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Abstract. We describe a security-preserving construction of a random permutation of domain size N
from a random function, the construction tolerating adversaries asking all N plaintexts, yet employing
just Θ(lgN) calls, on average, to the one-bit-output random function. The approach is based on card
shuffling. The basic idea is to use the sometimes-recurse transformation: lightly shuffle the deck (with
some other shuffle), cut the deck, and then recursively shuffle one of the two halves. Our work builds
on a recent paper of Ristenpart and Yilek.
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1 Introduction

Format-preserving encryption. Suppose you are given a blockcipher, say AES, and want to
use it to efficiently construct a cipher on a smaller domain, say the set of N = 1016 sixteen-digit
credit card numbers. You could, for example, use AES as the round function for several rounds of a
Feistel network, the approach taken by emerging standards [1, 6]. But information-theoretic security
will vanish by the time the adversary asks

√
N queries, which is a problem on these small-sized

domains.3 Or you could precompute a random permutation on N points, but spending Ω(N) time
in computation will become undesirable before

√
N adversarial queries becomes infeasible.

This paper provides a new solution to this problem of format-preserving encryption, where
we aim to build ciphers with an arbitrary finite domain [3–5, 7], frequently [N ] = {0, 1, . . . , N−1}
for some N . Our solution lets you encipher a sixteen-digit credit card with about 1000 expected
AES calls,4 getting an essentially ideal provable-security claim. In particular, the adversary can
ask any number of queries—including all N of them—and its advantage in distinguishing the
constructed cipher from a random permutation will be insignificantly more than its ability to break
the underlying primitive (in our example, AES) with a like number of queries.

Cast in more general language, then, this paper is about constructing ciphers (information
theoretic or complexity theoretic PRPs) on an arbitrary domain [N ], starting with a PRF.5 As
in other recent work [8, 10, 13], our ideas are motivated by card shuffling and its cryptographic
interpretation. This connection was observed by Naor [14, p. 62], [16, p. 17], who explained that

3 It is a problem from the point of view of having a satisfying, information-theoretic provable-security claim. Likely
it is not a problem with the actual, complexity-theoretic security of the construction.

4 This comes to about 80K clock cycles, or 25 μsec, on a recent Intel processor.
5 If starting from AES, only a single bit of each 128-bit output will be used. A random permutation on 128 bits that
gets truncated to a single bit is extremely close to a random function [2].
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when a card shuffle is oblivious—when you can trace the trajectory of a card without attending to
the trajectories of other cards in the deck—then it may be useful as a cipher. We will move back
and forth between the language of encryption and that of card shuffling: a PRP/cipher is a shuffle;
a plaintext x encrypts to ciphertext y if the card initially at position x ends up at position y; the
PRP’s key is the randomness underlying the shuffle.

Ristenpart and Yilek paper. Our work follows on the heels of an upcoming Crypto paper [15]
by Tom Ristenpart and Scott Yilek. That paper describes the following approach for turning one
card shuffle into another. Assume that we want to shuffle N=2n cards. Then the Icicle construction
first mixes the cards using some given (we’ll call it the inner) shuffle. Then we cut the deck into two
piles and recursively shuffle each. Ristenpart and Yilek explain that if the inner shuffle is a good
pseudorandom separator (PRS), then the constructed shuffle mixes all N cards well, a condition
they term full security. A shuffle is a good PRS (a 2-PRS in the original terminology) if, after
shuffling, the (unordered) set of cards ending up in each of the two piles is indistinguishable from
a uniform partitioning of the cards into two equal-sized sets.6

Ristenpart and Yilek apply the Icicle construction to the swap-or-not shuffle7 of Hoang, Morris,
and Rogaway [10], a combination they call mix-and-cut.8 The shuffle achieves full security in
Θ(lg2N) rounds. Replacing the random function of swap-or-not with a single-bit-output PRF,
say AES, one gets a cipher on N points achieving full security with Θ(lg2N) AES calls.9, 10 While
full security is directly achieved by some other oblivious shuffles [8, 9, 12], mix-and-cut would seem
to be faster.

Contributions. We begin by reconceptualizing what is going on in mix-and-cut. Instead of
thinking of the underlying transformation as turning a PRS into a PRP, we think of it as turning
a mediocre PRP into a better one. If the inner shuffle is good enough to mix half the cards—in
the inverse shuffle, any N/2 cards end up in almost uniform positions—then the constructed shuffle
will achieve full security.

After this shift in viewpoint, we make a simple change to mix-and-cut that dramatically improves
its expected running time. As before, one begins by applying the inner shuffle to the N cards. Then
one splits the deck and recursively shuffles one (rather than both) of the two halves. Using swap-
or-not (SN) for the inner shuffle we now get a PRP over [N ] enjoying full security and computable
in Θ(lgN) expected time.11 We call the SN-based construction SR, for sometimes recurse. The
underlying transformation we call SR.

6 Said differently, the first bit of a PRS on {0, 1}n should be indistinguishable from a random regular function from
{0, 1}n to {0, 1}.

7 In the binary-string setting (N = 2n), a round of swap-or-not is: for a random string Ki ∈ {0, 1}n, replace X by
Ki⊕X iff F (i, X̂) = 1, where F is a random function to bits and X̂ = max(X,X⊕Ki). The final value of input X
is its image after shuffling. For an arbitrary domain [N ], a round is: replace X by Ki −X iff F (i, X̂) = 1, where
X̂ = max(X,Ki −X). Subtraction is in a group of size N , say ZN , and Ki is selected uniformly from this group.

8 We will use the name mix-and-cut somewhat more generically, as both the name for the SN-based construction
and as the transformation that essentially is with Icicle, but which differently conceptualizes the requirements on
the inner shuffle.

9 Time bounds in this paragraph ignore dependency on the error bound, ε, which measures how close the constructed
object is to a uniform permutation. The bounds apply for any constant ε.

10 In speaking of time we assume a model of computation with unit-time evaluation of the underlying PRF. This is
realistic in the setting of “small domain” FPE, where each PRF is likely to be instantiated with a blockcipher call.

11 The expectation is over the input. In the case of binary-string inputs, slow-to-compute plaintexts, under our
conventions, will be those whose ciphertexts begin with many leading 0-bits.
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Our definitions and results apply to arbitrary N (it need not be a power of two). We emphasize
that the adversary may query all points in the domain. We give numerical examples to illustrate
that the improvement over mix-and-cut is large. We also explain why, with SR, having the running
time depend on the key and plaintext does not give rise to side-channel attacks. Finally, we explain
how to cheaply tweak [11] the construction, degrading neither the run-time nor the security bound
compared to the untweaked counterpart.12

Additional related work. The work of Ristenpart and Yilek [15] built on earlier work of
Granboulan and Pornin [8]. The latter contains a shuffle that can now be seen as the application of
the Icicle construction to a particular PRS. But the chosen PRS is expensive to realize, involving
extensive use of arbitrary-precision floating-point arithmetic to do approximate sampling from a
hypergeometric distribution. Both mix-and-cut and sometimes-recurse are far more practical.

For realistic domain sizes N , both mix-and-cut and sometimes-recurse are also much faster than
the method of Stefanov and Shi [17], which spends Θ̃(N) time to preprocess the key into a table
of size Θ̃(

√
N) that supports Θ̃(

√
N)-time evaluation of the constructed cipher.

2 Mix-and-Cut Shuffle

This section reviews and reframes the prior work of Ristenpart and Yilek [15]; the new contents of
our paper begins in Section 3.

The mix-and-cut transformation can be described recursively as follows. Assume we want to
shuffle N = 2n cards. If N = 1 then we are done; a single card is already shuffled. Otherwise, to
mix-and-cut shuffle N ≥ 2 cards,

1. shuffle the N cards using some other, inner shuffle; and then
2. cut the deck into two halves and, recursively, shuffle each half.

The method can be seen as an operator, MC, that maps a shuffle SH on a power-of-two cards to
a shuffle SH′ = MC[SH] on the same number of cards. A sufficient condition for SH′ to achieve
full security is for SH to lightly shuffle the deck. Informally, to lightly shuffle the deck means that
if one identifies some N/2 positions of the deck, then the cards that land in these positions should
be nearly uniform. More formally, we say that SH ε-lightly shuffles if SH−1 sends any N/2 cards to
something within total-variation distance ε of N/2 uniformly random but distinct positions. Note
that if the shuffle SH is swap-or-not (SN) then it is equivalent to ask that SH itself send N/2 cards
to something ε-close to inform, as SN is identical in its forward and backward direction, up to the
naming of keys.

Let’s consider the speed of MC with SN as the underlying shuffle, a combination we’ll write as
MC = MC[SN]. First some preliminaries. For a round-parameterized shuffle SH that approaches
the uniform distribution, let τ rq (N) be the induced distribution after r rounds on some q distinct
cards (x1, . . . , xq) ∈ Zq

N from a deck of size N , and let πq(N) be the uniform distribution on q
distinct points from [N ]. Let ΔSH(N, q, r) = ‖τ rq (N) − πq(N)‖ be the statistical distance between
these two distributions. Hoang, Morris, and Rogaway show that, for the swap-or-not shuffle, SN,

ΔSN(N, q, r) ≤ 2N3/2

r + 2

(
q +N

2N

)r/2+1

= Δub
SN(N, q, r) . (1)

12 Ristenpart and Yilek likewise support tweaks [15], but their quantitative bounds give up more, and each round
key needs to depend on the tweak. Our improvements in this direction apply just as well to mix-and-cut.
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Assuming even N , setting q = N/2 in this equation gives

ΔSN(N,N/2, r) ≤ N3/2

(
3

4

)r/2

and so ΔSN(N,N/2, r) ≤ ε if

3

2
lgN +

r

2
lg(3/4) ≤ lg ε,

which occurs if

r ≥ lg ε− (3/2) lgN

(1/2) lg(3/4)

≥ 7.23 lgN − 4.82 lg ε (2)

∈ Θ(lgN − lg ε) .

For a round-based shuffle SHmonotonically approaching the uniform distribution, let TSH(N, q, ε)
be the minimum number r such that ΔSH(N, q, r) ≤ ε. Let TSH(N, ε) = TSH(N,N, ε) be the time
to mix all the cards to within ε. For MC = MC[SN] to mix all N = 2n cards to within ε it will
suffice if we arrange that each invocation of SN mixes half the cards to within ε/n. Assuming this
strategy, the total number of needed rounds will be

TMC(2
n, ε) ≤

n∑
�=1

TSN(2
�, 2�−1, ε/n)

≤
n∑

�=1

(
7.23 �− 4.82 lg(ε/n)

)
(from (2))

≤ 14.46n2 + 4.82n lgn− 4.82n lg ε

∈ Θ(lg2N − lgN lg ε)

Interpreting, the MC construction can encipher n-bit strings, getting to within any fixed statistical
distance ε of uniform, by using Θ(n) stages of Θ(n) rounds, so Θ(n2) total rounds. The round
functions here are assumed uniform and independent. Replacing them by a complexity-theoretic
PRF, we are converting a PRF into a PRP on domain {0, 1}n with Θ(n2) calls, achieving tight
provable security and no limit on the number of adversarial queries.

3 Sometimes-Recurse Shuffle

Our main observation is this: after lightly shuffling the deck and cutting it in half, there is no
need to recurse on one of the two halves; either pile can be declared finished, recursing only on
the other. The reason is that once N/2 of the cards are distributed to within ε of uniform, so too
is the joint distribution of this half of the cards and the unordered set of remaining cards. If the
latter set of cards is shuffled to within δ of uniform then the entire sequence of N cards will be
shuffled to within ε + δ of uniform. Shuffling the unfinished set of cards by starting at whatever
configuration they were left in will do no harm, as we will shuffle the cards to within distance δ of
uniform starting from any initial ordering.
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Power-of-two domains. The sometimes-recurse (SR) transform can thus be described as fol-
lows. Assume for now that want to shuffle N = 2n cards (we will generalize afterward). If N = 1
then we are done; a single card is already shuffled. Otherwise, to SR shuffle N ≥ 2 cards,

1. shuffle the N cards using some other, inner shuffle; and then
2. cut the deck into two halves and, recursively, shuffle the first half.13

The method can be seen as an operator, SR, that maps a shuffle SH on any power-of-two cards to
a shuffle SH′ = SR[SH] on any power-of-two cards.

Recasting the method into more cryptographic language, we are given a (variable-input-length)
PRP E : K× {0, 1}∗ → {0, 1}∗. Each EK(·) is a length-preserving permutation. (We will routinely
write some or all arguments as subscripts, as in this example.) We construct from E a PRP E′ =
SR[E] as follows. First, assert that E′

K(Λ) = Λ, where Λ is the empty string. Otherwise, let
E′

K(X) = Y if Y = EK(X) = 1 ‖ Y ′ begins with a 1-bit, and let E′
K(X) = 0 ‖ EK(Y ′) if Y =

EK(X) = 0 ‖ Y ′ begins with a 0-bit.

The SR transformation. The description above assumes a power-of-two number of cards and
an even cut of the deck. The first assumption runs contrary to our intended applications, and
dropping this assumption necessitates dropping the second assumption as well. Here then is the
SR transform stated more broadly. Assume an inner shuffle, SH, that can mix an arbitrary number
of cards. Let p : N → N, the split, be a function with 1 ≤ p(N) < N . We’ll write pN for p(N).
We construct a shuffle SH′ = SRp[SH]. Namely, if N = 1, we are done; a single card is shuffled.
Otherwise,

1. shuffle the N cards using the inner shuffle, SH; and then
2. cut the deck into a first pile having pN cards and a second pile having qN = N − pN cards.

Recursively, shuffle the first pile.

Initial and generated N-values. A potential point of confusion is that, above, the name “N”
effectively has two different meanings. One is the initial N , call it N0, that specifies the domain [N0]
on which we seek to encipher. The other meaning is as a generic name for any of the N -values that
can arise in recursive calls that begin with the initial N . These are the generated N -values, a set of
numbers G(N0) = Gp(N0). We count the initial N among the generated N -values. As an example,
if the initial N is N0 = 1016, and if pN = �N/2	, then there are 54 generated N -values, which
are G(1016) = {1016, 1016/2, 1016/4, . . . , 71, 35, 17, 8, 4, 2, 1}. In general, G(N0) = {N0, N1, . . . , Nn}
where Ni = pNi−1 and Nn = 1. We call n the number of stages.

The transformation works. Let q : N → N and ε : N → [0, 1] be functions, 0 ≤ q(n) ≤ N . Let
SH be a shuffle that can mix any number of cards. We say that SH is (q, ε)-good if for all N ∈ N, for
any distinct y1, . . . , yq(N) ∈ [N ], the total-variation distance between (SH−1(y1), . . . , SH

−1(yq(N))
and the uniform distribution on q(N) distinct points from [N ] is at most ε(N). A shuffle is ε-good
if it is (q, ε)-good for q(N) = N . We have the following:

Theorem 1. Let p : N → N be a function, 1 ≤ pN < N , and let qN = N − pN . Let SH be an
(q, ε)-good shuffle. Then SRp[SH] is δ-good shuffle on domain [N0] where δ =

∑
N∈G(N0)

ε(N).

The proof is just the repeated application of the observation in the paragraph that began Section 3.

13 The first (or left) pile of cards are those at positions in {0, 1, . . . , 2n−1 − 1} = [2n−1]; the second (or right) pile of
cards are those at positions in {2n−1, 2n−1 + 1, . . . , 2n − 1]. The convention generalizes: the first/left pile has the
cards with smaller indexes.
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10 procedure EN
KF (X) //invariant: X ∈ [N ]

11 if N = 1 then return X //a single card is already shuffled

20 for i← 1 to tN do //SN, for tN -rounds
21 X ′ ← Ki −X (mod N) //X ′ is the “partner” of X
22 X̂ ← max(X,X ′) //canonical name for {X,X ′}
23 if F (i, X̂) = 1 then X ← X ′ //maybe swap X and X ′

30 if X < pN then return EpN
KF

(
X
)

//recursively shuffle the first pile
31 if X ≥ pN then return X //but second pile is done

Fig. 1. Construction SR = SR[SN]. The method enciphers on [N0] (the initial value of N), each stage (recursive
invocation) employing tN -rounds of SN (lines 20–23). The split values, pN , are a second parameter on which SR
depends. The randomness for SN is determined by F : N× N→ {0, 1} and K : N→ N.

Using SN as the inner shuffle. We’ll write SR (no bold) for SR[SN], the sometimes-recurse
transformation applied to the swap-or-not shuffle. The algorithm is shown in Fig. 1, now written out
in the manner of a cipher, where the trajectory of a single card X is followed. Of course SN = SNt

depends on the round count and SR = SRp depends on the split, so SR = SRt,p depends on
both. The canonical choice for the split pN is pN = �N/2	; when no mention of pN is made, this is
assumed. There is no default for the round counts tN ; we must select these values with care.

We proceed to analyze SR, for the canonical split, with the help of Proposition 1 and equa-
tion (2). We aim to shuffle N cards to within a target statistical distance ε. Assume we run each
stage (that is, each SN shuffle) with tN adequate to achieve error ε/n for any half, rounded up, of
the cards. When N is a power of 2, the expected total number of rounds to encipher a point will
then be

E[TSR(N, ε)] ≤ TSN(N, N2 , ε/ lgN) +
TSN(

N
2 ,

N
4 , ε/ lgN)

2
+

TSN(
N
4 ,

N
8 , ε/ lgN)

4
+ · · ·

≤ 2(7.23 lgN + 4.82 lg lgN − 4.82 log ε) from (2)

For arbitrary N (not necessarily a power of two), simply replace N by 2N in the equation just
given to get an upper bound. This is valid because the sequence of generated N -values for N0 are
bounded above by the sequence of generated N -values for N ′

0 the next higher power of two, and,
additionally, our bound on TSN(N, ε) is strictly increasing. Thus, for any N ,

E[TSR(N, ε)] ≤ 14.46 lgN + 4.82 lg lg 2N − 4.82 lg ε+ 14.46 (3)

∈ Θ(lgN − lg ε)

The worst-case number of rounds is similarly bounded. We summarize the result as follows.

Theorem 2. For any N ≥ 1 and ε ∈ (0, 1), the SR construction enciphers points on [N ] in
Θ(lgN − lg ε) expected rounds and Θ(lg2− lgN lg ε) rounds in the worst case. No adversary can
distinguish the construction from a uniform permutation on [N ] with advantage exceeding ε. This
assumes uniformly random round keys and round functions for SN, appropriate round counts tN ,
and the canonical split.

As a numerical example, equation (3) gives E[TSR(10
16, 10−10)] ≤ 1159. In the next section we will

do better than this—but not by much—by doing calculations directly from equation (1) and by
partitioning the error ε so as to give a larger portion to earlier (that is, larger) generated N .
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d 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 30

min-1 187 213 239 264 289 313 337 362 386 410 435 459 483 507 531 580 628 869

mean-1 359 412 464 514 563 612 660 710 758 806 856 904 952 1000 1048 1145 1242 1723

max-1 1110 1802 2442 3475 4411 5295 6402 7762 8885 10235 11842 13197 14790 16639 18239 22158 26069 51453

min-2 218 219 225 248 272 295 318 342 365 389 413 436 460 484 507 555 602 840

mean-2 427 436 450 496 544 590 636 684 730 778 826 872 920 968 1014 1110 1204 1680

max-2 1308 1971 2701 3968 5168 6491 7951 9918 11681 13616 16107 18313 20701 23716 26365 32745 39131 83160

Fig. 2. Speed of SR shuffle. Minimum, mean (rounded to nearest integer), and maximum number of rounds to
SR-encipher a d-digit decimal string with error ε ≤ 10−10 and round counts tN selected by strategy 1 or strategy 2,
as marked. The split is pN = �N/2	. Round-counts for MC always coincide with the max-labeled rows.

4 Parameter Optimization

Round counts. Let us continue to assume the canonical split of pN = �N/2	 and look at the
optimization of round counts tN under this assumption.

In speaking below of the number p of nontrivial stages of SR, we only count generated N -values
with N ≥ 3. This is because we will always select t2 = 1, as this choice already contributes zero
error, and the degenerate SR stage with N = 1 contributes no error and needs no t1 value (let
t1 = 0). Corresponding to this convention for counting the number of nontrivial stages, we let
G′(N0) = G(N0) \ {1, 2} be the generated N -values when starting with N0 but excluding N = 1
and N = 2.

Given an initial N0 and a target ε, we consider two strategies for computing the round counts tN
for N ∈ G′(N0). Both use the upper bound Δub

SN(N, q, r) = (2N3/2/(r + 2)) · ((q +N)/(2N))r/2+1

on ΔSN(N, q, r) given by equation (1).

1. Split the error equally. Let n = |G′(N0)| ≈ lgN0 be the number of nontrivial stages. For each
N ∈ G′(N0) let tN be smallest number r such that Δub

SN(N, �N/2�, r) ≤ ε/n. This will result in
rounds counts tN that diminish with diminishing N , each stage contributing about the same
portion to the error.

2. Constant round count. Let r0 be the smallest number r where
∑

N∈G′(N0)
Δub

SN(N, �N/2�, r) < ε

and let tN = r0 for all N ∈ G′(N0). This will result in stages that contribute a diminishing
amount to the error.

The table of Fig. 2 illustrates the expected and worst-case number of rounds that result from these
two strategies if we encipher on a domain of N0 = 10d points and cap the error at ε = 10−10. The
pronounced differences between mean and max round counts (a factor exceeding 17 when n = 16)
coincides with the saving of SR over MC. In contrast, there is only a modest difference in mean
round-counts between the two round-count selection strategies.

In numerical experiments, more complex strategies for determining the round counts did not
work better.

Non-equal splits. Besides the split of pN = �N/2	, we considered splits of pN = �αN	 for
α ∈ (0, 1). For example, if the input is a decimal string then a selection of α = 0.1 corresponds to
using SN until a 90% fraction of the cards are (almost) properly distributed, at which point there
would be only a 10% chance of needing to recurse. When a recursive call is made, it would be on
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Fig. 3. Selecting the split. Expected number of rounds (the y-coordinate) to encipher N = 1016 points using SR
and a split of pN = �αN	 for various α (the x-axis). The total variation distance is capped at ε = 10−10. The top
(blue) curve is with round counts tN determined by for strategy 1; the bottom (red) curve for strategy 2. In both
cases the smallest expected number of rounds occurs with a non-canonical split: 1048 rounds (α = 0.5) reduced to
1043 rounds (α = 0.53) for strategy 1; and 1014 rounds (α = 0.5) reduced to 1010 rounds (α = 0.52) for strategy 2.

a string of length one less than before. But splits this uneven turn out to be inefficient; see Fig. 3.
On the other hand, when the split pN = �αN	 has α close to 1/2, the expected number of rounds
is not very sensitive to α; again see the figure. Small α make each SN stage slower, but there will
be fewer of them; large α make each SN stage faster, but there will be more.

Given the similar mean round counts for strategies 1 and 2, the similar mean round counts all α
near 1/2, the implementation simplicity of dividing by 2, and the better maximum rounds counts
of strategy 1, the choice of strategy 1 and α = 1/2 seems best.

5 Incorporating Tweaks

The possibly-small domain for FPE makes it important, in applications, to have the constructed
cipher be tweaked : an additional argument T , the tweak, names the desired permutation in a
family of keyed permutations [11]. In the reference experiment that defines security one asks for
indistinguishability (complexity theoretic or information theoretic) from a family of tweak-indexed,
uniformly random permutations, each tweak naming an independent permutation from the collec-
tion. As an example of a tweak’s use, in the context of enciphering a credit card number, one might
encipher only the middle six digits, using the first six and last four digits as the tweak.

The obvious way to incorporate a tweak in SR is to make the round constants Ki (line 21 of
Fig. 1) depend on it, and to make the round functions F (i, X̂) (line 23 of Fig. 1) depend on it.
Note, however, that an inefficiency emerges when the former is done: if there is a large space of
possible tweaks, it will no longer be possible to precompute the round constants Ki. In addition, we
do not want to get a security bound that gives up a factor corresponding to the number of tweaks
used, which would be a potentially major loss in quantitative security.

As it turns out, neither price need be paid. In particular, it is fine to leave the round constants
independent of the tweak T , and, even when doing so, there need be no quantitative security loss
in the bound from making this change. What we call tweaked-SR, then, is identical to Fig. 1 except
that the tweak T is added to the scope of F at line 23.

To establish security for this scheme, obtaining the same bounds as before, we go back to the
swap-or-not shuffle and show that, in that context, if the round constants are left untweaked but
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the round function is tweaked, then equation (1) continues to hold. The result is as follows. In its
statement and proof, for μ and ν probability distributions on Ω, denote the total variation distance
between them by ‖μ− ν‖ = (1/2)

∑
x∈Ω |μ(x)− ν(x)|.

Theorem 3. Fix q1, . . . , ql with
∑l

i=1 qi = q. Let X1
t , X

2
t , . . . , X

l
t be SN shuffles on G driven by the

same round constants K1, . . . ,Kr, but independent round functions. Let Xt = (X1
t , . . . , X

l
t). For i

with 1 ≤ i ≤ l, let πi be the uniform distribution on qi samples without replacement from G, and
let π = π1 × π2 · · · × πl. That is, π is the distribution of l independent samples, one each from
π1, π2, . . . , πl. Let τ be the distribution of Xr. Then

‖τ − π‖ ≤ 2N3/2

r + 2

(
q +N

2N

)r/2+1

. (4)

Proof. Let

Δ(j) =

j−1∑
m=0

√
N

2

(
m+N

2N

)r/2

.

We show that
‖τ − π‖ ≤ Δ(q)

from which (4) follows by way of

‖τ − π‖ ≤
q−1∑
m=0

√
N

2

(
m+N

2N

)r/2

≤ N3/2

∫ q/2N

0
(1/2 + x)r/2 dx

≤ 2N3/2

r + 2

(
q +N

2N

)r/2+1

.

For random variables W1,W2, . . . ,Wj , we write τ
i( · | W1,W2, . . . ,Wj) for the conditional distribu-

tion of Xi
r given W1,W2, . . . ,Wj . Then we have

‖τ − π‖ ≤
l∑

i=1

E
(‖τ i( · | X1

r , . . . , X
i−1
r )− πi‖) . (5)

We claim that
E
(‖τ i( · | X1

r , . . . , X
i−1
r )− πi‖) ≤ Δ(qi). (6)

For distributions μ and ν the total variation distance ‖μ − ν‖ is half the L1-norm of μ − ν. Since
the L1-norm is convex, to verify the claim it is enough to show that

E
(‖τ i( · | X1

r , . . . , X
i−1
r ,K1, . . . ,Kr)− πi‖) ≤ Δ(qi).

But the Xi
r are conditionally independent given K1,K2, . . . ,Kr, so

τ i( · | X1
r , . . . , X

i−1
r ,K1, . . . ,Kr) = τ i( · | K1, . . . ,Kr).
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Thus it remains to show that

E
(‖τ i( · | K1, . . . ,Kr)− πi‖) ≤ Δ(qi),

but this is exactly what is shown in [10, fourth-to-last equation of p. 8]. This verifies (6). Combining
this with (5) gives

‖τ − π‖ ≤
l∑

i=1

Δ(qi)

≤ Δ(q),

where the second inequality holds because the summands in the definition of Δ(j) are increasing.
This completes the proof. 
�
Theorem 3 plays the same role in establishing the security for tweaked-SR as equation (1) played
for establishing the security of the basic version. The values in the table of Fig. 2, for example,
apply equally well to the tweakable-SR.

We comment that in the the tweakable version of SR, the round constants do depend on the
generated N -values. This dependency can also be eliminated, but we do not pursue this for now.

6 Absence of Timing Attacks

With SR (and, more generally, with SR), the total number of rounds t∗ used to encipher a plaintext
X ∈ [N0] to a ciphertext Y ∈ [N0] will depend on X and the key K = KF . This suggests that
an adversary’s acquiring t∗, perhaps by measuring the running time of the algorithm, could be
damaging. But this is not the case, for the adversary knows Y , and t∗ depends only on it.

It is easiest to describe this dependency when N0 = 2n is a power of two. In that case the
generated N -values are 2n, 2n−1, . . . , 4, 2, 1. Let t′0, t′1, . . . , t′n−2, t

′
n−1, t

′
n be the corresponding round

counts (the last two values are 1 and 0, respectively). Let t∗j =
∑

i≤j t
′
i be the cumulative round

counts: the total number of SN rounds if we run for j + 1 stages. Then t∗ is simply t∗� where �
is the number of leading 0-bits in the n-bit binary representation of Y . The adversary holding a
ciphertext of Y = 0z1Z, knows that it was produced using t∗ = t∗z rounds of SN. Ciphertext 0n is
the slowest to produce, needing t∗n rounds.

The observation generalizes when N0 is not a power of 2: the set [N0] is partitioned into easily-
calculated intervals and the number of SN rounds that a ciphertext Y was subjected to is determined
by the interval containing it.

7 Discussion

Alternative description. It is easy to eliminate the tail recursion of Fig. 1; no stack is needed.
This and other changes are made to the alternative description of tweaked-SR given in Fig. 4. While
the algorithm looks rather different from before, it is equivalent.

Which pile to recurse on? The convention that SR recurses on the first (left) pile of cards,
rather than on the second (right) pile of cards, simplifies bookkeeping: in this way, we will always
be following a card X ∈ [N ] for decreasing values of N . Had we recursed on the second pile we
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50 procedure ET,N0
KF (X) //Encipher X ∈ [N0] with tweak T , key KF

51 N ← N0 //initial-N
52 for j ← 0 to ∞ do //for each stage, until we return
53 for i← 1 to t′j do //SN, for as many rounds as needed for this stage
54 X ′ ← Ki −X (mod N) //X ′ is the partner of X
55 X̂ ← max(X,X ′) //canonical name for {X,X ′}
56 if F (i, X̂, T ) = 1 then X ← X ′ //maybe swap X and X ′

57 if X ≥ �N/2	 then return X //right pile is done
58 N ← �N/2	 //left pile is new domain to shuffle

Fig. 4. Alternative description of the tweaked construction. We eliminate the recursion and assume the
canonical split.

would be following a card X ∈ [N0−N+1 .. N0−1] for decreasing values of N . Concretely, the code
in Figures 1 and 4 would become more complex with the recurse-right convention.

Multiple concurrent domains. Our assumption has been that the domain for the constructed
cipher is [N0] for some N0. As with variable-input-length (VIL) PRFs, it makes sense to seek
security against adversaries that can simultaneously encipher points from any number of domains
{[N0] : N0 ∈ N}, as previously formalized [3]. This can be handled by having the round-function
and round-keys depend on the description of the domain N0. Once again it seems unnecessary to
reflect the N0 dependency in the round-keys. To prove the conjecture will take a generalization of
Theorem 3.

Open question. The outstanding open question in this domain is whether there is an oblivious
shuffle on N cards where a card can be tracked through the shuffle in worst-case Θ(lgN)-time.
Equivalently, can we do information-theoretic PRF to PRP conversion with Θ(lgN) calls, always,
to the (constant-output-length) PRF?
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