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Investigating the pumping process  
of a resonance-vibrating pump for medium-depth 
boreholes

I.A. Loukanov
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Abstract: This paper deals with the pumping process of a resonance-vibrating pump, which utilizes the resonance vi-
brations of one degree-of-freedom oscillating system. The pump is powered by a mechanical shaker consisting of two 
counter rotating offset masses and operating in resonance. The study investigates the nature of the pumping process 
and conditions required to achieve pumping action. Equations for the flow rate, pressure developed at ground level or 
any height above it, the pump efficiency, and the power delivered by the shaker are derived. The analysis of the pump-
ing process revealed that the flow rate of the pump may be maximized either by increasing the acceleration imparted 
on the oscillating system, and/or by reducing the resonance frequency. It was found that the pressure developed by the 
pump is independent of the depth of pumping, provided that the same acceleration is imparted, and its efficiency may 
be increased either by reducing the resonance frequency and/or by increasing the depth of pumping. The preliminary 
test results about the flow rate and pressure developed at ground level appeared to be close to the values predicted by 
the proposed theory. Based on the analysis of the theoretical and experimental findings it is concluded that the equa-
tions derived in this study may be employed in designing resonance vibrating pumps for a desirable flow rate, pressure, 
and efficiency in pumping water from a specified depth.
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Pumping water in the desert and remote coun-
tryside in the absence of electricity has always been 
a great engineering challenge. A cheaper and easy 
means for solving this problem is to use a resonance 
vibrating pump. These pumps were invented in the 
early fifties of the 20th century and since then were 
used for pumping crud oil from as deep as 2000 m, as 
well as water from 30 to 150 m, (Usakovskii 1973). 
Unfortunately these pumps are almost unknown 
today because of the intensive use of submersible 
centrifugal, screw, and rod-pumps, the latter being 
specifically designed for pumping natural oil from 
deep boreholes. The current generation of these 
pumps is electrically powered, which restricts their 
use in the non-electrified regions in the desert and 
semiarid areas of Africa, Middle East, and central 
Asia. In those regions ground water is available in 
boreholes at depths of 30–100 m drilled with diam-
eters from 100 to 160 mm but they remain unutilized 
because of insufficient means to drawn water to the 
surface. Moreover electrically powered submersible 

pumps are expensive for developing countries and 
complex for maintenance by low qualified person-
nel. This makes the resonance vibrating pumps 
competitive in terms of price, simple design, and 
performance as compared with centrifugal or screw 
pumps used today.

As the name suggests resonance vibrating pumps 
utilize resonance vibrations of one or two-degrees-
of-freedom oscillating systems to achieve pumping 
action and draw liquids practically from unlim-
ited depths. When operating at speed smaller than 
1200 rev/min these are termed vibrating pumps, 
while those operating at speed greater than 1200 
up to 4800 rev/min are known as inertia, acoustic, 
or sonic pumps, (Dubrovskii 1968; Bodine 1969, 
and Usakovskii 1973).

It should be noted that the extraction of water by 
resonance pump is no longer limited to 8–10 m as the 
case is with the suction pumps and it was found to be 
independent from the depth of pumping as proved by 
Usakovskii (1963, 1973). The pumps are efficient 
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and require less power than the conventional pumps 
as they operate in resonance. Unfortunately these 
pumps were forgotten and one cannot find them un-
der any pump classification in the literature today.

The resonance pump has been invented by Bo-
dine (1951) and later modified and improved by 
him and other inventors. The design of one of his 
US patent #2,553,543, 1951 is shown in Figure 1. It 
consists mainly of: a primary mover (19), a shak-
ing mechanism (16–18), an oscillating pipe (11), 
an elastic suspension (13), and a ball valve (15). 
The operation of the apparatus is as follows; when 
the shaker rotates at the natural frequency of the 
mass-spring system, then a resonance occurs, and 
therefore large amplitudes of displacement, velocity 
and acceleration are generated. As the pipe oscillates 
with acceleration greater than the gravity the valve 
opens and closes periodically allowing water from 
the well to enter into and travel up the pipe against 
the gravitational force.

There are many other designs of resonance pumps 
proposed by Angona (1964), Bentley (1981), 
James (1953), Kletzkin (1969), Usakovskii (1973) 
etc., but the design shown in Figure 1 seams to be the 
simplest and easy to manufacture in the developing 
countries.

Unfortunately a proper explanation of the pump-
ing process and the performance of resonance 
vibrating pump is not available today. Consider-
ing the importance of drinking water for the poor 
people and small farmers in the arid and semi arid 
areas of Africa a decision was made to investigate 
the pumping process of these pumps with the strong 
desire of designing, developing and implementing 
the resonance vibrating pumps in the desert and 
remote areas of Botswana.

THEORETICAL CONSIDERATIONS

Parameters characterizing the oscillating system 
of the resonance pump

The dynamic model of the resonance vibrating 
pump was assumed to be one-degree-of-freedom 
system, as shown in Figure 2. The parameters char-
acterizing this model are:
M	 – total oscillating mass, which includes the 

mass of the pipe together with water inside, 
the mass of the foot valve, shaker and the 
attachment parts (kg)

m	 – total rotating offset mass of the shaker (kg)
e	 – eccentricity of the rotating masses (m)
me	 – rotating unbalance (kg.m)
k	 – stiffness of the spring suspension system (N/m)
c	 – damping constant of the viscous damper 

(N.s/m)
ω	 – resonance angular frequency = angular speed 

of the shaker (rad/s)
x	 – displacement of the total oscillating mass 

(m)
 ·x, x·· 	 – velocity and acceleration of the oscillating 

mass (m/s), and (m/s2) respectively
t	 – time (s)

The differential equation governing the motion of 
the oscillating system is

Figure 1. Deep well pump Figure 2. Dynamic model of the resonance-vibrating pump
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x·· + 2ζωn ·x + ωnx =
 me ω2

 sin ωt  	  (1) 
                                 M

where:
me ω2 sin ωt	– excitation force generated by the shaker
ωn	 – natural frequency of the oscillating system 

defined as

ωn = √  k   	  (2) 
             M

where:
ζ	 – damping factor of the system given by 

ζ =    c	  (3) 
     2Mωn

The steady state solution of the system response 
in resonance is known as

x(t) = X sin (ωt – ψ) 	  (4)

where:
X	 – amplitude of the resonance vibrations,
ψ	 – phase angle.

The angle ψ indicates that the response of the 
system in resonance lags the action of the inertia 
force.

According to Hutton (1981) and Singuresu 
(1995), the resonance amplitude is defined as

X = me ×              r
2
  	  (5) 

       M     √(1 –r2) + (2r ζ)2

where:
r = ω/ωn	 – frequency ratio.

If Eq. (5) is rearranged to find the maximum value 
of the ratio MX/me, then the condition for that is

r =     1  	  (6) 
     √1–2ζ2

Since for inertia type of excitation the resonance 
takes place slightly to the right of r = ω/ωn = 1, then 
by substituting Eq. (6) into Eq. (5) the maximum 
value of the ratio MX/me is found to be

  MX         =  MXmax =       1   	  (7) 
  me    max         me           2ζ√1–ζ2

From where the resonance amplitude Xmax is found 
to be dependant on the shaker rotating unbalance, 
total oscillating mass, and the damping factor of the 
oscillating system as indicated below

Xmax = me ×       1  	  (8) 
           M       2ζ √1–ζ2

By differentiating twice Eq. (4) with respect to 
time the equations governing the velocity and ac-
celeration of the oscillating system in resonance are 
found to be

v(t) = ωXmax cos(ωt – ψ) 	  (9)

a(t) = –ω2Xmax sin(ωt – ψ) 	  (10)

By substituting Eq. (8) into Eq. (9) and (10) maxi-
mum amplitudes of the velocity and acceleration 
are found to be

vmax = ωXmax =  
me

  ×       
ω

       	  (11) 
                          M       2ζ √1–ζ2

amax = ω2Xmax = 
me

 ×        
ω2

       	  (12) 
                          M      2ζ √1–ζ2

By analysing the water column behaviour in the 
pipe at different magnitudes of acceleration it was 
concluded that it is supported periodically by the 
valve and separates from it at a particular instant. 
This suggests that water column would not be always 
moving together with the pipe during the entire 
period of oscillation. Therefore the total mass of the 
system is considered as composed of the following 
masses

M = (mpipe + mvalve + mshaker) ± mwater column 	  (13)

In regard to Eq. (13) it is assumed that at a particu-
lar instant depending upon the magnitude of the im-
parted acceleration, water column will separate from 
the pipe (valve), and thereafter perform free vertical 
motion inside the pipe. This will generate vacuum 
above the valve forcing it to open and water from the 
well to enter into the pipe. At later instant when the 
speed of the pipe and water column become almost 
equal the valve will close due to the valve spring ac-
tion and water will join the mass of the oscillating 
system. Since water is incompressible, whatever 
amount of water enters the pipe the same amount 
will leave it at the upper end. When water column is 
separated from the pipe, the mass of the oscillating 
system may be considered as composed by the mass 
of the pipe, valve, and that of the shaker

Mp = mpipe + mvalve + mshaker 	  (14)

In this regard the effect of sudden drop in the total 
oscillating mass on the resonance frequency and 
amplitude is neglected since the oscillating system 
cannot respond that fast for a small fraction of the 
period of oscillation. Much longer time is required 
for these changes to develop, as the process is time 
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dependant and asymptotically attaining the new fre-
quency and amplitude. For simplicity in explaining 
the following analysis the oscillating system will be 
considered as represented by the pipe only.

Phases of interaction between the valve 
and water column

Consider now one period of resonance oscillation 
of the mass system “Pipe-valve-shaker ± water col-
umn”. In Figure 3 the “pipe-valve-shaker” and “water 
column” are depicted as two solid bodies (particles), 
moving together or individually in accordance of 
their common or individual equations of motion. For 
determining the flow rate of the pump it is assumed 
that the period of one oscillation T is divided into 
four phases each of them of duration one quarter 
of the period.

Phase 1

In general, Phase 1 begins at the bottom dead 
position (BDP) of the oscillating system and ends 
at the equilibrium position (Figure 3). At the BDP 
the oscillating system is characterized by the reso-
nance displacement xp(tp = 3/4T) = –Xmax, speed vp 
(tp = 3/4T) = 0, and acceleration amax = ω2Xmax. 
During this phase the valve is closed and the pipe 
and water column accelerate together as one body 
towards the equilibrium position. When they reach 
equilibrium position the displacement xp(t) = 0, the 
velocity of resonance vibration attains its maximum 
value vmax = ωXmax, and the acceleration nullifies. In 
accordance with the principles of harmonic motion 

at this point the acceleration changes its direction 
and becomes retardation during the next phase.

Phase 2

This phase begins at the equilibrium and ends at 
the top dead position (TDP) of the oscillating system. 
Since at the beginning of this phase water and pipe 
are moving together they will retard at the same rate 
as governed by the equations of motion of the oscil-
lating system. At particular instant ts – termed time 
of separation and measured from the equilibrium 
position, the retardation will become equal to the 
earth acceleration. At this instant water column will 
separate from the valve, as it has one-sided support 
provided by the valve, and therefore will start mov-
ing inside the pipe.

The proposed criterion for separation is based 
on the physical fact that separation will take place 
whenever the retardation of the pipe becomes 
greater than that of the water column

–x··p(ts) ≥ –x··w(ts)     	  (15)

When separation takes place the pipe system 
will retard in accordance with Eq. (10) whilst water 
column will retard at constant rate due to gravity  
g = 9.81 m/s2, that is

x··w(t) = –g     	  (16)

As the pipe moves in accordance with the equa-
tions governing the resonance vibrations, then water 
column will be moving inside the pipe as a body 
thrown vertically with initial conditions determined 
at the point of separation and its motion will be gov-
erned by the equations derived from Eq. (16). 

Further the separation of water column from the 
valve creates vacuum above it since water column 
acts as a long piston with the pipe being the cylin-
der, which forces the valve to open and allows water 
from the well to enter into the volume vacated by 
the moving column of water. 

If the time taken for the water column to reach 
its maximum height, measured from the point of 
separation is denoted t1, and the corresponding time 
for the pipe tp = ts + t1, measured from equilibrium, 
one can find the locations of both water column and 
pipe at that instant 

xw(t1) = hmax 	  (17)

xp(tp) = Xmax sin(ωtp) 	  (18)

Therefore the maximum relative distance attained 
between the valve and water column will be

Figure 3. Phases of interaction between the valve and water 
column
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Xrel = xw(t1) – xp(ts + t1) 	  (19)

As far as the relative distance increases the valve 
will be kept open and water from the well will flow 
into the pipe. This process continues until the 
relative motion persists and may take place during 
Phases 3, 4 and 1. This fact can be used to maxi-
mize the flow rate of the pump by imparting on the 
oscillating system as large acceleration as possible. 
It should be noted that the imparted acceleration 
would be limited by the pipe endurance limit due 
to a possible axial fatigue.

Phase 3

This phase begins at the pipe TDP and completes 
at equilibrium position. At TDP the pipe’s retarda-
tion changes to acceleration and hence during this 
phase the pipe system will accelerate towards the 
equilibrium position. As far as the relative distance 
between the valve and water column increases the 
valve will be kept open and water will be flowing 
into the pipe. At any point when the relative mo-
tion ceases the valve will close due to the action of 
the valve spring, retaining the entire water column 
in the pipe. Thus the pipe and water become again 
one body and will be moving together until the next 
cycle of separation takes place in Phase 2.

Phase 4

This phase begins at equilibrium position and 
ends at BDP of the oscillating system. In fact the 
acceleration of any harmonic motion is always di-
rected towards the equilibrium position, so does the 
acceleration of the pump oscillating system. There-
fore during this phase the system retards towards 
BDP. In order to maximize Xrel and hence the flow 
rate of the pump, it is desirable the valve to shut at 
the end of this phase, when at the same time water 
column is at its maximum height above equilibrium. 
This would require an application of an appropriate 
magnitude of the imparted acceleration. Whenever 
water column joins the pipe, the oscillating mass of 
the system will be recovered from Mp to M. In par-
ticular at the end of Phase 4 the system will attain 
the same kinematics’ parameters as it has had at the 
beginning of Phase 1.

Determining the flow rate of the resonance pump

Determination of the time of separation

To achieve a minimal flow rate a particular value 
of the system acceleration is required, as stated by 
Dubrovskii (1968), if amax = 9.81 m/s2 the pump 
will just about to start raising water from the well.

The analysis of the preceding section revealed 
that to achieve any value of Xrel, water column must 
separate from the valve during Phase 2 and then 
perform upward motion inside the pipe. The sepa-
ration might be achieved if the criterion defined by 
Eq. (15) is satisfied, that is 

–x··p(ts) ≥ –x··w(ts)  	  (20)

where:
ts	 – separating time measured from the equilibrium 

position (s)
x··p(ts) = –ω2Xmax sin(ωts) – pipe retardation at the instant of 

separation (m/s2)
x··w(ts) = –g – gravitational acceleration acting upon the water 

column.

Substituting the above expressions into Eq. (20), 
rearranging and taking the equality sign only, the 
equation for the separating time is obtained

ts =  1 sin–1      g	  (21) 
       ω          ω2Xmax

Since at the instant of separation the pipe and wa-
ter column will still be moving together, the separat-
ing displacement and velocity of water column may 
be determined from the equations governing the 
displacement and velocity of the oscillating system 

Vs = vw(ts) = vp(ts) = ωXmax cos(ωts) 	  (22)

Xs = xw(ts) = xp(ts) = Xmax sin(ωts) 	  (23)

Determining the location of the point  
of separation

Substituting Eq. (21) into Eq. (23) gives the loca-
tion of water column at the point of separation

xw(ts) = Xs =   g 	  (24) 
                      ω

2
  

Since in equilibrium position the total weight 
of the oscillating system is supported by the static 
spring force, hence one can find the resultant stiff-
ness of springs

k = Mg    	  (25) 
       δst   
where:
δst	 – static deflection of springs.

Substituting Eq. (25) into Eq. (2) yields

δst =  g	  (26) 
        ω

2
n
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Comparing Eq. (24) and Eq. (26) and considering 
that in resonance ω = ωn it may be seen that the lo-
cation of water column at the instant of separation 
is provided by the same expression

xw(ts) = Xs = δst =
  g	  (27) 

                            ω
2

Therefore Eq. (27) reveals that separation should 
always take place at the point of zero spring deflec-
tion regardless of the resonance frequency.

Determining water column and pipe equations 
of motion

Consider now the water column vertical motion 
taking place inside the pipe. The differential equation 
governing this motion is defined by Eq. (16)

x··w(t) = –g

By integrating twice with respect to time and con-
sidering the water column initial conditions at the 
point of separation t = 0,  ·xw(0) = Vs = ωXmax cos(ωts)  
and xw(0) = Xs = g/ω2, the equations governing water 
column vertical motion are found to be

 ·xw(t) = –gt + ωXmax cos(ωts),

xw(t) = – gt2
 + [ωXmax cos(ωts)]t +  g	

 (28) 
               

2                                     ω2

Now considering the water column boundary 
conditions at the point of its maximum height t = t1,  
·xw(t1) = V1 = 0 and xw (t1) = hmax, and substituting 
them into Eq. (28) the time taken for the water col-
umn to attain its maximum height and the value of 
that height are found to be

t1 = ωXmax cos(ωts) , and 
                g

hmax = xw(t1) =
[ωXmax cos(ωts)]

2

 +  
g
	  (29) 

                                   2g                 ω2

Consider now the oscillating motion of the 
pipe-valve-shaker mass system. To find out its cor-
responding position when water column is at its 
maximum height it is necessary to estimate the time 
required for the system to reach that position. Tak-
ing into account that the time for the pipe motion 
is counted from equilibrium while the time for the 
water column motion is measured from the point of 
separation, the corresponding duration of motion 
of the pipe is

tp = ts + t1 	  (30)

Thus the pipe (valve) velocity and its location may 
be obtained from Eq. (9) and Eq. (4) respectively 
and for the purposes of determining the relative 
distance between the valve and water column, the 
phase angle ψ was omitted as it has no effect on that 
distance.

·xp(tp) = ωXmax cos(ωtp)

xp(tp) = Xmax sin(ωtp)	 (9′ & 4′)

Determining the relative distance between water 
column and pipe 

If the separation exists the relative distance may 
be defined as the vertical distance between the 
lower end of water column and the inner surface 
of the valve. It specifies the maximum height of a 
cylindrical volume vacated by the moving column 
of water into the pipe when water column is at the 
most distant position from the valve (Figure 4).

According to Figure 4 the maximum value of the 
relative distance is given by

Xrel = xw(t1) – xp(tp) = hmax – xp(ts + t1) 	  (31)

To find out the location of the valve when it shuts 
and water column joins the oscillating system, a time 
ratio was defined.

Time ratio =    
tp    = 

2ω
 tp, dimensionless 	  (32) 

                    0.25T      π

Depending upon the values of the time ratio the 
following cases may be encountered:

If the time ratio 2ωtp/π = 1, then the valve and 
water column will be situated at the end of Phase 
2, and therefore there will be no separation, hence 
Xrel = 0. This occurs when amax = g.

Figure 4. Determination of the relative distance
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If
 
(1 < (2ωtp/π) ≤ 2), the separation will be in Phase 2, 

and valve will shut in Phase 3, hence Xrel ≠ 0.
If

 
(2 < (2ωtp/π) ≤ 3), the separation will be in Phase 2, 

and valve will shut in Phase 4, hence Xrel ≠ 0.
If 

 
(3 < (2ωtp/π) ≤ 4), there will be a separation in 

Phase 2 but the valve will shut at the beginning of 
Phase 1 and hence it will be further moving together 
with the water column. Consequently a further in-
crease in the relative distance will be slowed down 
and any further increase will be achieved for the 
expense of increasing the maximum height hmax.

It was found by numerical calculations that the 
maximum value of the relative distance is attained 
when a resonance acceleration of 4.604 g m/s2 is 
imparted on the oscillating system. In this case the 
valve closes at the BDP of the pipe when water col-
umn is at its maximum height. Figure 4 shows the 
locations of the point of separation, the point when 
valve shuts, and the relative distance between the 
valve and water column when amax = 2 g. Hence, 
water column joins the system in Phase 3.

Estimating the pump flow rate

The above analysis reveals that the resonance 
pump operates in a manner similar to that of a 
reciprocating pump therefore its flow rate may be 
defined as

Q = AvXrel               (m
3/cycle) 	  (33)

where:
Xrel	– stands for the stroke of the virtual reciprocating 

pump.

Considering the number of oscillations (strokes) 
per minute it becomes

Q = AvXreln             (m3/min) 	 (34)

where:
Av = (π d2

v)/4	 – inlet area of the foot valve (m2)
n	 – angular speed of shaker (rpm)

The above equations may also be rearranged to 
give the flow rate in litres per minute

Q = 250π dv
2 Xrel n    (l/min) 	 (35)

Pressure developed by the pump at ground level

The pressure developed by the resonance vibrating 
pump may be defined as

pH =
   Fsp    	  (36) 

          Av

where:
Fsp = kxp(t) = kXmax sin(ωt – ψ)	– spring force driving the 

system in resonance
k = Mω2 	 – stiffness of the suspension system,
Av = (π dv

2)/4	 – foot valve inlet area.

Upon substitution into Eq. (36) the pressure devel-
oped by the pump at ground level is obtained

pH = 
4Mω2

  Xmax sin(ωt – ψ)   (N/m2)	 (37) 
        π dv

2

The analysis of Eq. (37) suggests that there are 
two pressure pulses delivered during one oscillation 
cycle, corresponding to the two maximum values 
of sin(ωt – ψ). But it was proved that separation 
of water column takes place only once per oscilla-
tion and therefore this will generate only one pulse 
of pressure. It is for this reason Eq. (37) has to be 
divided by a factor of 2.

Furthermore to obtain the average pressure devel-
oped by the pump the average value of the pressure 
has to be obtained based on the following math-
ematical consideration

Average of [Xmax sin(ωt – ψ)] = 2  (Xmax)   	  (38) 
                                                  π

Therefore the average pressure generated by the 
pump at ground level per cycle of oscillation is

pav = 4Mω2
 Xmax, or 

         π
2dv

2

pav = 2meω2
 ×            1            (Pa)	  

(39)
 

         π
2dv

2           ζ√1–ζ2

Estimating the efficiency of resonance pump

The efficiency of the resonance pump may be 
written as

η =  
ρg(H + Ho)Q

     	  (40) 
       Input power

where:
H	 – depth of pumping
Ho	 – delivery head

The input power supplied to the resonance pump is 
the mean power output generated by the shaker and 
may be estimated from the following expression

PThe shaker mean power = 
1

  
T

∫ F(t)  ·x(t)dt     	  (41) 
                                T 0
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The resultant inertia force generated by the shaker 
in the vertical direction is given by

F(t) = me ω2 sin (ωt) 	  (42)

while the velocity of the system is provided by 
Eq. (10) as  ·x(t) = ωXmax cos(ωt – ψ) .

Upon substitution in Eq. (41) the input power of 
shaker may be written as

PInput = meω4 
Xmax 

T
∫
0
 sin(ωt) cos(ωt – ψ)dt	  (43) 

  power    2π

Solving the Integral in Eq. (43) within the specified 
limits of integration gives

Integal = π 	  (44) 
               ω

By substituting the solution of the integral Eq. (44) 
into Eq. (43) yields

PInput power = meω3
 Xmax, or 

                     2                          
(Watt)	  (45)

PInput power =      (me)2ω3
 

                    4Mζ √1 – ζ2

Now substituting Eq. (45) into Eq. (40) the equa-
tion for the pump efficiency is obtained

η = 2ρg(H + H0) Q  ×   100%, or 
          meω3Xmax

η = 
4ρgMQ(H + H0) (ζ√ 1 – ζ2)  

 × 100%	  

(46)

 
                    (me)2 ω3

The analysis of the first part of Eq. (46) reveals that 
for a desirable flow rate high efficiency can be ob-
tained by reducing the resonance frequency and/or 
by increasing the depth of pumping (H + H0). It is 
evident that the effect of the resonance frequency 
on the pump efficiency is much significant as com-
pared to the linear effect caused by the depth of 
pumping.

The Resonance Pump Model

Based of the theory developed a functional model 
of the resonance pump was designed, constructed 
and tested. Figure 5 shows the experimental setup 
used for testing the resonance model pump. The 
shaker in this design was composed of two small 
AC motors intended for ceiling fans, which were set 
to rotate in opposite directions and synchronized by 
employing timing belt rubber gears. The amount of 
the unbalanced mass per motor was m = 0.176 kg 
offset at a radius of 0.0895 m. One of the motors was 

passive and the other one active, delivering 60 W 
power output at 360 rpm. An electronic control de-
vice was used to vary the speed of the active motor 
to achieve resonance in the oscillating system. The 
pumped water was measured by a conventional wa-
ter meter type C-PHB3122 and circulated through a 
bucket of 20 litre capacity. Table 1 lists the flow rates 
delivered by the pump for two types of valve: mainly 
EUROPA and BOSSINI. The valve of the EUROPA 
design was spring free; while in the BOSSINI design 
the valves were spring loaded. The use of strainers 
having 90° angle of taper of two different inlet diam-
eters was intended to improve the flow rate of the 
pump, but an adverse effect was observed due to an 
increased damping. This was explained with the lim-
ited power output of the shaker, which was unable to 

Fig. 6 Comparison between theoretical and experimental flow rates for 3-inch valve 
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Figure 6. Comparison between theoretical and experimental 
flow rates for 3-inch valve

Figure 5. The experimental setup
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provide the required acceleration and compensate 
for the increased energy losses when strainers were 
employed. Figure 6 shows the theoretical predictions 
of the flow rate for 1.5, 2, and 3-inch valves versus 
different accelerations of the oscillating system. In 
this figure the point of the experimental flow rate 
is shown, obtained with a 3-inch valve without a 
strainer, at frequency of 5 Hz, amplitude 21.4 mm, 
acceleration 2.74g m/s2, and a depth of pumping 
H = 1.65 m.

The pressure and efficiency of the pump were found 
to be 4.55 m water head and 14.5% respectively.

CONCLUSIONS

The theory proposed in this paper provides bet-
ter understanding of the pumping process and the 
performance of resonance-vibrating pumps. The 
suggested methodology and the derived equations 
are simple and easy to use in designing, analysing, 
and improving the pump performance. By employing 
Eq. (35) one can calculate the theoretical flow rates 
of the pump for different frequencies and imparted 
accelerations, and modify them later by employing the 
coefficients of head losses in the pipe system. Eq. (39) 
yields the average pressure developed by the pump 

at ground level, which appears to be independent of 
the depth of pumping, provided that the imparted 
acceleration is of the same magnitude. From Eq. (46) 
it is evident that to improve the pump efficiency for 
a desirable flow rate and given depth of pumping one 
should reduce the resonance frequency of operation. 
On the other hand when the pump is set to operate at 
a particular resonance frequency, the efficiency of the 
pump will increase with the depth of pumping.

Based on the experimental results and employ-
ing the above equations, one can conduct a pump 
design achieving a desirable flow rate, pressure and 
efficiency in operating at a particular depth.
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Table 1. Flow rates delivered by the model pump with and without strainers

Flow rate

Valves

EUROPA 
1.5 Inch

Bossini

1.5 Inch (1) 1.5 Inch (2) 2 Inch (1) 2 Inch (2) 3 Inch

Without strainer

Run 1 (l/5min) 28.3 26.3 26.3 27.7 30 40

Run 2 (l/5min) 29 26.5 26.8 27.5 31 41

Run 3 (l/5min) 29 26.8 25.7 27,5 30.8 41

Average (l/min) 5.753 5.307 5.253 5.513 6.12 8.133

With strainer

ø = 90 mm

Run 1 (l/5min) 26.5 24 24.4 27.2 30 –

Run 2 (l/5min) 26.3 24 24.3 27.3 29.5 –

Run 3 (l/5min) 26.6 24 24.2 27.5 29 –

Average (l/min) 5.293 4.8 4.86 5.467 5.9 –

ø = 110 mm

Run 1 (l/5min) 24.5 24.6 24 25.6 26.3 –

Run 2 (l/5min) 24.5 25 23.7 25.5 25.5 –

Run 3 (l/5min) 24.6 25 23.7 25.6 26.1 –

Average (l/min) 4.907 4.973 4.76 5.113 5.193 –
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Abstrakt

Loukanov I.A. (2007): Výzkum pracovního procesu rezonančně vibračního čerpadla při čerpání vody 
ze středně hlubokých studní. Res. Agr. Eng., 53: 172–181.

Příspěvek se zabývá čerpacím procesem rezonančně vibračního čerpadla, který využívá rezonanční vibrace oscilač-
ního systému s jedním stupněm volnosti. Čerpadlo je poháněno mechanickým třasadlem, tvořeným dvěma vzájem-
ně posunutými závažími s opačnou rotací a pracujícími v rezonanci. Ve studijní části se zkoumá povaha čerpacího 
procesu a podmínky vyžadované pro dosažení čerpací činnosti. Jsou odvozeny rovnice pro průtok, tlak vyvinutý pro 
přízemní hladinu nebo pro jakoukoliv výšku nad tímto základem, účinnost čerpadla a energii dodanou třasadlem. 
Analýza čerpacího procesu ukázala, že průtok čerpadla může být maximalizován buď zvýšením zrychlení oscilační-
ho systému, nebo omezením vlastního kmitočtu. Bylo zjištěno, že tlak vytvořený čerpadlem není závislý na hloubce 
čerpání v případě, že je uděleno stejné zrychlení; jeho účinnost může být zvýšena buď omezením vlastního kmitočtu, 
nebo zvýšením hloubky čerpání. Předběžné výsledky zkoušek, týkající se průtoku a tlaku vyvinutého pro přízemní 
hladinu, jsou podobné hodnotám předpokládaným navrženou teorií. Na základě analýzy teoretických a experimen-
tálních poznatků autor dospěl k závěru, že rovnice odvozené v příspěvku mohou být použity při navrhování rezo-
nančně vibračních čerpadel pro požadovaný průtok, tlak a účinnost čerpání vody ze stanovené hloubky.

Klíčová slova: rezonančně vibrační čerpadla; třasadlo se zdvojenou hřídelí; pružinový závěsný systém; patní ventil; 
oscilační čerpadlo; vodní sloupec
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