the planes 
given by the axes yz, xz, xy are graphically presented 
in Figure 8.

From the shear stresses distribution can be seen 
that the maximum shear stress value τyz appears in 
the depth of cut near to (0.35–0.40)b. If we combine 
vectorial the shear stress τyz and the shear stress τs 
which is needed for the shear friction force block-
ing in the contact surface, we get very high result-
ing shear stresses in the planes α and β, which are 
diverted from the plane given by the directions xy 
of the angle κ (Figure 8).

Material crystals near the middle of the contact 
surface are largely stressed by volume compression, 
which evokes their partial plastic deformation. In 
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Figure 7. Stress distribution on elementary 
joists in the z – axis section in the depth 
1.5b under the contact surface
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the limiting depth of about 0.35 b the influence of 
the high resultant shear stress begins to predomi-
nate, so that near the contact surface the complex 
of pressed crystals can be cut off from the cylinder 
surface under the angle κ (Figure 8). The whole effect 
of excessive compression of the crystal complex and 
their subsequent cut off from the surface is called as 
pitting (Král 2002).

CONCLUSIONS

The operation of friction drives is influenced by a 
great number of operating factors. Bearing stress, 
slippage, heating-up and wear.

Factors which influence the bearing stress are 
following: friction bodies’ material, contact stress, 
contact bodies moving, medium of the contact proc-
ess and the general environs of the contact.

The fact that these factors affect one another 
(slippage against temperature, temperature against 
material etc.) shows the whole problem complex 
of the friction origin and thus the origin of contact 
stresses in friction drives.

It is very clear from the variety of affected factors 
that the friction force or contact pressures value 
cannot be calculated according to simple basic equa-
tions and rules (Krause & Demirci 1975).

For the bearing stress i.e. contact pressures value 
calculation the Hertz’s equations are used. Heinrich 
Hertz derived the basic equations which depend on 
the input coefficients, which depend on the sizes 
and dimensions of contact bodies. In next years 
these coefficients were presented by various authors 
either using the tables of dimensional coefficients 
(Fröhlich 1980) or using the calculation of total 
elliptic integrals (Tripp 1985). During the time 
various equations have come into being which were 
derived from the combination of the basic Hertz’s 
and the empirical equations.

The relations determined in this paper are derived 
more simply, but in our opinion they are suitable for 
usual machine industry and applications in friction 
drives.

In design practice the contact stresses calculation is 
always the combination of theoretical Hertz’s equa-
tions and coefficients or empirical relations, which 
were determined and tested by a long-standing oper-
ation of machines. E.g. for the calculation of contact 
stress of two teeth of involutes gearing a very detailed 
elaborated design procedure exists, which is long-
termed tested and gives very accurate results (Švec 
1999; Král 2002; Bolek & Kochman 1989).

If we do not take into account the influence of 
real factors which affect the contact stressed value 
the calculated contact stress can be different from 
real stress up to 50% (Klapdtrot 1980). Namely 
the Hertz’s equations for contact stress are derived 
from 3D analysis, but most of input information 
for these equations are determined using the 2D 
analysis. Next disadvantage of these equations is the 
fact that they do not respect the contact surfaces 
roughness and the premise that the stress peaks 
point at the middle of contact surfaces (Jagodnik 
& Müftü 2003).

At friction drives the influence of contact bodies 
moving exists, too. From the basic condition of the 
friction drive it follows that in the contact surface 
except the contact pressure a very high friction force 
acts (Krause & Jühe 1977).

On the basis of Hertz’s equations the equations 
and methods for calculation of unelastic contact 
of two bodies were determined. The equations of 
contact state at unelastic contact speculate about 
energy lost at reciprocal deformation of two bodies 
(Gugan 2000).

Today the procedures and methods of contact 
pressures calculation of nonmetallic bodies (glass, 
granite) and at contact in different medium (water, 
oil, etc.) exist, too. These equations were again 
derived using the original Heinrich Hertz’s theory 
(Franco & Batzoglou 2002).

On the basis of theoretical Hertz’s equations for 
contact pressures calculation a great number of 
calculation and application techniques exist. They 
are determined for various branches of science, 
from biomedicine, e.g. calculation of contact pres-

τxy = 
(σy – σx) 

              2
Figure 8. Stress distribution in the 
section parallel to the contact sur-
face in the depth of 0.35b under the 
contact surface
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sures at hip joints, contact pressures between track 
and wheel at rail transport, in terramechanic, i.e. 
analysis of tyre contact with soil, tribology – calcula-
tion of lubricating layer load capacity to the known 
engineering applications, e.g. calculation of bearings 
and gear wheels.

By its theoretical equations Heinrich Hertz makes 
possible the development of more detailed and exact 
calculation and analyses of single design problems. 
On basic of its theories the new modern methods 
continuous arise from various branches of human 
research. These analyses are derived only analyti-
cally using empirical data and serve as the basis for 
the problems solution on the FEM basis.
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Abstrakt

Herák D., Chotěborský R., Sedláček A., Janča E. (2006): Využití Hertzových kontaktních tlaků v třecích 
převodech. Res. Agr. Eng., 52: 107–114.

Článek je zaměřen na aplikace rovnic popisujících velikosti Hertzových kontaktních tlaků vznikajících v třecích pře-
vodech. V článku jsou odvozeny zjednodušené rovnice vhodné pro výpočet kontaktních napětí vznikajících v třecích 
převodech při styku koule – koule, válec – válec, kužel – kužel a jejich grafické znázornění rozložení napětí v kon-
taktní plošce. Pomocí Hertzových kontaktních tlaků a aplikací Mohrových kružnic je v článku odvozena podstata 
vzniku pittingu a jsou zobrazeny průběhy napětí na elementárních hranolcích, ležících na ose z v řezech vedených 
pod kontaktní ploškou.

Klíčová slova: kontaktní tlaky; třecí převod; Hertzovy tlaky; pitting; třecí síla; Mohrovy kružnice
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