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Abstract

Client-side deduplication is a very effective mechanism
to reduce both storage and communication cost in cloud
storage service. Halevi et al. (CCS ’11) discovered secu-
rity vulnerability in existing implementation of client-side
deduplication and proposed a cryptographic primitive called
“proofs of ownership” (PoW) as a countermeasure. In a
proof of ownership scheme, any owner of the same file can
prove to the cloud storage server that he/she owns that file in
an efficient and secure manner, even if a bounded amount of
any efficiently extractable information of that file has been
leaked. We revisit Halevi et al.’s formulation of PoW and
significantly improve the understanding and construction of
PoW. Our contribution is twofold:
• First, we propose a generic and conceptually simple

approach to construct Privacy-Preserving Proofs of Own-
ership scheme, by leveraging on well-known primitives
(i.e. Randomness Extractor and Proofs of Retrievability)
and technique (i.e. sample-then-extract). Our approach
can be roughly described as Privacy-Preserving PoW =
Randomness Extractor + Proofs of Retrievability.

• Second, in order to provide a better instantiation of
Privacy-Preserving-PoW, we propose a novel design of
randomness extractor which improves the state of art
by reducing both the random seed length and entropy
loss (i.e. the difference between the entropy of input and
output) simultaneously.
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1. Introduction

Cloud storage service (e.g Dropbox, Skydrive, Google
Drive, iCloud, Amazon S3) is becoming more and more pop-
ular in recent years [23]. The volume of personal or business
data stored in cloud storage keeps increasing [8, 10, 9]. In
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face to the challenge of rapidly growing volume of data in
cloud, deduplication technique is highly demanded to save
disk space by removing duplicated copies of the same file
(Single Instance Storage). SNIA white paper [31] reported
that the deduplication technique can save up to 90% storage,
dependent on applications.

Traditional deduplication technique (i.e. server side dedu-
plication [14, 15, 33, 7]) in centralized storage system re-
moves duplicated copies residing in the same server. Unlike
server-side deduplication, client-side deduplication in cloud
storage system will identify duplicated copies such that one
copy resides in the cloud storage server and the other resides
remotely in the cloud client, and saves the uploading band-
width (time, respectively) of the duplicated file to the cloud
storage server. In both server and client side deduplication,
all owners of the deduplicated file will be provided a soft
link to the unique copy of that file stored in the centralized
storage or cloud storage respectively. In contrast to server-
side deduplication which saves only storage on server side,
client-side deduplication saves not only server storage but
also network bandwidth and transmission time, and benefits
both cloud server and client.

However, how to implement client-side deduplication se-
curely in an untrusted environment, is far more challenging
than it first appears [22, 21]. Arguably, the root cause of the
difference between security requirements of server-side and
client-side deduplication, is that server-side deduplication is
executed in the trusted server, while client-side deduplication
is distributively executed between the trusted cloud server
and potentially untrusted cloud client. Here the cloud user
is considered as potentially untrusted, since anyone from the
untrusted Internet could become a cloud user and the cloud
server is unable to distinguish honest users from malicious
users (i.e adversaries) in general.

In recent years, Harnik et al. [22], Halevi et al. [21] and
Dropship [16] identify new security risks or vulnerability
in existing implementation of client-side deduplication. Ac-
cording to these works, an existing implementation of client-
side deduplication is as below: Cloud user Alice tries to
upload a file F to the cloud storage. The client software
of the cloud storage service installed on Alice’s computer,
will compute and send the hash value hash(F ) to the cloud
server. The cloud server maintains a database of hash values
of all received files, and looks up the value hash(F ) in



this database. If there is no match found, then file F is
not in the cloud storage yet. Alice’s client software will
be asked to upload F to the cloud storage, and the hash
value hash(F ) will be added into the look-up database.
If there is a match found, then file F is already in the
cloud storage, uploaded by other users or even by the same
user Alice before. In this case, uploading of file F from
Alice’s computer to the cloud storage is saved, and the cloud
server will allow Alice to access the file F in its cloud
storage. We may refer to the above client-side deduplication
method as “hash-as-a-proof” method. In this method, the
hash value hash(F ) serves two purposes: (1) it is an index
of file F , used by the cloud server to locate information
of F among a huge number of files; (2) it is treated as a
“proof” that Alice owns file F . Previously, Dropbox1 applied
the above “hash-as-a-proof” method on block-level cross-
users deduplication [21][16]. If the client software of the
cloud storage service is trusted and cannot be bypassed,
and the hash function hash(·) is collision-resistant, then
the “hash-as-a-proof” method is secure. However, malicious
users may develop their own version of client software using
public API2 of the cloud service, so that they can send any
manipulated messages (e.g. manipulated hash output; here
the short hash value hash(F ) could be leaked by some owner
of F unintentionally [21]) to the cloud server. Therefore,
a more sophisticated solution without trusting the client
software is required.

As a direct comparison, the above hash based method is
secure as a server-side deduplication solution, as long as
the hash function hash(·) is collision-resistant: If the cloud
storage server finds that two files F0 and F1, which are
uploaded by some cloud users, have the same hash value, i.e.
hash(F0) = hash(F1), then the cloud storage server would
remove the duplicated copy by replacing the file F1 with a
short soft link to file F0. Notice that in this case, network
bandwidth and transmission time for uploading F1 to the
cloud storage server is not saved.

Halevi et al. [21] targets the critical security vulnerability
in the above “hash-as-a-proof” method where the leakage
of a short hash value hash(F ) would lead (or amplify) to
leakage of entire file F to outside adversary. Their work pro-
poses a cryptographic primitive called “proofs of ownership”
(PoW) to address such leakage amplification vulnerability.
The distinguishable feature of Halevi et al. [21] from all of
previous study in security of deduplication (e.g. convergent
encryption [14, 15, 34]), is that Halevi et al. [21] adopts

1. In Feb 2012, we noticed that Dropbox disabled the deduplication
across different users, probably due to recent vulnerabilities discovered
in their original cross-user client-side deduplication method. This also
indicates the importance and urgency in the study of security in client-
side deduplication.

2. Dropbox provides public API. Furthermore, this issue can not be
eliminated just by hiding API, since the adversary could perform reverse-
engineering attack to guess the communication protocol of the cloud
service. Note the effect of obfuscating is limited [5].

a bounded leakage model to characterize the untrusted
environment in which the client-side deduplication runs.
Their formulation requires that, after a setup between one
owner of file F and the cloud storage server, any owner of
F can efficiently prove (in the sense of “interactive proof
system” [20]) to the cloud storage server that he/she indeed
owns file F without really transmitting F , even if a bounded
amount of any efficiently extractable information of F has
been leaked via some owner (considered as the accomplice
or colluder) of F intentionally or unintentionally.

Unfortunately, Halevi et al. [21]’s formulation does not
address privacy protection of user data against the cloud
storage server. Prudent users may have reasons to not trust
the cloud server. For example, the cloud server may be
hacked in [38], making it a single point of failure of user
data privacy. In addition, the cloud server may make careless
technical mistakes [39, 35], which may expose user data
to unauthorized persons. In this work, we will trust cloud
storage server in data availability and integrity (which is the
research topic of proofs of storage [24, 3]), but not trust it
in data privacy.

1.1. Overview of our result

Under the framework of Halevi et al. [21], in a secure
PoW scheme, if the input file F has k bits min-entropy to
the view of adversary and at most T < k−λ bits of message
about F is leaked at adversary’s (adaptive) choice, then the
adversary should not be able to convince the cloud storage
server that he/she owns file F with significant probability.

1.1.1. Generic Construction of Privacy-Preserving-PoW.
Intuitively, our generic construction of Privacy-Preserving-
PoW is as below: At first, apply a proper3 randomness
extractor over file F to output T + 2λ (< k) bits almost-
uniform random number YF . Next, apply a proper proofs
of retrievability (POR) scheme over YF . Since the output
YF of the randomness extractor is statistically close to true
uniform randomness, any adversary that learns at most T
bits arbitrary information of F , cannot output the T + 2λ
bits long value YF entirely with significant probability, and
thus cannot succeed in the verification of POR scheme. The
difference k − T is like the entropy loss in randomness
extractor, thus the smaller the difference k−T is , the better
the PoW scheme is in aspect of leakage resilience.

Our result can be combined with convergent encryp-
tion [14, 15, 41, 7, 6], in order to construct strong leakage-
resilient client-side deduplication scheme for encrypted data
in cloud storage and thus protect data privacy against both
outside adversary and curious cloud server.

We remark that formulating and constructing privacy-
preserving PoW scheme are very challenging. Previous work

3. See Theorem 1 and Theorem 2 for the explanation of “proper”
randomness extractor and “proper” POR.
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by Ng et al. [25] made the first attempt towards this goal,
but gave an unsatisfactory solution: As pointed out by Xu et
al. [41], Ng et al. [25] formulates the privacy property
locally for each block and suffers from “divide and conquer”
attack: If an input file with N blocks has 1 bit min-entropy
in each block independently, then this file could be recovered
by an outside adversary via brute force search in time O(N)
instead of O(2N ).

1.1.2. Improved Randomness Extractor. Unfortunately,
the state of art [26, 36] (with restriction of small seed
size and practical computation cost) of randomness extractor
only gives us a PoW with k − T = Ω(|F |) and requires
relatively large random seed. We propose a new randomness
extractor with shorter random seed and results in a PoW with
k − T = O(|F |1−c) for any constant c ∈ (0, 1).

1.2. Contributions

Our main contributions can be summarized as below:
1) We propose a generic and conceptually simple

paradigm to construct proof of ownership scheme:
PoW=Randomness Extractor + Proofs of retrievability.
To the best of our knowledge, this is the first work
that bridges the proof of ownership and randomness
extractor. Our result improves previous works on PoW
in the following aspects: (1) Privacy-Preserving against
verifier (i.e. cloud storage server); (2) Complete standard
model security for any distribution of input file, while
still being practical; (3) Extensible and will be benefited
from the future advance in randomness extractor or
proofs of retrievability. A detailed comparison between
our work and existing PoW schemes is given in Table 1
(on page 4).

2) We propose a novel construction of randomness extrac-
tor, which improves existing work [26] by reducing both
the seed length and entropy loss (i.e. the difference
between entropy of input and output) simultaneously.
This new randomness extractor may have independent
interest. A detailed comparison between our work and
existing randomness extractors is given in Table 2 (on
page 4).

1.3. Organizations

We introduce definitions and formulations in Section 2.
We present our overall solution in a modular approach in
Section 3 and Section 4: At first in Section 3, we propose
the construction of Privacy-Preserving-PoW and analyze its
security, by treating an important component (i.e randomness
extractor) as black-box. Next, Section 4 constructs the
required randomness extractor with rigorous analysis and
completes the description of the proposed solution. Section 6
reports the experiment data, and Section 7 concludes this
paper.

2. Preliminaries and Formulation

2.1. Notations and Definitions

Key notations in this paper are defined in Table 3 (on
page 4).

Definition 1 (Statistical Difference). The statistical differ-
ence between two random variables X and Y on the same
space U is defined as

SD(X,Y) =
1

2

∑
a∈U

∣∣∣Pr[X = a]− Pr[Y = a]
∣∣∣ (1)

Some useful background information about statistical dif-
ference is provided in Appendix A.

2.2. Proofs of Ownership

Halevi et al. [21] proposed the formulation of proofs of
ownership. In this subsection, we revisit their formulation
and propose our definition for privacy-preserving proofs of
ownership.

Definition 2 (Proofs of Ownership [21]). A proof of own-
ership scheme (PoW) consists of a probabilistic algorithm
S and a pair of probabilistic interactive algorithm 〈P,V〉,
which are described as below:
• S(F, 1λ)→ ψ: The randomized summary function S takes

a file F and the security parameter λ as input, and
outputs a short summary value ψ, where the bit-length
of ψ is independent on file size |F |.

• 〈P(F ),V(ψ)〉 → accept or reject: The prover algo-
rithm P which takes as input a file F , interacts with the
verifier algorithm V which takes as input a short summary
value ψ, and outputs either accept or reject.

We are only interested in efficient PoW scheme, such that
V is polynomial time algorithm w.r.t. security parameter λ
and both S and P are polynomial algorithms in |F | and λ.

Definition 3 (Completeness of PoW [21]). A PoW scheme
(S, 〈P,V〉) is complete, if for all positive integer λ and for
any file F ∈ {0, 1}poly(λ), it holds that

〈P(F ),V(S(F, 1λ))→ accept.

2.2.1. Two Players Setting and Three Players Setting of
PoW. In the original framework [21], PoW runs by two
players: verifier and prover. In this paper, we will redefine
this system model of PoW [21] by introducing a third
player, called summarizer, who is some data owner of file
F . Summarizer (data owner of F ) runs summary function
to obtain ψ := S(F, 1λ) and sends ψ to the cloud storage
server (verifier). Later if some cloud user (prover) claims
that he/she owns file F , then the cloud storage server, who is
running verifier algorithm V, interacts with this cloud user,
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Table 1. Compare our PoW scheme with existing works.

Scheme Distribution of input Randomness complexity Computation complexity Privacy-Preserving Security Model
PoW1 [21] Any O(λ) Expensive [21] No (Leaking whole file F ) Stand. Model
PoW2 [21] Any ≥ 6T Prohibitively expensive [21] No Stand. Model
PoW3 [21] Generalized block-fixing O(λ) Practical Unclear SHA256 is R.O. and assume their

distribution algorithm generates a “good” code†
This work Any O(λ) Practical Yes Stand. Model

† Theorem 3 in [21] relies on an unproven assumption that the code generated by the third construction PoW3 is “good” and authors of [21] admits that
it is very hard to analyze this unproven assumption. See text surrounding Theorem 3 in [21].

Table 2. Compare randomness extractors with output size `ρ, where ` could take value as large as 221 ≈ 2
millions. The input is file F .

Scheme Distribution of input Randomness complexity Computation complexity Entropy Loss Security Model
HMAC(s1,F )‖...
‖HMAC(s`,F ) Any `λ `|F | small Random Oracle

Inner Product Uni-
versal Hash [32]

Any 2|F | Ω(|F | log(`ρ)) 2 log(1/ε) Stand. Model

[26] Any O(`λ) 2|F | log ` Ω(|F |) Stand. Model
This work Any O(λ) 2|F | log ` O(|F |1−c) † Stand. Model

†c ∈ (0, 1)

Table 3. Key Notations.

Notation Semantics
λ The security parameter.

PPT Probabilistic polynomial time (w.r.t. security parameter λ, if not explicitly stated otherwise).
[n] The set of integers 1, 2, 3, 4, . . . , n.
h(·) Full domain collision resistant hash function (e.g. SHA256).
F [i] The projection of bit-string F onto i-th coordinate (i.e. the i-th bit of F , 1 ≤ i ≤ |F |).

F [{i1, . . . , in}] The projection of bit-string F onto the subset of coordinates (i.e F [i1]‖F [i2]‖ . . . ‖F [in],
where 1 ≤ i1 < i2 < . . . < in ≤ |F |).

H∞(X) min-entropy of random variable X .
SD(X,Y ) Statistical difference between random variables X and Y .
X ≈ε Y SD(X,Y ) ≤ ε; X is ε-close to Y .
B|A=a The conditional distribution of B given that A = a for jointly distributed random variables A,B.
x ∼ D Sample x according to distribution D.
Un Independent uniform random variable over {0, 1}n.
Un,1,
Un,2,...

Independently and identically distributed uniform random variables over {0, 1}n.

who is running prover algorithm P, to determine whether
this cloud user indeed owns file F .

Definition 4 (Two/Three Players setting of PoW). For any
PoW scheme (S, 〈P,V〉), the two players setting and three
players setting are described as below:
• in a two players setting, the summary algorithm S and

verifier algorithm V are executed by the first player—
verifier (cloud storage server), and the prover algorithm
P is executed by the second player—prover (cloud user);

• in a three players setting, the summary algorithm S
is executed by the first player—summarizer (cloud user
owning file F ), the verifier algorithm V is executed by
the second player—verifier (cloud storage server), and
the prover algorithm P is executed by the third player—

prover (another cloud user claiming to own F ).

The difference between the two players setting [21] and
our three players setting is that, execution of the summary
function S moves from the verifier (cloud storage server)
to a new player—summarizer (i.e. some cloud user). As a
result, the verifier (cloud storage server) only runs algorithm
V. We remark that the summary function S, which is poly-
nomial in file length |F |, is typically much more expensive
than the verifier algorithm V, which is polynomial in the
security parameter λ. Therefore, our three players setting
will further relieve the computation burden of the cloud
storage server and might make our scheme easier to be
adopted by cloud storage servers in real applications—This
is exactly our initial motivation to introduce the new three
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players setting of PoW. We will experimentally show that
the extra computation burden on a cloud user is affordable.
We believe that, the average computation resource that a
cloud storage server allocates to each online user, is typically
less than the computation resource of an average cloud user.
Additionally, the fact that many cloud storage servers (e.g.
Dropbox, Skydrive, and Google Drive) provide free service
to public users, further justifies our attempt to shift some
computation burden from cloud server to cloud user.

The change from two players setting to three players
setting also leads to the change of trust model and thus
impact the security formulation. In the original two players
setting of PoW [21], preserving privacy of input file F
during the interactive proof 〈P,V〉 (like in zero-knowledge
proof) is meaningless, since the verifier, who runs V, also
runs the summary function S(F, 1λ) and has direct access
to file F . Therefore, the verifier has to be trusted in data
confidentiality of input file F in this two players setting. In
contrast, in our three players setting, preserving privacy of F
during the interactive proof 〈P,V〉 (like in zero-knowledge
proof) is very important, if the verifier (cloud storage server)
is not trusted in data confidentiality.

2.2.2. Soundness of PoW. Intuitively, PoW aims to prevent
leakage amplification in client-side deduplication: If an
outside adversary somehow obtain a bounded amount (≤ T
bits) of messages about the target user file F via out-of-
band leakage, then the adversary cannot obtain the whole
file F by participating in the client-side deduplication with
the cloud storage server.

The security game GPoW
A (k, T ) between a PPT adversary

A and a challenger w.r.t. PoW scheme (S, 〈P,V〉) is defined
as below. Here k is the lower bound of min-entropy of the
challenged file F at the beginning of the game, and the
adversary is allowed to learn at most T bits message related
to file F (possibly including random coins chosen when
processing F ) from the challenger via the leakage query.
Setup. The description of (S, 〈P,V〉) is made public. Let D
be a distribution over {0, 1}M with min-entropy ≥ k, where
D is chosen by the adversary A and M is any public positive
integer constant. The challenger samples file F according to
distribution D and runs the summary algorithm to obtain
ψ := S(F, 1λ).
Learning. The adversary A can adaptively make polyno-
mially many queries to the challenger, where each query
is in one of the following types and concurrent queries
of different types are not allowed4. Furthermore, the total

4. Concurrent PROVE-QUERY and LEAK-QUERY would allow the ad-
versary to replay messages back and forth between these two queries,
and eliminate the possibility of any secure and efficient solution to PoW.
Therefore, the framework of Halevi et al. [21] do not allow concurrent
queries of different types in the security formulation. We clarify that,
concurrent queries of the same type can be supported. Thus, in the real
application, the cloud storage server (verifier) can safely interact with
multiple cloud users (prover) w.r.t. the same file concurrently.

amount of messages output by all leakage queries should
not be greater than the threshold T , i.e. YI + YII ≤ T ,
where YI and YII will be defined below.
• PROVE-QUERY: The challenger, running the verifier al-

gorithm V with input ψ, interacts with the adversary
A which replaces the prover algorithm P, to obtain
b := 〈A,V(ψ)〉. The adversary A is given the value of b.

• LEAK-QUERY-I(P): This query consists of a description
of a PPT algorithm P (a variant version of prover algo-
rithm). The challenger responses this query by computing
the output y of P(F ) after interacting with V(ψ) (i.e.
y := P(F )V(ψ)) and sending y to the adversary. Denote
with YI the sum of bit-lengths of all responses y’s for
this type of queries.

• LEAK-QUERY-II(L): This query consists of a descrip-
tion of a PPT algorithm L. Let transcriptS denote the
transcript of all steps of operations in the execution of
algorithm “ψ := S(F, 1λ)” in the above Setup phase. The
challenger responses this query by computing the output
y := L(transcriptS) and sending y to the adversary.
Denote with YII the sum of bit-lengths of all responses
y’s for this type of queries.

Challenge. The adversary A which replaces the prover
algorithm P, interacts with the challenger, which runs the
verifier algorithm V with input ψ, to obtain b := 〈A,V(ψ)〉.
The adversary A wins the game, if b = accept.

Definition 5 (Soundness of PoW (Refining [21])). A PoW
scheme is (k, T, ε)-sound in three players setting, if for any
PPT adversary A, A wins the security game GPoW

A (k, T )
with probability not greater than ε+ negl(λ).

Pr[A wins the security game GPoW
A (k, T )] ≤ ε+ negl(λ).

(2)
The (k, T, ε)-soundness definition in two players setting is
the same as the above, except that the adversary A is
not allowed to make LEAK-QUERY-II in the security game
GPoW
A (k, T ) (i.e. YII = 0).

We remark that (1) the (k, T, ε)-soundness definition in
two players setting is essentially the same as the original
formulation [21], and (2) soundness in three players setting
implies soundness in two players setting, but not vice versa.

2.2.3. Privacy-Preserving PoW. Intuitively, we say a PoW
scheme is privacy-preserving against the verifier, if every-
thing about file F that the verifier can learn after partici-
pating the PoW scheme w.r.t. F , can be computed from the
short summary value of F and some almost-perfect uniform
random number.

Definition 6 (Privacy-Preserving). A PoW scheme
(S, 〈P,V〉) is (k, T, ε)-privacy-preserving against the
verifier (in the three players setting), if for any distribution
D over {0, 1}M with at least k bits min-entropy, for every
PPT interactive algorithm V∗, there exists a PPT algorithm

5



Sim and a random variable Z over domain {0, 1}T+λ+Ω(λ),
such that
• SD(Z,U|Z|) ≤ ε, where U|Z| is the uniform random

variable over {0, 1}|Z|;
• for any function f : {0, 1}M → {0, 1}, and any (leakage)

function L : {0, 1}M → {0, 1}≤T , the following two
probabilities (taken over file F ∼ D and the random
coins of related algorithms) are equal

Pr
[
V∗
(
S(F, 1λ)‖L(F )

)P(F )
= f(F )

]
=Pr

[
Sim

(
S(F, 1λ)‖L(F ), Z

)
= f(F )

]
, (3)

where V∗(S(F, 1λ)‖L(F ))P(F ) denotes the output of (dis-
honest) verifier V∗ taking the summary value S(F, 1λ)
and leakage information L(F ) as input and having inter-
action with interactive prover algorithm P(F ).

As we discussed before, preserving privacy against the
verifier for any PoW scheme in the two players setting, is
impossible.

2.2.4. Clarification on Leakage of User Account. We
admit that, as the same as Halevi et al. [21], this work will
consider leakage of user account (i.e. id and password) as out
of scope. We assume the user account is associated to user’s
real identity (e.g. mobile phone number) and sibyl account
is hard to create. Thus, leakage of user file stored in cloud
storage by disclosure of user account could be traced back to
the source and the corresponding account could be disabled
without affecting honest users.

2.3. Proofs of Retrievability

We adopt the formulation of proofs of retrievability from
existing works [30, 3, 40] and make some modifications
according to our needs to construct proofs of ownership
scheme.

Definition 7 (Proofs of Retrievability). A proofs of re-
trievability (POR) scheme consists of PPT algorithms
KeyGen,Tag,GenChal,GenProof and Verify, which are de-
scribed as below
• KeyGen(1λ) → (pk, sk). The key generation algorithm

takes a security parameter λ as input and outputs a pair
of public-private key (pk, sk).

• Tag(sk, {Fi}ni=1) → {σi}ni=1. The tag generation algo-
rithm computes an authentication tag σi for each file
block Fi.

• GenChal(pk, n, c)→ (C,ΨF ,Ψσ). The challenger gener-
ation algorithm takes as input the public key pk, erasure
encoded file size n (in term of blocks), and the sample
size c, and outputs a sample C ⊂ [n] with |C| = c and
meta-data (ΨF ,Ψσ).

• GenProof(pk, {(Fi, σi)}ni=1, C,ΨF ,Ψσ) → (F̄ , σ̄),
where F̄ := GenProofdata(pk, {Fi}ni=1, C,ΨF ) and

σ̄ := GenProoftag(pk, {σi}ni=1, C,Ψσ). The algorithm
GenProofdata takes as input the public key pk, file blocks
Fi’s, a sample set C ⊂ [n], and meta-data ΨF , and
outputs an aggregated file block denoted as F̄ . The
algorithm GenProoftag takes as input the public key pk,
authentication tags σi’s, a sample set C ⊂ [n], and meta-
data Ψσ , and outputs an aggregated authentication tag
denoted as σ̄.

• Verify(K, F̄ , σ̄,ΨF ,Ψσ, C) → accept or reject. If
K is private key sk, then the POR scheme supports
private key verifiability; if K is public key pk, then the
POR scheme supports public key verifiability.

We remark that the above formulation is different from
original [30, 3] in the sense that we explicitly decompose the
algorithm GenProof into two sub-routines: GenProofdata and
GenProoftag, where GenProofdata processes selected data
blocks Fi (i ∈ C) and GenProoftag processes corresponding
authentication tags σi’s. Many existing works (e.g. [30, 3]
and Merkle Hash Tree based POR) support such decompo-
sition, but a few works (e.g. [24]) does not.

For some POR schemes [30, 40], meta-data ΨF and Ψσ

are two seeds from which a list of coefficients {αi}i∈C ,
{βi}i∈C can be generated, and the aggregated values are
F̄ =

∑
i∈C αiFi and σ̄ =

∑
i∈C βiσi.

2.3.1. Merkle Hash Tree based POR. For completeness,
we restate the Merkle Hash Tree based POR scheme from
the literature (e.g [21]), which will be used to construct
privacy-preserving PoW in next section. MHT-POR consists
of the following algorithms:
• KeyGen(1λ): Choose a real value constant α ∈ (0, 1), and

a collision-resistant hash function h : {0, 1}λ → {0, 1}λ.
Let public key pk = (α, h), and private key sk = null.

• Tag(pk, {Fi}ni=1), where (F1, . . . , Fn) is the rate-α era-
sure encoded version of user file F , Fi ∈ {0, 1}λ.
Construct a Merkle Hash Tree with hash function h over
n leaf nodes F1, F2, . . . , Fn in left-to-right and bottom-
up manner. Let π denote the hash value associated to the
root of the constructed Merkle Hash Tree. Let σi = π for
all i, i.e. all σi’s are equal.

• GenChal(pk, n, c). Choose a random sample C of size c
from [n]. Let ΨF = Ψσ = null. Output (C,ΨF ,Ψσ).

• GenProofdata(pk, {Fi}ni=1, C,ΨF ) where the meta-data
ΨF = null. For each i ∈ C: find the i-th leaf node Fi and
all sibling nodes along the unique path from the i-th leaf
to the root of the Merkle Hash Tree over {Fi}ni=1. Let Sibi
denote the ordered collection of hash values associated to
all sibling nodes. Output {(i, Fi,Sibi) : i ∈ C}.

• GenProoftag(pk, π, C,Ψσ) where the meta-data Ψσ =
null. This algorithm simply outputs the root hash value
π.

• Verify(pk, {(i, Fi,Sibi) : i ∈ C}, π, null, null, C). For
each i ∈ C: Reconstruct the hash value associated to the
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root of the Merkle Hash Tree from (i, Fi,Sibi) using hash
function h. If all reconstructed root hash values are equal
to π, then output accept; otherwise output reject.

In the above MHT-POR, the size of authentication tags
(only a root hash value π) is constant—λ bits, proof size is
λ(log n+ 1)|C| bits, and challenge size is |C| log n, where
the challenge size can be significantly reduced using hitter
sampler [18, 13]. The amazing property of Merkle Hash
Tree based POR scheme is that it does not have private key,
which makes it a good choice to build privacy-preserving
PoW in next section.

Definition 8 (Soundness of POR [24, 30, 40]). Let ε ∈
(0, 1). A POR scheme is ε-sound, if there exists a PPT
extractor algorithm, such that for any prover which can
convince the verifier to accept with probability ≥ ε, then
the extractor can output the original file with overwhelming
high probability (1 - negl) by executing POR proof protocol
with the prover.

Readers may find more details about POR in [24, 30, 13,
40].

2.4. Randomness Extractor

Definition 9 (Strong Extractor). We say Ext : {0, 1}`in ×
{0, 1}`s → {0, 1}`out is a strong (k, ε)-extractor, if for any
distribution X over {0, 1}`in with at least k bits min-entropy,
the following inequality holds

SD
(

(Ext(X; s), s), (U`out , s)
)
≤ ε (4)

where the seed s is uniformly randomly chosen from {0, 1}`s
and U`out is a uniform random variable over {0, 1}`out .

It is well known that the output size `out of any random-
ness extractor can not exceed the min-entropy k of the input
(i.e. `out < k), and the difference (k − `out) is called the
“entropy loss” of the randomness extractor.

3. Generic Construction of Proofs of Owner-
ship

3.1. Some Unsatisfactory Approaches

At first, putting privacy-preserving property aside, we
review some straightforward approaches and existing works
for PoW as below.

3.1.1. Compute fresh MACs online on both sides. In the
summary phase, let the summary value ψ equal to file F .
In the proof phase, both prover and verifier have access to
the file F , and per each proof session compute a MAC (i.e.
Message Authentication Code) value over F with a random
nonce as key, where the random nonce is chosen by the

verifier. This approach is secure, but rejected due to stringent
requirement on efficiency (including disk IO efficiency): The
framework of Halevi et al. [21] only allows the verifier to
access a short summary value during a proof session, where
the summary value is generated from the file F in the setup
phase. The reason behind is that, although cloud storage
server has more computation resource than an average cloud
user, the average computation resource allocated to each
online user by the cloud server could be much smaller than
an average cloud user’s computation resource.

3.1.2. Pre-compute MACs offline. In the summary phase,
t number of keys s1, . . . , st are randomly chosen and t num-
ber of MAC values MACsi(F )’s are computed correspond-
ingly. The summary value of file F is {(i, si,MACsi(F )) :
i ∈ [t]}.

In the proof phase, the verifier keeps a counter state
variable c, such that for each i ≥ c, the key si has not been
sent to any prover. Once some prover initiates a new proof
session, the verifier sends the unused key sc to the prover as
challenge and anticipate the correct response MACsc(F ). No
matter this prover passes the challenging or not, the verifier
will increment the counter state c by one, in order to ensure
that each key si will be used for at most once5.

If t is relatively small (say t < 1000), then the above
approach is efficient in both storage and computation. Wish-
fully, the above approach seems to be able to support t
number of owners of F in cloud storage. By estimating
a proper upper bound on the number of owners of the
same file, this approach might work well in most cases.
However, this approach is actually not secure in the setting of
PoW [21], since a single malicious adversary could consume
up all of t pre-computed MACs easily by pretending t
distinct cloud users.

3.1.3. Proofs of Retrievability. Some instance of POR can
serve as PoW. The first construction (i.e. PoW1 as in Table 1)
of Halevi et al. [21] is just the Merkle Hash Tree based
POR scheme (MHT-POR), which combines error erasure
code and Merkle Hash Tree proof method6. The drawback
of this approach is that the relatively expensive error erasure
code7 is applied over the whole input file, while in our
approach, error erasure code is applied over the output of
the randomness extractor, which is much shorter than the
whole input file.

5. This is essential to achieve security in the bounded leakage model.
6. Merkle Hash Tree proof method proves the correctness of a leaf

value by presenting as a proof all sibling values along the path from the
questioned leaf to the root of Merkle Hash Tree, and verification requires
only the root value.

7. In typical usage of error erasure code, block length is some small
constant (say 223 bytes for (255, 223)-reed-solomon code). However, in
the usage of POR, the block length has to be as large as the input file,
which makes the coding much slower than typical case.
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We notice that recent work by Zheng and Xu [42] attempts
to equip proofs of storage (POR or PDP) with deduplication
capability. However, their work is not in the leakage setting
of Halevi et al. [21].

3.1.4. Pairwise-Independent Hash with Large Output
Size. The second construction of PoW in Halevi et al. [21]
is based on pairwise independent hash family (a.k.a 2-
independent or 2-universal hash family). A large input file
is hashed into a constant size (say about 3T = 3 × 64MB)
hash value and then apply the merkle hash tree proof
method over the hash value. This construction is secure,
but very in-efficient in both computation and randomness
invested. Furthermore, large random seed also implies large
communication cost to share this seed among all owners
of the same file. It is worth pointing out that Halevi et
al. [21] overlooked the disadvantage in large randomness
complexity (i.e. at least twice of hash output size, say
about 6T = 6 × 64MB ), although they admitted that this
construction is prohibitively expensive in computation for
practical data size.

A quick thought to reduce the seed length is to apply
pseudorandomness generated from a short true random seed.
However, in the leakage setting of PoW, any short seed could
be leaked to the adversary by some owner of target file.
Consequently, the resulting PoW using pseudorandomness
will not be sound under Definition 5.

We clarify that, in its appearance, the second construction
of PoW in Halevi et al. [21] is a combination of universal
hash and Merkle Hash Tree and might fit into our generic ap-
proach: PoW = Randomness Extractor + Proofs
of Retrievability, since pairwise independent hash
family is an instance of randomness extractor if in the
proper use (see leftover hash lemma [32, 4]) and Merkle
Hash Tree can be used to construct proofs of retrievability
scheme. Unfortunately, their second construction cannot be
considered as an (either explicit or implicit) instance of our
generic approach for the below reasons: (1) they chooses a
universal hash family with output size much larger (about
3 times larger) than k—the bound of min-entropy in the
input file, which will render the hash output to deviate
from uniform randomness. In other words, in their parameter
setting, the universal hash family is no longer a (strong)
randomness extractor; (2) Merkle Hash Tree proof method
alone is not a POR scheme, an error erasure code has to
apply before in addition to the MHT proof method. By our
understanding, the authors choose hash family with output
size much larger than k on purpose, in order to compensate
the omission of error erasure code. As a direct consequence
of the first point (1) above, Halevi et al. [21] had to provide
a particular customized (thus not general) proof instead
of leveraging on the well-known leftover hash lemma [4],
which characterizes the randomness extractor property of
universal hash. Therefore, to the best of our knowledge, our

work is the first to bridge PoW and randomness extractor.

3.1.5. PoW with respect to Particular Distribution. The
third construction of PoW in Halevi et al. [21] is the most
efficient one among all of three constructions proposed
by Halevi et al. [21]. In the third construction, the size
of random seed is dramatically reduced by treating hash
function SHA256 as a random oracle. However, their proof
(in random oracle model) of this construction is incomplete:
first, the distribution of input file is restricted as “generalized
bit/block-fixing distribution”8; second, their proof assumes
their algorithm will generate a “good linear code” and the
authors admit that it is “very hard to analyze” this unproven
assumption (See texts around Theorem 3 in [21]).

Gabizon et al. [17] proposed a randomness extractor
for input under bit-fixing distribution: randomly partition
the input bit-string and apply an underlying extractor over
each partition. Such “partition-then-extract” extractor can be
combined with our generic construction to obtain a secure
PoW scheme for bit-fixing input file.

It is worth noting that, information leakage of file F may
have different forms. For example, some plain bits F [i]’s are
leaked, or some aggregated information of file F (e.g. a hash
value) is leaked. In the latter case, file F is hardly considered
as fitting in (generalized) fixed-bit/block distribution.

Other works on deduplication/PoW include Pietro and
Sorniotti [28], which treats a projection (F [i1], . . . , F [iλ]) of
file F onto λ randomly chosen bit-positions (i1, . . . , iλ) as
the “proof” of ownership of file F . Similar to the “hash-as-a-
proof” method, this work is extremely efficient but insecure
in the bounded leakage setting [21]. Readers may find more
related works in Xu et al. [41].

3.2. Our approach: PoW = Randomness Extrac-
tor + POR

Intuitively, our generic construction extractors (T + 2λ)
bits message Y from the input file F and then apply a
proofs of ownership scheme over Y . It is worth noting
that in our usage of proofs of ownership scheme, al-
gorithm POR.GenProofdata runs by prover and algorithm
POR.GenProoftag runs by verifier9, while in the litera-
ture [24, 30, 40], both of these two algorithms run by
prover. It is easy to see that, such modification will preserve
the soundness of POR scheme. The detailed construction is
given in Figure 1 (on page 9).

8. A M bits long file F with k bit entropy under “generalized bit-fixing
distribution” is generated in this way: (1) Independently choosing k uniform
random bits; (2) deriving all other (M − k) bits from these k random bits
(Halevi et al. [21] applies linear transformation); (3) the file F is a random
permutation of these k random bits and (M − k) derived bits. If in the
above step (2), all (M−k) bits are constant, then the resulting distribution
is called “bit-fixing distribution” with entropy k.

9. In order to prevent potential leakage of partial information of Y from
its tag values to the prover, all tag values are stored in the verifier.
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Figure 1. PoW = RE + POR: A Generic Construction of PoW using Randomness Extractor Extractor and POR
scheme (KeyGen,Tag,GenChal,GenProofdata,GenProoftag,Verify).

S(F, 1λ). Summary function.
Input: An M -bit file F ∈ {0, 1}M and security parameter λ in unary form.
Extract: Choose random seed s from domain {0, 1}`s and compute Y := Extractor(F ; s).
Expand: Apply Erasure-Correcting-Code on Y to obtain Ŷ such that Y can be completely recovered from any α fraction

of Ŷ where constant α ∈ (0, 1) is some system parameter. Generate POR-key pair (pk, sk) := POR.KeyGen(1λ).
Divide Ŷ into n blocks Ŷ1, Ŷ2, . . . , Ŷn and generate authentication tags {σi}ni=1 := POR.Tag(sk, {Ŷi}ni=1). Let
πF = (pk, sk, {σi}ni=1).
Note: As mentioned in [21], in the construction of PoW, the decoding algorithm of the above Erasure-Correcting-Code is
not required to be practical, since the decoding algorithm will not be invoked in the legitimate application of PoW.

Output: The summary value of file F is ψ = (s, α, πF ). Output ψ.

〈P(F ),V(ψ)〉. Interactive proof system between verifier (cloud storage server) and prover (cloud storage client).
Input: The prover has file F as input and the verifier has a summary value ψ = (s, α, πF ) as input, where πF =

(pk, sk, {σi}ni=1).
V1: Verifier finds c = dlog1−α εe (i.e. c is the smallest integer such that (1−α)c ≤ ε) and computes (C,ΨF ,Ψσ) :=

POR.GenChal(pk, n, c). Verifier sends (C, s, α, pk,ΨF ) to the prover.
P1: Prover runs the extractor algorithm to obtain Y := Extractor(F ; s), and re-generate the erasure code Ŷ from Y

using the same Erasure-Correcting-Code with the same parameter α. Prover divides Ŷ into n blocks Ŷ1, . . . , Ŷn
and computes F̄ := POR.GenProofdata(pk, {Ŷi}ni=1, C,ΨF ). Prover sends F̄ to verifier.

V2: Verifier computes σ̄ := POR.GenProoftag(pk, {σi}ni=1, C,Ψσ) and b := POR.Verify(K, F̄ , σ̄,ΨF ,Ψσ) ∈
{accept, reject}, where K is pk if the POR scheme supports public key verification; otherwise K is sk.

Output: Output b ∈ {accept, reject}.
Note: The subset C requires |C| logn bits communication cost. We can reduce this communication cost by using
Goldreich [18]’s (δ, γ)-hitter samplera to represent C compactly with only logn+ 3 log(1/γ) bits of public random coins.

a. Goldreich [18]’s (δ, γ)-hitter guarantees that, for any subset W ⊂ [1, n] with size |W | ≥ (1− δ)n, Pr[C ∩W 6= ∅] ≥ 1− γ. Readers may refer to
[18, 13] for more details.

The completeness of our PoW scheme given in Figure 1
is straightforward and the details are saved.

Theorem 1. Suppose Extractor : {0, 1}M × {0, 1}`s →
{0, 1}T+2λ is a strong (k, ε)-extractor, and the POR scheme
is the Merkle Hash Tree based scheme MHT-POR (as
described in Section 2.3.1), which is ε-sound. Then the
PoW scheme constructed in Figure 1 is (k, T, ε)-sound and
(k, T, ε)-privacy-preserving in the three players setting.

Proof: This proof consists of two parts, one for
soundness and the other for privacy-preserving.
Soundness part. The soundness of a PoW scheme is
defined with a security game GPoW

A in Definition 5. In the
game, the adversary A is allowed to obtain at most T
bits message about file F via LEAK-QUERY-I and LEAK-
QUERY-II. The adversary A, playing the role of prover,
can only learn (C, s, α, pk,ΨF ) in the PROVE-QUERY and
nothing else, where (s, α, pk) are public information, and
(C,ΨF ) are generated from public information (n, c, pk).
Since Extractor is strong extractor, its output Y is ε-close
to uniform randomness even if the seed s is made public.

According to Lemma 13 in the Appendix A, conditional on
adversary A’s (at most) T bits message of F , Y has at least
(T + 2λ)−T −λ = λ bits min-entropy with overwhelming
high probability (1 − 2−λ). Therefore, the adversary A
cannot output Y with probability larger than 2 · 2−λ. On
the other hand, the adversary A cannot obtain any short
trapdoor with which A can break the MHT-POR scheme,
since such trapdoor does not exist in the MHT-POR
scheme: MHT-POR relies on collision-resistant hash
function (i.e SHA256) and has no any private key, i.e.
sk = null. Consequently, the subroutine MHT-POR over Y
will reject the adversary with significantly high probability
(i.e. > 1− ε ≥ 1− (1− α)|C|).

Privacy-Preserving part. Proof of this part is more straight-
forward. For each file F , set the random variable Z, as stated
in Definition 6, to be equal to Y = Extractor(F ; s). Since
the variable file F ∼ D has at least k bits min-entropy, by
the property of (k, ε)-extractor Extractor, SD(Z,U|Z|) ≤ ε
where U|Z| is a uniform random variable over {0, 1}|Z|. We
design the PPT simulator algorithm Sim(ψ‖L(F ), Z := Y )
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as below:

1) The input consists of the summary value ψ of file F and
the extracted randomness Y .

2) Simulate the (dishonest) verifier by simply revoking
algorithm V∗ on input ψ‖L(F ).

3) Simulate the (honest) prover P by carrying out Step P1
in Figure 1 with information Y and without knowing F .

4) Let the simulated verifier to interact the simulated prover,
while the simulated prover will honestly follow the
protocol as in Figure 1.

5) Set the output of this simulator as the same as the output
of the invoked algorithm V∗.

Therefore, given any input, the output of simulated verifier
and prover are identically distributed as that of real verifier
and prover. Consequently, for any function f : {0, 1}|F | →
{0, 1}, and for any leakage function L : {0, 1}|F | →
{0, 1}≤T , we have the following equation as desired

Pr
[
V∗
(
S(F, 1λ)‖L(F )

)P(F )
= f(F )

]
=Pr

[
Sim

(
S(F, 1λ)‖L(F ), Z

)
= f(F )

]
. (5)

At last, the size of Z is |Z| = |Y | = T+2λ = T+λ+Ω(λ),
as desired.

One can see that, the above soundness proof only requires
to check possible data loss in file Y and does not require
to actually recover the original file Y , thus other proof
of storage methods like Provable Data Possession (PDP)
scheme [3, 2], can also be adopted. Most POR (PDP)
schemes [30, 40, 3] require a short private key (e.g. the
factorization of a RSA modulus, the secret key of some pseu-
dorandom function) to work and thus cannot resist Type-
II leak query LEAK-QUERY-II, from which the adversary
could learn the short private key and break the POR scheme.
Therefore, for such POR schemes with private key, we have
to disable Type-II leak query by switching to the two players
setting as below.

Theorem 2. Suppose Extractor : {0, 1}M × {0, 1}`s →
{0, 1}T+2λ is a strong (k, ε)-extractor and POR is an ε-
sound POR scheme. Then the PoW scheme constructed
in Figure 1 is (k, T, ε)-sound in the two players setting.
(Details of proof is saved)

We compare two instantiations of our generic approaches
in Table 4 (on page 10).

Table 4. Two instantiations of PoW=RE+POR.

Choice of POR Setting Summary Value Size (bits) Communication cost (bits)
MHT-POR 2P,3P λ λ · log1−α ε · log (T/α)

Brent-Waters-POR [30] 2P T/(αs) † (s+ 3)λ+ 440

† : s is a system parameter of POR [30] and can take any positive integer
value.

4. Randomness Extractor with Large Output
Size

In this section, we propose in Figure 2 (on page 11)
a novel randomness extractor with large output size using
the well-known “sample-then-extract” approach: Repeatedly
sample a subset of bits from a weak random source and then
apply an existing extractor with small output size over the
sample.

Intuitively, the sampling lemma [26, 36] states that “if one
samples a random subset of bits from a weak random source,
the min-entropy rate (i.e. ratio of min-entropy to bit-length)
of the source is nearly preserved”. Precisely if X ∈ {0, 1}n
has δn min-entropy and X[S] ∈ {0, 1}t is the projection of
X onto a random set S ⊂ [n] of t positions, then with
high probability, X[S] is statistically close to a random
variable with δ′t min-entropy. We consider the difference
(δt− δ′t) as the entropy loss in sampling t bits. Nisan and
Zuckerman( Lemma 11 in [26] ) gave a sampling algorithm
where δ′ = cδ/ log(1/δ) for some small positive constant
c. Vadhan (Lemma 6.2 in [36]) improved their result and
allows δ′ = (δ− 3τ) for sufficiently small positive constant
τ .

We brief the existing approach [26, 37] as below: (1)
Independently and randomly choose l number of seeds, in
order to get l samples X1, . . . , Xl of the input weak source
F , which has min-entropy rate δ. (2) Show that (X1, . . . , Xl)
is a δ′-block-wise source with δ′ close to δ, i.e. for each
i ∈ [l], conditional on (X1, . . . , Xi), the random variable
Xi+1 has min-entropy rate at least δ′. (3) Apply existing
randomness extractor on the structured weak random source
(X1, . . . , Xl) to generate almost-uniform random output
(y1, . . . , yl).

Roughly speaking, in the analysis of the above approach
in [26, 37], to extract each block yi, the remaining min-
entropy of the input F reduces by |Xi| bits—the bit-length
of Xi. Unlike previous works [26, 36, 37], we do not
generate block-wise source as intermediate product, and
manage to show that the remaining min-entropy of the
input F , after extracting each block yi, reduces by |yi|
bits—the bit-length of yi which is much smaller than |Xi|.
Readers may find definition and calculation of remaining
(or conditional) min-entropy H̃∞(A|B) of variable A given
variable B in Lemma 12 and Corollary 13 in Appendix A.
In this jargon, we manage to switch the conditional variable
B from Xi (as previous works) to yi in the analysis of our
new design.

Theorem 3. Let t = M c and τ = M−c for constant
c ∈ (0, 1). Let Ext : {0, 1}t+256 × {0, 1}r1 → {0, 1}ρ be a
strong (k0, ε0)-extractor. Let Samp be an (µ, θ, γ)-averaging
sampler [36, 37]. Then the algorithm Extractor : {0, 1}M ×
{0, 1}ρ → {0, 1}ρ` constructed in Figure 2 is a (k1, ε1)-
extractor, where ρ = λ+ log(M/t) + log(1/γ) · θ−2, ρ · ` =
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Figure 2. A Novel Randomness Extractor with Large Output Size and Short Seed. Ext is some existing strong
randomness extractor and Samp is some existing sampling algorithm.

Extractor(F ; s, s′). This extractor algorithm will serve as a subroutine to construct PoW scheme.
Input: An M -bit file F ∈ {0, 1}M ; s ∈ {0, 1}r0 and s′ ∈ {0, 1}r1 are true random seeds, where r0 + r1 = ρ.
Sample-then-Extract-Loop:

Let s1 := s and s′1 := s′. Let hF := SHA256(F ) with |hF | ≤ ρ.
For each i from 1 to `:
Sample: Independently and randomly sample t distinct indices using random seed si from the set [M ] to obtain

Si := Samp([M ], t; si) ⊂ [M ].
Extract: Compute yi := Ext(hF ‖ F [Si]; s

′
i) ∈ {0, 1}ρ. Let si+1 be the prefix of bit-length r0 of bit-string yi,

and s′i+1 be the suffix of bit-length r1 of bit-string yi.
Output: Let Y := y1‖y2‖ . . . ‖y` ∈ {0, 1}ρ`. The output is Y .

k1− (k0 + 3)M1−c, and ε1 = 5`(ε0 +γ+ 2−λ + 2−Ω(τM)).

We make the following remarks: (1) Our algorithm in
Figure 2 requires about 1/` fraction of the amount of random
bits required by [26], since [26] requires that all of sampling
seeds s1, s2, . . . , s` should be independent randomness. (2)
The choice of value t = M c ensure that there will be
sufficient remaining min-entropy in the last sample (worst
case), and this value of sample size t would be much
larger than required for the first few samples (good cases).
One may use different sample size ti for the i-th sample
(t1 < t2 < t3 . . . < t` = M c), in order to reduce the IO
reading. (3) Alternatively, we may choose hitter-sampler [18]
as in [26] instead of averaging sampler, in order to reduce
the seed length ρ (only O(λ + logM) bits) at the cost of
larger value of t. (4) In practice, one may use Tabulation
Hashing [27] or CBC-MAC or HMAC as the underlying
extractor algorithm Ext (possibly in the companion with
hitter sampler which allows small ρ), as analyzed by Dodis et
al. [11].

Lemma 4 (Amplification). Suppose the algorithm Ext :
{0, 1}M × {0, 1}ρ → {0, 1}ρ defined as

Ext
(
X; (s, s′)

) def
= Ext

(
SHA256(X) ‖ X[Samp(s)]; s′

)
(6)

is a strong (k2, ε2)-extractor. Then Extractor : {0, 1}M ×
{0, 1}ρ → {0, 1}ρ` constructed in Figure 2 is a (k1, ε1)-
extractor, where k1 ≥ k2 + ρ(`− 1) + λ and ε1 = 5`(ε2 +
2−λ).

Our proof is an analog of hybrid proof technique for
(computational) indistinguishability [19].

Proof of Lemma 4: Define a (deterministic) function
Nest:

Nest(F, s0, n)
def
= (s1, s2, . . . , sn),

where si := Ext(F, si−1) for each i ∈ [n].

We have identity:

Nest(F, s0, n) ≡
(
Ext(F, s0), Nest(F,Ext(F, s0), n− 1)

)
.

(7)
For each i ∈ [`], define random variable

Wi
def
= (w1, . . . , wi,Nest(F,wi, `− i)) ∈ {0, 1}ρ`,

where for each j ∈ [i], wj := Ext(F, uj) and uj’s are
independent and uniform random variables over {0, 1}ρ.
Notice that W1 represents the output of our construction of
extractor with seed u1 = s‖s′ in Figure 2. Let U be uniform
random variable over {0, 1}ρ`. Lemma 4 is equivalent to the
following lemma:

Lemma 5. SD
(
(u1,W1), (u1, U)

)
≤ 5`(ε2 + 2−λ).

The above Lemma 5 can be derived directly from the
following Claim 1 and Claim 2 using the triangle inequality
of statistical difference (Lemma 8 in Appendix A).

Claim 1. SD
(
(u1,W`), (u1, U)

)
≤ `(ε2 + 2−λ).

(Proof is in Appendix B)

Claim 2. For any i ∈ [`− 1], SD
(
(u1,Wi), (u1,Wi+1)

)
≤

4(ε2 + 2−λ). SD
(
(u1,W1), (u1,W`)

)
≤ 4`(ε2 + 2−λ).

(Proof is in Appendix B)

The proof of Lemma 4 is complete.

Lemma 6 (Theorem 6.3 [36], sample-then-extract). Let
1 ≥ δ ≥ 3τ > 0. Suppose that Samp : {0, 1}r0 → [M ]t

is an (µ, θ, γ) averaging sampler with distinct samples
for µ = (δ − 2τ)/ log(1/τ) and θ = τ/ log(1/τ) and
that Ext : {0, 1}t+256 × {0, 1}r1 → {0, 1}ρ is a strong
(k0 = (δ − 3τ)t, ε0)-extractor. Let ρ = r0 + r1 and define
Ext : {0, 1}M × {0, 1}ρ → {0, 1}ρ by

Ext(X; (s, s′))
def
=Ext

(
SHA256(X) ‖ X[Samp(s)]; s′

)
(8)

Then Ext is a strong (k2, ε2)-extractor with k2 = δM and
ε2 = ε0 + γ + 2−Ω(τM).

11



Note: As mentioned in [36], τ could be arbitrarily small and
approaches 0. In this paper, we set τ = M−c for some constant
c ∈ (0, 1).

Now we are ready to prove Theorem 3.
Proof of Theorem 3: This theorem is directly implied

by Lemma 4 and Lemma 6, except only one missing part:
the requirement k1 ≥ k2 + ρ(`− 1) +λ of Lemma 4 should
be guaranteed.

This can be achieved by setting τ = M−c = 1/t and
ρ · ` = k1 − (k0 + 3)M1−c. From k2 = δM and k0 = (δ −
3τ)t, we derive δ = k0/t+3τ = (k0 +3)/t and k2 = (k0 +
3)M/t = (k0 + 3)M1−c (Notice that t = M c), Therefore,
the requirement of Lemma 4 is satisfied as desired:

k2 + ρ(`− 1) + λ =
(

(k0 + 3)M1−c
)

+(
k1 − (k0 + 3)M1−c

)
− ρ+ λ = k1 − ρ+ λ ≤ k1. (9)

The size of random seed ρ = r0 + r1 where r0 = λ and
r1 = log(M/t) + log(1/γ) · θ−2 as given in [36].

Computational Complexity. Recall that, in order to reduce
computation cost, we could choose different sample size tj
for iteration j, where t1 < t2 < . . . < t` = t = M c.
The computational complexity of our proposed randomness
extractor can be measured by the total number of bits read
(or sampled) from the file (double counting repeated bits),
i.e. the sum of tj for j ∈ [`]. We will give an upper bound
on the sum of tj .

Lemma 7 (Complexity). Suppose M1−c ≥ 2. The total
number of bits (i.e.

∑`
j=1 tj) of input file F accessed by the

randomness extractor in Figure 2 is O(M log `).
Note: (1) If the underlying extractor Ext is Tabulation Hashing,
then the constant behind the big-O notation is very small—around
2. (2) Multiple access to the same bit will be counted with its
frequency. (3) The proof of this lemma is in Appendix C.

We remark that the extractor algorithm in Figure 2 can be
modified into m concurrent threads/processes, at the cost of
increasing the seed size by m times. We save the details to
the full version of this paper.

5. Secure Client-side Deduplication

PoW scheme can be applied (together with some other
techniques) to construct secure client-side deduplication
scheme in cloud storage.

5.1. Honest Cloud Server

If the cloud server is trusted, the PoW scheme alone
implies a secure client-side deduplication, which is leakage
resilient against outside attack: When receiving a file F for
the first time from some owner of F , the server will also

receive a short meta-data ψ = PoW.S(F, 1λ) generated by
the same owner of F . This small meta-data ψ together with
hash value h(F ) will be stored in the primary memory (i.e
RAM) of the server, and the potentially large file F will
be stored in the slower secondary memory (e.g. hard disk).
After this setup, if any cloud client claims to own file F
to the cloud server by presenting the hash value h(F ), this
cloud client will be required to take part in the interactive
proof PoW.〈P,V〉—The client runs prover algorithm and
the server runs the verifier algorithm V with the meta-data
ψ as input, where ψ is associated to hash value h(F ) and
fetched efficiently from the primary memory. If this client
convinced the server in the interactive proof, then the server
believes that this client owns F and allow it to access the
copy of F in the cloud storage.

5.2. Confidentiality against Semi-Honest Cloud
Storage Server

The above construction of client side deduplication will
expose users’ files to the cloud storage server. To protect
confidentiality of users’ files, we could combine the privacy-
preserving PoW scheme with convergent encryption 10: User
file F will be encrypted using convergent encryption method
and the resulting ciphertext will be stored in the cloud
storage. The rest is the same as in the above construction.
We remark that in this setting, we have to employ privacy-
preserving PoW scheme to prevent information leakage
to the cloud storage server during the execution of PoW
scheme.

This scheme is leakage-resilient against outside attack,
and protect data confidentiality against semi-honest cloud
server who does not have out-of-band bounded leakage
access to the target file. We remark that “pollution attack”
should be addressed using the way in existing works [41, 7].

5.3. Bounded Leakage Resilient against Semi-
Honest Cloud Storage Server

It is easy to see that it is impossible to achieve leakage-
resilient client-side deduplication against cloud storage
server without additional assumption: Since the cloud stor-
age server has the ciphertext of user file F , and can learn
the short encryption key from the bounded leakage access
to F , it can decrypt the ciphertext to obtain F .

Our strategy is to introduce a new assumption: There exist
N cloud storage servers, out of which at least one server is
honest. Apply threshold secret sharing over file F and then
store the result to the N server distributely. Then apply POR
scheme with each server.

10. Convergent encryption [14, 15, 41, 7, 6] method derives encryption
key from the plaintext.
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Note that in this setting, secret sharing scheme replaces
encryption method (e.g. AES) to protect F , and the above
approach can reach unconditional security!

6. Experiments

We implement a prototype of our randomness extractor,
PoW scheme and client side deduplication (CSD) scheme 11

in Sec 5.2, in C language, where MHT-POR is adopted for
POR scheme, tabulation hashing is adopted as the underlying
randomness extractor with small size, and the threshold
T = 64MB. Our test machine is a laptop computer, which
is equipped with a 2.5GHz Intel Core 2 Duo mobile CPU
(model T9300 in Year 2008), a 3GB PC2700-800MHZ RAM
and a 7200RPM hard disk. The test machine runs 32 bits
version of Gentoo Linux OS with kernel 3.1.10. The file
system is EXT4 with 4KB page size.

Our test files are generated randomly12 and are of size
64MB, 128MB, 256MB, 512MB and 1024MB respectively.
Each experiment repeats 10 times and we report the average
data 13 in Figure 3 (on page 13).

In summary, our randomness extractor, PoW scheme
and client side deduplication scheme can consume data
at the speed upto 7.7 MB/s, 6.8MB/s, and 4.2MB/s, re-
spectively, for large test files. In contrast, the highest
national-wide residential Internet download speed [1] is
14.2Mbps=1.775MB/s, and the uploading speed is even
slower. As long as the client side deduplication consumes
the data at the speed faster than the cloud user’s uploading
speed, then Internet transmission time could be partially
saved in case of duplication. The benefits of saving in server
storage and network bandwidth always persist, independent
on the speed of the client side deduplication scheme.

We remark that PoW scheme consists of three algorithms
(S,P,V), where Figure 3 just shows the experiment data for
the most expensive algorithm S among them, the running
time of P is very close to S, and the running time of V
is within 2 seconds for all test files. Similar for client side
deduplication scheme.

7. Conclusion and Open Problems

We were the first one to bridge construction of PoW with
randomness extractor and proofs of retrievability. We also
proposed a novel randomness extractor with large output
size, which improves existing works in both seed length
and entropy loss (i.e. the difference between entropy of input
and output). Our proofs of ownership scheme can be applied
in client-side deduplication of encrypted (unencrypted, too)

11. This CSD scheme includes file encryption as a part.
12. Precisely, our test files are generated by encrypting some files with

randomly chosen AES key using AES encryption method.
13. Since the variance is very small, we save its details.

Figure 3. Experiment Data.
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data in cloud storage service, and the new randomness
extractor may have independent interest.

Whether “partition-then-extract” approach works for any
distribution of input file and how to apply pseudo-entropy
extractor (e.g Yao-Entropy extractor) to construct proofs of
ownership scheme, remain two open problems.
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Appendix A.
Background knowledge of statistical difference

Lemma 8 (Fact 2.2 in Sahai and Vadhan [29]; Triangle
Inequality). For any probability distributions X,Y and Z,

SD(X,Y ) ≤ SD(X,Z) + SD(Z, Y ).

Lemma 9 (Fact 2.3 in Sahai and Vadhan [29]). Suppose
X1 and X2 are independent random variables on one
probability space, and Y1 and Y2 are independent random
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variables on another probability space. Then

SD((X1, X2), (Y1, Y2)) ≤ SD(X1, Y1) + SD(X2, Y2).

Lemma 10 (Fact 2.4 in Sahai and Vadhan [29]). If X
and Y are random variables and A is any randomized (or
deterministic) procedure, then

SD(A(X), A(Y )) ≤ SD(X, Y ).

Note: Statistical difference cannot be created out of nothing.

Lemma 11 (Fact 2.5 in Sahai and Vadhan [29]). Suppose
X = (X1, X2) and Y = (Y1, Y2) are probability distribu-
tions on a set D × E such that
1) X1 and Y1 are identically distributed, and
2) With probability greater than (1 − ε) over x ← X1

(equivalently, x← Y1),

SD(X2|X1=x, Y2|Y1=x) < δ

where B|A=a denotes the conditional distribution of B
given that A = a for jointly distributed random variables
A and B.

Then SD(X,Y ) < ε+ δ.

Lemma 12 (Dodis et al. [12]). Define average min-entropy
of random variable A given random variable B as below

H̃∞(A | B)
def
= − log

(
Eb←B

[
max
a

Pr[A = a | B = b]
])
.

(10)
Let A,B be random variables and B has at most 2`B

possible values. Then

H̃∞(A | B) ≥ H∞((A,B))− `B ≥ H∞(A)− `B .
Corollary 13. Let A and B be random variables where the
domain of B is {0, 1}`B . Then for any positive integer λ,
for all but 2−λ fraction of possible value b ∈ {0, 1}`B , we
have

H∞(A|B=b) ≥ H∞(A)− `B − λ. (11)

Proof: Applying Lemma 12, we have

H̃∞(A | B) = − log
(
Eb←B

[
max
a

Pr[A = a | B = b]
])

≥ H∞(A)− `B (12)

⇒ Eb←B
[
max
a

Pr[A = a | B = b]
]
≤ 2−H∞(A)+`B (13)

⇒ Prb←B
[

max
a

Pr[A = a | B = b] ≥ v
]

(14)

≤ 1

v
· Eb←B

[
max
a

Pr[A = a | B = b]
]

≤ v−1 · 2−H∞(A)+`B (Markov’s Inequality) (15)

Let v = 2−H∞(A)+`B+λ. Thus

Prb←B
[
H∞(A|B=b) ≤ H∞(A)− `B − λ

]
=Prb←B

[
max
a

Pr[A = a | B = b] ≥ 2−H∞(A)+`B+λ
]

≤2−λ.

Appendix B.
Proof for Randomness Extractor

Claim 1 SD(W`, U) ≤ `(ε2 + 2−λ).
Proof of Claim 1: Let U|n| denote the (independent)

uniform random variable over {0, 1}n. Treat W` as a vector
of ` elements Ext(F, ui)’s. Let W`[1, i] denote the first i
components of W`. We will prove the following statement
using mathematical induction from i = 1 upto i = `:

SD
(
(u1,W`[1, i]), (u1, U|iρ|)

)
≤ i(ε2 + 2−λ), i ∈ [`] (16)

Notice that the case of i = ` is just Claim 1. The basic case
of i = 1 is simply derived from the assumption that Ext is a
strong (k2, ε2)-extractor. Now we prove the induction step.
Assuming Eq (16) holds for i = j ∈ [`−1], we try to prove
that it also holds for i = j + 1.

Recall that W` = (w1, . . . , w`) where wi = Ext(F, ui)
and ui’s are independent random variables over {0, 1}ρ.
According to Corollary 13, conditional on all but 2−λ

fraction of possible values (u1, w1, . . . , wj), the min-entropy
F is at least H∞(F ) − jρ − λ ≥ k1 − jρ − λ ≥ k2 (Note
that u1 is independent on F ). Applying the property of
extractor Ext, wj+1 = Ext(F, uj+1) is ε2-close to uniform
randomness U|ρ| (conditional on (w1, . . . , wj)). Applying
Lemma 11, we have

SD
(
(u1, w1, . . . , wj , wj+1), (u1, w1, . . . , wj , U|ρ|)

)
≤ ε2+2−λ.

(17)
By induction hypothesis, i.e. Eq (16) holds for i = j,

SD
(
(u1, w1, . . . , wj), (u1, U|jρ|)

)
≤ j(ε2 + 2−λ).

⇒ SD
(
(u1, w1, . . . , wj , U|ρ|), (u1, U|jρ|, U|ρ|)

)
≤ j(ε2 + 2−λ) (18)

The last derivation is because that U|ρ| is independent
uniform randomness. Combining Eq (17) and Eq (18) using
triangle inequality (Lemma 8), we have

SD
(
(u1, w1, . . . , wj , wj+1), (u1, U|jρ|, U|ρ|)

)
≤ (j + 1)(ε2 + 2−λ). (19)

The induction step finishes and thus the original Claim 1 is
proved.
Claim 2 For any i ∈ [` − 1], SD(Wi, Wi+1) ≤ 4(ε2 +
2−λ). SD(W1,W`) ≤ 4`(ε2 + 2−λ).

Proof of Claim 2:
Let u, u′, û2, û3 be independent and uniform random

variables over {0, 1}ρ.
According to Corollary 13, conditional on

(u1, w1, . . . , wi−1): F has at least14 k1− ρ(i− 1)−λ ≥ k2

14. Note that u1 is independent on F
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bits min-entropy with o.h.p (1 − 2−λ). So
SD(wi = Ext(F, ui), u) < ε2 + 2−λ. Applying Lemma 10,

SD((wi,Ext(F,wi)), (u,Ext(F, u))) ≤ SD(wi, u) ≤ ε2 + 2−λ.
(20)

Since Ext is an extractor, SD((u,Ext(F, u)), (u, u′)) ≤ ε2+
2−λ

Conditional on (u1, w1, . . . , wi−1, wi),
SD(Ext(F, û2), û3) ≤ ε2, since Ext is an extractor.

Conditional on (u1, w1, . . . , wi−1): (wi,Ext(F, û2)) ≈ε2
(wi, û3) ≈ε2 (u, û3) ≈0 (u, u′).

Therefore, by apply triangle inequality multiple times,
we have15 (wi,Ext(F, û2)) ≈4(ε2+2−λ) (wi,Ext(F,wi)).
Applying Lemma 10 over the last equation, we have

(wi,Ext(F, û2),Nest(F,Ext(F, û2), `− i− 1))

≈4(ε2+2−λ)(wi, ,Ext(F,wi),Nest(F,Ext(F,wi), `− i− 1))
(21)

Therefore,(
u1, w1, . . . , wi,Ext(F, û2),Nest(F,Ext(F, û2), `− i− 1)

)
≈4(ε2+2−λ)(
u1, w1, . . . , wi, ,Ext(F,wi),Nest(F,Ext(F,wi), `− i− 1)

)
(22)

By the definition of Nest, we have(
Ext(F,wi),Nest(F,Ext(F,wi), ` − i − 1)

)
=

Nest(F,wi, ` − i). By the definition of random
variable Wi, the left hand side of the above Eq (22)
is identically distributed as Wi+1 and the right hand
side of Eq (22) is identically distributed as Wi. Thus
Wi+1 ≈4(ε2+2−λ) Wi. Therefore, applying the triangle
inequality for i = 1, 2, . . . , `, we have W1 ≈4`(ε2+2−λ) W`.

Appendix C.
Proof of Complexity

Lemma 7 Suppose M1−c ≥ 2.
∑`
j=1 tj = O(M log `).

Proof: In each iteration j, the sampled tj bits should
have sufficient min-entropy to feed in the underlying extrac-
tor Ext, that is, tj(k1 − jρ − λ)/M − 3τt ≥ k0. Thus the
minimal possible value for tj is

t∗j =
k0

k1−jρ−λ
M − 3τ

=
k0

a− jρM−1

Here a is defined as

a =
k1 − λ
M

− 3τ =
1

M

(
k1 − λ− 3M1−c) . (23)

15. X ≈4ε2+2·2−λ Y ⇒ X ≈4(ε2+2−λ) Y .

Since ρ · ` = k1 − (k0 + 3)M1−c, we have

a =
1

M

(
ρ`+ k0M

1−c − λ
)
≥ 1

M

(
ρ`+ ρM1−c − λ

)
≥ 1

M
(ρ`+ ρ) =

ρ(`+ 1)

M
(requires M1−c ≥ 2)

(24)

Therefore,

∑̀
j=1

t∗j ≤ k0ρ
−1M

∫ a−ρM−1

a−ρ`M−1

1

x
= k0ρ

−1M lnx

∣∣∣∣∣
a−ρM−1

a−ρ`M−1

(25)

= k0ρ
−1M

(
ln(a− ρM−1)− ln(a− ρ`M−1)

)
(26)

= k0ρ
−1M ln

a− ρM−1

a− ρ`M−1
(This function is decreasing

w.r.t. variable a )

(27)

≤ k0ρ
−1M ln

ρ(`+ 1)M−1 − ρM−1

ρ(`+ 1)M−1 − ρ`M−1
(28)

= k0ρ
−1M ln ` = O(M ln `). (29)

In case of Tabulation Hashing [27] or HMAC or CBC-
MAC [11] as the underlying extractor Ext, k0ρ

−1 ≈ 2 is
a small constant.
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