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Some possibilities exist to design the parameters of 
motion screws. All the respective theories are based 
on the buckling stress calculation. Some of the so 
called construction schools use classical methods 
of design and calculations (Bolek & Kochman 
1989), others use the buckling stress conversion to 
pressure stress by means of buckling coefficients 
(Orlov 1979) or by using special formulas, e.g. by 
American Society (Faires 1955; Oberk et al. 2000; 
Marghitu 2001), or Johnson’s formula (Marghitu 
2001). All the methods mentioned are based on it-
erations, requiring too many calculation operations, 
especially in the case of the inexperienced designer. 
In designing the motion screws, the effective length 
change during the operation has to be considered 
inducing kinetic energy changes of the screw as well 
as the inaccuracies in both the nut bearing and the 
point of action.

Motion screw

Motion screws are often connected with the ancient 
ingenious man, Archimedes. But for his basic theses 
and postulates, the current sciences would not exist. 
Archimedes also practiced his theoretical knowledge 
of physics by constructing. He gave foundations to 
many scientific disciplines and is considered by many 
as the greatest inventor of all ages.

Besides many his accomplishments which brought 
him imperishable glory, Archimedes is a creator of 

the water pump based on the motion screw as the 
operational element. His revolutionary device has 
been used to pump out water from under the ship 
deck and for the water transport in agriculture.

Another milestone in history is the life work of an 
Italian painter, artist, mathematician and inventor, 
Leonardo da Vinci. He started to use motion screws 
to lift weight. His system of jack is still in use nowa-
days, as well as the screw based presses.

The golden age of motion screws dates back to 
the eighteenth century when the so called industrial 
revolution changed the world. Motion screws were 
frequently used by English inventors and construc-
tors such as John Wilkinson together with Henry 
Maudsley. The most gifted inventor of that era was 
undoubtedly Joseph Whitworth who formed the 
foundations of the thread accurate cutting, thread 
measuring, and finally its construction. Leonardo’s 
jack construction was improved by using the ball 
bearing whose mass production started in many 
countries towards the end of the nineteen century. 
The motion screws were then already part of every 
day living. These were met by railroad and steam-
boat travelers. Motion screws are the essential parts 
of floodgates in English channels connecting the 
northern and southern parts of the country.

Later, they became indispensable in many indus-
trial branches, sciences and medicine. Their function 
is not limited only to lifting weight but also to trans-
forming the circular motion to the advance motion 
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and contrariwise. As sad fact remains that motion 
screws were used to improve the construction of 
artillery grenade direction finders, leading to higher 
numbers of human casualties during wars.

MATERIAL AND METHODS

The motion screws with threads are used to kinetic 
energy transmission at lower rotation number of 
screw or nut. The motion screw and its nut are mu-
tually housed with one degree of freedom. It means 
a case of buckling at motion.

Theory of allowable stress limit

As early as in 18th century, Leonhard Euler dis-
covered and formulated a formula which described 
maximal value of axial force; such force was trans-
ferred by slender bars without the loss of stabil-
ity. The described theory was evolved by solving a 
simple differential equation of the deflection curve, 
loaded by axial force, rising a bending moment. In 
the case of such calculation, bars are considered as 
ideal, meaning a bar is straight, homogenous, and 
without internal preload. Maximal value of tension 
originated during a load is called the critical load. 
If a bar is loaded with the critical load, it becomes 
unstable and even a small rise in axial load-force or 
inducting a side load results in bar drifting.

During the scientific-technical revolution in 
19th century, many inventors and constructors 
found out cases in which Euler’s theory did not work 
well. Then, limiting conditions were set for Euler’s 

theory and a new terms were introduced – elastic 
buckling – Euler, semi elastic buckling – Tetmayer. 
The parameters of ideal bars were not achievable 
by the technologies and applications at that time, 
so the values obtained by the application of previ-
ously inducted methods were not confident. Later 
coefficients began to be applied in theoretical equa-
tions and many tens of different methods of the bar 
stability came in use.

By the formulation of Euler’s Eq. (7) is it clear that 
the critical force – load is dependent on the slender-
ness ratio (1). A slenderness ratio is then dependent 
on the buckling length of the bar and on the radius 
of gyration. The buckling length is dependent on the 
bar length and its way of fit (Figure 1). The four main 
kinds of the bar fit may be achieved by solving the 
differential equation of the deflection curve (Kuba 
1977), loaded by an axial force. The combination of 
the previously described cases of fits and loads may 
be found in specific cases.

The calculation of the screw size is based on the 
classical theory of buckling. A screw is considered 
as a slender prismatic bar. The kind of buckling 
is set by the slenderness ratio, the buckling area 
is determined as the area of semi elastic buckling 
– Tetmayer’s area or elastic buckling area – Euler’s 
area (Höschl 1971).

The slenderness ratio is then described as the 
relation of the buckling length and the radius of 
momentum.

        LVλ = –––  (1)
         i

Where square of radius of momentum is the ra-
tio of minimal quadratic bending moment and the 
minimal area of the screw cross section (4).

          Imini = √ ––––  (2)
           S3

           π × d3
4   

 

Imin = –––––– (3)
              64

         π × d3
2   

 

S3 = –––––– (4)
            4

If Eqs. (3) and (4) are put into formula (2), the 
calculation is obtained leading to the momentum 
radius determination.

        d3
  
 

i = –––– (5)
         4

If the formula above (5) is put into Eq. (1), the 
searched equation of the slenderness ratio of the 
motion screw is obtained. LV is the screw buck-

L

                              
 √ 2     Lv = L       Lv = –––– L     Lv = 0.5 L   Lv = 2 L

                                 2

Figure 1. Particular examples of buckling mounting and 
expression of their buckling length in dependency of bar 
length



34	 RES. AGR. ENG., 54, 2008 (1): 32–41

ling length dependent upon the form of bearing 
(Höschl 1971), and d3 is the minimal diameter of 
the screw thread.

       4 × LVλ = ––––––  (6)
          d3

The process interdependence of the critical stress 
of the slenderness ratio in the area of elastic buckling 
(Figure 2) is established as the ratio of the critical 
force and the minimal area of the screw cross sec-
tion (4).

                        π2 × E × Imin
            FKR                     LV

2              π2 × EσKRE = –––– = ––––––––– × ––––––  (7)
              S3               S3                λ2

The process interdependence of the critical stress 
of the slenderness ratio in the area of semi-elastic 
buckling is established by Tetmayer`s formula, 
where a and b are tensions (9), (10), (Höschl 1971; 
Marghitu 2001; Zachariáš 2005).

σKRT = a – b × λ  (8)

The relations leading to the tension dimension are 
deducted using the straight line relation.

                         Re – σUa = Re + λk × –––––––––  (9)
                          λm – λk

         Re – σUb = –––––––––  (10)
           λm – λk

The process of the critical stress interdependence 
with the slenderness ratio of classical pressure area 
is equal to the yield strength.

σKRD = Re  (11)

The relevance of relations (7), (8) a (11) is bound 
by the limit values of the slenderness ratio; these 
values are dependable on the motion screw mate-
rial (Tables 1 and 2) (Höschl 1971; Orlov 1979; 
Bolek & Kochman 1990; Marghitu 2001; 
Zachariáš 2005), where condition I corresponds 
with the constant operational force load, and con-
dition II means load by fluctuating operational 
force.

If the above given formulas are figured graphically, 
a classical graph of interdependence between the 
critical buckling stress and the slenderness ratio is 
obtained (Figure 2).
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Figure 2. Dependencies of critical stress and 
a limit safety stress upon the slenderness 
ratio

Table 1. Mechanical properties of motion screws materials

Material 
No.

Yield strenght Yield limit of 
elasticity Safe working stress 

EU standart CZ standart
Re (MPa) σU (MPa) σdDOV (MPa)

I, II I, II I II
1 EN ISO S235JRG1 11370 210 154 120 80
2 EN ISO E295 11500 265 192 150 100
3 EN ISO C35 12040 294 207 160 110
4 EN ISO C45 12050 315 208 175 115
5 EN ISO 51CrV4 15260 680 315 300 215
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Regarding the screw stress when in motion; there is 
a raised risk of stability loss in comparison with that 
in the case of rod motionless bearing. The relation 
between the safety factor and the increasing value of 
the slenderness ratio exists in the case of the motion 
screw being selected with a consideration of the screw 
motion and screw stress by axial operational force.

Through the calculations of the motion screws a 
higher safety margin is required of buckling ever 
more the higher is the value of the screw slenderness. 
Since the slenderness ratio is not known in advance, 
it is very difficult to quantify the safety margin (Fi-
gure 3). To simplify the motion screw calculations, 
a method is used of stress decreasing along with 
increasing slenderness.

The safe working stress at slenderness λ is desig-
nated as σd. The buckling safety margin is determined 
by the ratio of the critical stress to the safe working 
stress (Höschl 1971; Kuba 1977; Marghitu 2001; 
Zachariáš 2005).

          σKRkv = –––––   (12)
           σd

In the area of classical pressure, it is possible to 
describe the value of the buckling safety margin 

by the following equation as the ratio of the elastic 
strength to the safe working stress in the case of 
simple pressure.

                  Re
kv = kd = –––––   (13)
                σdDOV

In the area of semi-elastic buckling, safe working 
stress is described using the following formula

σd = a× – b× × λ    (14)

where a× a b× are tensions (15), (16), (Höschl 
1971; Marghitu 2001; Zachariáš 2005).

The relations leading to the tension dimension are 
deduced using the straight line relation (Figure 3).

                               σdDOV – σUa× = σdDOV + λk ––––––––––  (15)
                                  λm –  λk

         σdDOV – σUb× = ––––––––––  (16)
             λm –  λk

It is also possible to simply determine the buckling 
safety margin at marginal slenderness λm 

          σUkm = ––––  (17)
          

σU

The adapted yield elastic limit σU is simply ob-
tained from the equation given above in the area of 
semi-elastic buckling, it is possible to describe the 
value of the buckling safety factor according to the 
following formula; as the ratio of the critical stress 
in the area of semi-elastic buckling (8) divided by 
the safe working stress in the area of semi-elastic 
buckling (14).

                  
a – b × λkV = kT = ––––––––––  (18)

                 a
× – b× × λ

In the area of elastic buckling, the safe working 
stress is described by the following formula:

          C
σd = ––––   (19)
          λ

H

Table 2. Parameters buckling properties of motion screw materials

No.

Classical pressure 
slenderness ratio

Marginal 
slenderness ratio

Maximal 
slenderness ratio

Low buckling 
safety

Marginal buckling 
safety

Maximal buckling 
safety

λk λm λu kD km ku

I II I, II I, II I II I II I II
1 40 25 116 200 1.75 2.63 3.5 5.25 10 15
2 40 25 104 200 1.77 2.65 3.5 5.25 10 15
3 40 25 100 200 1.84 2.67 3.5 5.25 10 15
4 40 25 100 200 1.80 2.74 3.5 5.25 10 15
5 40 25   81 200 2.27 3.16 3.5 5.25 10 15
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Figure 3. Dependency of buckling safety to slenderness ratio
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In the area of elastic buckling it is possible to 
describe the value of the buckling safety factor ac-
cording to the following formula; as the ratio of the 
critical stress in the area of elastic buckling (7) di-
vided by the safe working stress in the area of elastic 
buckling (19).

                  π2 × E
                      λ2          π2 × E
kV = kE = –––––– = ––––––– × λH–2  (20)
                     C                C

                     λ
H

The safe working stress in the area of semi-elas-
tic buckling (19) can be obtained by the following 
equation, where β is the factor of tangential stress 
(Zachariáš 2005) dependant on the number of 
threads.

                                 β × F
σd = a× – b× × λ = ––––––   (21)
                                    S3

If Eqs. (6) and (4) are substituted into the previous 
formula, a relation is obtained describing the dimen-
sion of the safe working stress in the area of semi-
elastic buckling on minimal screw diameter d3.

                          4 × LV        β × F
σd = a× – b× × –––––– = –––––––  (21)
                             d3           π × d3

2   

                                                4
By the adaptation of formula (22), a quadratic 

equation in a normed form is obtained.
                                                 4 × β × F
a× × d3

2   – b× × 4 × LV × d3 – –––––––– = 0  (23)
                                                        π
By solving this formula, the following equation of 

the minimal screw diameter calculation is obtained. 
However, the validity of this formula is limited to 
the semi-elastic buckling area.

                                                                                  4 ×β × F
        b

× × 4 × LV × √(b× × 4 × LV)2 + 4 × a× × (         π       )
d3 = ––––––––––––––––––––––––––––––––––   (24)
                                         2 × a×

 
The validity of the previous equation is limited  

by the straining force FDM, at marginal slender-
ness of the screw. If Eqs. (6), (14) are substituted 
put into formula (21), the following relation is 
obtained.

                            β × FDMa× – b× × λm = ––––––––––  (25)
                         π × ( 4 × LV )2

                                    λm

                                 4
An equation describing the dimension of the 

ultimate force is obtained by the adaptation of the 
previous formula.
                                                          Lv             1FDM = (a× – b× × λm) × π × 16 × (–––)2

 × ––   (26)
                                                          λm            β

The safe working stress in the area of elastic 
buckling (19) can be figured by the following 
equation, where β is the factor of tangential stress 
(Zachariáš 2005) and is dependant on the number 
of threads. 

                   π2 × E
         

 C         λ2
σd = ––– = –––––  (27)
          λ

H        kE

If both marginal conditions (screw marginal slen-
derness and maximal screw slenderness) are put into 
the previous formula, an equation system of two 
unknown parameters is obtained.

  
C

       π2 × E
––– = –––––––   (28)
λm

H        km × λm
2
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Figure 4. Dependency of minimal value 
of buckling safety to slenderness ratio
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C

       π2 × E
––– = –––––––   (29)
λu

H        ku × λu
2

If the system of equations is finally solved, then 
the value of H exponent is obtained and, by reverse 
substitution to the (28), (29) equation system,  
C coefficient value is obtained.

                km × λm
2

        log   ku × λu
2

H = ––––––––––––––  (30)
              log  λm

                       λu

If Eqs. (29) and (30) are substituted to Eq. (27), 
a formula describing the safe working stress in the 
elastic buckling area at minimal screw diameter d3 
is achieved.

               C               β × F
σd = –––––––– = ––––––––  (31)
         (4 × LV )H         π × d3

2   

              d3                    4
By the arrangement of the previous equation a for-

mula is obtained describing the size of the minimal 
screw cross section. The validity of this equation is 
limited by the area of elastic buckling.

          4 × β × F                        
1

d3 = (–––––––– × (4 × LV)H)H+2  (32)
             π × C

The equations described previously may be pre-
sented graphically (Figure 4) by the substitution 
of the material coefficients obtained (29), (30) and 
(Tables 1 and 2) to the equations of buckling safety. 
In view of clarity, only dependencies are pictured 
regarding the constant straining force. Similar de-
pendencies are then achieved, where the fluctuating 
straining forces material parameters are substituted 
to the equations mentioned.

The formulas describing the design of the motion 
screw parameters regarding the screw drift during 
the operational strain are derived in a previous part 
of the article. The tangential stress also arises in the 
motion screw. This is caused by the screw torsion 
by a couple of frictional forces during the relative 
movement of the screw and the nut. If the screw 
stress is considered also from the point of torsion 
and the press stress at same time, it is worthy to 
check the screw under the classical strengths con-
ditions.

Both of the strains are then converted into the 
reduced screw pressure. The motion screw reduced 
stress is set by Mohr’s hypothesis.

σd = σred = √ σ2 + 4 × τ2  (33)

The direct stress formed during the screw strain 
is expressed by the following formula.

        
4 × Fσ = ––––––  (34)

       π × d3
2  

The tangential stress caused by the screw torsion 
strain may be expressed as the ratio of the moment 
necessary to break the thread friction and the screw 
torsion section modulus.

        Mzτ = ––––  (35)
        Wk

The moment necessary to break the thread fric-
tion is extracted by following formula (Zachariáš 
2005), where: α is an angle of the thread pitch, φ is 
the friction angle of the screw thread, d2 is the pitch 
diameter of the screw thread.

Mz =0.5 × F × d2 × tan(α + φ)  (36)

The torsion section modulus is described by the 
following equation.

          π × d3
3

Wk = ––––––   (37)
             16

The relation between the pitch diameter of the 
screw thread and the minimal diameter of the screw 
thread is figured in the following formula, where d 
is the diameter of the screw shank. The formula is 
accurate enough in the case of the strength calcula-
tion even though there are other, more precise and 
complicated equations describing the screw shank 
and other parameters and dependencies.

         d + d3d2 = ––––––   (38)
             2

If formulas (36), (37), (38) are installed into for-
mula (35), the following equation is obtained.

L 
= 

L v

F

d 3

Figure 5. Scheme of motion screw of the manual jack
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       4 × F                d
τ = ––––– × (1 + ––––) × tan(α + φ)  (39)
      π × d3

2                 d3

By implementing formulas (34) and (39) to Eq. 
(33) the sought formula is obtained describing the 
dimension of the reduced direct stress. This stress 
has to be equal to the safe working stress (21).
                    4 F                                     d
σd = σred = ––––– × √1 + 4 × [(1 + ––) × tan(α + φ)] 2 

=
                   π × d3

2                                            d3

            4 × F
= β × –––––––   (40)
           π × d3

2

By the modification of the previous equation and 
the expression of the tangential stress β, the formula 
is obtained of the real factor of the tangential stress 
influence.
                               

 dβS = √1 + 4 × [(1 + ––) × tan(α + φ)]2
  (41)

                                d3

During the screw control, the real factor of the 
tangential stress influence has always to be smaller 
than or equal to the factor of tangential stress influ-
ence βs ≤ β.

RESULTS

Calculation parameters of 11500 steel  
(EN ISO E295)

The designing parameters sought are obtained 
when 11500 (EN ISO E295) material constants (Ta-
bles 1 and 2) are implemented to the formulas (26), 
(24), (32), (18), (20). 
                LV            1
FDM = (–––––)2

 × –––  (42)
              3.961         β

         (β × F)0.1783 × LV
0  .6434

d3 = –––––––––––––––––  (43)
                 15.9114

          LV             LV           β × F
d3 = –––– + √( ––––)2

 + –––––––   (44)
        70.5           70.5         164.54

                               λ               S3kVTS = (310.6 – ––––––) × ––––  (45)
                           0.877         β × F

             π2 × E × S3kVES = –––––––––––  (46)
               λ ×

 
β × F

Calculation process

Design sizes of the motion screw of the manual 
jack (Figure 5). The screw is made of 11500 (EN ISO 

E295) steel and the bolt is made of cast iron, fric-
tional angle is φ = 6°. The acting force F = 22 000 N, 
the buckling length LV = 560 mm.

By Eq. (42), the size of the limit force, is set where 
β = 1.3 is the factor of the tangential stress influences 
of simple start thread.
              1           LV              1          560
FDM = ––– × (–––––)2

 = ––– × (–––––)2 = 15 375 N (47)
              β         3.961        1.3        3.961

The kind of buckling is determined by comparison 
of the operational and the limiting forces

Fprov = 22 000 N > FDM = 15 375 N

Because Fprov > FDM , the following calculations are 
done in the area of inelastic (rigid) buckling.

By formula (44) the diameter of the screw core is 
determined.
           lV               LV             β × F       560  
d3 = –––– + √ (–––––)2

 + –––––– = ––––– +
         70.5           70.5          164.54      70.5

          560          1.3 × 22 000
+ √ (–––––)2

 + ––––––––––– = 23.33 mm  (48)
          70.5             164.54

By means of the table of regular trapezes threads, 
the following parameters are selected (Zachariáš 
2005):

Tr 32 × 6, d = 32 mm, d3 = 25 mm, D1 = 26 mm, 
P = 6 mm, S3 = 491 mm2, d2 = 29 mm, .
                        

    P                             6α = arctan × –––––– = arctan × –––––– = 3.8°
                        π × d2                     π × 29

The screw slenderness is determined by formula (6)
       4 × LV        4 × 560
λ = –––––– = ––––––– = 89.6  (49)
           d3               25

It is now possible to check the screw safety margin 
in the case of buckling by formula (45)
        (310.6 – λ/0.877) × S3          (310.6 – 89.6/0.877) × 491
kV = –––––––––––––––– = –––––––––––––––––– =
                  β × F                             1.3 × 22 000

     = 3.57  (50)

If the obtained value of the safety margin (50) is 
compared with the limiting safety margin, it is pos-
sible to read out from the safety graph (Figure 4.) 
and figure out that the screw corresponds to the 
conditions of safety buckling, meaning it will not 
turn aside.

As a last but not least step, the screw is controlled 
by strength, according to Eq. (41) the real factor is 
determined of tangential stress influence.

Because the real factor of the tangential stress 
influences is smaller than the limiting tangential 
stress influences, it is possible to claim that the 
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screw is in concordance with the strength conditions 
(Zachariáš 2005).
                                  

 dβS = √1 + 4 × [(1 + –––) × tan (α + φ)]2
 =

                                  d3

                                
32=√1 + 4 × [(1 + ––– )× tan (3.8° + 6°)]2

 = 1.27 < β = 1.3  (51)
                                25

DISCUSSION

The assessment of the motion screw has been, 
frequently discussed for decades. There are tens of 
ways of calculation, design and stability control of 
the motion screw. However, up to now, no simple 
instruction exists determining which method is the 
most suitable. The decision is on the constructors 
shoulders. The constructor or the designer has to 
make the decision based on his own skill, knowledge, 
the complete analysis of the system and environ-
ment where the designed mechanism is going to 
be applied.

When the standard and well known case of the 
motion screw mechanical stress is to be solved, the 
solution being approved by long term experiments 
and practical experience, it is very useful to use 
analytical – empiric methods. Some of these meth-
ods are the so called iterative methods and others 
provide immediate results. The method described 
above is to calculate and design standard sizes of 
the motion screws parameters and their stability 
control. Maximum load capacity (pressure) method 
is a kind of non – iterative methods representing an 
analytical method which utilises empiric safety coef-
ficients. Such method is evolved to facilitate most 
effectively the motion screw design, its stability and 
strength. The method is based on long term practi-
cal experience gained during the last 50 years of the 
motion screws designing for many kinds of human 
working applications.

At the present time, the mostly used classi-
cal analytical-empiric methods are derived from 
the two basic theories of buckling – Tetmayer’s 
semi-elastic buckling, and Euler’s elastic buckling 
theories. By the combinations of purely theoretical 
methods and empiric knowledge obtained dur-
ing the past 150 years tens of methods, have been 
derived which are, currently in use. Each of these 
specific methods is recommended for a certain case 
of design and solution of a defined problem (steel 
bridges constructions, building sites support pil-
lars, beams, armatures, aviation industry, railway 
system design etc.). Such methods are also used for 
designing many different materials usage (plastic, 

steels, metals, woods, cold short materials as well 
as ductile materials).

Among the most widespread methods used in 
calculations on the worldwide scale are: Rankin and 
Gordon Formula (applied for designing the bridge 
constructions), Straight Line Formula (for carrying 
columns of buildings, columns of bridges), Formulas 
of the American Railway Engineering Association 
(railway bridges, beams, railway constructions), 
Johnson’s Formula (steel bars, beams), Formulas of 
the American Institute of Steel Construction (steel 
bars and braces), Formulas of pipe columns ( hol-
low bars, hollow carrying columns) and others such 
as: (Faires 1955; Oberk et al. 2000; Marghitu 
2001).

Many different numerical methods may be used 
to solve the motion screw stability. Such proce-
dures are frequently used in the cases where the 
limiting conditions are changed upright or during 
the operation, in the dependency on time. The 
limiting conditions are changed linearly or non-lin-
early: (medicine, osseous or joint implants, highly 
strained constructions placed on a soft basis like 
soils, plastic matters, and so on). An other case is 
if the stressing forces change with time, as well as 
their size and direction or if the environment where 
the mechanism works is completely changed – the 
heat transfer has to be taken into account (extrud-
ers, blast furnace mills, food lines, glasshouses 
etc.). Another specific case is if the mechanical unit 
contains tens of motion screws strained by different 
stresses, however, the stressing forces are depend-
ent on the force coming into the system (cyber 
– robotic systems, industrial robots, space shuttles, 
motion control systems etc.), or if to final tension of 
the motion screws is in the area of elastic deforma-
tion – combinations are then mostly used of FEM 
and FVM or other numerical methods (forming 
process of screw spike, special elements forming, 
pre-strained constructions, utilisation of the limit 
phases etc.) (Maurer  et al. 2001; Weronski et al. 
2005; Fabre et al. 2005).

The result of the numerical calculation is always 
dependent on the model accuracy (the rotation of 
the symmetrical model – the lead of the screw thread 
is not considered, versus the rotation of the non-
symmetrical model, where the lead of screw thread 
is considered), elements definitions and webbing, 
contact elements definition, suitable contact bonds 
and motion screw fit, suitable models of strain and 
operational environment and the accuracy of the 
input dates (material and mechanical properties of 
materials and environmental features) (Maurer et 
al. 2001; Weronski et al. 2005; Fabre et al. 2005).
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The mechanical structure of the machine and the 
drive features may be described in most of cases 
using the so called Flexible Multi-Body System. The 
methodology of creating the system of several plastic 
bodies is commonly used when solving the stability 
and the drive by the ball screw. Each plastic body is 
modeled using FEM, while all of the plastic bonds 
between the bodies are substituted by combined 
bodies of spring-absorber. By the kinematical bonds, 
it is possible to assembly a model of the ball screw 
drive. The model of the ball screw drive is usually 
webbed by FEM elements, other parts of the drive 
are modelled using solid bodies and plastic bonds 
among them.

While solving the buckling stability of slender 
bars in the Euler’s area of elastic buckling, Newton 
– Raphson method may be used utilising computer 
programs such as FEM, which is able to proceed 
the equation systems of geometrically non linear 
problems. The computing procedure utilises an al-
gorithm of gradual directives for different numbers 
of webbed elements. In the case of ANSYS program, 
such procedure is defined as linear buckling and the 
model is webbed by the classical element BEAM3. 
Critical buckling force calculation is affected by a 
number of the elements divisions.

CONCLUSION

A current random observer would not be able 
to count the numbers of the surrounding motion 
screws. These are literally everywhere, even though 
they are not often visible. Motion screws are inte-
grated in the constructions which influence every 
single day of human beings. What is common for: 
bread, beer, hospital bed, roller coasters, football 
stadiums, theaters, airplanes, paper, steel, glass, 
pure water, plastic, trains, cars, satellites, measuring 
devices, coins, and millions of other things? Motion 
screws, either straightly integrated in the construc-
tions or just participating in the production of the 
items mentioned.

There are tens of ways of the motion screws 
design at present. These are methods using pure 
theoretical foundations as well as methods purely 
empirically based. Currently are used aggrandised 
calculations with the computer support such as 
FEM.

The calculation method of the motion screw 
design described above and using the stress limit 
values is a combination of the limit situation and the 
empiric values obtained by long-term practical usage 
of the motion screws. This theory is combined with 
the classical buckling theory and uses empirical val-

ues obtained by a long time research which started 
already at the time of the first bi-plane designing 
about hundred years ago.

The steps of the calculation described above are 
not iterative, such kind of design being more than 
suitable for students and inexperienced young 
construction workers and designers. On the other 
hand, it is obvious that the described method can 
not substitute the knowledge of a designer obtained 
by many years of experience in constructing and the 
design practice.

A control graph of the buckling safety coefficients 
to prevent the screw buckling out is also derived 
in the article. The described dependencies are de-
duced for the motion screws loaded with a static 
force. The safety dependency for screws loaded 
by fluctuating forces may be easily obtained using 
the calculation described above, and by the correct 
substitution of the material constants and the limit 
safety values.

The complete design of the motion screw made 
out of 11500 (ISO EN E295) steel and loaded with 
a static force is fully described in the article. The 
exact calculation equations are obtained if the 
theoretical equations mentioned above, as well as 
specific material and buckling safety constants are 
correctly used.
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Abstrakt

Herák D., Karanský J., Chotěborský R. (2008): Využití teorie mezního dovoleného tlakového napětí při 
návrhu rozměrů pohybových šroubů. Res. Agr. Eng., 54: 32–41.

Článek popisuje postup návrhu pohybového šroubu dle metody mezního tlakového napětí. V článku jsou odvozeny 
výsledné obecné vztahy pro návrh pohybového šroubu a také vyčísleny rovnice pro výpočet pohybového šroubu 
vyrobeného z oceli 11500 zatěžovaného statickou provozní silou. Nedílnou součástí článku je odvození rovnic bez-
pečnosti proti vybočení šroubu a jejich grafické zobrazení.
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