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Abstract

We introduce the notion of locally updatable and locally decodable codes (LULDCs). While, intu-
itively, updatability and error-correction seem to be contrasting goals, we show that for a suitable, yet
meaningful, metric (which we call the Prefix Hamming metric), one can construct such codes. Infor-
mally, the Prefix Hamming metric allows the adversary to corrupt an arbitrary (constant fraction of)
bits of the codeword subject to the constraint that he does not corrupt more than a δ fraction of the t
“most-recently changed” bits of the codeword (for all 1 ≤ t ≤ n, where n is the length of the codeword).

We first construct binary LULDCs for messages in {0, 1}k with constant rate, update locality of
O(log2 k), and read locality ofO(kε) for any constant ε < 1. Next, we consider the case where the encoder
and decoder share a secret state and the adversary is computationally bounded. Here too, we obtain
local decodability for the Prefix Hamming metric. Furthermore, we also ensure that the local decoding
algorithm never outputs an incorrect message – even when the adversary can corrupt an arbitrary
number of bits of the codeword. We call such codes locally updatable locally decodable-detectable
codes (LULDDCs) and obtain dramatic improvements in the parameters (over the information-theoretic
setting) by constructing binary LULDDCs for messages in {0, 1}k. Our codes have constant rate, an
update locality of O(λ log k) and a read locality of O(λ log2 k), where λ is the security parameter.

Finally, we show how our techniques apply to the setting of dynamic proofs of retrievability (DPoR)
and show a construction of this primitive with better parameters than existing constructions. In partic-
ular, we construct a DPoR scheme with linear storage, O(log k) write complexity, and O(λ log k) read
and audit complexity.

1 Introduction

1.1 Codes with locality

Locally Decodable Codes. Locally decodable codes (LDCs), introduced by Katz and Trevisan [14] are
a class of error correcting codes, where every bit of the message can be probabilistically decoded by only
reading a few bits of the (possibly corrupted) codeword. In more detail, a binary locally decodable code
encodes messages in {0, 1}k into codewords in {0, 1}n. The parameters of interest in such codes are: a) the
rate of the code ρ = k

n ; b) the distance δ, which signifies that the decoding algorithm succeeds even when
δn of the bits of the codeword are corrupted; c) the locality r which denotes the number of bits of the
codeword read by the decoding algorithm; and d) the error probability ε that denotes that for every bit of
the message, the decoding algorithm successfully decodes it with probability 1− ε. Ideally, one would like
to minimize both the length of the code as well as the locality; unfortunately, there is a trade-off between
these parameters. On the one hand, we have the Hadamard code that has a locality of 2; however its length
is exponential in k. (Indeed, the best code length for LDCs with constant locality are super-polynomial
in k [6, 4].). On the other hand, the best known codes with constant rate, [15, 9, 12], have a locality of
O(nε) for any constant 0 < ε < 1. For a survey on locally decodable codes, see Yekhanin’s survey [27].
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Locally Updatable and Locally Decodable Codes. LDCs (and error correcting codes in general)
are extremely useful as they provide reliability even when many bits of the codeword may be corrupted;
unfortunately, the (unavoidable) price that we pay is that even small changes to the message result in a
large change to the codeword. In this work, we ask “can we have locally decodable codes that are locally
updatable?”. That is, can we have locally decodable codes such that in order to obtain a codeword of
message m′ from a codeword of message m (where m and m′ differ only in one bit) one only needs to
modify a few bits of the codeword? We call such codes locally updatable and locally decodable codes
(LULDCs); the number of bits that are modified by the update algorithm is then referred to as the update
locality and the number of bits read by the (local) decoding algorithm is referred to as the read locality.

The Prefix Hamming Metric. Updatability and error correction are orthogonal goals and indeed a
little thought reveals that if an adversary can corrupt some fraction of arbitrary bits of the codeword,
then one cannot obtain locally updatable codes with update locality less than the distance of the code.
In light of this, we consider a weaker, yet meaningful, adversarial model of corruption. Informally, in our
model, bits of the codeword have an “age”. An adversary is allowed to corrupt a constant fraction of the
bits of the codeword; however, he is allowed to corrupt fewer of the younger/newer bits and is allowed to
corrupt many of the older bits. In a bit more detail, whenever we touch (i.e., write) a particular bit i of
the codeword during an update procedure, this bit becomes a young bit with an age less than every other
bit in the codeword. At this point of time, the ith bit of the codeword is the youngest bit in the codeword.
Now, suppose we touch the jth bit of the codeword, then this bit becomes the youngest bit, with the ith

bit now becoming the second youngest bit of the codeword and so on. Note that if we were to now again
touch the ith bit, this would once again become the youngest bit of the codeword.

We allow the adversary to corrupt arbitrary (constant fraction of) bits in the codeword subject only to
the constraint that at no point of time does he corrupt more than a δ fraction of the t youngest bits (for
all 1 ≤ t ≤ n). We call this metric the Prefix Hamming Metric. This metric models a situation where the
longer the time a bit of the codeword resides in the system, the easier it is for an adversary to corrupt it;
thus, the newer or younger bits are less corruptible than the older bits.

1.2 Our Results and Techniques

Our main results are as follows:

• Result 1 (Informal): We construct binary LULDCs for the Prefix Hamming metric for messages in
{0, 1}k. Our codes have a rate of O(1), an update locality of O(log2 k) and a read locality of O(kε)
for any constant ε < 1. For codes that operate on larger alphabet Σ, with |Σ| ≥ log k, we can improve
the update locality to O(log k) (other parameters remaining the same).

Next, we consider the case where the encoder and decoder share a secret state S and the adversary
is computationally bounded. In this setting, we additionally ensure that the (local) decoding algorithm
never outputs an incorrect message even when the adversary can corrupt an arbitrary number of bits of
the codeword. In addition to providing this guarantee, we obtain dramatic improvements over the codes
constructed in the information-theoretic setting. In particular, we call such codes locally updatable and
locally decodable-detectable codes (LULDDCs), and obtain the following result:

• Result 2 (Informal): We costruct binary LULDDCs for messages in {0, 1}k. Our codes have constant
rate, an update locality of O(λ log k) and a read locality of O(λ log2 k), where λ is the security
parameter of the system.
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LULDCs for the Prefix Hamming Metric. The first idea behind our construction in the information-
theoretic setting is as follows. We shall make use of the hierarchical data structure introduced by Ostro-
vsky [18, 19] in the context of oblivious RAMs. Oblivious RAMs [7, 18] allow efficient random access to
memory without revealing the access pattern to an adversary that observes the reads and writes made to
memory. However, we show that we can make use of the hierarchical data structure as a building block
to construct LULDCs. At a high level, the data structure comprises of τ + 1, buffers buff0, · · · , buffτ
of increasing size. Buffer buffi is roughly of size 2i. Additionally there is a special buffer (buff∗) will
comprise of an encoding of the entire message (encoded using an appropriately chosen locally decodable
code). Whenever we wish to update a bit of the message, we will write it to the topmost buffer buff0 and
re-encode the top buffer using an LDC to encode this latest update. Naturally, the top buffer gets full
after an update operation. Whenever we encounter a full buffer, we move its contents to the buffer below
it (that is, we decode the entire buffer, combine top level buffers together and re-encode them at a level
below, once again using an LDC for the encoding). When we wish to (locally) decode a particular index
i of the message, we scan buffers one-by-one starting with topmost buffer. Now, note that we need to
check if a particular index is found in a buffer or not. In order to do this, we always ensure that buffers
store (index, value) pairs that are sorted according to the index value. This will enable us to perform a
binary search (performing decodes through the underlying LDC) to check if a buffer contains a particular
index i or not. Since we are performing the binary search via the decode algorithm of the underlying LDC,
we must ensure that the decode does not fail with too high a probability; hence, we repeat the decode
procedure at each level some fixed number of times to ensure this and make sure that our overall local
decoding algorithm succeeds except with ε probability. When the index is found, we stop searching lower
level buffers and output the value retrieved (our construction will always ensure that if an index value was
updated, then the latest value of the index will be stored at a high level buffer). If the index is not found,
then we read the corresponding element from the special buffer buff∗, once again using the underlying
LDC.

Since we must store every updated element as a (index, value), the above described technique will
decrease the rate of the code by a factor of O(log k). Hence, in order to ensure that our code has constant
rate, we carefully choose the total number of buffers τ + 1 in our construction to ensure that we obtain
constant rate codes and yet achieve good update and read locality.

Now, in the above construction, we show that the decode and update algorithms succeed (with small
locality) as long as an adversary corrupts only a constant fraction of the bits of each buffer. We then
proceed to show that if an adversary corrupts bits of the codeword according to the Prefix Hamming
metric, then he can only corrupt a constant fraction of the bits of each buffer (within a factor of 2). This
gives us our construction of LULDCs.

Computational LULDDCs. To obtain our construction in the computational setting, at a high level,
we follow our information-theoretic construction. However, there are three main differences. First, when
decoding the ith bit of the codeword, we still scan each buffer to see if a “latest” copy of the ith bit is
present in that buffer. However, now, because we are in the computational setting, we no longer need to
store the buffer in sorted order and perform a binary search. Instead, we simply use hash functions to check
if a particular index is present in a buffer or not. Furthermore, we use cuckoo hash functions to minimize
our read locality in this case. Second, we store each buffer using a computational LDC that has constant
rate and O(λ) locality (such codes are obtained through the construction of Hemenway et al. [11]). Third,
we authenticate each bit of the codeword using a message authentication code so that we never decode
incorrectly (irrespecitve of the number of errors that the adversary introduces).

The above ideas do not suffice for our construction: in particular, if we applied these techniques, we
do not obtain a constant rate code as MACing each bit of the codeword would result in a O(λ) blowup in
the rate of the code. One could think of MACing O(λ) bits of the codeword, block by block, but then this
would result in a O(λ2) blowup in the read locality, as we must read λ bits now in each buffer through
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the underlying LDC. In order to obtain our result, we MAC each bit of the codeword using a constant size
MAC. To obtain our result, we make a careful use of constant size MACs to verify the correctness of a
codeword as well as to decode correctly (except with negligible probability).

Dynamic Proofs of Retrievability. Informally, a proof of retrievability allows a client to store data
on an untrusted server and later on obtain a short proof from the server, that indeed all of the client’s
data is present on the server. In other words, the client can execute an audit protocol such that any
malicious server that deletes or changes even a single bit of the client’s data will fail to pass the audit
protocol, except with negligible probability in the security parameter1. Proofs of retrievability, introduced
by Juels and Kaliski [13], were initially defined on static data, building upon the closely related notion
of sublinear authenticators defined by Naor and Rothblum [17]. Several works have studied the efficiency
of such scemes [25, 5, 2, 1] with the work Cash, Küpçü, and Wichs [3] considering the notion of proof
of retrievability on dynamically changing data; in other words, they constructed a proof of retrievability
scheme that allowed for efficient updates to the data. Cash et al. [3] showed how to convert any oblivious
RAM (ORAM) protocol that satisfied a special property (which they define to be next-read-pattern-hiding
(NRPH)) into a dynamic proof of retrievability (DPoR) scheme. Their DPoR scheme has O(k) server
storage, O(λ) client storage, O(λ log2 k) read complexity, O(λ2 log2 k) write and audit complexity2. We
improve their parameters and obtain the following result:

• Result 3 (Informal): We obtain a construction of a dynamic proof of retrivability with O(k) server
storage, O(λ) client storage, O(λ log k) read complexity, O(log k) write complexity and O(λ log k)
audit complexity.

We show that we do not need an ORAM scheme with this property and the techniques used to construct
LULDDCs can be used to build a DPoR scheme. Moreover, we do not need to hide the read and write
access pattern, thereby leading to significant savings in the complexity. In particular, we show, that by
encoding each buffer of the ORAM structure using an error correcting code (that is also appropriately
authenticated with constant size MACs), and additionally storing authenticated elements of the raw data
in the clear, we can use the techniques developed for LULDDCs to construct a DPoR scheme with O(k)
server storage, O(λ) client storage, O(λ log k) read complexity, O(log k) write complexity and O(λ log k)
audit complexity3.

1.3 Organization of the paper

In Section 2, we introduce our notion of locally updatable and locally decodable codes as well as formally
define the Prefix Hamming metric. We present our construction of locally updatable and locally decodable
codes for the Prefix Hamming metric in Section 3. We consider the computational setting in Section 4 and
construct locally updatable and locally decodable-detectable codes in the computational setting. Finally,
we give our construction of a dynamic proof of retrievability scheme in Section 5.

2 Preliminaries

Notation. Let k denote the length of the message. LetM denote a metric space with distance function
dis(, ). Let the set of all codewords corresponding to a message m be denoted by Cm – we will define this

1Formally, this guarantee is provided by requiring the existence of an extractor algorithm, that given black-box rewinding
access to any malicious server that passes the audit with non-negligible probability, will extract all of the client’s data, except
with negligible probability.

2The work of Cash et al. [3] considered the complexity without explicitly including the (storage as well as verification)
complexity of the MAC; if one did this, then the parameters obtained will all be larger by a factor of O(λ).

3Moreover, these parameters include the cost for storage and verification of the MACs.
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set shortly. Let n denote the length of all codewords. m(i) denotes the ith bit of message m for i ∈ [k],
where [k] denotes the set of integers {1, 2, · · · , k}.

2.1 Codes with Locality

Locally decodable codes. We first recall the notion of locally decodable codes. Informally, locally
decodable codes allow the decoding of any bit of the message by only reading a few (random) bits of the
codeword. Formally:

Definition 1 (Locally decodable codes). A binary code C : {0, 1}k → {0, 1}n is (k, n, rk, δ, ε)-locally
decodable if there exists a randomized decoding algorithm D such that

1. ∀m ∈ {0, 1}k, ∀i ∈ [k], ∀cm ∈ Cm, and for all ĉm ∈ {0, 1}n such that dis(cm, ĉm) ≤ δn:

Pr[Dĉm(i) = m(i)] ≥ 1− ε,

where the probability is taken over the random coin tosses of the algorithm D.

2. D makes at most rk queries to ĉm.

Locally updatable codes. We now define the notion of locally updatable and locally decodable codes.
A basic property that updatable codes must have is that one can convert a codeword of message m into
a codeword of message m′ (where m′ and m differ possibly only at the ith position), by only changing
a few bits of the codeword of m. However, we will obtain codes that have a stronger property; namely,
will ensure that we can convert any string that decodes to m into a string that decodes to m′. That is,
let m and m′ be two k-bit messages that (possibly) differ only in the ith position, where m′(i) = bi. For
some appropriate metric space that defines a measure of closeness, given a string ĉm that is “close” to a
codeword for message m, our update algorithm (that writes bit bi at position i) must convert ĉm into a
new string ĉm′ that is now “close” to a codeword for message m′. Furthermore, the update algorithm must
query and change only a few bits of ĉm. Additionally, our code should also be locally decodable. We now
present the formal definition.

Definition 2 (Locally updatable and locally decodable codes (LULDC)). A binary code C : {0, 1}k →
{0, 1}n is (k, n, w, r, δ, ε)-locally updatable and locally decodable if there exist randomized algorithms U
and D such that the following conditions are satisfied:

1. Local Updatability:

(a) Let m0 ∈ {0, 1}k and let cm0 = ELDC(m0). Let mt be a message obtained by any (potentially
empty) sequence of updates. Then ∀m0 ∈ {0, 1}k,∀cm0 ∈ Cm0 ,∀t,∀mt, ∀it+1 ∈ [k],∀bt+1 ∈
{0, 1}, for all ĉmt ∈ {0, 1}n such that dis(ĉmt , cmt) ≤ δn,

• The actions of U ĉmt (it+1, bt+1), change ĉmt to u(ĉmt , it+1, bt+1) ∈ {0, 1}n, where
dis(u(ĉmt , it+1, bt+1, cmt+1) ≤ δn for some cmt+1 ∈ Cmt+1, where mt+1 and mt are identical
except (possibly) at the itht+1 position, where mt+1(it+1) = bt+1.

(b) The total number of queries and changes that U makes to the bits of ĉm is at most w.

2. Local Decodabilty:

(a) Let mt denote the latest message. ∀mt ∈ {0, 1}k,∀i ∈ [k], ∀cmt ∈ Cmt, and for all ĉmt ∈ {0, 1}n
such that dis(cmt , ĉmt) ≤ δn:

Pr[Dĉmt (i) = mt(i)] ≥ 1− ε,

where the probability is taken over the random coin tosses of the algorithm D.
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(b) D makes at most r queries to ĉmt.

We denote mibi to be a message that is exactly the same as m except possibly at the ith position (where

it is bi). Note that mibi maybe equal to m itself. In order to define the correctness of the update algorithm,
we shall now define the set of codewords Cm for every message m.

Definition 3 (The set Cm). For a message m, if there exists a message m̄, codeword cm̄ = E(m̄) (possibly

m̄ = m and cm̄ = cm) and a (possibly empty) set of indices {i1, · · · , it} such that m = m̄i1b1 ···itbt and
cm = u(....u(u(cm̄, i1, b1), i2, b2), ...., it, bt), then cm is in the set Cm.

2.2 The Prefix Hamming Metric

It is clear that one cannot hope to construct locally updatable locally decodable error correcting codes
for metrics where an adversary can corrupt an arbitrary (bounded) number of bits of the codeword. For
example, if we updated a codeword from cm to c′m with a locality of w, then simply by corrupting w of
the bits of c′m, an adversary can ensure that the decoding algorithm does not output the correct message
(in particular, the decode algorithm would output m instead of m′). If we truly want update locality, then
indeed w must be << δn and hence the adversary could indeed corrupt the bits of c′m in this manner. In
light of this, we turn to a new, yet meaningful metric, for which we can guarantee that even if an adversary
corrupts a bounded number of bits of the codeword, our decode algorithm still functions correctly. Our
metric is similar in spririt to the notion of tree codes introduced by Schulman [23, 24]. At a high level,
bits of the codeoword “age” and the adversary can corrupt a fraction of the bits as a function of their age.
Our metric relies crucially on the order in which bits were written or updated during the creation of a
codeword. We first define the “age-ordering” of a codeword.

Definition 4 (Age-ordering of a codeword). Let c ∈ {0, 1}n. Let w1 denote the index/position of the
most recent bit of the codeword that was either written or updated. Let w2 denote the unique index of the
next most recent bit that was written/updated and so on, with wn denoting the index of the earliest bit
written (in comparison with the rest of the bits of the codeword). We call w1, · · · ,wn the age-ordering of
c. c(wi) denotes the bit value of the codeword at index wi. For all 1 ≤ t ≤ n, let c[1, t] denote the bits
c(w1), · · · , c(wt).

We are now ready to define how the adversary in our model can corrupt bits of the codeword. In
particular, we define our metric space and its distance function.

Definition 5 (Prefix Hamming Metric). Let c ∈ {0, 1}n. Let w1, · · · ,wn denote the age-ordering of c. Let
c′ ∈ {0, 1}n and for 1 ≤ t ≤ n, let c′[1, t] denote the bits c′(w1), · · · , c′(wt). We say that the Prefix Hamming
distance between c and c′, denoted by Prefix(c, c′) is ≤ δn if for all 1 ≤ t ≤ n, Hamm(c[1, t], c′[1, t]) ≤ δt,
where Hamm(x, y) denotes the Hamming Distance between any two strings x and y of equal length.

3 LULDCs for the Prefix Hamming Metric

3.1 Our results

In this section, we show how to construct locally updatable locally decodable error correcting codes
(LULDCs) that are resilient to a constant fraction of adversarial errors for the Prefix Hamming metric
that we defined in Section 2.2. Formally, we show:

Theorem 1. Let τ = log k− log(log k+1)−1. Let CLDC be a family of (ki, ni, ri, ε, δ)−locally decodable code
for Hamming distance with algorithms (ELDC,DLDC), where ki = 2i(log k+1) for all 0 ≤ i ≤ τ . Additionaly,
let CLDC contain a (k∗, n∗, r∗, ε, δ)−locally decodable code for Hamming distance, where k∗ = k. Let ρi = ki

ni
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for all i and let ρ∗ = k∗

n∗ . Then there exists a (k, n, w, r, ε, δ2) − LULDC code C = (E ,D,U) for the Prefix
Hamming metric achieving the following parameters:

• Length of the code (n): n = n∗ +
τ∑
i=0

ni.

• Update locality (w): w = (log k + 1)
τ∑
i=0

1
ρi

+ log k+1
ρ∗ , in the worst case.

• Read locality (r): r = 8(1−ε)
(1−2ε)2T log T

ε + r∗, where T = (log k + 1)

(
r0 +

∑
1≤j≤τ

jrj

)
, in the worst

case.

As a sample corollary to Theorem 1, using the LDCs from the works of [15, 9, 12] we obtain:

Corollary 1. For every ε, α > 0, there exists a (k, n, w, r, ε, δ)− LULDC code C = (E ,D,U) for the Prefix
Hamming metric achieving the following parameters, for some constant 0 < δ < 1

4 :

• Length of the code (n): n = 2k
1−α .

• Update locality (w): w = O(log2 k).

• Read locality (r): r = O(kε
′
), for some constant ε′, in the worst case.

Large alphabet codes. We remark that for codes over larger alphabet Σ, with |Σ| ≥ c log k for some
constant c, we can modify our code to obtain a better update locality of O(log k) (other parameters
remaining the same).

3.2 Code description

We will now construct the codes that will prove Theorem 1. Our codeword will have a structure similar to
that of the hierarchical data-structure used by Ostrovsky [18, 19] in the construction of oblivious RAMs.
Let τ = log k − log(log k + 1)− 1. Each codeword of C will consist of τ + 1 buffers, buff0, . . . , buffτ and a
special buffer buff∗. We will ensure that as updates take place, at any point of time, buffi will be either
empty or full (for all i > 0). A full buffer, buffi, will contain an encoding of a set µi of 2i elements. In
particular, µi = [(a1

i , v
1
i ), . . . , (a

2i
i , v

2i
i )] where aji is an address (between 0 and k − 1) and vji is the value

corresponding to it. buffi (when non-empty) will store ψi = ELDC(µi). The special buffer buff∗ will contain
an encoding of the bits of the entire message in order, without address values; in particular, buff∗ stores
ψ∗ = ELDC(m).

Encode algorithm. Our encoding algorithm works as follows:

Algorithm E(m):

1. Creates the τ + 1 empty buffers (buff0, . . . , buffτ ).

2. Let µ∗ = {m(1), · · · ,m(k)}, where m(i) denotes the ith bit of the message. It computes ψ∗ =
ELDC(µ∗) and stores it in buff∗.
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Local update algorithm. Our update algorithm, updates a string ĉm (such that Prefix(ĉm, cm) ≤ δn,
for some cm ∈ Cm) into a string ĉ′m, when setting the ith bit of m to bi.

Algorithm U ĉm(i, bi):

1. If the first buffer is empty, computes ELDC(i, bi) and stores it in buff0.

2. If the first buffer is non-empty, it finds the first empty buffer. Let this be buffj . It decodes all the
buffers above it to get µ0 to µj−1

4. Recall that each µh is a set of (a, v) pairs where a denotes the
address (of length log k) and v denotes a value (∈ {0, 1}). It merges all these pairs of values as well
the pair (i, bi) in a sorted manner (where the sorting is done on address) and stores it in µj . Note
that there are 2j elements and therefore µj is now a full buffer.

Handling Repetitions: While merging elements from multiple buffers, we might encounter repetition
of addresses. Instead of removing repetitions, we simply ensure that all values stored in the buffers
until j − 1 store only the “latest value” corresponding to the repeated address. (The latest value is
easy to determine – it is the first value corresponding to the buffer that you encounter when reading
the buffers in a top-down manner. Of course, for the address being inserted, namely i, the latest
value will be bi.)

3. The update algorithm computes ψj = ELDC(µj) and stores it in buffj .

4. The buffers from µj−1 . . . µ0, in that order, are now set to empty by writing special symbols into it.
Looking ahead, the order in which this done is important as this ensures that buffh always has bits
that are “younger” than the bits in buffh+1 for all h (when considering the age-ordering of the bits).

5. If none of the buffers are empty, namely, all buffers buff0, · · · , buffτ are full, then the update algorithm
simply re-computes a new encoding of the message using the LDC encode algorithm and stores it in
buff∗. In other words, the algorithm decodes all the buffers to obtain the latest value of each bit,
concatenates these bits together to form µ∗ = {m(1), · · · ,m(k)} and encodes these bits to compute
ψ∗ = ELDC(µ∗). Once again, the buffers from buffτ to buff0 are set to empty in that order by writing
special symbols into it.

Local decode algorithm. Recall that our buffers satisfy the following conditions:

• The buffers are always sorted (based on the address a).

• If the address a “appears” in the same buffer multiple times, then all values corresponding to this
address are the same. (This is guaranteed by the way we handle repetitions during our merging
procedure.)

• Finally, across multiple buffers, the most recent value corresponding to an address appears in the
higher buffer (i.e. a lower buffer value).

Algorithm Dĉm(i):

1. The decode algorithm starts with the top-most buffer (buff0) and proceeds downwards until it finds
the address i.

4Here, these buffers need not be decoded using the local decoding algorithm and one can obtain perfect correctness by
simply running the standard decoding algorithm for the error correcting code.
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2. To search a buffer buffj for the element i, it performs a binary search on elements stored in that
buffer. Because buffj contains an LDC encoding, we additionally need to use DLDC() algorithm to
access these j elements. Since DLDC() might fail with ε probability to decode one coordinate of
the underlying message, we need to repeat DLDC() multiple (i.e. λ) times to amplify the success
probability (where λ is a carefully chosen parameter).

3. If element i is not found in any of the buffers buff0 through buffτ , then the algorithm simply (locally)
decodes the ith element from buff∗ (which contains an LDC encoding of the message).

3.3 Proof of Theorem 1

We shall now prove Theorem 1; namely, we show that the construction described above in Section 3.2 is
a locally updatable, locally encodable binary error correcting code (for the Prefix Hamming metric) with
the parameters listed in Theorem 1. Instead of directly proving Theorem 1, we will instead show that the
construction is a LULDC for a metric that we call the Buffered-Hamming metric. From this, the proof of
Theorem 1 directly follows. We shall now define the Buffered-Hamming metric and its associated distance
function.

Buffered-Hamming Distance. Let a codeword cm ∈ {0, 1}n comprise of buffers buff = buff0, . . . , buffq
of lengths n0, . . . , nq respectively. Let c′ ∈ {0, 1}n be another code with buffers buff ′ = buff ′0, . . . , buff ′q.
Then we say that Buffered-Hamming Distance, BHdis(cm, c

′) ≤ δn if ∀i Hamm(buffi, buff ′i) ≤ δni.

Lemma 1. Let τ = log k− log(log k+ 1)− 1. Let CLDC be a family of (ki, ni, ri, ε, δ)−locally decodable code
for Hamming distance with algorithms (ELDC,DLDC), where ki = 2i(log k+1) for all 0 ≤ i ≤ τ . Additionaly,
let CLDC contain a (k∗, n∗, r∗, ε, δ)−locally decodable code for Hamming distance, where k∗ = k. Let ρi = ki

ni

for all i and let ρ∗ = k∗

n∗ . Then the construction described above in Section 3.2 is a (k, n, w, r, ε, δ)−LULDC
code C = (E ,D,U) for the Buffered-Hamming metric achieving the following parameters:

• Length of the code (n): n = n∗ +
τ∑
i=0

ni.

• Update locality (w): w = (log k + 1)
τ∑
i=0

1
ρi

+ log k+1
ρ∗ , in the worst case.

• Read locality (r): r = 8(1−ε)
(1−2ε)2T log T

ε + r∗, where T = (log k + 1)

(
r0 +

∑
1≤j≤τ

jrj

)
, in the worst

case.

Proof. Length of the code. Recall that we have buffers in levels 0, 1, . . . , τ . Each buffer encodes a message
µj of length kj = 2j(log k + 1); the encoding is denoted ψj and is of length nj . Buffer buff∗ contains an

LDC encoding of a message of length k. It is then easy to see that the length of the code n = n∗ +
τ∑
i=0

ni.

Read locality and Decode Correctness. We shall now analyze the read locality and the decodability
of our code. Let ĉm be the given (corrupted) codeword and let ĉm be such that BHdis(ĉm, cm) ≤ δn, where
cm ∈ Cm for the most “recent”m ∈ {0, 1}k (obtained after an encoding of a message and possible subsequent
updates). We now compute the read locality of our local decoding algorithm and also prove that for all
i ∈ [k], the decoding algorithm will output m(i) with probability ≥ 1− ε.

Let µ = {µ0, . . . , µτ} and let ψ = {ψ0, . . . , ψτ}, where ψi = ELDC(µi). Let CjLDC denote the locally
decodable code used to encode µj . We use µx(y) to denote the yth bit of µx. Recall that in order to read
an index i of the message m = m0, . . . ,mk, the algorithm Dψ(i) does a binary-search on the buffers in a

9



top-down manner to see if there is a value corresponding to address i. The worst case locality occurs when
mi has never been updated. In this case, the binary search needs to be done on every buffer and will then
conclude by performing a (local) deocoding for the ith bit in buff∗ which contains ψ∗ = ELDC(m).

We first calculate the number of bits of µj (for j ≥ 1), one would need to read, if we were doing the
binary search directly over µj . There are 2j elements i.e.,(a, v) pairs, in level j. So the binary search would
need to look at j elements (in the worst case). Each element has length log k + 1. The total number of
bits of µj we access if we did a binary search over µj would be j(log k + 1) (for j ≥ 1). Dψ(i) learns these

bits by making calls to DψjLDC which has locality rj . Therefore the number of bits of ψj , read via calls to

DψjLDC, is at most j(log k+ 1)rj (for 1 ≤ j ≤ τ) and (log k+ 1)rj (for j = 0). (Recall, that in buff∗, a binary
search is not performed and the decode algorithm simply decodes the (single) ith bit of the message via
LDC decode calls to ψ∗.)

Define a set Read and add (x, y) to the set if µx(y) was accessed; also let T = |Read|. Then

T = (log k + 1)

r0 +
∑

1≤j≤τ
jrj

 and (1)

the total decode locality r = Tλ+ r∗ (2)

Equation 2 follows from that fact that in order to read a bit of µj correctly, we must amplify the success

probability of DψjLDC, by taking the majority of λ executions (Note, that just as in standard LDCs, even
though our LULDC allows a decoding error of ε, we cannot afford to have an error of ε while reading every
bit of our binary search in every buffer, as this would lead to an overall worse error probabaility). If the
element is not found in the buffers buff0 through buffτ , then we only need to read 1 bit of the underlying
message via a single LDC decoding call to ψ∗ and hence we pay an additional r∗ in our read locality.

In order to determine r, all that is left, is for us to determine λ. Let the variable #Succ(x, y) denote the

number of calls such that Dψ
′
x

LDC(y) = µ(x, y). Let SuccRead(x, y) denote that event that #Succ(x, y) > λ
2 .

First, note that since ĉm is such that BHdis(ĉm, cm) ≤ δn, it follows that, Hamm(ψ′j , ψj) ≤ δ|ψj | for all

0 ≤ j ≤ τ and Hamm(ψ∗
′
, ψ∗) ≤ δ|ψ∗|. Now, since C

ψ′j
LDC has error-rate ε, E[#Succ(x, y)] = λ(1 − ε). By

the Chernoff bound5, Pr[#Succ(x, y) ≤ λ
2 ] ≤ p = e

−λ(1−2ε)2

8(1−ε) .
In other words,

Pr[SuccRead(x, y) = 0] ≤ p = e
−λ(1−2ε)2

8(1−ε) (3)

i.e.,
∑

(x,y)∈Read

Pr[SuccRead(x, y) = 0] ≤ Tp. (4)

Our goal is to ensure that

Pr

 ∧
(∀(x,y)∈Read)

SuccRead(x, y) = 1

 (≥ 1− Tp) ≥ 1− ε.

In other words, we need to set λ such that Tp ≤ ε. Substituting for p = e
−λ(1−2ε)2

8(1−ε) , we get that

λ ≥ 8(1− ε)
(1− 2ε)2

log

(
T

ε

)
.

5Recall that for a variable X with expectation E(X), the Chernoff bound states that for any t > 0, Pr[X ≤ (1− t)E(X)] ≤

e−
t2 E(X)

2 . In this case, X = #Succ(x, y);E(X) = λ(1− ε); t = 1−2ε
2−2ε

10



By setting λ = 8(1−ε)
(1−2ε)2 log

(
T
ε

)
and substituting in Equation 2, we get that the decode locality,

r =
8(1− ε)
(1− 2ε)2

T log
T

ε
+ r∗.

This proves the decode correctness as well as the read locality of our decoding algorithm.

Update Locality and Correctness. First, we count the number of coordinates accessed in order to
rewrite one bit of the message mi. This includes the total number of coordinates read and written.

It is easy to see that in algorithm UCm(x, bx), buffer buffj (for 0 ≤ j ≤ τ) is rewritten every 2j steps.
Buffer buff∗ is re-written every 2τ+1 steps. In 2j updates (when j < τ + 1), therefore, the total number of
bits re-written is

= 2j
|µ0|
ρ0

+ 2j−1 |µ1|
ρ1

+ . . .+ 20 |µj |
ρj

= 2j |µ0|
∑

0≤i≤j

1

ρi
(since µi = 2µi−1,∀i)

When j ≥ τ + 1, buff∗ is re-written and hence in this case, the total number of bits re-written is

= 2j
|µ0|
ρ0

+ 2j−1 |µ1|
ρ1

+ . . .+ 2j−(τ+1) |µτ |
ρτ

+ 2j−(τ+1) |k∗|
ρ∗

= 2j |µ0|
∑

0≤i≤τ

1

ρi
+ 2j−(τ+1) |k∗|

ρ∗

The amortized update locality w per update is

|µ0|
∑

0≤i≤τ

1

ρi
+
|k∗|

2τ+1ρ∗
= (log k + 1)

∑
0≤i≤τ

1

ρi
+

log k + 1

ρ∗

Note that, similar to the constructions of oblivious RAMs, one can convert the amortized update
locality into a worst-case guarantee on the write locality, by distributing the work over the many write

operations, giving us a worst case write locality of w = (log k + 1)
τ∑
i=0

1
ρi

+ log k+1
ρ∗ .

To show update correctness, we must now argue, that if we begin the update algorithm with a corrupted
codeword ĉmt , such that BHdis(ĉmt , cmt) ≤ δn and update the message mt to mt+1 (where mt and mt+1

differ (possibly) only at the itht position, where mt+1(it) = bt+1), then we modify ĉmt to ĉmt+1 where
BHdis(ĉmt+1 , cmt+1) ≤ δn for some cmt+1 that is a codeword of mt+1. To see this, observe that, the update
algorithm decodes all buffers buff0, · · · , buffj for some 0 ≤ j ≤ τ and possibly re-encodes these buffers
into buffj+1. Additionally, the update algorithm sets buffers buffj , · · · , buff0 to empty. In certain cases,
the update algorithm might re-write buffer buff∗. Note that if buffj+1 was written/re-encoded, then all
buffers buffj through buff0 were also re-encoded. Similarly, if buff∗ was re-encoded, then all buffers buffτ
through buff0 were also re-encoded. Now, since BHdis(ĉmt , cmt) ≤ δn, it follows that all the buffers that
were decoded by the update algorithm, decoded correctly and these buffers were then re-encoded without
any errors. Hence, for all these buffers 0 ≤ h ≤ j + 1 in ĉmt+1 , Hamm(ψ′h, ψh) ≤ δ|ψh|. For buffers that
were not touched, since no change was made to these buffers, we still have that Hamm(ψ′h, ψh) ≤ δ|ψh| (for
h > j + 1 and for ψ∗). From these, it follows that BHdis(ĉmt+1 , cmt+1) ≤ δn.

This proves the update correctness as well as the update locality of our update algorithm. This
completes the proof of Lemma 1.
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Lemma 2. Let C = (E ,D,U) be a (k, n, w, r, ε, δ)− LULDC code for the Buffered-Hamming metric. Then
C is a (k, n, w, r, ε, δ2)− LULDC code for the Prefix Hamming metric.

Proof. Note that in our codeword construction, during a write/update operation, we never change the bits
of the codeword in a buffer buffi but not change the bits of the codeword in a buffer buffj for any j < i.
Furthermore, even when we change the bits of the codeword in a buffer buffi, we then change the bits of
the codeword in buffers buffi−1, · · · , buff0. This means that if we consider the age-ordering of cm, denoted
by w1, · · · ,wn, then the indices corresponding to a buffer buffj will always precede indices corresponding
to a buffer buffi, for any i > j. Now, since every buffer buffi+1 is twice the size of buffer buffi, it follows
that if two codewords cm and ĉm are such that Prefix(cm, ĉm) ≤ δn

2 , then BHdis(cm, ĉm) ≤ δn, which gives
us our result.

The proof of Theorem 1 now follows by simply combining Lemmas 1 and 2.

4 Computational setting

4.1 Codes for computationally bounded adversaries

In the previous section, we showed how to construct LDC codes for the prefix-condition metric. Ideally
we would like to consider the case of adversarial errors, i.e. a setting where an adversary can corrupt
some constant fraction of arbitrary bits of the entire codeword. It is easy to see that one cannot possibly
construct locally updatable locally decodable codes. Indeed, if the adversary can corrupt a δ fraction of the
bits of the codeword, and the code has update locality w (≤ δn), then an adversary could simply corrupt
just the bits that were changed when updating a codeword and the codeword will decode to the incorrect
message.

Since it is impossible to construct codes for the case of arbitrary adversarial errors, one could consider
a setting where the decode algorithm will either decode to the correct message or detect if it is not able to
do so; in other words, the decode algorithm will never output an incorrect message. Here too, it is easy to
see that, unfortunately, one cannot have error correcting codes. However, we show that by moving to the
computationally-bounded adversarial setting, and by allowing the encoder/decoder to maintain a secret
state S, one can construct error correcting codes with optimal rate that are locally updatable.

Our code will provide the following guarantees:

• The (local) decoding algorithm will never output an incorrect bit of the message.

• Additionally, if the Prefix Hamming condition is satisfied, then every bit of the message will be locally
decodable.

These guarantees allow us to achieve a tradeoff between detecting arbitrary adversarial errors and
decoding a restricted class of errors. We will provide such a guarantee even when the adversary gets to
observe the history of updates/writes made to the codeword; we will denote the history of updates/writes
made by hist6.

We now define such locally updatable locally decodable-detectable error correcting codes (LULDDC).
As before, we provide our definition for the case of binary codes, but this can be easily generalized to codes
for larger alphabet Σ. We let λ be the security parameter. neg(λ) denotes a function that is negligible in
the security parameter.

6While this is the same guarantee that we provide even in the information-theoretic setting, we make this explicit here as
we wish to endow the computationally bounded adversary with as much power as possible.
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Definition 6 (Computational Prefix Hamming Metric). Let E ∈ {0, 1}r7. Let c ∈ En. Let w1, · · · ,wn
denote the age-ordering of c. Let c′ ∈ En and for 1 ≤ t ≤ n, let c′[1, t] denote the elements c′(w1), · · · , c′(wt).
We say that the Computational Prefix Hamming distance between c and c′, denoted by Prefixcomp(c, c′), is
≤ δn if for all 1 ≤ t ≤ n, Hamm(c[1, t], c′[1, t]) ≤ δt, where Hamm(x, y) denotes the Hamming Distance
between any elements x and y.

Definition 7 (Locally updatable and locally decodable-detectable codes for adversarial errors (LULDDC)).
A binary code C : {0, 1}k → {0, 1}n is (k, n, w, r, λ, S)-locally updatable and locally decodable/detectable
if there exist randomized algorithms U and D such that the following conditions are satisfied:

1. Local Updatability:

(a) Let the state be initialized to S0. Let m0 ∈ {0, 1}k and let cm0 = E(m0,S0). Let mt be a
message obtained by any (potentially empty) sequence of updates. (Note that the state S is
updated everytime an update is made.) Let hist contain the entire history of updates made on
potentially corrupted codewords. Let ĉmt be the final codeword obtained.

Then ∀m0 ∈ {0, 1}k, ∀t,∀mt, ∀i ∈ [k],∀b ∈ {0, 1}, for all probabilistic polynomial time (PPT)
algorithms A, for all hist and for all ĉmt ∈ {0, 1}n output by A(mt, i, b, hist),the following con-
ditions hold with all but a negligible probability:

• If ∀cmt ∈ Cmt, Prefixcomp(ĉmt , cmt) > δn, then U ĉmt (i, b,St) outputs ⊥.

• If ∃cmt ∈ Cmt such that Prefixcomp(ĉmt , cmt) ≤ δn, then the actions of U ĉmt (i, b,St), change
ĉmt to u(ĉmt , i, b, St) ∈ {0, 1}n, where dis(u(ĉmt , i, b, St), cmt+1) ≤ δn for some cmt+1 ∈ Cmt+1,
where mt+1 and mt are identical except (possibly) at the ith position, where mt+1(i) = b.

(b) The total number of queries and changes that U makes to the bits of ĉmt is at most w.

2. Local Decodabilty-Detectability:

(a) Let mt ∈ {0, 1}k denote the latest message, as determined by hist. Then ∀mt ∈ {0, 1}k, ∀hist,∀i ∈
[k], for all probabilistic polynomial time (PPT) algorithms A and for all ĉmt ∈ {0, 1}n output by
A(mt, i, hist):

• If ∃cmt ∈ Cmt such that Prefixcomp(ĉmt , cmt) ≤ δn, then

Pr[Dĉm(i,S) = m(i)] = 1− neg(λ),

where the probability is taken over the random coin tosses of the algorithm D.

• If ∀cmt ∈ Cmt ,Prefixcomp(ĉm, cm) > δn, then

Pr[Dĉm(i,S) = m(i) or ⊥] = 1− neg(λ),

where the probability is taken over the random coin tosses of the algorithm D.

(b) D makes at most r queries to ĉmt.

4.2 Our Results

In this section, we present a construction of a LULDDC in the computational setting. In particular, we
show:

Theorem 2. There exists a (k, n, w, r, λ, S) locally updatable and locally decodable-detectable error correct-
ing code C = (E ,D,U) achieving the following parameters, for some constant 0 < δ < 1

4 :

7We will think of E as a bit bi followed by its constant sized authentication tag σi = MAC(bi).
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• Length of the code (n): n = O(k).

• Update locality (w): w = O(λ log k).

• Read locality (r): r = O(λ2 log k).

Similar to the information-theoretic consturction, we use a heirarchical data structure to store our
codewords. In addition, we use cuckoo hashing and private key locally decodable codes, both of which we
review below.

4.3 Building blocks

Cuckoo Hashing. In this technique, introduced by Pagh and Rodler [21], there are two hash functions
(h1, h2) with associated hash tables (T1, T2). An element x is located at either h1(x) (in table T1) or at h2(x)
(in T2). To insert an element x, it is inserted in its first location (h1(x)), kicking out the element previously
there. This displaced element is moved into its other location, possibly displacing another element. This
process continues until no element is kicked out or it runs too long (i.e., more than c log n steps for an
appropriate constant c). In the latter case (which is referred to as a failure), new hash functions are chosen
and the entire table is rehashed. Informally, the lemma from [21] states that if m = (1 + ε)n (where m is
the size of the hash tables), the probability that the insertion of a new key causes failure (after n items
have been inserted) is Θ( 1

n2 ).

Private-key Locally Decodable Codes. Locally decodable codes in the computational setting were
introduced in the work of Ostrovsky, Pandey, and Sahai [20] who constructed an encryption scheme where
every bit of the message could be decrypted “locally” even when a fraction of the bits of the ciphertext
were corrupted. In the public-key setting, Hemenway and Ostrovsky [10] constructed the first public key
locally decodable codes and the best known public key locally decodable codes were given in the work of
Hemenway et al. [11]. Of course, such codes are also private key locally decodable codes and further more
these codes can be constructed from any semantically secure encryption scheme (namely from one-way
functions in the private key setting). More formally, the theorem in [11] is:

Theorem 3 ([11] (restated)). Assume the existence of a semantically secure encryption scheme. Then,
there exists a (k, n, r, δ, ε)-locally decodable error code with n = O(k), r = O(λ), δ = O(1), ε = neg(λ),
where neg is a function that is negligible in the security parameter λ. Furthermore, the size of the secret
key of this code is O(λ).

4.4 Overview of the construction

We start by recalling the construction of an information-theoretic LULDC code from Section 3.2. We had
τ buffers. Each buffj encoded 2j (address, value) pairs, stored in a sorted manner. We performed a binary
search to search for a particular address, a within buffj . In the secret key setting, we optimize this by
using cuckoo hash functions. In particular, an element a, v is inserted at location h`,1(a) or h`,2(a). To
search for an address a in a particular buffer buff`, only need to read locations h`,1(a) and h`,2(a). Another
difference from the information theoretic construction, is that we now use message authentication codes
to detect a scenario where the codeword has too many errors. This guarantees that our computational
LULDDC code never decodes to an incorrect message.

Remark 1. Cuckoo hash functions were first used in conjunction with the hierarchical data structure [18,
19] by Pinkas and Reinman [22] to obtain an ORAM construction. While this construction was shown to
be an insecure ORAM [8, 16], the underlying data structure can still be used securely to obtain a LULDDC
code.
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4.5 Code Description

We build our code (denoted Ccomp) in the secret key setting. The secret state S consists of a counter ctr,
which is incremented everytime an update takes place, and a key to a PRF. S is used to generate keys the
various keys used by the code. Similar to the information-theoretic case, each codeword c of Ccomp consists

of τ + 1 buffers, buff0, . . . , buffτ , where τ = log
(

k
log k

)
. In addition, there is a special buffer, buff∗, which

has a structure different from the other buffers.
µi contains (1 + γ)2i cells (γ > 1) – each being either a “non-empty” cell containing a (address, value)-

pair or an “empty” cell containing a special symbol π. There are at most 2i non-empty elements (in µi)
and are stored using cuckoo hash functions (hi,1, hi,2). The remaining locations of µi are filled with empty
elements. We let ψi = ELDC(µi). For each bit j of ψi, let σi(j) = MAC(ψi(j)). Set ηi = {(ψi(j)||σi(j))}.
buffi contains ηi. µ

∗ contains all the bits of m in order (without the address values). ψ∗ = ELDC(µ∗) and
η∗ = {(ψ∗(j)||σ∗(j))}. The codeword is cm = [buff0, . . . , buffτ , buff∗].

Encode algorithm. Our encoding algorithm works as follows:

Algorithm E(m):

1. Let µ∗ = m(1), · · · ,m(k), where m(i) denotes the ith bit of the message. Let ψ∗ = ELDC(µ∗) and
η∗ = {(ψ∗(j)||σ∗(j))}, where ψ∗(j) is the jth bit of ψ∗ and σ∗(j) = MAC(ψ∗(j)).

2. Creates the τ+1 empty buffers (buff0, . . . , buffτ ) i.e., the underlying µi contains only special symbols.

Local Update Algorithm. The update algorithm takes as input a (potentially corrupted) codeword
ĉ, an index i, a bit bi, and the latest state S. Let the latest value of the message, as determined by
hist, be m. Then if there exists some codeword cm such that c ∈ Cm and Prefixcomp(ĉ, c) ≤ δn, then the
update algorithm outputs ĉ′ where Prefixcomp(ĉ′, c′) ≤ δn such that c′ ∈ Cm′ and m′ and m are identical
except possibly at the ith position, where m′(i) = bi. If there doesn’t exist a c such that c ∈ Cm and
Prefixcomp(ĉ, c) ≤ δn, then U(ĉ, i, bi) outputs ⊥.

Recall that each codeword has multiple buffers of the form ψi(j)||σi(j) where ψi(j) is one bit of the
codeword and σi(j) is its constant sized message authentication tag. We refer to each of these ψi(j)||σi(j)
as an element of buffi.

Algorithm U ĉm(i, b,S):

1. Randomly select λ elements (each of the form ψ(j), σ(j)) from each of the buffers.

2. For each of the elements, verify that σ(j) = MAC(ψ(j)). (Note that this verification is done with
MAC keys generated appropriately from S.)

3. If, for even one level, less than αλ of the tags, then output 0. Else go to the next step.

4. Update S to S′ so that it now contains an incremented counter.

5. If the first buffer is empty, compute ψ = ELDC(i||b); σ = MAC(ψ) and insert η = (ψ||σ) into the first
buffer.

6. If the first buffer is non-empty, find the first empty buffer – this can be determined using ctr, but
for now, we will just assume that we learn this by decoding buffers in a top-down manner and then
scanning them to see if they contain any non-empty element. Let the first empty buffer be at level j.
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7. We store (i, bi) as well as all the non-empty elements from µ0 to µj−1 into µj . To do this, we decode
ψ0 · · ·ψj−1, insert the elements into µj and then compute ELDC(µj) to obtain ψj . We compute ηj(`) =
{ψj(`), σj(`)}. (The authentication tags σj(`) are recomputed with the latest key corresponding to
level j, which in turn is computed from S′).

8. Starting from buffj−1 up to buff0, fill each of the buffers with empty elements in order. In other
words, set the underlying µ`s for each of the buffers to contain only special symbols.

Handling Repetitions: Note that if some address a appears in multiple levels, the top-most of the
levels has the most recent value corresponding to address a and therefore that is the value stored.
We store only value corresponding to each address a. To ensure that we only store the latest values,
we insert elements into µj starting with the most recent (namely (i, b)) and proceeding in a top-down
manner. We insert an element (a, v, σ) into location hj,1(a), only if neither hj,1(a) nor hj,2(a) already
contain an element with address a. (Collisions due to cuckoo-hashing are resolved in the standard
way as described above.)

Optimization: Since the internal state S contains storage proportional to λ, the buffers
buff0, . . . , buff log( 2λ

log k
), may be stored in the secret state itself and therefore do not need to be au-

thenticated. This will ensure that the length of all ψj(`)s (which are part of the codeword), is at
least λ. It is because of this fact that we are always authenticating and verifying messages (here by
messages, we mean the codeword ψj) of length at least λ, we are able to use constant sized tags in a
secure manner.

Local Decode Algorithm. The algorithm for reading ith bit works as follows:

Algorithm Dĉm(i,S):

1. Randomly select λ elements from each of the buffers.

2. For each of the elements, verify that σ(j) = MAC(ψ(j)). (Note that this verification is done with
appropriate MAC keys generated from S.)

3. If, for even one level, less than αλ of the tags, then output 0. Else go to the next step.

4. The decode algorithm starts with the top-most buffer (buff0) and proceeds downwards until it finds
the address i.

5. For now, assume that buffj contains µj instead of its encoding. Then to search a buffer buffj for an
index i, we read the locations hj,1(i) and hj,2(i). If either of these locations contains an entry (i, v)
then v is the output of the algorithm.

Since buffj contains {ψj(`), σj(`)}, the steps we just described are implemented via calls to the
underlying decoder DLDC. For each bit of the codeword ψj(`) read, we also authenticate its tag σj(`).

6. If we reach the last buffer, buff∗, we read the element v stored at address i in the buffer – once again,
via calls to DLDC. If the tag σ verifies, for every bit of the codeword so read, then v is the output.
Otherwise, the algorithm outputs ⊥.

4.5.1 Proof of Theorem 2

Proof. Length of the code. Recall that we have buffers in levels 0, 1, . . . , τ where τ = log
(

k
log k

)
. Each

buffer encodes a message µj of length kj = 2j(log k+1). µj is then encoded into ψj using the constant rate

16



LDC due to [11]. Each bit of ψj is then authenticated with a constant sized MAC. Therefore the length
of each buffer buffj is asymptotically bounded by the length of µj . In addition, the code has buffer buff∗.
It is easy to see that buff∗ has length O(k) – indeed, µ∗ contains just the bits of m in order without the
address values. Therefore the length of the code

n = O(k) +
∑

0≤j≤τ
O(kj) = O(k).

Local Updatability. Our update algorithm takes as input a bit b, an index i and the state S. In
addition it has oracle access to ĉmt . If mt is the latest value of the message, as determined by hist, and
if there exists a codeword cmt ,

8 such that Prefixcomp(ĉmt , cmt ≤ δk) and cmt ∈ Cmt , then the algorithm
outputs ĉmt+1 with the following properties:

1. There exists a codeword, cmt+1 such that Prefixcomp(ĉmt+1 , cmt+1) ≤ δn

2. mt+1 and mt are identical except possibly at the ith position, where mt+1(i) = b

We can show using a Chernoff bound that there exists a suitable constant α satisfying the following
properties:

1. When λ positions are randomly chosen in each buffer, each of the form (ψ(j), σ(j)), more than αλ
of them will verify in each level, if ∃cmt ∈ Cmt such that Prefixcomp(ĉmt , cmt) ≤ δn.

2. Along similar lines, less than αλ of them will verify in at least one level if ∀cmt ∈ Cmt , Prefixcomp(ĉmt , cmt) >
δn.

Therefore by randomly checking λ positions in each buffer, the update algorithm can determine whether
or not to do the update.

When an update is done, we determine the number of bits of ĉmt accessed in order to make the udpate.
It is easy to see that in algorithm U ĉm(i, b,S), buffer buffj (0 ≤ j ≤ τ) is rewritten every 2j steps. Buffer
buff∗ is re-written every 2τ+1 steps. In 2j updates (when j < τ + 1), therefore, the total number of bits
re-written is

= 2j |buff0|+ 2j−1|buff1|+ . . .+ 20|buffj |
= c0

(
2j |µ0|+ 2j−1|µ1|+ . . .+ 20|µj |

)
= c0j2

j |µ0| (since µi = 2µi−1, ∀i).

The penultimate equation follows since we use a constant rate LDC code and a constant sized MAC
tags, it follows that |buff`| = c(µ`) for some constant c0.

When j ≥ τ + 1, buff∗ is re-written and hence in this case, the total number of bits re-written is

= c0j2
j |µ0|+ c12j−(τ+1)|µ∗|

Substituting for |µ0| = log k, |µ∗| = k and τ = log( k
log k ), we get that the amortized update locality w

per update is O(log k).
In addition, at the start of the update algorith, we also verify λ elements (of the form ψ(j), σ(j)) in

each buffer. This verification accesses λ log k bits of cmt . Therefore the total locality, w, is bounded by
λ log k.

8Note that the update algorithm needs to determine if such a cmt exists, using only the state S and ĉmt . In particular, it
does without access to either hist or knowledge of mt.
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Decodability and Detectability. The decode algorithm has oracle access to a codeword ĉm and
receives as input S as well i ∈ [k]. If ĉm is close to a codeword cm where cm ∈ Cm (and m is the latest
codeword, as determined by hist), then the output of the decode algorithm should be m(i). Similar to the
case of local updatability above, we can show that by randomly verifiying λ MAC tags in each level, the
decode algorithm can check if the codeword ĉm is close to some cm ∈ Cm. If it is close, then it means
that in each level, the codeword stored in ĉm is close to the one stored in cm in that level. Therefore, the
correctness of the decode algorithm follows from the decodabality of the LDC code from [11].

The locality due to the verification is λ log k. We now measure the locality due to the rest of the decode
algorithm. To read an index i, we scan in a top-down manner and we need to read the elements of µ`
stored at each level `. If we reach the buff∗, we simply read the element corresponding to ith location of
µ∗. Since µ` and µ∗ are stored as encodings, we need to read these locations via calls the DLDC algorithms.
Recall that we need to read 2 log k + 1 bits of µ in each level and the locality of DLDC algorithm is λ for
reading one bit of the underlying message. Therefore the locality of D algorithm is O(λ log k) per buffer.
There are τ < log k buffers. Therefore the total locality r is O(λ log2 k).

5 Dynamic Proof of Retrievability

In this section, we show how to use our techniques to construct a dynamic proof of retrievability scheme.
Informally, a proof of retrievability allows a client to store data on an untrusted server and later on obtain
a short proof from the server, that indeed all of the clients data is present on the server. In other words,
the client can execute an audit protocol such that any malicious server that deletes or changes even a
single bit of the client’s data will fail to pass the audit protocol, except with negligible probability in the
security parameter. Proofs of retrievability, introduced by Juels and Kaliski [13], were initially defined
on static data building upon the closely related notion of sublinear authenticators defined by Naor and
Rothblum [17]. Several works have studied the efficiency of such scemes [25, 5, 2, 1] with the work Cash,
Küpçü, and Wichs [3] considering the notion of proof of retrievability on dynamically changing data; in
other words, they constructed a proof of retrievability scheme that allowed for efficient updates to the data.
Cash et al. showed how to convert any oblivious RAM (ORAM) protocol that satisfied a special property
(which they define to be next-read-pattern-hiding (NRPH)) to construct a dynamic proof of retrievability
(DPOR) scheme. Here, we show that we do not need an ORAM scheme with this property and the
techniques used to construct LULDDCs can be used to build a DPoR scheme.

5.1 Dynamic PoR

We now give the definition of Dynamic PoR from Cash et al. [3]. A dynamic PoR scheme comprises of four
protocols PInit,PRead,PWrite, and Audit between two stateful parties: the client C and a server S who is
untrusted. The client stores some data m with the client and wishes to perform read, write, and audit
operations on this data. More specifically, the corresponding interactive protocols are:

• PInit(1λ,Σ, k): In this protocol, the client initializes an empty data storage on the server of length k,
where each element in the data comes from an alphabet Σ. The security parameter is λ.

• PRead(i): In this protocol, the client reads the ith location of the data and outputs some value vi at
the end of the protocol.

• PWrite(i, vi): In this protocol, the client sets the ith location of the data to be value vi

• Audit(): In this protocol, the client verifies that the server is maintaining the data correctly so that
they remain retrievable. The client outputs either accept or reject.
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The (private) state of the client is implicitly assumed in all the above protocols and the client may
also output reject during any of the protocols if it detects any malicious behavior on the part of the
server. A dynamic PoR scheme must satisfy three properties: correctness, authenticity, and retrievability.
For the definitions that follow, we say that P = {op0, op1, · · · , opq} is a dynamic PoR protocol sequence

if op0 = PInit(1λ,Σ, k) and, for j > 0, opj ∈ {PRead(i),PWrite(i, vi),Audit()} for some index i ∈ [k] and
value vi ∈ Σ.

Correctness. If C and S both follow the protocol honestly, then with probability 1 over the randomness
of the client:

• For all i ∈ [k], and any opj = PRead(i), the output of the client is indeed the correct value vi; i.e.,
the client outputs whatever it would have, if it stored the data on its own memory and had read the
ith position of the data.

• Every execution of Audit() protocol results in C outputting accept.

Authenticity. Informally, this requires that the client always detects if any protocol message sent by
the server deviates from the honest behavior. That is, consider the following game AuthGameS̄(λ) between
a malicious S̄ and a challenger:

• The malicious server specifies a valid protocol sequence P = {op0, · · · , opq}.

• The challenger initializes a copy of the honest client C and an honest (deterministic) server S. It
executes P between C and S̄ while, in parallel, also passing a copy of every message from C to the
honest server S.

• During this protocol, if at any point of time, the message given by S̄ as a response to the client differs
from the response given by S and C does not output reject, then the adversary wins the game and
the game outputs 1. Otherwise, the game outputs 0.

The authenticity requirement states that for all PPT servers S̄, Pr[AuthGameS̄(λ) = 1] is negligible in
the security parameter λ.

Retrievability. Informally, retrievability states that whenever the malicious server is in a state with a
reasonable probability δ of successfully passing an audit, the server must know the entire content of the
client’s data. This is formalized via the existence of an efficient extractor E that can recover the data m
given (black-box) access to the malicious server. Formally, define the game ExtGameS̄,E(λ, p) between a
malicious server S̄, extractor E , and a challenger.

• S̄ specifies a protocol sequence P = {op0, · · · , opq}. Let m ∈ Σk be the correct value of data at the
end of executing P .

• The challenger initializes a copy of honest client C and executes P between C and S̄. Let Cfin and
S̄fin be the final states of the client and malicious server at the end of the interaction (this includes
all random coins of the malicious server). Define Succ(S̄fin) as the probability that an execution of
a subsequent Audit() protocol between S̄ and C with states S̄fin and Cfin respectively results in the
client outputting accept (this probability is only over the random coins of the client during this
execution).

• Run m′ ← E S̄fin(Cfin, k, 1
p), where E gets black-box rewinding access to S̄ in its final configuration

S̄fin.
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• If Succ(S̄fin) ≥ 1/p and m′ 6= m, then output 1, else output 0

Retrievability requires that there exists a PPT extractor E such that, for all PPT malicious servers S̄
and every p = p(λ), we have Pr[ExtGameS̄,E(λ, p) = 1] ≤ neg(λ).

5.2 Construction

We now describe our construction of a dynamic PoR scheme. We first note that although an LULDDC
is very similar to the notion of a dynamic PoR, we do not use the construction of our LULDDC directly
to obtain a dynamic PoR. The reason is that, the LULDDC does not (by itself) support an efficient audit
mechanism; on the other hand, an LULDDC satisfies an additional property that corrupted codewords
decode as long as the Prefix Hamming condition is satisfied. This leads to a slightly less efficient construc-
tion for LULDDCs. Now, we show that we can use ideas developed in the construction of LULDDCs to
obtain a dynamic PoR scheme. As is in the works of dynamic PoR [3], we work over an alphabet Σ and
all elements that are stored on the server are elements of the alphabet. Our construction of dynamic PoR
is very similar to our construction of LULDDCs described in Section 4.5.

As before, the client will store τ buffers buff0 to buffτ along with a special buffer buff∗. A difference
between LULDDCs and our dynamic PoR construction is that we will make ue of a standard error cor-
recting code (as opposed to a locally decodable error correcting code) to encode elements stored in each
buffer; however, we will use codes that are linear time encodable and decodable (in order to minimize the
computational complexity of our construction). Such codes were constructed in the work of Spielman [26].
We will denote such an error correcting code with the encoding algorithm Elin and Dlin. Another difference
is that, in addition to storing encoded messages in buff0 to buffτ and buff∗, we will store the decoded,
authenticated, message of every buffer in another set of τ + 2 buffers; call these buffers plain0 to plainτ and
plain∗. Finally, we shall use two types of message authentication codes: to MAC the elements of buffers
buff0 to buffτ and buff∗ (that store codewords), we shall use constant size MACs; however, to MAC the
elements of buffers plain0 to plainτ (that store elements of the message in the clear), we shall use MACs
with MAC length λ. We shall abuse notation and denote both these MACs by MAC (it will be clear from
context which type of MAC we use).

• PInit(1λ,Σ, k): This protocol is very similar to the Encode algorithm of our LULDDC. Namely, when
storing data m = m(1), · · · ,m(k) = µ∗ on the server, with m(i) ∈ Σ, the client computes ψ∗ =
Elin(µ∗) and η∗ = {(ψ∗(j)||σ∗(j))}, where ψ∗(j) is the jth element of ψ∗ and σ∗(j) = MAC(ψ∗(j)).
The client stores η∗ in buff∗. Additionally the client will also store every element of m along with its
MAC in plain∗9.

• PWrite(i, vi): To write element vi into position i, C does as follows:

– If the first buffer is non-empty, find the first empty buffer – this can be determined using ctr, but
for now, we will just assume that we learn this by decoding buffers in a top-down manner and
then scanning them to see if they contain any non-empty element. Let the first empty buffer be
at level j.

– Update S to S′ so that it now contains an incremented counter.

– We store (i, bi) as well as all the non-empty elements from µ0 to µj−1 into µj . To do this, we
decode ψ0 · · ·ψj−1, insert the elements into µj and then compute Elin(µj) to obtain ψj . We
compute ηj(`) = {ψj(`), σj(`)}. (The authentication tags σj(`) are recomputed with the latest
key corresponding to level j, which in turn is computed from S′).

9In order to reduce the storage complexity, every λ
|Σ| elements are grouped together and MACed so that the storage

complexity remains at O(k) and does not become O(kλ).
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– Additionally, we store the plain message µj in plainj . Note, that whenever reading an element,
we read the element along with its MAC and reject if the MAC does not verify.

– The buffers from buffj−1 . . . buff0, as well as plainj−1 . . . plain0, are now set to empty by writing
special elements into it (along with appropriate MAC values).

• PRead(i): To read the ith element of the most recent message stored on the server, the client does
the following:

– The algorithm starts with the top-most buffer (plain0) and proceeds downwards until it finds
the address i.

– Note that plainj contains µj in plaintext. To search a buffer buffj for an index i, we read the
locations hj,1(i) and hj,2(i). If either of these locations contains an entry (i, v) then v is the
output of the algorithm.

– If we reach the last buffer, plain∗, we read the element v stored at address i in the buffer. If the
tag σ does not verify, for any element read (in any of the buffers), then the algorithm outputs
reject, otherwise v is the output10.

• Audit(): The audit protocol works as follows:

– For every buffer buff0 to buffτ as well as buff∗, pick λ locations of the codeword ψj (stored in
buffj) at random and read these λ elements along with their MAC values.

– If all the MAC checks verify, then output accept, otherwise output reject.

5.3 Correctness, Authenticity, Retrievability, and Complexity

First, observe that the correctness of the PInit(1λ,Σ, k),PWrite(i, vi), and PRead(i) algorithms follow easily
from the correctness of the encode, update and decode algorithms of our LULDDC construction. To see
the correctness of Audit(), observe that if the codeword is honestly stored by the server, along with all the
MAC values, then the client will output accept after any Audit() protocol. The authenticity of the protocol
follows easily from the unforgeability of the MAC and correctness of update and decode algorithms of our
LULDDC. To see that our protocol satisfies retrievability, observe that each of the buffers buff0 to buffτ
as well as buff∗ simply store encodings of messages stored in plain0 to plainτ and plain∗. Note, that the
error correcting code (along with MACs) allow for a static proof of retrievability on each buffer. This is
because, if we check the authenticity of λ random bits of the codeword and all MACs verify, then except
with negligible probability, most of the bits of the codeword must be present on the server (and these
must be correct bits of the codeword). This will allow an extractor algorithm to retrieve the contents of
the buffer (for a formal proof of this, see [5]). Now, note that if an adversarial server were to pass the
Audit protocol with some probability, then the server must pass the individual audit for each buffer with
at least the same probability. But the audit protocol for each buffer is a static PoR and it has an extractor
algorithm. Hence, the extractor for each of these buffers together gives us an extractor algorithm for all
the buffers and hence the current message m.

First, observe that the storage on the server’s side is O(k). Next, note that the complexity of the PWrite
protocol is O(log k), similar to the complexity of the update algorithm of our LULDDC. The complexity
of the PRead protocol is simply O(λ log k) as we need to read a constant number of elements in each buffer

10Note, that because of the way we MAC the plaintext values in plain buffers, when we read a single element from plain,
we may have to read an additional λ

|Σ| elements in order to verify the MAC; we ignore this in the description for ease of
exposition.
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(along with its MAC of length λ)11. Finally, the complexity of the Audit protocol is O(λ log k) as we read
λ elements of the codeword in each buffer, along with their constant-szie MAC values. The client storage
is O(λ).
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