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In given article on basis, introduced in BABAKOV 
(1968) common vibration theory of direct rods of a 
variable cross-section, oscillations of a continuous 
elastic body with one fixed extremity are examined.
An example of such body can be the sugar beet root 
crop located in soil and, that is very essential, the soil 
enclosing a root crop also is an elastic medium.

Let’s consider a case when vibrating motions will 
be affixed to the specified body in longitudinal-verti-
cal plane (to this position the example will answer 
when to a root crop which is in not destroyed soil, 
force from two sides from a vibration digging out 
end-effector will be affixed at its extraction from
soil).

Objectives

To develop substantive provisions of the theory of 
a of root crops vibration digging up from soil.

Procedure of research

At execution of introduced research, the basic 
variational principles of mechanics and a vibration 
theory of the rods having one fixed extremity are
used.

OUTCOMES OF RESEARCH

To research of holonomic systems oscillations 
with the infinite number of freedoms degree apply a
principle of Ostrogradskii-Hamilton stationary ope-

ration (1). In the theory longitudinal, torsional and 
transverse oscillations of Ostrogradskii-Hamilton 
direct rods functionals are applied which in the most 
common shape have such aspect (1):

       t2  l                   
∂y  ∂y   ∂2y    ∂2y    ∂2yS = ∫ ∫ L (t, x, y, —, —, ——, ——, ——) dx dt (1)

      t1 0                              
∂t   ∂x    ∂t2   ∂t∂x   ∂x2

where:  L = (T – Ï) – Lagrangian,
  T  –  system kinetic energy,
  Ï  –  system potential energy.

The principle of Ostrogradskii-Hamilton for re-
search of the continuous elastic body longitudinal 
oscillations occuring under vertical disturbing force 
operation which varies under such sort harmonic 
law

Qzb. (t) = H sin ωt  (2)

where:  H  –  forced oscillations amplitude,
 ω  –  forced oscillations frequency.

As it is visible from the composed model (Fig. 1), 
continuous elastic body – the root crop having the 
cone-shaped shape (which apex angle is equal 2γ, 
and the upper is little bit above a surface soil level), 
is modelled as a variable cross-section rod with fixed
lower extremity (point O ). In a barycentre which is 
marked out by a point C, force G – a body weight is 
affixed. Its general length – h. Body (root crop) link 
with soil is defined by a soil common response Rx  
which is located along an axis x.

The mentioned above disturbing force Qzb. is af-
fixed to a body at once from its two sides, therefore
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on the scheme it presented by two components Qzb.1  
and Qzb. 2. These forces are affixed apart x1  from 
coordinates origin (point O) and they give rise to 
oscillations of a body (root crop) in a longitudinal 
– vertical plane which destroy its links with soil and 
create for last conditions of extraction. 

Let’s make up Ostrogradskii-Hamilton functional 
S for vibration process which is considered. With this 
purpose we shall introduce necessary labels:
F(x) – body cross-sectional area in any point which 
is apart x  from the lower extremity (m2); E – Young’s 
modulus for a body material (N/m2); y (x, t) – any 
body cross-section longitudinal bias in an instant  
t (m); Q (x, t) – longitudinal exterior loading inten-
sity, directional along a body axis (N/m); µ (x) – body 
running mass (kg/m).

According to (1) Ostrogradskii-Hamilton func-
tional for longitudinal direct rods oscillations looks 
like:

       
1

  t2 h          
∂y                   ∂yS = — ∫ ∫ [µ (x) ( — )2

 – EF (x) ( — )2
 + Q(x, t) y]dx dt (3)

       2 t1 0            ∂t                    ∂x

Let’s find magnitude expressions which are in-
cluded in a functional (3). Taking into account that 
the body has the shape of a cone, we discover that 
its cross-section area F (x) in a point being on the 
arbitrary distance x from a point 0 will be equal

F (x) = πx2 tg2 γ  (4)

It is obvious that body running mass can be defined
with the help of such expression

µ(x) = ρ × πx2 tg2 γ  (5)

where: ρ – body density (kg/m3).

As the magnitude Q (x, t) which is included in a 
functional (3), is distributed load intensity which is 

measured in (N/m), the disturbing force should have 
dimensionality of loading intensity. With the help of 
the first order impulsive function σ1(x) (1) it is pos-
sible to determine concentrated load intensity and 
thus to include concentrated forces as a component 
of the loading distributed on length.

So, if Qzb.(t) – the concentrated disturbing force 
which is affixed in a point x1 and is measured in 
Newton function

Qzb. (x, t) = Qzb. (t) σ1(x – x1)  (6)

has dimensionality (N/m) and expresses concen-
trated load intensity in a point x1.

Function σi(x – x1) is equated to null for everything 
x, except for x = x1, where it becomes infinite.

Let the disturbing force operating under the law 
(2) is affixed on a body apart x1 from a reference 
point (a point 0 on Fig. 1). Then according to (6) it
is possible to write

Qzb. (x, t) = H sin ωtσ1(x – x1)  (7)

As the continuous elastic body is interlinked to 
soil which also is an elastic medium at an operation 
on it of a disturbing force (2) there is a soil reaction 
force to body migration at its oscillations. This force
also influences process of body natural oscillations in
soil is especial in the beginning of oscillatory process 
while its links with a soil are not dislocated yet.

It is obvious that resistance soil force (for all body) 
is a distributed load on a contacting area of a body 
with soil and therefore its intensity is definable  as soil
reaction force to migration of body length unity.

Let c – coefficient of soil elastic deformation
referred to a contacting area which is measured 
century (N/m2). We shall consider that soil enclos-
ing a body under a disturbing force operation H sin 
ωt realizes forced oscillations behind the same har-
monic law with amplitude which is defined by soil
elastic properties. Then soil intensity P (x, t) reaction 
to body migration to a point x will be equated

P (x, t) = 2 π c x tg γ sin ωt (N/m)  (8)

Thus we shall have such relation for a longitudinal
exterior loading:

Q (x, t) = Qzb. (x, t) – P (x, t)

Taking into account expressions (4), (5), (7) and 
(8) the Ostrogradskii-Hamilton functional (3) will 
get such aspect:

      
 1  

 t2 h   
                   ∂y                              ∂yS = — ∫ ∫{ρπ x2 tg2 γ ( — )2 – E π x2 tg2 γ ( — )2 +

       2  t1 0  
                       

∂t                              ∂x

+ [H sin ωt σ1(x – x1) – 2π c x tg γ sin ωt] ×  (9)

× y (x, t)} dx dt

�
Fig. 1. The model of the forces operating on a root crop at the
moment of capture by a vibration digging out end-effector
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For a body in soil natural shapes and frequency in 
pich determination the Ritz’s method (1) is usable. 
According to this method we shall search for body 
harmonic longitudinal oscillations in such aspect:

y (x, t) = φ(x) sin (pt + α)   (10)

where: φ(x) –  natural shape of principal oscillations, 
 p  –  fundamental frequency of principal oscillations.

As natural shapes and fundamental frequencies are 
interlinked to system free oscillations, it is necessary 
to select that part which features of system free oscil-
lations in a functional (9). It is obvious that it will be 
a functional of such aspect

     
1 

 t2   h   
                    ∂y                               ∂yS1 = — ∫ ∫[ρπ x2 tg2 γ ( — )2

 – E π x2 tg2 γ ( — )2] dx dt
     2  t1 0  

                        
∂t                               ∂x

   (11)

 Substituting expression (10) in a functional (11) 
we shall receive:

        
 1  

 t2 h   
                                                S1 = — ∫ ∫{ρπ x2 tg2 γ φ2 (x)p2 cos2 (pt + α) –        

         2  t1 0  
                      

                             

– E π x2 tg2 γ [φ´(x)]2 sin2 (pt + α)}dx dt  (12)

Integrating expression (12) on t in limits of one 
period

        
 2πT =         , we shall have:

          
p

         
π    

h

S2 = —  ∫{ρπ x2 tg2 γ φ2 (x)p2 –        
       2p   0  

                      
                             

– E π x2 tg2 γ [φ´(x)]2 }dx  (13)
It agrees the Ritz’s method a functional (13) value are 

considered on plurality of functions linear combina-
tions, that is the expressions which are looking so:

              n

φ (x) = ∑ αi ψi (x)  (14)
               i=1

where: αi  – parameters which variations we obtain the 
necessary class of admissible functions, 

 ψi (x)  – basis functions which are specially selected 
and are known functions, satisfying to prob-
lem geometrical boundary conditions.

Thus, substituting expression (14) in expression
(13), after the relevant transformations we shall 
receive:

       
 π  

  h   
                       n S2 = —  ∫[ρπ x2 tg2 γ p2 ∑ψi(x)ψk(x)αi αk –        

       2p   0  
                        

 i, k=1             

                        n

– E π x2 tg2 γ ∑ ψ´i (x) ψ´k(x)αi αk ]dx  (15)
                       i, k=1

Let’s introduce such labels for further:
h

∫ρπ x2 tg2 γ ψi (x)ψk(x) dx = Tik
0

h

∫Eπ x2 tg2 γ ψ´i (x)ψ´k(x) dx = Uik  (16)
0

(i, k = 1, 2, ..., n)
Substituting (16) in (15), we shall receive a func-

tional as function from parameters α1, α2, ..., αn:
S2 (α1,  α2, ..., αn) = 
    

π
       n                              π   n

= — p2∑Tikαi αk – — ∑ Uik αi αk  (17)
   2p   i, k=1                           2pi, k=1

We examine on an extremum the functional (17). 
For this purpose differentiate with respect expres-
sion (17) to α1, (i = 1, 2, ..., n) also we shall equate 
to null obtained partial derivatives. In outcome we 
shall receive the linear homogeneous system equa-
tions to unknowns (α1,  α2, ..., αn) from which, in 
turn, we discover the equation of Ritz’s frequencies 
for longitudinal oscillations of a continuous elastic 
body, fixed in soil:

 U11 – p2T11   U12 – p2T12  ...  U1n – p2T1n|U21 – p2T21   U22 – p2T22  ...  U2n – p2T2n
 .....................................................................|  = 0 (18)
 Un1 – p2Tn1   Un2 – p2Tn2  ...  Unn – p2Tnn

In practice, as a rule, only more often first and
second the lowest frequencies are defined which
influence most significantly a process which is con-
sidered.

Therefore definable are the first and second fre-
quencies of viewed body natural oscillations.

For definition of the first and second frequency the
equation (18) will get such aspect:

  U11 – p2T11   U12 – p2T12| U21 – p2T21   U22 – p2T22 
| = 0  (19)

As a result of the given equation solution we obtain 
expressions for a determination of the first (basic)
frequency value: 

        
0.662422       Ep1 = ————– √ —   (20)

               h              ρ

and the second frequency:
        

27.931592     Ep2 = ————– √ —   (21)
               h              ρ

Let’s calculate the first and second frequency value for
a continuous elastic body which example can be a root 
crop of a sugar beet with the following parameters (2) : 
h = 250 (mm); E = 18.4 × 106 (N/m2); ρ = 1,300  (kg/m3). 
As evaluations result we shall receive:
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0.662422       18.4 × 106

p1 = ————– √ ————— = 315 (s–1)
         250 × 10–3        1,300

        
27.931592      18.4 × 106

p2 = ————– √ ————— = 13,292 (s–1)
         250 × 10–3        1,300

Let’s transfer further to forced oscillations research 
of a continuous elastic body. Cleanly forced oscilla-
tions will occur according to the law

y (x, t) = φ(x) sin ωt  (22)

where: φ(x) – the shape of forced oscillations.

For definition of body forced oscillations shape we
shall substitute expression (22) in a functional (9), we 
shall receive the following functional:

        
 1  

 t2 h   
                                                S3 = — ∫ ∫{ρπ x2 tg2 γω2 φ2 (x) cos2 ωt –        

         2  t1 0  
                      

                             

– E π x2 tg2 γ [φ´(x)]2 sin2 ωt +  (23)
+ [Hσ1 (x – x1) – 2πcx tg γ] φ(x) sin2 ωt} dx dt

Integrating expression (23) on t in limits of one 
period

        
 2πT = ––  , we shall have: 

      
   ω

        
 π 

  h   
                                                S4 = — ∫{ρπ x2 tg2 γφ2 (x) ω2 –        

         2ω 0  
                      

                             

– E π x2 tg2 γ [φ´(x)]2 + Hσ1 (x – x1) φ(x) –  (24)

 – 2πcx tg γ φ(x) } dx 

It agreement to the Ritz’s method we shall consider 
a functional (24) value on linear combinations plu-
rality of the following aspect

φ(x) = αψ(x)  (25)

where:  α – parameter which variation we obtain of admis-
sible functions class, 

  ψ(x) – basis function.

Substituting expression (25) in a functional (24), 
we shall receive:

        
 π 

  h   
                                                S4 = — ∫{ρπ x2 tg2 γα2ψ2 (x) ω2 –        

         2ω 0  
                      

                             

– E π x2 tg2 γα2 [ψ´(x)]2 + Hσ1 (x – x1) αψ(x) –  (26)

 – 2πcx tg γαψ(x)} dx 

Let’s inject such labels:
h

∫ρπ x2 tg2 γ ψ2 (x) dx = T  (27)
0

h

∫Eπ x2 tg2 γ [ψ´ (x)]2 dx = U  (28)
0

h

∫[Hσ1 (x – x1)ψ(x) – 2πcx tg γψ(x)] dx = L  (29)
0

Substituting expressions (27)–(29) in (26), we shall 
have

             
  πS4 (α) = — (ω2Tα2 – Uα2 + Lα)  (30)

              2ω

So, on functions (25) plurality functional (26) turns 
to function from an explanatory variable α, looking 
like (30).

Necessary requirement of a functional (30) station-
arity (that is extremum existence) are equality to null 
of its first variation, namely:

 ∂S4—— δα = 0  (31)
 ∂α

whence we obtain the following equation:

2ω2Tα – 2Uα + L = 0  (32)

from which it is discovered a necessary parameter 
value α. It will be equated:

        
       Lα = —————  (33)

       2(U – ω2T)

Let’s accept for basis function ψ (t) the shape of 
fixed cross-section rod forced longitudinal oscilla-
tions with one rigidly fixed extremity which originate
under an longitudinal harmonic force operation of 
the frequency ω affixed in a point x = x1.

According to (1) shape of evocative rod forced 
oscillations has such aspect:

ψ(x) = D1 sin ax                      at x ≤ x1  (34)

ψ(x) = D2 cos a (h – x)           at x > x1  (35)

where 
               1        cos a (h – x1)D1 = – —— × ——————  (36)
            aEF           cos ah

               1         sin a x1D2 = – —— × ———  (37)
            aEF     cos ah

              µ
a = ω √——  (38)
               EF

where:  µ  –  rod running mass, 
  F –  rod cross-sectional area, 
  E –  Young’s modulus for a rod material, 
  h –  rod length, 
  ω –  frequency of rod forced oscillations.
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Having calculated parameters T, U also L it agrees 
expressions (27), (28) and (29), we shall receive a 
necessary parameter value α according to expression 
(33) at which the functional (26) will have a steady-
state value:

concrete calculation of specified oscillations ampli-
tude is carried out.

For an example we use a sugar beet root crop with 
the following parameters: length h, cone angle γ, 
Young’s modulus E, density ρ, coefficient of a soil
elastic deformation c. Let’s accept their, according 
to (2), equal:

h = 250 × 10–3 (m);   γ = 14°;

E = 18.4 × 106   (N/m3);

ρ = 1,300   (kg/m3);  c = 1 × 105   (N/m2)

Disturbing force amplitude H it is selected in limits 
100...600 (N). Disturbing force frequency ω, accord-
ing to (2), we shall accept equal ω = 20.00 (Hz).

Calculation is carried out in program MathCAD 
with the purpose of definition of amplitude depend-
ence of forced longitudinal oscillations of a root crop 
body from change of a disturbing force in a gamut 
100...600 (N) for different body cross-sections.

Given calculation results in the graph, reduced 
on Fig. 2.

As it is visible from the reduced graph, with magni-
fication of disturbing force magnitude the amplitude
of continuous elastic body longitudinal forced oscil-
lations increases under the linear law.

And with a distance of a root crop body cross-
sectional area from an coordinates origin 0 the 
amplitude also increases. So, at x = 0.07 (m) the 
amplitude is in limits 1.7 ... 2.3 (mm), at x = 0.1 (m) 
– in boundaries 2.3 ... 3.5 (mm), at x = 0.12 (m) – in 
limits 2.8 ... 3.9 (mm), at x = 0.15 (m) (capture point) 
– in limits 3.2 ... 4.8 (mm).

        – HD1 sin ax1 + HD2 [cos a (h– x1) – 1] – 
α = ———                                                                 ×
        2 E π tg2 γ [D1

2 ( a2 x1
3 

+
 x1

2 a sin 2ax1    +
                                       6                  4

                               sin ax1
          x1 cos a x1      – 2D1 πc tg γ (    a2     –         

a          ) –×                                                                                 ×
      +

 x1 cos 2 ax1 – sin 2 ax1) – D2
2(a2 (x1

3 – h3) +
                 4                     8a                             6
                                        x1             – 2D2 πc tg γ [ a   sin a (h – x1) –
×                                                                                ×
  + x1

2 a sin (2ah – 2ax1) + 
h 

–
 x1 cos (2ah – 2ax1) –

                   4                        4                 4
                     

   1                             1                   – 
a2

 cos a (h – x1) + 
a2 ]

×                                                                                ×
   – sin (2ah – 2ax1))] – 2 ω2 ρ π tg2 γ [D1

2 (x1
3

 –
                 8a                                                           6

×                                                                               ×
     – x1

2 sin 2 a x1
2 

–
 x1 cos  2 a x1 +

 sin 2 a x1)+
                4a                      4a2                  8a3

×                                                                                ×
    + D2

2 (h3 – x1
3
 + x1

2 sin (2ah – 2ax1) +
  h   

–
                     6                       4a                  4a2

×                                                                              (39)
– x1 cos (2ah – 2ax1) –

 sin (2ah – 2ax1))]
                 4a2                                             8a3

Taking into account expressions (25), (34) and (35), 
we shall receive expressions for the forced oscilla-
tions shape of a continuous elastic body, fixed in soil.
They have such aspect:

φ (x) = αD1 sin a x,  at x ≤ x1 
φ (x) = αD2 cos a (h – x), at x > x1 (40)

where: α – determined according to (39).

Having substituted expressions (40) in (22), we 
shall finally receive the law of continuous elastic body
forced oscillations, fixed in soil:

y (x, t) = D1 α sin ax sin ωt, at x ≤ x1
y (x, t) = D2 α cos a (h – x) sin ωt, at x > x1 (41)

By results of forced oscillations theoretical re-
searches of a continuous elastic body fixed in soil

Fig. 2. Amplitude dependence of forced longitudinal oscilla-
tions of a root crop body on value of a disturbing force

�
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CONCLUSION

Thus, on a foundation of the Ostrogradskii-Ham-
ilton variational principle application the equations 
for an evaluation of fundamental frequencies of any 
order of a root crop body longitudinal oscillations, 
fixed in soil are obtained. So, analytical forms for a
determination of the first and second fundamental
frequency, and also expression for a determination 
of forced oscillations amplitude of any root crop 
cross-section concerning the equilibrium position 

are obtained. Introduced analytical researches en-
able studies of a root crop with soil links destruction 
process at its vibration digging up.
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Podélné kmitání bulvy cukrové řepy při vibračním vyorávání

ABSTRAKT: V příspěvku je navržena teorie podélného kmitání spojitého elastického tělesa, která využívá Ostrogradskii-
-Hamiltonova principu. Za použití Ritzovy netody byly získány Ritzovy rovnice frekvencí oscilačního procesu. Po důklad-
ném analytickém výpočtu byla získána první a druhá základní frekvence oscilace tělesa a silová oscilační amplituda pro 
jakýkoliv příčný průřez tohoto tělesa.
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