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This work shows that the cryptanalysis of the shrinking generator requires fewer intercepted bits
than that indicated by the linear complexity. Indeed, whereas the linear complexity of shrunken
sequences is between A ⋅ 2(S-2) and A ⋅ 2(S-1), we claim that the initial states of both component
registers are easily computed with less than A ⋅ S shrunken bits. Such a result is proven thanks to
the definition of shrunken sequences as interleaved sequences. Consequently, it is conjectured that
this statement can be extended to all interleaved sequences. Furthermore, this paper confirms that
certain bits of the interleaved sequences have a greater strategic importance than others, which
may be considered as a proof of weakness of interleaved generators.
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1. INTRODUCTION
Stream ciphers are considered nowadays the fastest encryption procedures. Consequently, they are
implemented in many practical applications e.g. the algorithms A5 in GSM communications
(GSM), the encryption system E0 in Bluetooth specifications (Bluetooth) or the algorithm RC4
(Rivest, 1998) used in SSL, WEP and Microsoft Word and Excel.

From a short secret key (known only by the two interested parties) and a public algorithm (the
sequence generator), a stream cipher procedure is based on the generation of a long sequence of
seemingly random bits. Such a sequence is called the keystream sequence.

For the encryption, the sender computes the bitwise exclusive OR (XOR) operation among the
bits of the original message or plaintext and the keystream sequence. The result is the ciphertext to
be sent. For the decryption, the receiver generates the same keystream, computes the same bitwise
XOR operation between the received ciphertext and the keystream sequence and obtains again the
original message.

Most keystream generators are based on Linear Feedback Shift Registers (LFSRs) (Golomb,
1982), which are linear structures characterized by their length (the number of memory cells), their
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characteristic polynomial (the feedback function) and their initial states (the seed or key of the
cryptosystem). If the characteristic polynomial is a primitive polynomial (Lidl and Niederreiter,
1986), then the LFSRs generate Pseudo-Noise sequences (PN-sequences) with good pseudo -
randomness properties. 

For a survey on primitive LFSRs, PN-sequences and shift equivalences, the interested reader is
referred to Golomb (1982). In stream cipher procedures, the PN-sequences are combined by means
of nonlinear functions in order to produce keystream sequences for cryptographic application.
Combinational generators, nonlinear filters, clock-controlled generators and irregularly decimated
generators are just some of the most popular nonlinear sequence generators. All of them produce
keystreams with high linear complexity, long period and good statistical properties (Caballero-Gil
and Fúster-Sabater, 2004; Fúster-Sabater, 2004).

Most cryptanalysis on stream ciphers are performed under a known plaintext hypothesis, that is
to say, it is assumed that the attacker has direct access to a portion of the keystream sequence (the
intercepted sequence). From these intercepted bits, the attacker has to deduce the cryptosystem key.
Once the key is known, as the sequence generator is public, the whole keystream sequence can be
reconstructed. The complexity of this attack is always compared with that of key exhaustive search
and if the former complexity is lesser, the cryptosystem is said to be broken.

This work focuses on a particular kind of stream ciphers based on LFSRs: the class of shrinking
generators. They are made out of two LFSRs and an irregular decimation. Shrinking generators
have been thoroughly analyzed in several papers such as Simpson et al (1998), Kanso (2003) and
Caballero-Gil and Fúster-Sabater (2006). Nevertheless, we present a new and efficient cryptanalytic
attack requiring much lesser amount of intercepted bits than that of the previous attacks. The basic
idea of this cryptanalysis consists in defining the output sequence of a shrinking generator as an
interleaved sequence (see Gong, 1995 and Jiang et al, 2002). The interleaved characteristic of the
shrinking generator reveals weaknesses that lead to practical attacks. In addition, we conjecture that
these weaknesses can be extended to all interleaved sequence generators with application in
cryptography.

The paper is organized as follows: in Section 2, the description and characteristics of the
shrinking generator is introduced. Interleaved configuration and related results are developed in
Section 3. A cryptanalytic attack against the shrinking generator that exploits the condition of
interleaved sequence is presented in Section 4, while the generalization of this technique to other
cryptographic interleaved generators appears in Section 5. Finally, conclusions in Section 6 end the
paper.

2. THE SHRINKING GENERATOR
The so-called Shrinking Generator (SG) is a nonlinear keystream generator composed by two
LFSRs (Coppersmith et al, 1993) so that a control register SRS decimates the sequence produced
by the other register SRA. S and A denote respectively their corresponding lengths and fulfil that 
(S, A)= 1 and S<A. PS(x) and PA(x)∈ GF(2)[x] denote their corresponding primitive characteristic
polynomials. 

The sequence {si}, produced by SRS, controls the bits of the sequence {ai} produced by SRA
which are included in the output shrunken sequence {zj} according to the following rule: If si=1 then
zj=ai, and if si=0 then ai is discarded.

As different pairs of SRA/SRS initial states can generate the same shrunken sequence, in the
sequel we assume, without loss of generality, that the first term of the sequence {si} equals 1, that
is s0=1. According to Coppersmith et al, 1994), the period of the shrunken sequence is: 
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T= (2A-1) 2(S-1),

its linear complexity, notated LC, satisfies the following inequality:

A ⋅ 2 (S-2) < LC ≤ A ⋅ 2 (S-1),

and its characteristic polynomial is of the form:

Pss(x)= (P(x)) p

where P(x) is an A-degree primitive polynomial in GF(2)[x] and p is an integer in the interval 
2(S-2) < p ≤ 2 (S-1). Moreover, it can be proven (Shparlinski, 2001) that the shrunken sequence has
also good distributional statistics. Therefore, due to all these good characteristics, this scheme has
been traditionally used as keystream sequence generator with application in secret-key
cryptography.

3. INTERLEAVED CONFIGURATION
The (2A-1) ⋅ 2(S-1) bits of a period of any shrunken sequence {zj} can be arranged into a (2A-1)× 2(S-1)

matrix that we will call Interleaved Configuration and will denote by IC. In fact,

The following result allows us to identify each element of the matrix IC with the corresponding
term of the sequence {ai}.

Theorem 3.1
The Interleaved Configuration of the shrunken sequence {zj} can be written in terms of the elements
of the sequence {ai} such as follows:

where the additive sub-indices oj (j= 0, 1, …, 2S-1-1) depend on the bits of the sequence {si} in the
following way: if si= 1, then the corresponding sub-index oj equals the sub-index i, oj= i. All the
sub-indices are taken module 2A-1, that is to say, the period of the sequence {ai}.
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Proof. Since the period of the PN-sequence {si} is (2S – 1), the number of bits with value 1 in a
period is exactly 2S-1, and all the elements of any column of IC come from the same term si= 1 of
the PN-sequence, the above expression for the matrix IC in terms of the elements of {ai} is obtained. 

According to the assumption s0= 1, the sub-index o0= 0. Next, the following result analyzes the
characteristics of the columns of the matrix IC.

Theorem 3.2
The sequences {dj}= {ak+oj : k= 0, (2S - 1), 2 ⋅ (2S - 1), …, (2A - 2) ⋅ (2S - 1)} (j= 0, 1, …, 2(S-1)-1)
corresponding to the columns of the matrix IC are shifted versions of a unique PN-sequence whose
characteristic polynomial is given by:

where N is an integer defined as N= 20 + 21 + … + 2(S-1) and α ∈ GF(2A) is a root of the primitive
polynomial PA(x).

Proof. Every sequence {dj} corresponding to the j-th column of IC is a regular decimation of the
PN-sequence {ai}. More precisely, such a sequence is obtained by taking one out of (2S-1) terms in {ai}.
The primality between A and S guarantees the primality between (2A-1) and (2S-1). Thus, the decimated
sequence {dj} is also a PN-sequence. In addition, as every {dj} is obtained from {ai} with a decimation
ratio of value (2S-1), then its characteristic polynomial PD(x) is the polynomial of the cyclotomic coset
(2S-1) in the Galois Field GF(2A) generated by the roots of the polynomial PA(x) (Caballero-Gil and
Fúster-Sabater, 2006). The starting point of each {dj} is given by the correspond ing sub-index oj. 

4. CRYPTANALYTIC ATTACK
The proposed cryptanalytic attack consists in the computation of the initial states of both registers
SRA and SRS. In fact, from some known bits of the shrunken sequence we have to determine the
first A bits (a0, a1, …, aA-1) of the sequence {ai} as well as the first S bits (s0, s1, …, sS-1) of the
sequence {si}. This attack can be divided into two different steps. In the first one, the computation
of the initial state of SRA is carried out. In the second step and based on the SRA initial state, we
determine the corresponding initial state of the register SRS.

4.1 SRA Initial State
Previously to the computation of the initial state, the following result is introduced.

Lemma 4.1
Given A bits of the shrunken sequence corresponding to A successive elements of any column of
IC, the remaining bits of such a column can be determined.

Proof. Theorem 3.2 determines the characteristic polynomial PD(x) of the PN-sequence corre -
spond ing to every column of IC. Thus, by knowing A successive bits of any column and its
characteristic polynomial, the linear recurrence relationship allows us to compute the remaining bits
of such a column. 

The computation of the SRA initial state is described in the next result.

Theorem 4.2
Given A bits of the shrunken sequence corresponding to A successive elements of the first column
of IC, the bits of the initial state of the register SRA can be determined.

Proof. Lemma 4.1 shows that the knowledge of A successive elements of the first column of IC
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allows us to generate the remaining bits of such a column. On the other hand, from Theorem 3.1 we
know that the (n + 1)-th element of the first column of IC corresponds to an⋅(2S-1), that is to say, the
(n ⋅ (2S -1) + 1)-th term of the sequence generated by the register SRA. Consequently, we first solve
the following system of modular equations in the unknowns ni

and then we compute successively the (ni+1)-th (i= 0, 1, …, (A-1)) elements of the first column of
IC in order to obtain a0, a1, …,aA-1, respectively. 

4.2 SRS Initial State
The computation of the SRS initial state is described in the next result.

Theorem 4.3
Given A⋅S bits of the shrunken sequence corresponding to the top-left corner (A × S) sub-matrix of
IC, the bits of the initial state of the register SRS can be determined.

Proof. Firstly, from the knowledge of the (A × S) sub-matrix of IC,

and according to Lemma 4.1, we can deduce the remaining bits of those S columns. Secondly, the
relative shifts among columns may be computed from the comparison between consecutive
columns. Since the sequence in every column of IC is exactly the same but starting at different
points given by aoj, as soon as a relative shift is found, the sub-index oj may be easily computed. In
addition, each sub-index oj indicates the position of the (j + 1)-th 1 in the initial state of SRS while
the intermediate bits are 0’s. Thus, the above procedure can be repeated for j= 1, 2, … till we get oj
≥ (S-1). In this way, the initial state of the register SRS is thoroughly determined. 

4.3 Illustrative Example
Let us consider a shrinking generator characterized by:

(1) SRA with length A= 5, characteristic polynomial PA(x)= x5+ x4+ x3+ x2+ 1 and output sequence {ai}.

(2) SRS with length S= 4, characteristic polynomial PS(x)= x4+ x3 + 1 and output sequence {si}.

(3) The characteristic polynomial of the shrunken sequence is Pss(x)= PD(x)p= (x5+ x3+ x2+ x+ 1)8.

Given 20 bits of the shrunken sequence corresponding to a (5 × 4) top-left corner sub-matrix of IC

,
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we can launch a cryptanalytic attack against the shrinking generator in order to obtain the initial
states of both LFSRs. Table 1 shows the computations carried out for cryptanalyzing the above
described generator. The first column represents the indices of rows in the IC matrix, ni= 0, 1,…, 30.
Next column shows the position of the terms (a0, a1, …, a4) of the sequence {ai} in the first column
{do} of the matrix IC, obtained from Theorem 3.1. The following columns of Table 1 represent the
matrix IC: in boldface the (5 × 4) sub-matrix with the known bits, the remaining bits of {d0} are the
bits computed to determine the initial states of SRA and SRS, and the symbols - correspond to
unknown bits of the shrunken sequence.

Computation of the SRA initial state: According to Theorem 4.2, we compute the positions of
the (ni+1)-th elements of the first column of IC by solving the equation system 

That is to say, n0= 0, n1= 29, n2= 27, n3= 25 and n4= 23. Then, by means of the characteristic
polynomial PD(x) we determine the values of the (ni+1)-th (i= 0, 1, ..., 4) elements of the first
column {d0} of IC. Consequently, a0= 1, a1= 0, a2= 0, a3= 1 and a4= 1 (see Table 1). Therefore, the
initial state of the register SRA (1, 0, 0, 1, 1) has been determined.

Computation of the SRS initial state: According to Theorem 4.3, we compute the relative shifts
between consecutive columns in the matrix IC:

- Computation of o1: We know a1 at the (29+1)-th position of the first column and compute its
S- 1= 4 successive bits in the column. We compare these 5 bits (0, 0, 1, 1, 0) with the first 5 bits (0,
0, 1, 1, 0) of the second column {d1} (see Table 1) and find that there is a coincidence, thus o1= 1.

- Computation of o2: We know a2 at the (27+1)-th position of the {d0} and compute its 4
successive bits. We compare these 5 bits (0, 1, 0, 0, 1) with the first 5 bits (1, 0, 0, 1, 0) of the third
column {d2}. There is no coincidence, thus we analyze the following bit a3. We know a3 at the
(25+1)-th position of {d0} and compute its 4 successive bits. We compare these 5 bits (1, 0, 0, 1, 0)
with the first 5 bits (1, 0, 0, 1, 0) of {d2} (see Table 1). There is coincidence, thus o2= 3. Since o2=

ni {ai} d0 d1 d2 d3 d4 … d7

0 a0 1 0 1 1 - - -
1 1 0 0 1 - - -
2 0 1 0 1 - - -
3 0 1 1 1 - - -
4 0 0 0 1 - - -
5 - - - - - - -
… - - - - - - -
23 a4 1 - - - - - -
24 - - - - - - -
25 a3 1 - - - - - -
26 0 - - - - - -
27 a2 0 - - - - - -
28 1 - - - - - -
29 a1 0 - - - - - -
30 0 - - - - - -

Table 1: Matrix IC corresponding to the described SG
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3≥ S - 1, we have determined the initial state of SRS. In fact, s0= 1, o1= 1 implies s1= 1, o2= 3 implies
s2= 0 and s3= 1. Therefore, the SRS initial state is (s0, s1, s2, s3)= (1, 1, 0, 1). Note that only the
knowledge of three columns of the sub-matrix has been necessary to identify the initial state of SRS.
Indeed, this number equals the number of bits 1 in the initial state of the selector register. The
maximum number of known bits corresponds to SRS initial state with all bits 1. In the remaining
cases, fewer bits are sufficient.

Once the initial states of both register are determined, the whole shrunken sequence that is the
keystream sequence can be computed.

4.4 Computational Features of the Attack
The computational complexity of the proposed cryptanalytic attack must be analyzed by
distinguishing two different phases: off-line and on-line, each one with its corresponding compu -
tational complexity.

Off-line computational complexity: Corresponding to the phase that is to be executed before
intercepting sequence. It includes:
• Computation of the characteristic polynomial PD(x) by means of equation (4). This computation

is necessary in order to obtain the linear recurrence relationship for the terms of the PN-sequence.
• Computation of the positions ni (i= 0, 1, …, A-1) on the first column of the matrix IC by means of

equation (5). This computation is necessary in order to determine the bits of the initial state of SRA. 
• Computation of different elements of the extension field GF(2A), that is to say, αni (i=0, 1, …,

A-1), by means of the Zech log table method (Assis and Pedreira, 2000) for arithmetic over
GF(2A). This computation is necessary in order to determine the A successive elements of each
ai (i= 0, 1, …, A-1) on the first column of the matrix IC.

On-line computational complexity: Corresponding to the phase that is to be executed after
intercepting sequence. Consequently, it can be considered the computational complexity of the
proposed attack in practice. According to the previous subsections, the computational method for
the computation of the SRS initial state consists in the comparison of series of bits coming from
formulated hypothesis and from intercepted bits. The comparison is carried out by means of a few
bitwise logical operations on a bounded number of bits, so the worst-case computational complexity
is O(A), linear in the length of the SRA.

Finally, after comparing the proposed attack with those found in the literature we get that all of
them are exponential in the lengths of the registers. In particular, the complexity of the divide-and-
conquer attack proposed in Simpsom et al (1998) is O(2S). The probabilistic correlation attack
described in Golic and O’Connors (1995) has a computational complexity of value O(A2 ⋅ 2A). Also
the probabilistic correlation attack introduced in Johansson (1998) is exponential in A. In contrast
with the previous attacks, in this work a deterministic attack has been proposed that improves the
complexity of the previous cryptanalytic approaches and that requires only A ⋅ S intercepted
shrunken bits in order to be launched.

5. GENERALIZATION TO INTERLEAVED SEQUENCES
First of all, we introduce the general definition of interleaved sequence (Jiang et al, 2002).

Definition 5.1 
Let f(x) be a polynomial over GF(q) of degree r and let m be a positive integer. For any sequence
{uk} over GF(q), we write k= i ⋅ m+ j with (i= 0, 1,…) and (j= 0, ..., m-1). If every sub-sequence of
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{uk} defined as {ui⋅m+j} is generated by f(x), then the sequence {uk} is called interleaved sequence
over GF(q) of size m associated with the polynomial f(x).

Table 2 shows the interleaved sequence {uk} over GF(2) associated with the 3-degree
characteristic polynomial f(x)= x3+ x+ 1 over GF(2) and size m= 4. Reading by rows, the interleaved
sequence is {uk}= {1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0} while by
columns the sequence is made out of {uj} (j= 0, 1, 2, 3) four shifted versions of the PN-sequence
generated by f(x).

Interleaved sequences are currently used as keystream sequences with application in
cryptography. They can be generated in different ways:

1. By a LFSR controlled by another LFSR (which may be the same one) e.g. multiplexed
sequences (Jennings, 1983), clock-controlled sequences (Beth and Piper, 1985), cascaded
sequences (Gollmann and Chambers, 1989), shrinking generator sequences (Coppersmith et al,
1993), etc.

2. By one or more than one LFSR and a feed-forward nonlinear function, e.g. Gold-sequence
family, Kasami (small and large set) sequence families, GMW sequences, Klapper sequences,
No sequences etc. See Gong (1995) and the references cited therein.

In brief, a large number of well-known cryptographic sequences are included in the class of
interleaved sequences. Next, the link between interleaved sequences and shrunken sequences is
expressed in the following result.

Theorem 5.2
Shrunken sequences are interleaved sequences of size 2(S-1).

Proof. Let {zk} be a shrunken sequence with characteristic polynomial P(x)p where P(x) is an A-
degree primitive polynomial and p is an integer in the interval 2(S-2) < p ≤2(S-1). According to the
interleaved configuration IC, we may express {zk} in terms of m sequences {zj} where {zj} = {zi⋅m+j}
with i≥ 0, m= 2(S-1) and (j= 0, ..., m - 1). Since by Theorem 3.2 the sequences {zj} are generated by
the same characteristic polynomial PD(x), we get that the shrunken sequence {zk} is an interleaved
sequence of size 2(S-1) associated with the polynomial PD(x). 

The previous theorem proves that shrunken sequences are interleaved sequences. Moreover,
Section 4 shows that the knowledge of a number of bits of the shrunken sequence allows us to
mount a cryptanalytic attack against the shrinking generator. As many cryptographic sequence
generators produce interleaved sequences, then the previous considerations take us into the
following conjecture:

u0 u1 u2 u3

1 1 1 1
1 0 1 0
0 0 1 1
0 1 0 1
1 0 0 1
0 1 1 0
1 1 0 0

Table 2: Interleaved sequence with 4 shifted versions of the same PN-sequence
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Conjecture 5.3
Given a number of known bits corresponding to a top-left corner sub-matrix of the interleaved config -
uration IC of any interleaved sequence, it is always possible to obtain the whole interleaved sequence. 

The confirmation of this conjecture would prove the weakness of interleaved generators for
cryptographic purposes.

6. CONCLUSIONS
In this work a new deterministic cryptanalytic attack against the class of shrinking generators has been
proposed. The amount of necessary intercepted bits and the on-line computational complexity of such
an attack are much lesser than those of other standard cryptanalysis. The basic idea of the proposed
attack consists in defining the shrunken sequence as an interleaved sequence, and then using the
weaknesses inherent to its interleaved configuration for launching a practical attack. A direct con se -
quence of this result is its possible generalization to other interleaved sequence generators of crypto -
graphic purpose. Therefore, the security of all interleaved generators should be carefully checked.
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