
Dynamic Runtime Methods to Enhance Private

Key Blinding

Karine Gandolfi-Villegas and Nabil Hamzi

Gemalto Security Labs
{nabil.hamzi,karine.villegas}@gemalto.com

Abstract. In this paper we propose new methods to blind exponents
used in RSA and in elliptic curves based algorithms. Due to classical
differential power analysis (DPA and CPA), a lot of countermeasures to
protect exponents have been proposed since 1999 Kocher [20] and by
Coron [13]. However, these blinding methods present some drawbacks
regarding execution time and memory cost. It also got some weaknesses.
Indeed they could also be targeted by some attacks such as The Carry
Leakage on the Randomized Exponent proposed by P.A. Fouque et al.

in [23] or inefficient against some others analysis such as Single Power
Analysis. In this article, we explain how the most used method could
be exploited when an attacker can access test samples. We target here
new dynamic blinding methods in order to prevent from any learning
phase and also to improve the resistance against the latest side channel
analyses published.

Keywords: Reverse engineering, exponent blinding, side channel at-
tacks, RSA, ECC

1 Introduction

In embedded systems, the usage of cryptographic algorithms may be the target
of so-called physical attacks. In the past years, a lot of researchers have dedicated
their studies around those subjects. In this paper, we focus on the randomization
of a secret data used for exponentiation or scalar multiplication, as used in RSA
and in Elliptic Curve based Cryptographic algorithms (for example ECDSA).

The need of randomization comes from attackers who use Side-Channel Anal-
ysis (SCA) in order to recover a secret data. Each devices, while running, leaks
informations which could be retrieved through the power consumption measure-
ments as first suggested by Kocher et al. in [21], by analyzing electromagnetic
radiations - as proposed in the paper Electromagnetic analysis: Concrete Results,
[15], radio-frequencies -in case of contact-less devices, or evaluating its thermal
differential... Especially, when this device performs cryptographic algorithms and
manipulates secret data, these leakages contain information about the key.

As we focus on exponentiation or scalar multiplication, SCA countermea-
sures regarding the implementation of these algorithms were designed to prevent
such attacks. Kocher et al. [20] and Coron [13] first introduced ways to protect

2 Karine Gandolfi-Villegas and Nabil Hamzi

against SCA attacks. Followed by Chevallier-Mames et al. [8] and Joye [16] who
introduced secure implementations to performs exponentiation and scalar mul-
tiplications.

When considering attacks it often appears that countermeasures offer a pro-
tection but lend themselves to others attack paths. The randomization of expo-
nents faces this problem. As suggested in The Carry Leakage on the Randomized

Exponent [23], the operation which masked the secret is targeted and in this case,
P.A Fouque et al. propose to use the side channel leakage to detect the presence
of a carry during an addition with the secret value. This leads them to retrieve
the secret with an attack complexity linked to the architecture of the processor
used to compute the addition. In [25], W. Schindler for RSA an classical modular
exponentiation algorithms and A. Kruger in [22] extends this approach for ECC
and sliding window exponentiation algorithms, present attacks that could work
even if the exponent, respectively the scalar, is masked. The success of their
attacks is linked to the error rate got to find each secret bit or operation. In
both cases the size of the random used for masking the secret is the determinant
factor to enable those attacks.

S. Bauer [3] showed more recently how an attacker, given some information
about each bit of a blinded exponent, can use redundancy in key material to cor-
rect observation errors and retrieve the random mask. By repeating this several
times, he showed that an attacker could then find a number of blinding factors
and then could combine the information of several power traces to determine
the secret. In this last case, even large random factors could not be sufficient.

These results highlight the fact that according to the leakage observed, pa-
rameters size and application context, the randomization using additive mask
could not suffice to protect the secret elements against physical attacks.

In this paper, we show that an attacker could keep the hand on the data
he chooses even if there is an additive random mask. Indeed, it is the case as
soon as he can access an open device on which he is able to load elements. As
an example, we consider Java smart cards on which users can load applets or
keys. In this context an attacker can call functions that were designed secure
as long as nobody could access elements handled by them. Nevertheless, this
last assumption is not respected in the case of open platforms, and the attacker
makes functions leak by calling them with specific parameters. The information
obtained might be exploitable in the future on unknown data to build attacks
and retrieve secrets.

To avoid the described situation, this article is intended to present new run-
time blinding methods in order to prevent from any learning phase and also to
improve the resistance against the latest side channel analyses published.

The remaining of this paper is organized as follows. Section 2 exposes the
weaknesses of the existing exponent blinding methods. In Section 3, we present
a new way to protect against leakages whatever the attacker abilities are and at

Dynamic Runtime Blinding Methods 3

any step when exponentiation or point multiplication have to be performed with
secret element. Our conclusions are drawn in Section 4.

2 Weaknesses of exponent blinding methods

Since the first publications on side channel attacks [21], randomization is widely
used to protect sensitive elements embedded into devices in order to guarantee
physical security. Using algebraic properties a lot of solutions have been already
proposed to protect the secret exponent or scalar against side channel attacks.
In this section we explore the ones which concern the exponent blinding and we
make the assumption that the base is masked to avoid any exploitable leakage
or attacks using it such as SPA, DPA or CPA.

2.1 Coron’s blinding method

A first way is to use the homomorphic property of the modular exponentiation
as described in [13] for ECC or in [7] for the RSA. Indeed, we have ma+b =
ma.mb mod n.

Given (n, e) the RSA public key and (n, d) the private one (or in case of CRT
(p, q, dp, dq, iq)) and ϕ(n), the Euler function of n , such that:

n = p.q and e.d ≡ 1 mod ϕ(n) , (1)

we replace the computation

s = md mod n , (2)

which is sensitive to physical attacks such as side channel analysis when it is
performed in a physical accessible device, by two modular exponentiations

s1 = md∗

mod n s.t. d∗ = d−R,R a |d|-bit random , (3)

s = s1.m
R mod n . (4)

This method presents an important drawback: the performances. Indeed it
doubles the exponentiation time and it needs a large random to be generated
and stored.

2.2 Addition chain blinding method

Another approach which was presented in [10], is to consider addition chains to
re-code the exponent or scalar value. More precisely, we remind that an addition
chain of length l, for a positive integer d is a sequence Γ (d) = {d(0), d(1), ..., d(l)}
and satisfies:

1. d(0) = 1, d(l) = d

4 Karine Gandolfi-Villegas and Nabil Hamzi

2. ∀i, 1 ≤ i ≤ l, ∃j(i), ∃k(i) < i | d(i) = d(j(i)) + d(k(i)).

This provides an easy mean to evaluate s = md mod n. Indeed, for i from

1 to l, we need to compute md(i)

= md(j(i))

.md(k(i))

and then set s = md(l)

. So,
from a l-length addition chain, l multiplications are required to compute s.

Regarding side-channel analysis the main protection when using addition
chain is to make it different at each construction. Indeed, if the addition chain
is always the same for a given secret, classical SPA or DPA could be applied
successively to retrieve each element d(i) and then the secret d could be recon-
structed using all values. The use of a random value is then required to generate
the addition chain of a given secret if we want that method to be an efficient
protection.

However, the use of addition chain to re-code secret presents some drawbacks.
The first one is linked to the performances aspect. Thus, the memory storage of
the addition chain itself in addition to the secret value must be considered. The
second one is linked to side channel and fault injections that could be performed
during the addition chain generation and usage.

In this paper, we will not investigate this last method any further and we
will focus instead on the next one, Kocher’s blinding method, because it is the
most used and the least costly.

2.3 Kocher’s blinding method

Another approach, in case of RSA, using Euler’s theorem, is to add a random
multiple of the Euler ϕ function to the private exponent. This technique was
detailed in the patent [20].

⋄ For RSA standard mode, d∗ = d+ r.ϕ(n) with r a k-bit random
⋄ For RSA-CRT mode, d∗p = dp+ rp.(p−1) with dp and p part of the RSA-CRT
private key and rp a k-bit random (the same operation is performed on dq
with q and another random rq)

This method is widely used compared to the previous ones as it only induces
few additional modular operations. However it could be attacked as presented in
[23]. Moreover, if randoms are not large enough it could not be efficient against
side-channel analysis performed during modular exponentiation such those de-
scribed in [25] and [22]. Then and due to the recent results from [3], it might be
necessary to prevent an attacker from knowing the links between the parameters,
the secret, the random and the values on which he has some knowledge.

In this paper, in addition of the named attacks, we consider the fact that it
is possible to have specific parameters to perform or prepare an attack. Either in
case of a specific application context which enables to load keys like in JavaCard
API or in case of combined attack such as described in [1]. The primes p, or q

and so the Euler ϕ function, or the curve order for ECC, could be loaded or
transformed by a perturbation in a way that p − 1, q − 1 or n have at least σ

Dynamic Runtime Blinding Methods 5

bits set to 0. For example, for a prime p with at least σ least significant 0-bit,
we will have:

(p− 1)←

i=|p|−1∑

i=k

pi.2
i s.t. k ∈ IN, k > σ and pi ∈ {0, 1} . (5)

Given dp =

i=|p|−1∑

i=0

dpi
.2i, s.t. dpi

∈ {0, 1} . (6)

Then d∗p = dp + r(p− 1) =
∑i=k−1

i=0 dpi
.2i +

∑i=|r.p|−1
i=k d∗pi

.2i we have :

dp

r(p − 1)+

d∗p r(p − 1) dp + r(p − 1) dp

|rp| − 1 |p| k − 1 0

Fig. 1: Bit analysis of a random exponent

In this case it appears that the exponent randomization is partial and the
randomized exponent could have at least σ bits in common with the original
value. Thus, it will enable to make easier the reverse engineering through side
channel analysis. The signal processing such as synchronization, averaging, fil-
tering ... or templates extractions will be easier on the traces obtained during
the exponentiation with this kind of parameters.

In order to illustrate our comment we have conducted an analysis on several
components which embed different crypto-coprocessors and observed the impact
on the power or electromagnetic traces with specific parameters that we will
name hollow keys in the rest of the paper.

The figure 2 represents the power consumption obtained during a square
and multiply exponentiation md∗

p mod p which processes the exponent from
the most significant bits to the least ones. The message is the same for both
acquisitions while the modulus and thus d∗p differ. The component used is a
smart card 8-bit micro controller with a public key cryptographic co-processor.
The hollow parameters are used for the red trace (upper one) and classical RSA
key is used for the blue one (lower one). The hollow parameters were chosen in
order that dp has a lot of 0 in its least significant bits. At the end of the trace,
when least significant bits are processed, we observe that the component does
not behave exactly the same. Let’s explain this phenomenon.

The first comment is that exponentiation time is not the same, red trace
activity is shorter than blue one. It directly implies that less operations have been

6 Karine Gandolfi-Villegas and Nabil Hamzi

Fig. 2: Modular exponentiations power consumption traces with hollow param-
eters (red/upper) and classical parameters (blue/lower).

performed and thus the hamming weight of the red trace exponent is lower than
the hamming weight of the blue trace exponent. Moreover when least significant
bits are treated - we highlight this part by surrounding it on traces of figure 2 -
we observed that the component behave differently. We can see that the series
of 0 processed in the red trace changes the leakage while in the blue trace as we
don’t have the change of shape the randomization is still effective.

Dynamic Runtime Blinding Methods 7

3 New methods to avoid leakages at any stage

In the remaining sections we will define algorithms under the assumption that
the core exponentiation algorithm used is SPA-safe. More precisely: it is assumed
to be designed according to the component leakage and using classical principles
like constant time and code, whichever exponent bit is processed. The base m

is also supposed well masked to prevent from cryptanalysis and from physical
attacks like DPA and chosen message SPA such as presented in the paper Simple

Power Exponentiation Revisited, [14].

3.1 Extension of Kocher’s randomization

We propose a new way to randomize exponents or scalar during the modular
exponentiation or point multiplication execution. Even if the Euler ϕ function
of the numbers used for the randomization or the number itself is hollow, this
method will control the link between the secret data and the randomized one.
To do so, let’s randomize a large number x in IN based on Kocher and Coron’s
randomization:

x∗ = x+ r.(η − u) s.t. u, r are positive random integers and η an integer . (7)

Let κ be x∗ length in t-bit words. We pad x with 0 until its bit length, |x|, is
equal to κ.t.

The variable x̃ such that |x̃| = κ is introduced to control the blinding quality.
It is based on the distance δ between x∗ and x.

x̃i = δ(xi, x
∗
i , ǫ) for 0 ≤ i < κ . (8)

In our case, as distance we consider the hamming weight h of x∗ ⊕ x. It is
defined as follow:

h : {0, 1}t → [0, t]

(xt−1, . . . , x0) 7→
∑t−1

i=0 xi

. (9)

We determine x̃ bits thanks to:

δ : {0, 1}t × {0, 1}t × IN→ {0, 1}

(xi, x
∗
i , ǫ) 7→

{
0 if | t2 − h(xi ⊕ x∗

i)| < ǫ

1 else
. (10)

This function δ is used to dynamically consolidate exponent randomization
during the exponentiation. In case where the exponent is uniformly randomized,
i.e. x̃ = 0, it is equivalent to a regular secure modular exponentiation.

8 Karine Gandolfi-Villegas and Nabil Hamzi

INPUT : x∗, x̃,m, p∗, 1p

i = κ − 1, a = m

x̃i
?
= 0

a = ModExp(m,p∗)(a, x
∗
i)

a =
ModExpNoisy(m,p∗,1p)(a, x

∗
i)

i = i − 1

i
?
= 0

a.mr(u−1) mod p

OUTPUT : mx mod p

YES NO

YES

NO

Fig. 3: Dynamic Blinding Exponentiation

Dynamic Runtime Blinding Methods 9

As a decision function we take | |x|2 − h| < ǫ with ǫ the defined threshold.
The purpose is to identify if the randomization is sufficient to cover all secret
bytes. Input parameters t and ǫ are linked to attacks performed with partial
knowledge of the key. These attacks, such that the ones described in [4], [11],
[12], to retrieve complete key, require that an attacker knows or retrieves a part
of it thanks to side channel analysis.

To choose properly the parameters t and ǫ we evaluate the impact of modulus
randomness on decision function according to key and word’s length. For each
size {512, 1024, 2048} we generated one hundred η random and one hundred η

hollow. For each η and thus each x, we compute x∗ using a 64-bit random and

the average | |x|2 − h|. The results are summarized in table 1.
We remark that for small t values, the average are too close to determine if x is
well randomized. This is due to our decision function that is not efficient for such
word size. From figure 4, we observe that the choice ǫ bound depends strongly
on key length and on word size t. Moreover for small key size such as 256 bits
used for ECC, we note that the average are close for all word sizes.

t 8 bits 16 bits 32 bits 64 bits

p 256-bit random 0.94 1.91 3.99 7.66

p 512-bit random 0.50 0.89 1.86 4.11

p 1024-bit random 0.25 0.45 1.07 2.04

p 2048-bit random 0.11 0.25 0.51 1.31

p 256-bit hollow 1.97 3.97 7.92 15.83

p 512-bit hollow 2.98 5.96 11.83 23.74

p 1024-bit hollow 3.22 6.43 12.82 25.74

p 2048-bit hollow 3.71 7.41 14.85 29.73

Table 1: Average of | t2 − h(xi ⊕ x∗
i)| depending on t and p randomness

0

5

10

15

20

25

30

35

0 8 16 24 32 40 48 56 64

Fig. 4: Decision function bounds behavior

10 Karine Gandolfi-Villegas and Nabil Hamzi

Dynamic Blinding Exponentiation algorithm represented by figure 3 illus-
trates our method applied to a modular exponentiation mx mod p with x secret,
m a message correctly padded and p a prime integer. Given r0, r1, r2 random
integers, let’s consider:

p∗ = r0.p

1p = 1 + r1.p s.t. GCD(r0, r1) = 1

x∗ = x+ r3.(p− u)

. (11)

We remark that:

1p ≡ 1 mod p

1p ≡ m̃ mod p∗ s.t. m̃ random

(mx∗

).(1p)
x∗

≡ mx∗

mod p

. (12)

In figure 3, we note by ModExp(m,p)(a, e) the exponentiation of m by e modulo
p and initializing the accumulator to a instead of 1 in regular modular exponenti-
ation. ModExpNoisy(m,p,1p)(a, e) is based on ModExp and both should be SPA
secure implementations such as suggested in [18], [8] or [9]. The difference that
we introduce in ModExpNoisy is that whatever the exponentiation algorithm
used each operation required is followed by a modular multiplication by 1p. This
operation has not impact on the result but generates noise regarding side channel
leakage and is not sensitive to safe-error attack. Thus this method fully controls
masked data. Indeed, x̃ computed thanks to the function δ ensures propagation
of random in secret data, only if it is needed. Actually, an interesting approach
of this countermeasure is that the attacker will be penalized regarding execution
time compared to a normal user. Even if the method is known by the attacker
and if he constructs p such that (p− umax) is hollow, the algorithm will enable
to master the link between the secret and its randomized value.

Performances are well managed. In case of classical parameters the correc-
tion mr.(u−1) mod p will only cost in average c.|r|.|u| modular multiplications
where c is the complexity of the modular exponentiation algorithm used. That
is to compare with the cost of the correction with mR mod p in case of the first
countermeasure mentioned in [7]: c.|x|, which doubles the execution time of a
simple exponentiation.

In addition to all previous remarks, we also have to consider that the modular
exponentiation (or the point multiplication) could present leakages, despite the
exponent (respectively the scalar) blinding. As an example we detail the RSA
case. In standard mode, if the classical counter measure d∗ = d+ r.ϕ(n) is used,
an attacker is able to generate a valid signature. In CRT mode, the knowledge
of d∗p leads to a disclosure of the key. Indeed we could find p using d∗p, s, m and
n and:

GCD((s−md∗
p), n) = p . (13)

With our countermeasure he will need to distinguish, by SPA or SEMA, the expo-
nentiations ModExp from ModExpNoisy and mx∗

mod p∗ from mr.(u−1) mod

Dynamic Runtime Blinding Methods 11

p to reach the same goal. In order to make reverse engineering more difficult and
to avoid SPA, those two final exponentiations could be interleaved and imple-
mented in a way that it is not possible to distinguish them. We will detail this
in section 3.3.

Finally, we observe that equation 7 might be sensitive to attacks linked to
[23] or to template attacks as mentioned in [6] or [2], and this leads to the next
section.

3.2 Disturb side channel acquisition

In this section, we introduce a new algorithm to compute an additive masking
operation such as presented in [20] with a controlled leakage. Indeed, we already
explained that computing a masked value thanks to an addition can lead to a
leakage as exploited in [23], or to more advanced attacks like template attacks.
The main idea here is to compute x∗ = x+µ without performing direct addition
and with a control of the information that may leak from x handling.

We denote x the secret value to be masked and µ its additive mask.
The algorithm Additive Masking Artefact stands to protect a component from

additive carry leakages leading to attacks. Indeed, algorithm 1 manipulates secret
data with division operation and not with addition operation. The addition
operations are only used at step 7 with randomized values.
However and as noticed in M. Joye et al. paper [17], a division operation can
induce a variable and exploitable leakage linked to parameters, component but
also to the size of divisor ρ. We can note that ρ size is inversely proportional
to the number of secret bits exposed to a possible leakage. With this words,
a positive integer β is introduced in order to master the amount of secret bits
possibly disclosed. At step 6, β controls also the division complexity. As this value
defines ρ size, it will directly affect division. If β is small and as we have ⌊x

ρ
⌋, we

will get a division with the size of numerator close to the size of denominator.
In those terms, only most significant bits of x could be disclosed by the division
if a side channel analysis is performed during its execution. Moreover, it will
result, first in a fast computation: only few bits of x will be handled; secondly,
few loops in division algorithm will have to be performed. Finally, and for the
same reason, the leakage will be minimized. Note that if β = 0, it would be
equivalent to classical additive making method. It is not considered here and β

is > 0.
In algorithm 1, x∗

1 stands for the reminder of x by ρ and x∗
2 . Regarding the

parameters length, x∗
1 size is equal to ρ one and x∗

2 has x size. Thus, at most
β most significant bits of the sum of x∗

1 and x∗
2 will be shared with x∗

2. Among
them, in case of RSA, as µ comes from multiplication of ϕ by at least a 64-bit
random r, x∗ will have |r| bits in common with µ. However, these exceeding bits
cannot be controlled by the attacker for a given key length.

If we take a closer look at operations required by algorithm 1, we remark that
this countermeasure includes a modular reduction followed by a division. Those
two operations are seen as big number operations in terms of implementation.

12 Karine Gandolfi-Villegas and Nabil Hamzi

Algorithm 1 Additive Masking Artefact

Input: x, µ, β > 0
Output: x∗ = x+ µ

1. Pick a random integer ρ, |x| − β < |ρ| < |x|
2. x∗

1 ← x mod ρ

3. if x∗
1 ≡ 0 mod ρ then

4. Go to step 1.
5. end if

6. x∗ ← x∗
1 + µ

7. x∗
2 ← ρ⌊x

ρ
⌋

8. x∗ ← x∗ + x∗
2

At first glance in algorithm 1 step 2 and step 6 will take more calculation time.
However, on second thought, cryptographic processor designer often provides
both functions in a single command. So this cost is managed thanks to well de-
signed dedicated processors.

To summarize, we replace an addition between the secret and a randomized
value potentially mastered by an attacker by a randomized quotient/remainder
evaluation and then two additions between randomized data.

3.3 Interleaved exponentiation

We already mentioned that the exponentiation of algorithm in figure 3 could be
interleaved to make the reverse engineering more difficult and to improve the
protection regarding SPA/SEMA. Let’s present an algorithm doing this opera-
tion in a smart way. The aim of interleaving exponentiation is to mix both bits
from first and second exponent. Let’s suppose that we want to compute ma+b

mod n. The homomorphic property of modular exponentiation gives:

ma+b = mamb mod n . (14)

The main idea is to split a and b in la and lb slices, respectively, and process
set of bits one after the other by switching set at each iteration. Algorithm 2
implements this idea.

Let’s remark that the operation used in algorithm 2 is defined previously in
figure 3. For this specific exponentiation, all bits are treated even most signif-
icant null bits. Indeed, as the accumulator could be different from the neutral
element of multiplication, first squares are meaning. Moreover any operation
might replace this ModExp operation, the only requirement comes from the
homomorphic property.

Besides, we could insert an other random for driving the choice of the bits
set. This random will determine if we choose bits set from a or from b in order
to increase reverse engineering complexity.

Interleaved Homomorphic Operation algorithm takes parameters la and lb as
input to define in how many slices exponent a and exponent b, respectively, will

Dynamic Runtime Blinding Methods 13

Algorithm 2 Interleaved Homomorphic Operation

Input: m, a, b, n, la, lb
Output: s← ma+b mod n

1. sa ← 1
2. sb ← 1
3. while |a| > 0 or |b| > 0 do

4. if |a| > la then

5. Pick a random integer ra, ra ≤ la
6. else

7. ra ← |a|
8. end if

9. alow ← a mod 2|a|−ra

10. ahigh ←
a

2|a|−ra

11. sa ←ModExp(m,n)(sa, ahigh)
12. a← alow

13. if |b| > lb then

14. Pick a random integer rb, rb ≤ lb
15. else

16. rb ← |b|
17. end if

18. blow ← b mod 2|b|−rb

19. bhigh ←
b

2|b|−rb

20. sb ←ModExp(m,n)(sb, bhigh)
21. b← blow
22. end while

23. s← sa.sb
24. return s

be split. At the end of the algorithm, both values a and b must be equal to 0,
this asset might be used to verify the well execution of the implementation.

To conclude, this approach enables to break the link between an exponentia-
tion execution or any other homomorphic operation and its side channel leakage.

4 Conclusion

We introduced a new way to mask secret exponent or scalar in order to control
the link between the original value and the randomized one without inducing too
heavy computation in case of normal execution and parameters. The attackers
are penalized by this approach. Moreover, we not only modify the way to do
the data masking but also the operation used for that. Indeed we replace an
addition by a division and a remainder operation in a context where they are not
costly and do not leak exploitable information. Finally, we propose a method to
interleave operations so as to make reverse engineering and side channel analysis
more complex. For future work, we could improve δ and h functions used as

14 Karine Gandolfi-Villegas and Nabil Hamzi

distance. These functions could be designed to enlarge their scope especially for
small word sizes and small key length.

References

1. F. Amiel, K. Villegas, B. Feix, and L. Marcel. Passive and active combined at-
tacks: Combining fault attacks and side channel analysis. In Luca Breveglieri, Shay
Gueron, Israel Koren, David Naccache, and Jean-Pierre Seifert, editors, Fourth In-

ternational Workshop on Fault Diagnosis and Tolerance in Cryptography – FDTC

2007, pages 92–102. IEEE Computer Society, 2007.
2. C. Archambeau, E. Peeters, F-X. Standaert, and J-J. Quisquater. Template attacks

in principal subspaces. In Louis Goubin and Mitsuru Matsui, editors, Cryptographic
Hardware and Embedded Systems - 8th International Workshop – CHES 2006,
volume 4249 of Lecture Notes in Computer Science, pages 1–14. Springer, 2006.

3. S. Bauer. Attacking exponent blinding in rsa without crt. In Schindler and Huss
[24], pages 82–88.

4. D. Boneh, G. Durfee, and Y. Frankel. Exposing an rsa private key given a small
fraction of its bits, 1998.

5. Çetin Kaya Koç, David Naccache, and Christof Paar, editors. Cryptographic Hard-

ware and Embedded Systems, Third International Workshop - CHES 2001, volume
2162 of Lecture Notes in Computer Science. Springer, 2001.

6. S. Chari, J. R. Rao, and P. Rohatgi. Template Attacks. In Jr. et al. [19], pages
13–28.

7. D. Chaum. Security without identification: transaction systems to make Big
Brother obsolete. Communications of the ACM, 28:1030–1044, 1985.

8. B. Chevallier-Mames, M. Ciet, and M. Joye. Low-Cost Solutions for Preventing
Simple Side-Channel Analysis: Side-Channel Atomicity. IEEE Transactions on

Computers, 53(6):760–768, 2004.
9. C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, and V. Verneuil. Square always

exponentiation. In INDOCRYPT, pages 40–57, 2011.
10. C. Clavier and M. Joye. Universal Exponentiation Algorithm. In Çetin Kaya Koç

et al. [5], pages 300–308.
11. D. Coppersmith. Finding a Small Root of a Univariate Modular Equation. In

Ueli M. Maurer, editor, Advances in Cryptology - EUROCRYPT ’96, volume 1070
of Lecture Notes in Computer Science, pages 155–165. Springer, 1996.

12. D. Coppersmith. Small Solutions to Polynomial Equations, and Low Exponent
RSA Vulnerabilities. J. Cryptology, 10(4):233–260, 1997.

13. J-S. Coron. Resistance against Differential Power Analysis for Elliptic Curve Cryp-
tosystems. In Çetin Kaya Koç and Christof Paar, editors, Cryptographic Hardware

and Embedded Systems, First International Workshop – CHES’99, volume 1717 of
Lecture Notes in Computer Science, pages 292–302. Springer, 1999.

14. J-C Courrege, B. Feix, and M. Roussellet. Simple Power Analysis on Exponentia-
tion Revisited. In Dieter Gollmann, Jean-Louis Lanet, and Julien Iguchi-Cartigny,
editors, Smart Card Research and Advanced Application, 9th International Confer-

ence – CARDIS 2010, volume 6035 of Lecture Notes in Computer Science, pages
65–79. Springer, 2010.

15. K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete results.
In Çetin Kaya Koç et al. [5], pages 251–261.

16. M. Joye. Elliptic Curves and Side-Channel Analysis, 2003.

Dynamic Runtime Blinding Methods 15

17. M. Joye and K. Villegas. A protected division algorithm. In Smart Card Research

and Advanced Application Conference, 5th International Conference – CARDIS

2002. USENIX, 2002.
18. M. Joye and S-M. Yen. The Montgomery Powering Ladder. In Jr. et al. [19], pages

291–302.
19. Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors. Cryptographic

Hardware and Embedded Systems, 4th International Workshop – CHES 2002, vol-
ume 2523 of Lecture Notes in Computer Science. Springer, 2002.

20. P. Kocher and J. Jaffe. Leak-Resistant cryptographic method and apparatus.
Patent WO99/35782, 1998.

21. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Michael J. Wiener,
editor, Advances in Cryptology, 19th Annual International Cryptology Conference –

CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages 388–397.
Springer, 1999.

22. A. Krüger. The schindler-itoh-attack in case of partial information leakage. In
Schindler and Huss [24], pages 199–214.

23. F. Valette P.A Fouque, D. Réal and M’hamed Drissi. The Carry Leakage on the
Randomized Exponent Countermeasure. In In E. Oswald and P. Rohatgi, editors,
Cryptographic Hardware and Embedded Systems, 10th International Workshop –

CHES 2008, volume 5154 of Lecture Notes in Computer Science, pages 198–213.
Springer, 2008.

24. Werner Schindler and Sorin A. Huss, editors. Constructive Side-Channel Analysis

and Secure Design - Third International Workshop – COSADE 2012, volume 7275
of Lecture Notes in Computer Science. Springer, 2012.

25. Werner Schindler and Kouichi Itoh. Exponent Blinding Does Not Always Lift (Par-
tial) Spa Resistance to Higher-Level Security. In Javier Lopez and Gene Tsudik,
editors, ACNS, volume 6715 of Lecture Notes in Computer Science, pages 73–90.
Springer, 2011.

