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Abstract. The equivalence of the random-oracle model and the ideal-cipher model has
been studied in a long series of results. Holenstein, Kiinzler, and Tessaro (STOC, 2011)
have recently completed the picture positively, assuming that, roughly speaking, equiva-
lence is indifferentiability from each other. However, under the stronger notion of reset
indifferentiability this picture changes significantly, as Demay et al. (EUROCRYPT,
2013) and Luykx et al. (ePrint, 2012) demonstrate.

We complement these latter works in several ways. First, we show that any simulator
satisfying the reset indifferentiability notion must be stateless and pseudo deterministic.
Using this characterization we show that, with respect to reset indifferentiability, two
ideal models are either equivalent or incomparable, that is, a model cannot be strictly
stronger than the other model. In the case of the random-oracle model and the ideal-
cipher model, this implies that the two are incomparable. Finally, we examine weaker
notions of reset indifferentiability that, while not being able to allow composition in
general, allow composition for a large class of multi-stage games. Here we show that
the seemingly much weaker notion of 1-reset indifferentiability proposed by Luykx et
al. is equivalent to reset indifferentiability. Hence, the impossibility of coming up
with a reset-indifferentiable construction transfers to the setting where only one reset
is permitted, thereby re-opening the quest for an achievable and meaningful notion in
between the two variants.
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1 Introduction

IpEALIZED MODELS. The standard approach to cryptographic security is to reduce the
security of a scheme to a (hopefully) well-studied algebraic or combinatorial complexity
assumption. Unfortunately, a large number of cryptographic schemes does not admit a
security reduction in the standard model. In these cases, the community often resorts to
an idealized model, where we can sometimes obtain a proof of security. It is, of course,
highly controversial whether or not proofs in idealized models are acceptable, but there
is a tendency to prefer an analysis in an idealized model over the utter absence of any
proof at all—in particular, when one is concerned with schemes that are widely deployed
in practice [BR94, BR96, BRSS10].

Arguably the most popular model of this kind is the random-oracle model (ROM)
where all parties have oracle access to a public, randomly chosen function [BR93|. Some-
what related is the ideal-cipher model (ICM) which gives all parties oracle access to a
public, randomly chosen (keyed) blockcipher [Sha49]. Knowing that there is a close rela-
tion between pseudorandom functions and pseudorandom permutations—namely existential
equivalence—one could suspect that the random-oracle model and the ideal-cipher model
are equivalent, too. However, formalizing the notion of equivalence is delicate and so are
the proofs.

EQUIVALENCE OF THE ROM AND ICM UNDER INDIFFERENTIABILITY. Maurer, Renner
and Holenstein [MRHO04| introduced the concept of indifferentiability, which since then
has been regarded as the prevalent and actually only notion of equivalence between ideal
primitives. A construction G™ with access to some primitive 7 is called indifferentiable from
another ideal primitive II, if there is a simulator S such that the construction G™ implements
an oracle that is indistinguishable from II, even if the distinguisher D additionally gets access
to m. Now, demanding the distinguisher D to distinguish (G™, ) from II is of little sense.
Additionally to the oracle I, the distinguisher gets access to the simulator S which tries to
emulate 7’s behavior consistently with II. Thus, the distinguisher tries to distinguish the
pair of oracles (G™, ) from the pair of oracles (I, S™).

In the case of the ideal-cipher model and the random-oracle model, considerable effort
has led to a proof of equivalence [CDMPO05, [CPS08, HKTT11] under indifferentiability. The
reason why indifferentiability was considered a suitable notion of equivalence is the appealing
composition theorem established by Maurer et al. [MRHO04]. Namely, they transform any
reductionist argument in the presence of the ideal primitive II into a proof that relies on
the existence of m only. Their theorem, thus, transforms a reduction R into a reduction
R’, where the latter locally implements a single copy of the simulator S. Jumping ahead,
it will turn out that in this step, they rely on an implicit assumption.

MULTI-STAGE ADVERSARIES. Ristenpart et al. [RSS11] were the first to point out sce-
narios where indifferentiability of G™ from II was not sufficient to replace II by G”. Their
counterexamples involve adversaries that run in multiple stages, i.e., an adversary A consists



of two or more sub-adversaries, say A = (A, A2), that do not share state (or at least not
arbitrary state). Now, a reduction R that reduces to such a multi-stage game also needs
to be split into two parts (R1,R2) where the same restriction upon the sharing of state
applies. Hence, for the composition theorem by Maurer et al., each part of the reduction
R1 and Ro needs to implement its own, independent copy of the simulator S. However, in
this case, the two copies of the simulator will not necessarily behave in the same way as
opposed to the “real” primitive m which is, roughly, what makes the composition theorem
collapse in the setting of multi-stage games.

Curiously, their composition holds in the presence of strong, colluding adversaries, while
it does not in the setting of weaker, non-colluding ones. Usually in cryptography, a conser-
vative approach corresponds to considering the strongest possible adversary, as a primitive
that is secure against a strong adversary is also secure against a weaker adversary. However,
the indifferentiability composition theorem is not, by itself, a security model or a proof of
security. Instead, it is a tool to transform any proof in a security model in the presence
of one ideal primitive into a security proof in the same security model in the presence of
another ideal primitive. Hence, one tries to cover any type of security model, which, in par-
ticular, includes security models where stage-sharing adversaries can mount trivial attacks.
And thus, a conservative approach in the setting of indifferentiability demands including
also weaker, namely non-colluding state-sharing adversaries. Technically, the composition
theorem is harder to prove for weaker adversaries, because it transforms an adversary of
one type into another adversary of the same type. Considering a stronger adversary corre-
sponds to a stronger assumption in the theorem, but also to a harder statement to prove,
and vice versa for weaker adversaries.

One might hope that the distinction is of technical interest only. Unfortunately, as
we argue, in basically all real-life scenarios, we need to consider multi-stage adversaries.
Ristenpart et al. give several examples of multi-stage games for notions such as determin-
istic encryption [BBOOT7, BBNT09], key-dependent message security [BRS02], related-key
attacks [BKO03|, and non-malleable hash functions [BCEFW09]. On the other hand, many
classical notions of security seem inherently single stage: IND-CPA or IND-CCA security
for encryption, or signature schemes which are existentially unforgeable under (adaptive)
chosen-message attacks. However, any classical definition of security becomes multi staged
if it is augmented with a leakage oracle. The reason is that, in the random-oracle model,
every party should have access to the random oracle. In particular, this includes the leak-
age oracle and the adversarially specified leakage function, resulting in an implicit second
stage [DKWTII]. Hence, whenever side-channel attacks are reflected in a model, adversaries
act at least in two stages—and for real-life applications, we cannot discard side-channel
attacks.

In order to cope with the new challenge of multi-stage adversaries, Ristenpart et al. put
forward a strengthened notion called reset indifferentiability. Roughly speaking, in this
game, the distinguisher may reset the simulator’s internal state between any two queries.
Returning to ROM/ICM equivalence, an inspection of the simulators defined in [CDMPO05)]
and [HKTTI] (as well as [CPS0§]|, for that matter) reveals that their behavior varies sub-



stantially with their state and, thus, they are not reset indifferentiable.

EQUIVALENCE OF THE ROM AND ICM UNDER RESET INDIFFERENTIABILITY. As plain
indifferentiability is not sufficient to argue that two primitives are equivalent, the ques-
tion regarding the ideal-cipher model and the random-oracle model is, thus, again open.
Building on first negative results from [RSS11], the authors of [DGHM13| [LAMP12] have re-
cently shown that reset-indifferentiable constructions cannot be built via domain extension,
thereby ruling out constructions from ideal ciphers that are reset indifferentiable from a
random oracle; note that random oracles are usually perceived as having an infinite domain
while ideal ciphers have a finite domain. With this result at hand, we thus know that ideal
ciphers cannot be used to obtain random oracles via a reset-indifferentiable construction,
but it might still be possible to construct an ideal cipher from a random oracle, i.e., either
the two models are entirely incomparable, or the random-oracle model is strictly stronger.

We rule out such a possibility. Our so-called duality lemma establishes that if there is
no construction G7 that is reset indifferentiable from primitive II, then also vice versa, there
is no construction Glz_I that is reset indifferentiable from primitive w. Hence, our theorem
complements the results by Demay et al. and Luykx et al. [DGHM13, LAMP12] showing
that there can also not be a domain-shrinking construction.

Proving that, according to plain indifferentiability, the ICM and ROM are equivalent
had been a serious challenge and finally involved a Feistel network with many rounds. A
Feistel network is a domain-doubling construction, and is thus ruled out by the previous
impossibility results. The few leverages that remain to bypass the current impossibility
results possibly require quite new techniques. Firstly, it might still be possible to build a
construction that is neither domain shrinking, nor domain extending. However, as we will
see later, that means settling either direction (RO from IC and vice versa) simultaneously,
and this might be quite challenging. The second leverage is a distinction that has been
irrelevant in most works in the area of indifferentiability so far and that we would like to
point out. Namely, strong indifferentiability requires the simulator S to work for any distin-
guisher D, while weak indifferentiability only demands that for every D, there exists a good
simulator §. Known constructions are usually strongly indifferentiable, while most existing
impossibility results rule out even weakly-indifferentiable constructions. In contrast, we do
not rule out weakly-indifferentiable constructions. It would be interesting to see techniques
that make non-black-box use of the distinguisher D and establish a reset-indifferentiable
construction that is domain shrinking.

NOTIONS BETWEEN INDIFFERENTIABILITY AND RESET INDIFFERENTIABILITY. From the
current state-of-the-art, there are two ways to proceed: firstly, we can develop new tech-
niques to exploit the few remaining leverages left to bypass the existing impossibility results.
Secondly, we might weaken the notion of reset indifferentiability as introduced by Ristenpart
et al., to a notion that is achievable by constructions and which is sufficient for a subclass
of multi-stage games.

Demay et al. [DGHM13] introduce resource-restricted indifferentiability where adver-



saries may share a limited amount of state. If a certain amount s of shared state is allowed,
then their impossibility result shows that a reset-indifferentiable construction cannot extend
the domain by more than s + [log(s)] bits. Maybe the additional bits allow to bypass the
impossibility results more easily, as proving domain extension by a few bits might be easier
than requiring equality of the domain sizes—however, in this setting, the composition result
accounts for a certain class of games only.

Another approach that has been put forward by Luykx et al. [LAMP12] is to reduce
the number of resets. Indeed, allowing for a polynomial number of resets/stages seems
to be an overkill, as some games such as the security model for deterministic encryption
[BBOOT, BBN™09] and also certain forms of leakage require a constant number of adversarial
stages only. To this end, Luykx et al. propose the notion of single-reset indifferentiability
where a distinguisher can make a single reset call only; naturally, a construction that is
single reset indifferentiable would be sufficient in any security game consisting of exactly
two distinct adversarial stages such as deterministic encryption. Analogously, one can define
n-reset indifferentiability for n + 1 adversarial stages.

However, as we prove, single-reset indifferentiability is already equivalent to full-reset
indifferentiability and so are all notions of n-reset indifferentiability. Hence, reducing the
number of allowed reset queries does not help us to establish composition results for a
restricted class of games. Thus, if a general indifferentiability result is indeed impossible,
then it is a curious open question how to cope with the uncomfortable situation. It might
be possible to establish indifferentiability results and composition theorems for a class of
games that is restricted in another way than by the number of queries. Indeed, it would be
interesting to see how such a class could look like and whether there are games for which,
in general, finding a suitable, indifferentiable construction is impossible.

SUMMARY OF OUR CONTRIBUTIONS. We first introduce the notion of pseudo-deterministic
algorithms, which captures, that a probabilistic algorithm almost always returns the same
answer on the same queries and thus shares many properties with deterministic algorithms.
Essentially, a probabilistic (and possibly stateful) algorithm A is called pseudo deterministic,
if no efficient distinguisher with black-box access to A can make A return two different an-
swers on the same input. This notion of pseudo determinism can be seen as an average-case
version of the pseudo-deterministic algorithms that were recently introduced by Goldreich,
Goldwasser, and Ron [GGRI12]. While they require probabilism to be hard to detect on any
input, we only require indistinguishability for efficiently-generatable inputs, on the average.
As stressed by Goldreich et al. [GGR12|, pseudo-deterministic algorithms are practically as
useful as deterministic algorithms, but they are also easier to construct—which we indeed
exploit in our paper.

We will show in Section 3] that simulators for reset indifferentiability need to be stateless
and pseudo deterministic. Simplifying pseudo determinism to determinism for the moment,
this allows us to establish what we call the duality lemma. Perhaps surprisingly, it states
that, with respect to reset indifferentiability, two idealized models are either equivalent
or incomparable. The reason is that a deterministic and stateless simulator can act as a



construction and vice versa. Consequently, in order to prove equivalence in terms of reset
indifferentiability, this lemma makes it sufficient to prove the “easier” direction, whichever
this might be. In turn, for impossibility results, one might use this as a tool to prove
impossibility more easily. In fact, we use the duality lemma to establish that not only
domain-extending constructions are impossible, but also domain-shrinking constructions
(Section []) thereby complementing the results of [DGHM13|. Note that the duality lemma
covers strong indifferentiability, leaving non-black-box use of the distinguisher as a potential
leverage to bypass this impossibility.

The recently proposed [LAMPI12] notion of single-reset indifferentiability intends to
define a notion of indifferentiability that is easier to achieve and simultaneously covers an
interesting class of multi-stage games that has two adversary stages only. Interestingly, as
we establish, restricting the number of resets does not yield a weaker notion of equivalence.
We prove that single- (and n-) reset indifferentiability is equivalent to reset indifferentiability
(Section . Maybe surprisingly, our proof does not rely on a hybrid argument; instead,
we establish a tight reduction that merely reduces the distinguisher’s advantage by a factor
of 2.

2 Preliminaries

For a natural number n € N we denote by {0,1}" the set of all bit strings of length n.
By {0,1}* we denote the set of all bit strings of finite length. As usual | M| denotes the
cardinality of a set M and logarithms are to base 2. For some probabilistic algorithm A
and input x we denote by A(x; R) the output of A on x using randomness R. Throughout
this paper we assume that \ is a security parameter (if not explicitly given then implicitly
assumed) and that algorithms (resp., Turing machines) run in polynomial time with respect
to A

In this paper we consider random oracles and ideal ciphers (defined below) which we
will collectively refer to as ideal primitives. Although we present most of the results directly
for ideal ciphers and random oracles, the following more general notion of ideal primitives
allows us to generalize some of our results:

Definition 2.1. An ideal primitive 11y is a distribution on functions indexed by the security
parameter \. For some algorithm A, security parameter A and ideal primitive 11 we say
that A has access to Il if A has oracle access to a function f chosen from the distribution
II,.

We simply write II, i.e., omit the security parameter, if it is clear from the context.

Remark. We will usually encounter only single instances of an ideal primitive II at a time.
Unless stated otherwise, if multiple parties have access to 11, then we implicitly assume that
the corresponding function f was chosen from the distribution II using the same randomness
for all parties, i.e., all parties have oracle access to the same function f.



RANDOM ORACLES AND IDEAL CIPHERS. A random oracle (Ry,,)y is the uniform dis-
tribution on all functions mapping {0,1}* to {0,1}™ with ¢ := £()\) and m := m(\).
An ideal cipher (&) is the uniform distribution on all keyed permutations of the form
{0,1}F x {0,1}* — {0,1}™ with k := k()\) and n := n(\). That is, for a cipher in the
support of (En)x each key x € {0,1}* describes a random (independent) permutation
Ekn(k,-) : {0,1}" — {0,1}". By abuse of notation, the term random oracle (resp., ideal
cipher) also refers to a specific instance chosen from the respective distribution.

KEYED vS. UNKEYED CIPHERS. The ideal-cipher model has either been considered as a
public unkeyed permutation or as a public keyed permutation. We present our results in
the keyed setting since we feel that the ideal cipher-model is usually perceived in this way.
However, we want to point out that the results are equally valid for the unkeyed setting
because our proofs do not rely on the presence of a key.

Independently of this, one might be tempted to argue that the settings are interchange-
able since we know, for example, constructions of a keyed permutation from an ideal public
permutation (Even and Mansour, [EM97]). Note though, that in order to make this argu-
ment work, one needs to show that these constructions are reset indifferentiable. However,
the construction by Even and Mansour is a domain extender where the key size is twice
the message size and we rule out reset indifferentiability for such extending constructions
in Section 4, We note that it is an interesting open problem whether or not such (reset-)
indifferentiable non-extending transformations exist.

2.1 Indifferentiability

Let us now recall the indifferentiability notion of Maurer et al. [MRHO04] in the version by
Coron et al. [CDMPO05] who replace random systems by oracle Turing machines (resp., ideal
primitives). Since we are concerned with different types of indifferentiability, we will some-
times use the term plain indifferentiability when referring to this original notion of indiffer-
entiability.

Definition 2.2. A Turing machine G with black-box access to an ideal primitive m is
strongly indifferentiable from an ideal primitive I1 if there exists a simulator SV, such that
for any distinguisher D there exists negligible function negl, such that:

’Prob [DG”W(ﬂ) - 1] — Prob [Dnvsn(ﬁ) - 1} ’ < negl()) (1)

We say that the construction is weakly indifferentiable if for any D there exists a sim-
ulator S such that holds.

We will use the term real world to denote that the distinguisher D talks to the con-
struction G™ and the primitive 7, whereas in the ideal world, the distinguisher D talks to
the “target” primitive II and simulator S'. The goal of the distinguisher is to determine
which of the two pairs of oracles he is talking to. Towards this goal, the distinguisher D
queries its two oracles, of which one is called the honest interface h which is either G™ (in



the real world) or IT (in the ideal world). The other oracle is called the adversarial interface
a and corresponds to either 7 (real world) or S (ideal world). Thus, (h,a) := (G™, ) if
distinguisher D is in the real world and (h,a) := (II,S™) if it is in the ideal world. The
names h (honest) and a (adversarial) are in the style of [RSS11] and suggestive: an honest
party uses a construction as the designer intended; an adversary could, however, use the
underlying building blocks to gain an advantage.

RESET INDIFFERENTIABILITY. Ristenpart et al. show [RSS11] that, in general, we cannot
securely replace a primitive Il by a construction G™ from primitive , if the construction is
indifferentiable only. Instead, G™ needs to be (weakly) reset indifferentiable from IT which
extends the original indifferentiability definition by giving the distinguisher the power to
reset the simulator at arbitrary times:

Definition 2.3. Let the setup be as in Definition [2.4. An oracle Turing machine G™ is
called strongly (resp. weakly) reset indifferentiable from ideal primitive 11 if the distin-
guisher D can reset the simulator S to its initial state arbitrarily many times during the
respective experiment.

For reset indifferentiability the adversarial interface a in the real world simply ignores
reset queries. Reset indifferentiability now allows composition in arbitrary games and not
only in single-stage games, as does the original indifferentiability notion [RSS11, MRHO04].

3 Pseudo-deterministic Stateless Simulators for Indifferen-
tiability

Recall that the composition theorem by Maurer et al. [MRHO04] for plain indifferentiability
holds for single-stage adversaries only. Their theorem says that if (i) the construction G™ is
indifferentiable from the ideal primitive II and if (ii) there is a reduction R that transforms
a successful adversary A against some notion of security into an adversary R4 against a
single-stage game in the presence of the ideal primitive II, then also in the presence of the
construction G™ there is a reduction R’ that transforms a successful adversary A into an
adversary R/ A against the single-stage game.

In order to prove a general composition theorem, Ristenpart et al. [RSS11] strengthen
the notion of indifferentiability to account for the different stages of the adversary. They
introduce the notion of (weak) reset indifferentiability and prove that the aforementioned
theorem works for arbitrary games, if the construction G” is reset indifferentiable from the
ideal primitive II. In contrast to plain indifferentiability, here, the distinguisher gets extra
powers, namely to reset the simulator at arbitrary times. Ristenpart et al. [RSS11] and
Demay et al. [DGHM13|] remark that reset indifferentiability is equivalent to plain indiffer-
entiability with stateless simulators. Intuitively, this follows from the observation that the
distinguisher in the reset indifferentiability game can simply reset the simulator after each
query it asks. We believe that, albeit equivalent, stateless simulators are often easier to



handle than reset-resistant simulators and thus explicitly introduce indifferentiability with
stateless simulators as multi-stage indifferentiability and then prove that it is equivalent to
reset indifferentiability.

In Subsection we prove that strong multi-stage indifferentiability implies that the
simulators are also pseudo deterministic, a notion that we put forward in this section.
Relative to a random oracle or an ideal cipher, we show how to derandomize pseudo-
deterministic simulators, if the simulators are allowed to depend on the number of queries
made by the distinguisher.

3.1 Multi-stage Indifferentiability

A stateless interactive algorithm is an algorithm whose behavior is statistically independent
from the call/answer history of the algorithm. We now prove that indifferentiability with
stateless simulators is equivalent to reset indifferentiability.

Definition 3.1. A construction G with black-box access to primitive w is strongly multi
stage indifferentiable from primitive 11 if there exists a stateless probabilistic polynomial-time
stmulator S (with access to I1), such that for any probabilistic polynomial-time distinguisher
D there exists negligible function negl such that:

‘Prob [DG”J(F) - 1] — Prob [DHvSH(ﬂ) - 1} ‘ < negl()\) (2)

We say that a construction G™ is weakly multi stage indifferentiable from Il if for any
probabilistic polynomial-time distinguisher D there exists a stateless probabilistic polynomial-

time simulator S such that holds.

Lemma 3.2. A construction G with black-box access to primitive  is weakly (resp., strongly)
multi stage indifferentiable from primitive I1 if and only if G is weakly (resp., strongly) reset
indifferentiable from primitive 11.

Proof. First note that any stateless simulator is, naturally, indifferent to resets and thus
multi-stage indifferentiability implies reset indifferentiability. Moreover, strong reset in-
differentiability implies strong multi-stage indifferentiability since the simulator for reset
indifferentiability must work for any distinguisher, in particular for those which reset after
each query. Hence this stateful simulator can be simply initialized and run by a stateless
simulator (the stateless simulator does this for each query it receives).

We now prove the remaining relation, i.e., that weak reset indifferentiability implies weak
multi-stage indifferentiability. Assume that reset indifferentiability holds and consider an
arbitrary distinguisher D in the multi-stage indifferentiability game. From this we construct
a distinguisher D’ for the reset indifferentiability game which runs D and sends a reset query
to its adversarial a-interface after every a-query issued by D. Let &’ be the simulator for
D’ guaranteed to exist by reset indifferentiability. We construct a stateless simulator S for
multi-stage indifferentiability which simply runs (the stateful) &’ and resets its own state
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after each query. Now the following equations hold for b € {0,1}:
Prob {D'H’Sl(l’\) = b} = Prob [D'H’S(l)‘) = b} = Prob [DH’S(V‘) =b
Thus, if equation holds for (D', S’), then it holds equally for (D, S). O

3.2 Pseudo-Deterministic Algorithms

Our notion of pseudo-deterministic algorithms intuitively captures that no distinguisher
can query the algorithm on an input such that it returns something different from the
most likely output. That is, the adversary wins if in its set of input/output pairs to the
algorithm there is a query for which the algorithm did not return the most likely response.
We also introduce a weak notion of this property, where we call A pseudo deterministic for a
specific distinguisher if the probability of the distinguisher winning in the above experiment
is negligible.

Our notion of pseudo determinism can be seen as an average-case version of the pseudo-
deterministic algorithms as recently introduced by Goldreich et al. [GGRI12]. While they
require probabilism to be hard to detect on any input, we only require indistinguishability
for efficiently generatable inputs, on average.

Definition 3.3. Let \ be a security parameter and A® a stateless probabilistic polynomial-
time oracle Turing machine with access to some oracle O. Let L[D, A, O] denote the induced
set of input/output pairs (x,y) of A® when queried arbitrarily many times by the distin-
guisher D, where A uses fresh coins in each run. We say that A® is pseudo deterministic if
for all probabilistic polynomial-time distinguishers D there exists a negligible function negl,
such that

Probp 4.0 [V(z,y) € LD, A, 0] y =y, 40] > 1—negl(\). (3)

The notation y, 40 denotes the most likely output of A on input x over the randomness of
A, i.e., conditioned on a fized oracle O. If there are two equally likely answers on input x,
we choose y, a0 to be the lexicographically smaller one.

We say algorithm A° is pseudo deterministic for distinguisher DAOUA")(I)‘), if there
exists negligible function negl, such that equation holds for D.

Note that the definition of A being pseudo deterministic for distinguisher D does not
imply that it is hard to distinguish whether A is probabilistic or deterministic—it is only
hard for a particular algorithm D. Although this might sound like a weak and somewhat
useless property, it will be sufficient to show that if a simulator is pseudo deterministic for
a distinguisher, then the simulator can be entirely derandomized via random oracles/ideal
ciphers.

We now show that strong multi-stage indifferentiability implies that the simulators are
not only stateless but also pseudo deterministic. This is captured by the following lemma.

Lemma 3.4. Let G™ be a construction with black-box access to primitive m which is strongly
multi stage indifferentiable from primitive I1. Then there is a stateless pseudo-deterministic

11



probabilistic polynomial-time simulator S such that for all probabilistic polynomial-time dis-
tinguishers D equation holds in the strong case.

Proof. Let us assume there exists a stateless simulator S such that for all distinguishers D
equation holds and such that S is not pseudo deterministic. The latter implies that there
exists distinguisher D, against the pseudo determinism of simulator &, i.e., there is a non-
negligible probability that D, asks a query to S, where S has a non-negligible probability
of returning a different value than the most likely one. We now construct distinguisher D’
against strong multi-stage indifferentiability. Distinguisher D’ runs D,4 on the adversarial
a-interface. Let qi,...,q be the queries asked by D,q. Distinguisher D’ then sends the
same queries once more to its a-interface and returns 1 if at least one response does not
match and 0 otherwise. If D’ is in the real world, talking to G™ and 7 algorithm D’ will
always output 0 as 7 is a function. If on the other hand, D’ is in the ideal world, then
D,q will succeed with noticeable probability and hence D’ will distinguish both worlds with
noticeable probability, a contradiction. ]

DETERMINISTIC SIMULATORS. Bennett and Gill prove in [BG81] that relative to a random
oracle the complexity classes BPP and P are equivalent. Let us quickly sketch their idea.
Given a probabilistic polynomial time oracle Turing machine M™ which has access to
random oracle R and which decides a language £ in BPP we can prove the existence of a
deterministic polynomial time Turing machine D™ which also decides £. Let us by p(|z|)
denote the runtime of machine M® for inputs of length |z|. As M™ runs in polynomial
time there exists a polynomial upper bound p(|x|) on the length of queries M™ can pose to
the random oracle. To derandomize M™ we construct a deterministic machine D® which
works analogously to M™ with the single exception that when M™ requests a random coin
then DR generates this coin deterministically by querying the random oracle on the next
smallest input that cannot have been queried by M7* due to its runtime restriction. As the
random oracle produces perfect randomness, the machines decide the same language with
probability 1 over the choice of random oracle.

Using the techniques developed by Bennet and Gill [BG81] we now show that in the
multi-stage indifferentiability setting, if a simulator is pseudo deterministic for a distin-
guisher D, then it can be derandomized, in case the constructed primitive II is a random
oracle or an ideal cipher. When applied to a simulator S that is universal for all dis-
tinguishers (strong indifferentiability), these derandomization techniques yield a family of
simulators that depends only on the number of queries made by the distinguisher (weak
indifferentiability). We give the proof in Appendix

Lemma 3.5. Let A" be a stateless probabilistic polynomial-time algorithm with oracle ac-
cess to a random oracle Ry, or an ideal cipher &, for ¢ € w(logA) (resp., (k+n) €
w(log\)). Let s be polynomial in X. From A", we construct a deterministic algorithm B
such that the following holds: for all efficient distinguishers D that make less than s queries
to their oracle, it holds that if A" is pseudo deterministic for D, then

‘ProbRﬂ [DHAH(R")(F) - 1] — Proby [DHvBH('>(1*) - 1} ‘
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is megligible, where the probability is over the choice of oracle 11 and algorithm A’s and
distinguisher D’s internal coin tosses for the first case and over the choice of oracle I1 and
distinguisher D’s internal coin tosses in the second.

4 The Random Oracle and Ideal Cipher Model are Incom-
parable

In this section we prove that the random oracle-model and the ideal cipher-model are
incomparable with respect to strong multi-stage indifferentiability. We start by giving an
alternative, simpler proof of the fact that multi-stage indifferentiable constructions cannot
be built via domain extension [DGHMI3, LAMPI2] (Lemma [4.1). [DGHMI3| rule out
domain extension even for a single bit of extension. In turn, we obtain an easier proof in
the setting where the extension factor is super logarithmic. In Section we then present
our duality lemma for multi-stage indifferentiability which allows us to conclude that the
ROM and the ICM are incomparable with respect to strong multi-stage indifferentiability.

Lemma 4.1. Let R be a random oracle with domain {0,1}* (resp., £ be an ideal cipher
with domain {0,1}* x {0,1}") and 7 be any ideal primitive with domain size 2°. For
¢ —v € w(log(N)) (resp., k+mn —v € w(log(N))) there exists no construction G™ that is
weakly multi-stage indifferentiable from R (resp., £ ).

We prove Lemma for the random oracle case; the proof for ideal ciphers works
analogously. Note that we prove the statement for weak multi-stage indifferentiability,
thereby essentially ruling out any (possibly non-black-box) construction.

In the following proof we consider a particular distinguisher that tests for the ideal
world by forcing the simulator to query its oracle on a particular value M. We show that
no simulator is able to do this with more than negligible probability since M is drawn from
a very large set while the simulator, being stateless, is only able to make queries from a
negligible fraction of this large set; it thus fails to pass the test.

Proof of Lemma[{.1. Assume towards contradiction that there exists construction G™ that
is weakly multi stage indifferentiable from random oracle R and, hence, for every distin-
guisher D there exists a stateless simulator S such that D cannot distinguish between the
real and ideal world.

We consider a distinguisher D"? with access to honest and adversarial interfaces (h,a)
which implement the random oracle R and simulator S in the ideal world and construction
G™ and ideal primitive 7 in the real world. The distinguisher D chooses a message M €
{0, 1}* uniformly at random and executes construction G via an internal simulation using
its adversarial interface a, i.e., it computes G?(M). Then, the distinguisher asks its honest
interface on message M to compute h(M) and returns 1 if the two results agree and 0
otherwise. Note that in the real world distinguisher D will always output 1. Thus, the
simulator S has to ensure that GS™ (M) is equal to R(M) with overwhelming probability
over the choice of the random oracle R. We now prove that, in the ideal world, the two
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values match only with negligible probability over the choice of the message M and the two
settings can thus be distinguished by D.

Let us assume the ideal world and denote the query/response pairs to the a-interface with
(gi,i)1<i<t- We analyze the simulator’s behavior when it is asked these queries qi,...,g:.
If for none of the ¢; the simulator S asks the random oracle on M, then the answer of
GSR(M ) is independent of R(M) and thus different with overwhelming probability. By a
simple counting argument, we now prove that, with high probability over the choice of M,
on no query (not even one outside of the set (g;,7i)1<i<¢), the simulator S asks R on M.
For this, note that the queries which simulator S receives are of length v. Hence there are
at most 2V distinct possible queries to S. Denote by ¢ the upper bound on the number
of queries that S asks to its random oracle over all possible queries that S itself receives.
As the simulator § runs in polynomial time ¢ exists and is polynomial. Noting that S is
stateless, we conclude that S asks at most ¢2¥ < 2¢ queries. Hence the probability that the
distinguisher’s M is in the set

{M : 3¢ S® asks M on input q}

is negligible. The probability that the distinguisher D returns 1 in the ideal world where it
is given access to simulator S and a random oracle R is therefore also negligible. Thus, the
distinguisher D has a distinguishing advantage of almost 1 which concludes the proof. [

4.1 The Duality Lemma for Multi-Stage Indifferentiability

We now prove the inverse direction, that is an ideal cipher cannot be build from a random
oracle with larger domain. In contrast to the previous section we here give an impossibility
result for strong multi-stage indifferentiability. Our result is, however, more general and
of independent interest. Strong multi-stage indifferentiability guarantees the existence of a
simulator that is stateless and deterministic. Constructions of ideal primitives often need
to be stateless and deterministic as well. If for example, the construction, implements a
publicly accessible function such as a hash function, it has to be stateless. Note that this is
the case both for random oracles and ideal ciphers.

Now, if we assume that constructions are deterministic and stateless, then we show that,
in the case of multi-stage indifferentiability, we can exchange the role of the construction
and the role of the simulator, if the simulator is also deterministic and stateless. Our Duality
Lemma establishes that in this case, an impossibility result (resp. feasibility result) in one
direction translates into an impossibility result (resp. feasibility result) in the other direction.
However, if the simulator is not deterministic, but only pseudo deterministic, then we need to
slightly adapt our notion of constructions to also allow pseudo-deterministic constructions.
For this note that pseudo deterministic constructions are as useful as deterministic ones
since inconsistencies due to the pseudo determinism can only be detected with negligible
probability. Formally, however, they are not known to be equivalent, in particular, because
P #£ BPP implies that pseudo-deterministic polynomial-time algorithms are more powerful
than deterministic polynomial-time algorithms.

We prove the Duality Lemma in the case of strong multi-stage indifferentiability.
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Lemma 4.2 (Duality Lemma for Multi-Stage Indifferentiability). Let m and 7’ by two ideal
primitives. Assuming constructions are stateless and pseudo deterministic, then one of two
following statements holds:

1. The two primitives are computationally equivalent, i.e., there exist constructions G1, Ga
such that GT is strongly multi stage indifferentiable from 7' and G’QT, s strongly multi
stage indifferentiable from m, or

2. m and 7' are incomparable with respect to strong multi-stage indifferentiability.

In essence this means that a positive or negative result in either direction gives us a result
for the other direction. As we have already seen a negative result for domain extenders this
gives us the result for the other directions, i.e., going from a large random oracle R to a
small ideal cipher &£, or from a large ideal cipher £ to a small random oracle R.

Proof of Lemma[{.4 Assume construction G™ with black-box access to ideal primitive 7
is strongly multi stage indifferentiable from 7’. Then by definition there exists a (pseudo-
)deterministic, stateless simulator S such that no distinguisher D can tell apart the ideal
world (7/,8™) from the real world (G7, 7). Likewise, by definition, G is stateless and
(pseudo-)deterministic. We now exchange the roles of construction G and simulator S,
thereby getting a new “construction” S™ implementing primitive 7. It remains to show
that S™ is strongly multi-stage indifferentiable from 7.

Let us assume the contrary. Then there exists distinguisher D that can distinguish
between the settings (7', 8™) and the setting (G™, 7). This, however, contradicts the as-
sumption that G™ is strongly multi stage indifferentiable from 7’. O

An immediate consequence of the duality lemma and Lemma [4.1] is captured by the
following corollary:

Corollary 4.3. The ideal cipher model and the random oracle model are incomparable with
respect to strong multi-stage indifferentiability.

Remark. One interesting consequence of the duality lemma is best seen by an example:
Can a random oracle with smaller domain be constructed from a random oracle with a larger
domain? Intuitively, it feels natural to assume that this works. However, Lemma[4.T]tells us,
that the inverse is not possible and, thus, by the duality lemma we can directly conclude that
any construction using a large random oracle cannot be strongly multi stage indifferentiable
from a small random oracle. So far, we have failed to either prove impossibility for weak
multi-stage indifferentiability or to come up with a construction. We leave this for future
work.

5 Single versus Multi-Reset

Luykx et al. [LAMP12] introduce the presumably weaker notion of n-reset indifferentiability,
where the distinguisher is allowed to reset the simulator only n times. Naturally, for a
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construction that is n-reset indifferentiable the composition theorem holds for games that
have n + 1 or less stages. In the following we show that, however, already the extreme
single-reset notion implies full reset indifferentiability for simulators that do not depend on
the distinguisher (i.e., the strong case). This yields that also for n-reset indifferentiability
all our separations hold in a black-box fashion.

What we prove is that the advantage of an n-reset distinguisher is bounded by the
advantage of an (n — 1)-reset distinguisher and that of a single-reset distinguisher where
the advantage of a distinguisher D in the n-reset indifferentiability game is defined as

AdVg:%set = ’Prob |:DR7SR<1)‘) — 1:| — Prob |:'DG7T,71'(1)\> _ 1:H .

Assuming that a construction is strongly single reset indifferentiable (and thus the advantage
for any single-reset distinguisher is negligible) yields the above claim. We use

Lemma 5.1. Let G™ be a construction with black-box access to primitive w. Then there
exists simulator S8 such that for all n > 1 and all distinguishers D,, that make at most n
reset queries there exists a distinguisher D,,_1 that makes at most n — 1 reset queries and a
distinguisher D1 that makes a single reset query and

AdvETES (1Y) < Advy'p T (1Y) + AdvETEE (1Y)
1s negligible in .

The proof idea is simple. Given a distinguisher which makes n resets we construct one
that ignores the first reset. Now, either this changes the input/output behavior of the
simulator noticeably, which yields a distinguisher that only needs a single reset, or it does
not in which case the distinguisher with n — 1 resets is as good as the n-reset distinguisher.

Proof. Let D, be a distinguisher that makes at most n reset queries. We construct a
distinguisher D,,_1 as follows. The distinguisher D, _; runs exactly as D,, but does not
perform the first reset query of D,,.

In the real world, where the distinguisher is connected to the construction G™ and T,
reset queries have no effect and thus we immediately have that

Prob,,, | DS (1%, rp) = 1} = Prob,, {ng’f(l’\;rp) =1 (4)

where the probability is over the random coins rp of the distinguisher.

Let in the ideal world Lq[D,,,S, R, rp,rs| denote the ordered list of query-answer pairs
of queries by distinguisher D,, to simulator S up to the second reset query by D,, when D,
runs with randomness rp and simulator S runs with randomness rs and R is the random
oracle. Note that after each reset query simulator S takes a fresh set of random coins. Thus,
technically we have that rs := rk||r%||... where r} denotes the simulator’s coins up to the
first reset and r?g its coins after the first and up to the second reset. All further random
coins are irrelevant for the definition of Lo since we only consider queries up to the second
reset query.
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D,(rp) | A

Dn—l (TD) f

Figure 1: Ilustration of D,, and D,,_1’s operation; circles denote queries and rectangles denote resets. The
dashed part resembles the resulting single-reset distinguisher D, that asks the queries gz twice (separated by
a reset). Whether or not the answer to these two query sequences are identical is captured by the event E.

Similarly, we define L1[D,,—1,S, R, p,rs]| to be the list of query-answer pairs by distin-
guisher D,,_1 to simulator S up to the first reset query. Note that again rg := ri||r||. ..
but this time already the second part (r%) is irrelevant since we only consider queries up to
the first reset query.

Define predicate E(R,rp,rs) to hold, iff

LQ[Dnu Sa Ra D, TS] = Ll[Dn—1787 R7 rp, TS}

for a random oracle R and randomnesses rp and rs. Note that in case of event E(R, rp,rs)
it holds that

Probg,vp,rs | DR (1%) = 1 [E(R,1p,7s) | = Probrprs | DY (1%) = 1 |E(R,7p,7s) | -
()
In the following we simplify notation and do not make the probability space explicit. That
is, the probabilities in the ideal world are always over the random oracle R the random
coins of the distinguisher rp and the various random coins of the simulator rs. Also, we
simply write E instead of E(R,rp,7s).

Let D; denote a distinguisher which makes only a single reset query and which works as
follows: D7 runs D,, up to the second reset query, passing on queries to its own oracles but
not passing on the two reset queries. Let g1 denote the queries to the simulator up to the
first (ignored) reset query and gz the queries to the simulator after the first (ignored) reset
and up to the second (ignored) reset. Now, after the second ignored reset, distinguisher
D1 makes its single reset query and once more sends the sequence g3 to the simulator. It
outputs 0 in case the simulator’s answers are consistent with the previous gz sequence and
else it outputs 1. See Figure ] for a pictorial representation of this operation.

In the real world, distinguisher D; will always output O since the answers will always
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match. Thus, we observe that

AdvEISet (1Y) = Prob | DS (1%)

Il
—_
| I
|
e
[
[}
(on
| —
A
3
—
—_
>
S~—
|
—_
| I

For the last equality, note that if E occurs then there is at least one query answer that
differs in both runs. This difference must be during ¢ since, up to D,’s first reset, both
algorithms are identical and operate on the same coins with the same oracles. Hence D;
always detects this difference and outputs 1. Thus, we have

AdVEISt (1)) = Prob [DZ}vsR(l*) - 1} — Prob [Dg”v”(ﬂ) = 1}
— Prob[E] - Prob [DZjﬁR(ﬂ) ~1 ‘E] + Prob[E] - Prob [DZ}S’{(P) —1 ‘E}
— Prob [Dg”’”(ﬁ) - 1]

< Prob [Dﬁ»SR(ﬂ) —1 ) E} +Prob[E] — Prob [Dﬁ”v”(ﬂ) - 1} .

Using equations and we can exchange distinguisher D,, for distinguisher D,,_1 and
after reordering we get that

—Prob [ D" (1) = 1| €] — Prob[ DF77(1%) = 1] + Prob [ E].
Using equation @

< Prob [DZ};‘?R(lA) ~1 ) E} — Prob [ij’fr(l’\) - 1} + AdvEIEe (1%

<AV TN (1) + AdvETSE (1Y)

—1

which yields the desired statement. O
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A Missing Proofs for Section

A.1 Proof of Lemma [3.5

Lemma (Lemma restated). Let Al be a stateless probabilistic polynomial-time algo-
rithm with oracle access to a random oracle Ry, or an ideal cipher &, for ¢ € w(log )
(resp., (k+n) € w(log\)). Let s be polynomial in X. From AY, we construct a deterministic
algorithm BY such that the following holds: for all efficient distinguisher D that make less
than s queries to their oracle, it holds that if A" is pseudo deterministic for D, then

‘ProbRﬂ [D“:AH(R:?(P) - 1] ~ Proby [DHvBHO(P) - 1} ’

is megligible, where the probability is over the choice of oracle II and algorithm A’s and
distinguisher D’s internal coin tosses for the first case and over the choice of oracle I1 and
distinguisher D’s internal coin tosses in the second.

Proof. Let Al be a stateless algorithm with access to ideal primitive IT where II is either a
random oracle Ry, or an ideal cipher & ,,.

Let D be an efficient distinguisher for which A is pseudo deterministic. As distinguisher
D is efficient, there exists an upper bound p(|A|) on the number of queries to the II-interface
by D. We construct a deterministic algorithm B which works as A with the only exception
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that B deterministically generates “random” bits by querying its random oracle, whenever
A makes use of a random bit. For the jth requested random bit, algorithm B calls the
[T-oracle (either random oracle R or ideal cipher £ where it uses the encryption interface of
&) on p(|\|) 4+ j distinct values xor-ing the result and choosing a bit from this result. Note
that as £ € w(log\) (resp., n + k € w(log A)) there exist sufficiently many distinct values.

Remember that we denote by y, 10 the most likely output of algorithm A on input ¢
conditioned on fixed oracle O@. We want to prove that

[Probrpa | D" (1%) = 1] = Probrp [ D" (1) = 1]|

is negligible in A. We prove a stronger statement, namely, that the outputs of A and
B are likely to be identical. We define event C capturing that “the outputs of A and B
agree on all inputs.” Towards this goal we define event A as “algorithm A returns y, n
for all queries ¢;” where y, 4n is the most likely answer of A" on input ¢;, i.e., we set
Ygi, Al 1= arg maxy {ProbR [.AH(qi; R) = y]} (cf. Definition . Likewise, we define event
B as “algorithm B returns y,, 4n for all queries ¢;.” We will show that

Probrp a[A] > 1 — negl (7)
and

Probrp[B] > 1 — negl. (8)

Clearly, the probability that A and B produce the same answers for all ¢; is lower bounded
by the probability that A and B both output y,, 4u for all g;. Thus,

Probrp 4[C] > Probrp a[AAB]
=1—Probrnpa[-AV -B]
> 1 — (Probm,p,a[—~A] + Probrp[—B])
> 1 — negl — negl.

Let us now make these statements formal as well as prove inequalities @ and . We
denote with g; the queries to A by D and by R; the randomness used by A on query ¢;. We
say that event A occurs (over II, D, Ry, ..., Ry,), if

Vi AN (g R) = Ygs AL
Note that the pseudo-determinism of A for D directly implies that
Probrp g, R, [Vi AH(qi; R;) = yqi,AH] > 1 — negl, (9)
which establishes inequality . We say that event B occurs (over II, D), if
Vi B"(¢;) = yg, an,
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where ¢; now denotes the queries by D to algorithm B. Inequality we derive from
inequality via an averaging argument. Note that in inequality @ we consider fresh
randomness R; for every query g¢;. If for all queries ¢; a random choice of randomness is
good with overwhelming probability, then a random choice of randomness is good for all g;
with overwhelming probability:

Probrp g [ Vi Al (gi: R) = Ygiam | > 1 —negl. (10)

Moreover, when considering the random oracle via lazy sampling, one can observe that the
randomness generated by B from II is independent from the part of II that is used in the
experiment, which yields that

PI“Ob]‘LD [VZ, Bn(qi) = yqi”AH] = PI"Ob]‘LD’R [Vl, An(qi; R) = yqi”AH]
> 1 — negl

as desired.
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